医用高数课后习题答案
- 格式:doc
- 大小:7.31 MB
- 文档页数:65
中医学院 20-20学年第一学期《医药高等数学》课程期末考试卷命题教师: 试卷编号: 审核人:适用专业考试班级考生姓名学号班级一、单项选择题:本大题共 8小题,每小题 3分,共 24分。
在每题给出的四个选项中,只有一项是符合题目要求的,把正确选项填在括号内。
1、 =+-+-++∞→113 2(3 2(lim n n nn n (。
A 、31 B 、 32C 、 1D 、和 n 取值有关 2、当1→x 时, ( 是 x -1的高阶无穷小。
A 、 231(x - B 、xx+-11 C 、 1(2x - D 、 1-x 3、⎪⎩⎪⎨⎧=≠=0, 9,0, sin (x x x Ax x f 在 x =0处连续,则 A =( 。
A 、 0B 、 -6C 、 -9D 、 94、 0=x 是函数 xxx f sin (=的( 。
A 、不是间断点B 、无穷间断点C 、跳跃间断点D 、可去间断点 5、若函数4(3(2(1( (----=x x x x x f ,则方程 0 (' =x f 的实根个数( 。
A 、 1 B 、 2 C 、 3 D 、 4 6、下列等式中正确的是( 。
A 、 d ⎰= ( (x f dx x fB 、 d ⎰=dx x f dx x f ( (C 、⎰=dx x f dx x f dx d ( ( D 、⎰+=c x f dx x f dxd( (7、满足 0 , (0 , (00' 00' ==y x f y x f y x 且的点 , (00y x 一定是( 。
A 、驻点B 、极值点C 、最大值点D 、最小值点8、σσd y x I d y x I DD221][ln( , ln(⎰⎰⎰⎰+=+=, 其中 D 是矩形闭区域53≤≤x ,10≤≤y ,则 1I 与 2I 之间的关系( 。
A 、21I I ≤B 、21I I ≥C 、 21I I =D 、无法比较二、填空题:本大题共 7小题,每小题 2分,共 14分。
习题1-61. 计算下列极限:(1)xx x ωsin lim 0→; 解 ωωωωω==→→x x xx x x sin lim sin lim 00. (2)xx x 3tan lim 0→; 解 33cos 133sin lim 33tan lim 00=⋅=→→xx x x x x x . (3)xx x 5sin 2sin lim 0→; 解 52525sin 522sin lim 5sin 2sin lim 00=⋅⋅=→→x x x x x x x x . (4)x x x cot lim 0→; 解 1cos lim sin lim cos sin lim cot lim 0000=⋅=⋅=→→→→x x x x x x x x x x x x . (5)xx x x sin 2cos 1lim 0-→; 解法一 ()2sin lim 2sin 2lim 2cos1lim sin 2cos 1lim 20220200===-=-→→→→xx x x x x x x x x x x x .解法二 2sin lim 2sin sin 2lim sin 2cos 1lim 0200===-→→→x x x x x x x x x x x . (6)n n n x 2sin 2lim ∞→(x 为不等于零的常数). 解 x x xxx nn n n n n =⋅=∞→∞→22sin lim 2sin 2lim . 2. 计算下列极限:(1)x x x 10)1(lim -→;解 {}11)(10)1()(1010)](1[lim )](1[lim )1(lim ---→--→→=-+=-+=-e x x x x x x x x x . (2)x x x 10)21(lim +→; 解 []22210221010)21(lim )21(lim )21(lim e x x x x x x x x x =+=+=+→⋅→→.(3)x x xx 2)1(lim +∞→; 解 []222)11(lim )1(lim e xx x xx x x =+=+∞→∞→.(4)kx x x)11(lim -∞→(k 为正整数). 解 k k x x kx x e xx ---∞→∞→=-+=-))(()11(lim )11(lim . 3. 根据函数极限的定义, 证明极限存在的准则I '. 解4. 利用极限存在准则证明: (1)111lim =+∞→nn ; 证明 因为nn 11111+<+<, 而 11lim =∞→n 且1)11(lim =+∞→n n , 由极限存在准则I, 111lim =+∞→nn . (2)()11 211lim 222=++⋅⋅⋅++++∞→πππn n n n n n ; 证明 因为()πππππ+<++⋅⋅⋅++++<+22222221 211n n n n n n n n n n , 而 1lim 22=+∞→πn n n n , 1lim 22=+∞→πn n n , 所以 ()11 211lim 222=++⋅⋅⋅++++∞→πππn n n n n n . (3)数列2, 22+, 222++, ⋅ ⋅ ⋅ 的极限存在; 证明 21=x , n n x x +=+21(n =1, 2, 3, ⋅ ⋅ ⋅). 先证明数列{x n }有界. 当n =1时221<=x , 假定n =k 时x k <2, 当n =k +1时,22221=+<+=+k k x x ,所以x n <2(n =1, 2, 3, ⋅ ⋅ ⋅), 即数列{x n }有界.再证明数列单调增.nn n nn n n n n n n n x x x x x x x x x x x x +++--=++-+=-+=-+2)1)(2(22221,而x n -2<0, x n +1>0, 所以x n +1-x n >0, 即数列{x n }单调增. 因为数列{x n }单调增加有上界, 所以此数列是有极限的.(4)11lim 0=+→n x x ; 证明 当|x |≤1时, 则有1+x ≤1+|x |≤(1+|x |)n ,1+x ≥1-|x |≥(1-|x |)n ,从而有 ||11||1x x x n +≤+≤-. 因为 1|)|1(lim |)|1(lim 00=+=-→→x x x x , 根据夹逼准则, 有11lim 0=+→n x x . (5)[]11lim 0=+→xx x . 证明 因为[]x x x 1111≤<-, 所以[]111≤<-xx x . 又因为11lim )1(lim 00==-++→→x x x , 根据夹逼准则, 有[]11lim 0=+→x x x .。
医学专升本试题及答案高数一、选择题(每题2分,共20分)1. 函数f(x)=x^3-6x^2+9x+2在x=1处的导数是:A. 0B. -3C. 3D. 6答案:C2. 曲线y=x^2在点(1,1)处的切线斜率是:A. 0B. 1C. 2D. 4答案:C3. 微分方程dy/dx + y = x^2的通解是:A. y = x^2 - x + CB. y = x^2 + CC. y = x^2 + x + CD. y = x^2 - x^2 + C答案:B4. 若f(x)=e^x,则f'(x)是:A. e^xB. 0C. 1D. x答案:A5. 函数f(x)=sin(x)的n阶导数f^(n)(x)在x=0时的值,当n为奇数时是:A. 0B. 1C. -1D. sin(n)答案:C6. 曲线y=x^3-3x^2+2x在x=0处的切线方程是:A. y = 0B. y = 2xC. y = -3xD. y = x答案:A7. 若f(x)=ln(x),则f'(x)是:A. 1/xB. xC. ln(x)D. 1答案:A8. 函数f(x)=x^2+1在区间[0,1]上的最大值是:A. 0B. 1C. 2D. 5答案:C9. 函数f(x)=x^2-4x+3的极小值点是:A. x=1B. x=2C. x=3D. x=4答案:B10. 若f(x)=x^3-6x^2+11x-6,则f(2)的值是:A. -2B. 0C. 2D. 4答案:C二、填空题(每题2分,共20分)11. 若f(x)=x^4-2x^3+3x^2-4x+5,则f'(x)=________。
答案:4x^3-6x^2+6x-412. 若曲线y=x^2+1在点(2,5)处的切线与x轴平行,则该切线的方程是________。
答案:y=513. 微分方程dy/dx - y = 0的通解是y=________。
答案:Ce^x14. 函数f(x)=cos(x)的二阶导数f''(x)是________。
第9章课后习题详解 重积分课后习题全解习题9-1★1.设有一平面薄板(不计其厚度),占有xOy 面上的闭区域D ,薄板上分布着面密度为),(y x μμ=的电荷,且),(y x μ在D 上连续,试用二重积分表达该板上的全部电荷Q .解:将D 任意分割成n 个小区域{}i σ∆,在第i 个小区域上任取一点),(i i ηξ,由于),(y x μ在D 上连续和i σ∆很小,所以用),(i i ηξμ作为i σ∆上各点函数值的近似值,则i σ∆上的电荷i i i i Q σηξμ∆≈∆),(从而该板上的全部电荷⎰⎰∑=∆==→Dni i i i d y x Q σμσηξμλ),(),(lim 1其中λ是各i σ∆中的最大直径。
★★2.利用二重积分定义证明:(1)σσ=⎰⎰Dd (σ为区域D 的面积);(2)⎰⎰⎰⎰=DDd y x f k d y x kf σσ),(),((其中k 为常数);(3)⎰⎰⎰⎰⎰⎰+=21),(),(),(D D Dd y x f d y x f d y x f σσσ,其中21D D D=, 21,D D 为两个无公共内点的闭区域。
证明:(1)这里,被积函数1),(≡y x f ,由二重积分的定义,对任意分割和取点法,=∙⎰⎰Dd σ1∑∑=→=→∆∙=∆n i i ni iiif 111lim ),(lim σσηξλλ∑=→∆=ni i 1lim σλσσλ==→0lim ,∴σσ=⎰⎰Dd ,其中λ是各iσ∆中的最大直径。
(2)=⎰⎰Dd y x kf σ),(∑∑=→=→∆=∆ni i i i ni iiif k kf 101),(lim ),(lim σηξσηξλλ∑=→∆=ni i i i f k 1),(lim σηξλ⎰⎰=Dd y x f k σ),((3)将1D 任意分割成1n 个小区域{}1i σ∆,1λ是其各小区域的最大直径,将2D 任意分割成2n 个小区域{}2i σ∆,2λ有类似的意义。
第一章习题 习题1.11.判断下列函数是否相同: ①定义域不同;②定义域对应法则相同同;2.解 25.125.01)5.0(,2)5.0(=+=-=f f5.解 ① 10,1,1222≤≤-±=-=y y x y x② +∞<<-∞+=+=-=-=y be b c x e c bx c bx e c bx e ay ay a y a y ,,,),ln(ln 6.解 ① x v v u u y sin ,3,ln 2=+== ② 52,arctan 3+==x u u y 习题1.24.解:① 无穷大 ② 无穷小 ③ 负无穷大 ④ 负无穷大 ⑤ 无穷小 ⑥ 无穷小5.求极限:⑴ 21lim 2lim 3)123(lim 13131=+-=+-→→→x x x x x x x⑵ 51)12(lim )3(lim 123lim 22222=+-=+-→→→x x x x x x x⑶ 0tan lim=∞→xxa x⑷-∞=∞--=------=----=+--→→→→32)1)(4(1lim )1)(4()1(2lim )1)(4(122lim 4532lim 11121x x x x x x x x x x x x x x x⑸ 4123lim )2)(2()2)(3(lim 465lim 22222-=+-=-+--=-+-→→→x x x x x x x x x x x x ⑹ )11)(11()11(lim 11lim22220220x x x x x x x x +++-++=+-→→2)11(lim )11(lim 202220-=++-=-++=→→x xx x x x ⑺ 311311lim 131lim 22=++=+++∞→+∞→xx x x x x⑻2132543232lim 25342332lim =⎪⎭⎫⎝⎛⋅+⎪⎭⎫ ⎝⎛⋅+=⋅+⋅⋅+⋅+∞→+∞→x xx x x x x x ⑼ 133)1)(1()2)(1(lim 12lim 1311lim 2132131-=-=+-+-+=+-+=⎪⎭⎫ ⎝⎛+-+-→-→-→x x x x x x x x x x x x x ⑽011lim )1()1)(1(lim)1(lim =++=++++-+=-+∞→∞→∞→nn n n n n n n n n n n n⑾ 1lim 1231lim 22222==⎪⎭⎫ ⎝⎛-+++∞→∞→n n n n n n x x ⑿221121211lim2121211lim 2=-⋅-=⎪⎭⎫ ⎝⎛+++∞→∞→n n n n 6.求极限 ⑴ 414tan lim0=→x x x⑵ 111sinlim1sin lim ==∞→∞→xx x x x x⑶ 2sin 2lim sin sin 2lim sin 2cos 1lim0200===-→→→xxx x x x x x x x x ⑷ x x n nn =⋅∞→2sin 2lim⑸ 21sin lim 212arcsin lim00==→→y y x x y x ⑹111sinlim1sin lim 1sinlim 22222-=-=-=-∞→-∞→-∞→x x x x x x x x x ⑺ k k xx k xx xkx e x x x x ----→---→-→=--=-=-])1()1[(lim )1(lim )1(lim2)(12)(120⑻ 22211lim 1lim e x x x x x xx =⎪⎭⎫ ⎝⎛+=⎪⎭⎫⎝⎛+⋅∞→∞→⑼ 313tan 311cot 0])tan 31()tan 31[(lim )tan 31(lim e x x x xx x x =++=+→+→⑽ =⎪⎭⎫ ⎝⎛-+∞→32321lim x x x 343)34(23])321()321[(lim ---∞→=-⋅-e xx xx ⑾ []1)31(lim )31(lim )31(lim 03133311==+=+=+⋅-+∞→⋅⋅-+∞→-+∞→--e xx x x x x x x x x xxx⑿ 1333111lim 1111lim 1lim -+∞→+∞→+∞→==⎪⎭⎫ ⎝⎛+=⎪⎪⎪⎪⎭⎫⎝⎛+=⎪⎭⎫ ⎝⎛+e ex x x x x x x x x x习题1.31、⑴ 因为函数在x=1点处无定义,)2)(1()1)(1()(--+-=x x x x x f ,但是2)(lim 1-=→x f x ,x=1点是函数的第一类间断点(可去)。
《高 等 数 学》测试题(A )不定项选择题:将你认为正确的答案填入括号中,可单选,多选,每题4分,共24题。
1. 当0x →时,下列变量中( B )是无穷小量。
xx sin .A x e 1.B - x x x .C 2- x )x 1ln(.D +2. 22x 2sin lim 2sin x x xx x →∞+-=+( A ). A 12 B 2 C 0 D 不存在3.半径为R 的金属圆片,加热后伸长了R ∆,则面积S 的微分dS 是( B )A 、RdR πB 、RdR π2C 、dR πD 、dR π2注:dS=RdR π2;4.cos x xdx ππ-=⎰( C )A 、 1B 、 2C 、 0D 、 4注:偶倍奇零10121111105.12,().(12);.2(12);.2(12);.(2).x t f x dx ABCD A f t dt B f t dt C f t dt D f t dt --=-≠-----⎰⎰⎰⎰⎰作变量替换 则().6. 设)(x f 在区间[]b a ,上连续,⎰≤≤=xa b x a dt t f x F )()()(,则)(x F 是)(x f 的( B). A 、不定积分 B 、一个原函数C 、全体原函数D 、在[]b a ,上的定积分7.若()(),f x x φ''=则下列各式 AD 不成立。
()()0A f x x φ-= ()()B f x x C φ-=()()C d f x d x φ=⎰⎰ ()()ddD f x dx x dx dx dx φ=⎰⎰注:()()()().()()()()f x x f x x C d f x f x C d x x Cφφφφ''=⇒-==+=+⎰⎰8.设e -x 是f (x )的一个原函数,则⎰dx x xf )(=( B)。
A. C x e x +--)(1B. C x e x ++-)(1C. C x e x +--)(1D. C x e x ++--)(1注:()x x x x x xf x dx xde xe e dx xe e C -----==-=++⎰⎰⎰9.设()()⎪⎩⎪⎨⎧=≠+=0,0,11x x x x f x α,要使()x f 在0=x 处连续,则=α( C )A .1B .0C .eD .e 110.函数1+=x y 在0=x 处满足条件( A )A .连续但不可导B .可导但不连续C .不连续也不可导D .既连续已可导注:0100()1lim 11(0)010()1010()101,0()(0)(0)lim lim 01,0x x x y f x x x f x x f x x x x f x x x x f x f f x x x →+-→→==+⎡+⎤==⇒⎣⎦+≥⎧=⎨-<⎩>⎧'=⎨-<⎩⎧→-'===⎨--→⎩在点连续。
高等数学课后习题及参考答案(第十章)习题 10-11. 设在xOy 面内有一分布着质量的曲线弧L , 在点(x , y )处它的线密度为μ(x , y ), 用对弧长的曲线积分分别表达:(1)这曲线弧对x 轴、对y 轴的转动惯量I x , I y ; (2)这曲线弧的重心坐标x , y .解 在曲线弧L 上任取一长度很短的小弧段ds (它的长度也记做ds ), 设(x , y )为小弧段ds 上任一点.曲线L 对于x 轴和y 轴的转动惯量元素分别为 dI x =y 2μ(x , y )ds , dI y =x 2μ(x , y )ds . 曲线L 对于x 轴和y 轴的转动惯量分别为 ⎰=Lx ds y x y I ),(2μ, ⎰=Ly ds y x x I ),(2μ.曲线L 对于x 轴和y 轴的静矩元素分别为 dM x =y μ(x , y )ds , dM y =x μ(x , y )ds . 曲线L 的重心坐标为⎰⎰==L L y dsy x ds y x x M M x ),(),(μμ, ⎰⎰==LL x ds y x dsy x y M M y ),(),(μμ. 2. 利用对弧长的曲线积分的定义证明: 如果曲线弧L 分为两段光滑曲线L 1和L 2, 则⎰⎰⎰+=12),(),(),(LL L ds y x f ds y x f ds y x f .证明 划分L , 使得L 1和L 2的连接点永远作为一个分点, 则∑∑∑+===∆+∆=∆111111),(),(),(n n i i i i ni n i i i i i i i s f s f s f ηξηξηξ.令λ=max{∆s i }→0, 上式两边同时取极限∑∑∑+=→=→=→∆+∆=∆nn i i i i n i i i i ni i i i s f s f s f 111011),(lim),(lim ),(lim ηξηξηξλλλ,即得⎰⎰⎰+=12),(),(),(LL L ds y x f ds y x f ds y x f .3. 计算下列对弧长的曲线积分:(1)⎰+Ln ds y x )(22, 其中L 为圆周x =a cos t , y =a sin t (0≤t ≤2π);解⎰+L nds y x)(22⎰+-+=π20222222)cos ()sin ()sin cos (dt t a t a t a t a n=⎰+-+π20222222)cos ()sin ()sin cos (dt t a t a t a t a n ⎰++==ππ2012122n n a dt a .(2)⎰+Lds y x )(, 其中L 为连接(1, 0)及(0, 1)两点的直线段;解 L 的方程为y =1-x (0≤x ≤1);⎰⎰'-+-+=+102])1[(1)1()(dx x x x ds y x L22)1(1=-+=⎰dx x x .(3)xdx L⎰, 其中L 为由直线y =x 及抛物线y =x 2所围成的区域的整个边界; 解 L 1: y =x 2(0≤x ≤1), L 2: y =x (0≤x ≤1) .xdx L ⎰xdx xdx LL ⎰⎰+=21⎰⎰'++'+=102122)(1])[(1dx x x dx x x⎰⎰++=10102241xdx dx x x )12655(121-+=.(4)ds ey x L22+⎰, 其中L 为圆周x 2+y 2=a 2, 直线y =x 及x 轴在第一象限内所围成的扇形的整个边界; 解 L =L 1+L 2+L 3, 其中 L 1: x =x , y =0(0≤x ≤a ),L 2: x =a cos t , y =a sin t )40(π≤≤t ,L 3: x =x , y =x )220(a x ≤≤,因而ds eds eds eds ey x L y x L y x L y x L22322222122++++⎰⎰⎰⎰++=,⎰⎰⎰+++-++=axa ax dx e dt t a t a e dx e 220222402202211)cos ()sin (01π2)42(-+=a e a π.(5)⎰Γ++ds z y x 2221, 其中Γ为曲线x =e t cos t , y =e t sin t , z =e t 上相应于t 从0变到2的这段弧;解 dt dtdz dt dydt dx ds 222)()()(++=dt e t e t e t e t e t t t t t 222)cos sin ()sin cos (+++-=dt e t 3=,⎰⎰++=++Γ20222222223sin cos 11dt e et e t e ds z y x t t t t ⎰----=-==2220)1(23]23[23e e dt e t t .(6)⎰Γyzds x 2, 其中Γ为折线ABCD , 这里A 、B 、C 、D 依次为点(0, 0, 0)、 (0, 0, 2)、(1, 0, 2)、(1, 3, 2); 解 Γ=AB +BC +CD , 其中 AB : x =0, y =0, z =t (0≤t ≤1), BC : x =t , y =0, z =2(0≤t ≤3), CD : x =1, y =t , z =2(0≤t ≤3), 故yzds x yzds x yzds x yzds x CD BC AB 2222⎰⎰⎰⎰++=Γ9010200322231=++++=⎰⎰⎰dt t dt dt .(7)⎰Lds y 2, 其中L 为摆线的一拱x =a (t -sin t ), y =a (1-cos t )(0≤t ≤2π);解⎰⎰'+'--=L dt t a t t a t a ds y π2022222])(cos [])sin ([)cos 1(⎰--=π2023cos 1)cos 1(2dt t t a 315256a =.(8)⎰+Lds y x )(22, 其中L 为曲线x =a (cos t +t sin t ), y =a (sin t -t cos t )(0≤t ≤2π).解 dt dtdydt dx ds 22)()(+=atdt dt t at t at =+=22)sin ()cos (atdt t t t a t t t a ds y x L ])cos (sin )sin (cos [)(22202222-++=+⎰⎰π⎰+=+=πππ2023223)21(2)1(a tdt t a .4. 求半径为a , 中心角为2ϕ的均匀圆弧(线密度μ=1)的重心. 解 建立坐标系如图10-4所示, 由对称性可知0=y , 又 ⎰==L x xds a M M x ϕ21⎰-⋅=ϕϕθθϕad a a cos 21ϕϕsin a =, 所以圆弧的重心为)0 ,sin (ϕϕa5. 设螺旋形弹簧一圈的方程为x =a cos t , y =a sin t , z =kt , 其中0≤1≤2π, 它的线密度ρ(x , y , z )=x 2+y 2+z 2, 求:(1)它关于z 轴的转动惯量I z ; (2)它的重心. 解 dt t z t y t x ds )()()(222'+'+'=dt k a 22+=. (1)⎰+=Lz ds z y x y x I ),,()(22ρds z y x y x L))((22222+++=⎰dt k a t k a a ⎰++=π20222222)()43(32222222k a k a a ππ++=. (2)⎰⎰++==LLds z y x ds z y x M )(),,(222ρ⎰++=π2022222)(dt k a t k a)43(3222222k a k a ππ++=, ds z y x x M x L)(1222⎰++=⎰++=π2022222)(cos 1dt k a t k a t a M2222436k a ak ππ+=, ds z y x y M y L)(1222⎰++=⎰++=π2022222)(sin 1dt k a t k a t a M2222436k a ak ππ+-=, ds z y x z M z L)(1222⎰++=⎰++=π2022222)(1dt k a t k a kt M22222243)2(3k a k a k πππ++=,故重心坐标为)43)2(3 ,436 ,436(22222222222222k a k a k k a ak k a ak πππππππ+++-+.习题 10-21. 设L 为xOy 面内直线x =a 上的一段, 证明:⎰=L dx y x P 0),(.证明 设L 是直线x =a 上由(a , b 1)到(a , b 2)的一段, 则L : x =a , y =t , t 从b 1变到b 2. 于是00) ,())( ,(),(2121⎰⎰⎰=⋅==b b b b L dt t a P dt dtda t a P dx y x P . 2. 设L 为xOy 面内x 轴上从点(a , 0)到(b , 0)的一段直线, 证明⎰⎰=Lbadx x P dx y x P )0 ,(),(.证明L : x =x , y =0, t 从a 变到b , 所以⎰⎰⎰='=baL b adx x P dx x x P dx y x P )0 ,())(0 ,(),(.3. 计算下列对坐标的曲线积分:(1)⎰-Ldx y x )(22, 其中L 是抛物线y =x 2上从点(0, 0)到点(2, 4)的一段弧;解 L : y =x 2, x 从0变到2, 所以⎰⎰-=-=-L dx x x dx y x2042221556)()(.(2)⎰Lxydx , 其中L 为圆周(x -a )2+y 2=a 2(a >0)及x 轴所围成的在第 一象限内的区域的整个边界(按逆时针方向绕行); 解 L =L 1+L 2, 其中L 1: x =a +a cos t , y =a sin t , t 从0变到π, L 2: x =x , y =0, x 从0变到2a , 因此⎰⎰⎰+=21L L L xydx xydx xydx⎰⎰+'++=adx dt t a a t a t a 200)cos (sin )cos 1(π3020232)sin sin sin (a t td tdt a πππ-=+-=⎰⎰.(3)⎰+Lxdy ydx , 其中L 为圆周x =R cos t , y =R sin t 上对应t 从0到2π的一段弧;解 ⎰⎰+-=+L dt t tR R t R t R xdy ydx ]cos cos )sin (sin [20π⎰==20202cos πtdt R .(4)⎰+--+L y x dy y x dx y x 22)()(, 其中L 为圆周x 2+y 2=a 2(按逆时针方向绕行);解 圆周的参数方程为: x =a cos t , y =a sin t , t 从0变到2π, 所以⎰+--+L yx dyy x dx y x 22)()( ⎰---+=π202)]cos )(sin cos ()sin )(sin cos [(1dt t a t a t a t a t a t a a ⎰-=-=ππ202221dt a a .(5)ydz zdy dx x -+⎰Γ2, 其中Γ为曲线x =k θ, y =a cos θ, z =a sin θ上对应θ从0到π的一段弧; 解⎰⎰--+=-+Γπθθθθθθ022]cos cos )sin (sin )[(d a a a a k k ydz zdy dx x233220331)(a k d a k ππθθπ-=-=⎰.(6)dz y x ydy xdx )1(-+++⎰Γ, 其中Γ是从点(1, 1, 1)到点(2, 3, 4)的一段直线;解 Γ的参数方程为x =1+t , y =1+2t , z =1+3t , t 从0变到1.⎰Γ-+++dz y x ydy xdx )1(⎰-+++++++=1)]1211(3)21(2)1[(dt t t t t⎰=+=1013)146(dt t .(7)⎰Γ+-ydz dy dx , 其中Γ为有向闭折线ABCA , 这里的A , B , C依次为点(1, 0, 0), (0, 1, 0), (0, 0, 1); 解 Γ=AB +BC +CA , 其中AB : x =x , y =1-x , z =0, x 从1变到0, BC : x =0, y =1-z , z =z , z 从0变到1, CA : x =x , y =0, z =1-x , x 从0变到1, 故ydz dy dx ydz dy dx ydz dy dx ydz dy dx CA BC AB +-++-++-=+-⎰⎰⎰⎰Γ⎰⎰⎰+-+'--+'--=101010)]1()1([])1(1[dx dt z z dx x 21=.(8)dy xy y dx xy x L)2()2(22-+-⎰, 其中L 是抛物线y =x 2上从(-1, 1)到(1, 1)的一段弧.解 L : x =x , y =x 2, x 从-1变到1, 故⎰-+-L dy xy y dx xy x )2()2(22⎰--+-=113432]2)2()2[(dx x x x x x 1514)4(21042-=-=⎰dx x x 4. 计算⎰-++Ldy x y dx y x )()(, 其中L 是:(1)抛物线y =x 2上从点(1, 1)到点(4, 2)的一段弧; 解 L : x =y 2, y =y , y 从1变到2, 故⎰-++L dy x y dx y x )()(⎰=⋅-+⋅+=2122334]1)(2)[(dy y y y y y . (2)从点(1, 1)到点(4, 2)的直线段; 解 L : x =3y -2, y =y , y 从1变到2, 故⎰-++L dy x y dx y x )()(11]1)23()23[(21=⋅+-+⋅+-=⎰dy y y y y y(3)先沿直线从点(1, 1)到(1, 2), 然后再沿直线到点(4, 2)的折线; 解 L =L 1+L 2, 其中L 1: x =1, y =y , y 从1变到2, L 2: x =x , y =2, x 从1变到4, 故⎰-++L dy x y dx y x )()(dy x y dx y x dy x y dx y x L L )()()()(21-+++-++=⎰⎰14)2()1(4121=++-=⎰⎰dx x dy y .(4)沿曲线x =2t 2+t +1, y =t 2+1上从点(1, 1)到(4, 2)的一段弧. 解 L : x =2t 2+t +1, y =t 2+1, t 从0变到1, 故⎰-++L dy x y dx y x )()(332]2)()14)(23[(1022=⋅--++++=⎰dt t t t t t t .5. 一力场由沿横轴正方向的常力F 所构成, 试求当一质量为m 的质点沿圆周x 2+y 2=R 2按逆时针方向移过位于第一象限的那一段时 场力所作的功.解 已知场力为F =(|F |, 0), 曲线L 的参数方程为 x =R cos θ, y =R sin θ,θ从0变到2π, 于是场力所作的功为R F d R F dx F d W LL||)sin (||||20-=-⋅==⋅=⎰⎰⎰πθθr F .6. 设z 轴与力方向一致, 求质量为m 的质点从位置(x 1, y 1, z 1) 沿直线移到(x 2, y 2, z 2)时重力作的功.解 已知F =(0, 0, mg ). 设Γ为从(x 1, y 1, z 1)到(x 2, y 2, z 2)的直线, 则重力所作的功为⎰⎰⎰ΓΓ-==++=⋅=21)(0012z z z z mg dz mg mgdz dy dx d W r F .7. 把对坐标的曲线积分⎰+Ldy y x Q dx y x P ),(),(化成对弧长的曲线积分, 其中L 为:(1)在xOy 面内沿直线从点(0, 0)到(1, 1); 解 L 的方向余弦214cos cos cos ===πβα,故⎰+L dy y x Q dx y x P ),(),(ds y x Q y x P L]cos ),(cos ),([βα+=⎰⎰+=L ds y x Q y x P 2),(),(.(2)沿抛物线y =x 2从点(0, 0)到(1, 1);解 曲线L 上点(x , y )处的切向量为τ=(1, 2x ), 单位切向量为 )412,411()cos ,(cos 22x x x ++==τβαe ,故⎰+L dy y x Q dx y x P ),(),(ds y x Q y x P L ]cos ),(cos ),([βα+=⎰⎰++=L ds xy x xQ y x P 241),(2),(. (3)沿上半圆周x 2+y 2=2x 从点(0, 0)到(1, 1). 解 L 的方程为22x x y -=, 其上任一点的切向量为 )21 ,1(2x x x --=τ, 单位切向量为)1 ,2()cos ,(cos 2x x x --==τβαe ,故⎰+L dy y x Q dx y x P ),(),(ds y x Q y x P L ]cos ),(cos ),([βα+=⎰⎰-+-=Lds y x Q x y x P x x )],()1(),(2[2.8. 设Γ为曲线x =t , y =t 2, z =t 3上相应于t 从0变到1的曲线弧,把对坐标的曲线积分⎰Γ++Rdz Qdy Pdx 化成对弧长的曲线积分.解 曲线Γ上任一点的切向量为 τ=(1, 2t , 3t 2)=(1, 2x , 3y ), 单位切向量为)3 ,2 ,1(9211)cos ,cos ,(cos 22y x yx ++==τγβαe ,ds R Q P Rdz Qdy Pdx L ]cos cos cos [γβα++=++⎰⎰Γ⎰++++=L ds y x yRxQ P 2294132.习题 10-31. 计算下列曲线积分, 并验证格林公式的正确性:(1)⎰++-ldy y x dx x xy )()2(22, 其中L 是由抛物线y =x 2及y 2=x 所围成的区域的正向边界曲线; 解 L =L 1+L 2, 故⎰++-L dy y x dx x xy )()2(22⎰⎰++-+++-=21)()2()()2(2222L L dy y x dx x xy dy y x dx x xy⎰⎰++-+++-=112243423)](2)2[(]2)()2[(dy y y y y y dx x x x x x301)242()22(1010245235=++--++=⎰⎰dy y y y dx x x x ,而dxdy x dxdy yPx Q DD)21()(-=∂∂-∂∂⎰⎰⎰⎰⎰⎰-=102)21(y y dx x dy301)(42121=+--=⎰dy y y y y , 所以⎰⎰⎰+=∂∂-∂∂l DQdy Pdx dxdy yPx Q )(.(2)⎰-+-ldy xy y dx xy x )2()(232, 其中L 是四个顶点分别为(0, 0)、 (2, 0)、(2, 2)、和(0, 2)的正方形区域的正向边界.解 L =L 1+L 2+L 3+L 4, 故⎰-+-L dy xy y dx xy x )2()(232dy xy y dx xy x L L L L )2())((2324321-+-+++=⎰⎰⎰⎰ ⎰⎰⎰⎰+-+-+=202002022222)8()4(dy y dx x x dy y y dx x 8482020=-+=⎰⎰ydy xdx , 而 dxdy xy y dxdy y P x Q DD )32()(2+-=∂∂-∂∂⎰⎰⎰⎰ ⎰⎰+-=20220)32(dy xy y dx 8)48(20=-=⎰dx x , 所以 ⎰⎰⎰+=∂∂-∂∂l D Qdy Pdx dxdy yP x Q )(. 2. 利用曲线积分, 求下列曲线所围成的图形的面积:(1)星形线x =a cos 3t , y =a sin 3t ;解 ⎰⎰-⋅⋅-=-=L dt t t a t a ydx A π2023)sin (cos 3sin ⎰==ππ20224283cos sin 3a tdt t a . (2)椭圆9x 2+16y 2=144;解 椭圆9x 2+16y 2 =144的参数方程为x =4cos θ, y =3sin θ, 0≤θ≤2π, 故⎰-=Lydx xdy A 21 ⎰-⋅-⋅=πθθθθθ20)]sin 4(sin 3cos 3cos 4[21d ⎰==ππθ20126d . (3)圆x 2+y 2=2ax .解 圆x 2+y 2=2ax 的参数方程为x =a +a cos θ, y =a sin θ, 0≤θ≤2π,故 ⎰-=Lydx xdy A 21 ⎰-⋅-⋅+=πθθθθθ20)]sin (sin cos )cos 1([21d a a a a 2202)cos 1(2a d a ⎰=+=ππθθ.3. 计算曲线积分⎰+-L y x xdy ydx )(222, 其中L 为圆周(x -1)2+y 2=2, L 的方 向为逆时针方向.解 )(222y x y P +=, )(222y x x Q +-=. 当x 2+y 2≠0时 y P x Q ∂∂=∂∂0)(2)(22222222222=+--+-=y x y x y x y x . 在L 内作逆时针方向的ε小圆周l : x =εcos θ, y =εsin θ(0≤θ≤2π),在以L 和l 为边界的闭区域D ε上利用格林公式得0)(=∂∂-∂∂=+⎰⎰⎰-+dxdy y P x Q Qdy Pdx D l L ε, 即 ⎰⎰⎰+=+-=+-lL l dy Pdx Qdy Pdx Qdy Pdx . 因此 ⎰⎰+-=+-l L y x xdy ydx y x xdy ydx )(2)(22222⎰--=πθεθεθε20222222cos sin d ⎰-=-=ππθ2021d .4. 证明下列曲线积分在整个xOy 面内与路径无关, 并计算积分值:(1)⎰-++)3 ,2()1 ,1()()(dy y x dx y x ;解 P =x +y , Q =x -y , 显然P 、Q 在整个xOy 面内具有一阶连续偏 导数, 而且1=∂∂=∂∂xQ y P , 故在整个xOy 面内, 积分与路径无关.取L 为点(1, 1)到(2, 3)的直线y =2x -1, x 从1变到2, 则⎰⎰-+-=-++)3 ,2()1 ,1(21)]1(2)13[()()(dx x x dy y x dx y x ⎰=+=2125)1(dx x . (2)⎰-+-)4 ,3()2 ,1(2232)36()6(dy xy y x dx y xy ;解 P =6xy 2-y 3, Q =6x 2y -3xy 2, 显然P 、Q 在整个xOy 面内具有一阶连续偏导数, 并且2312y xy xQ y P -=∂∂=∂∂, 故积分与路径无关, 取路径 (1, 2)→(1, 4)→(3, 4)的折线, 则⎰-+-)4 ,3()2 ,1(2232)36()6(dy xy y x dx y xy236)6496()3642312=-+-=⎰⎰dx x dy y y .(3)⎰-++-)1 ,2()0 ,1(324)4()32(dy xy x dx y xy .解 P =2xy -y 4+3, Q =x 2-4xy 3, 显然P 、Q 在整个xOy 面内具有一阶连续偏导数, 并且342y x xQ y P -=∂∂=∂∂, 所以在整个xOy 面内积分与 路径无关, 选取路径为从(1, 0)→(1, 2)→(2, 1)的折线, 则⎰-++-)1 ,2()0 ,1(324)4()32(dy xy x dx y xy⎰⎰=++-=102135)1(2)41(dx x dy y .5. 利用格林公式, 计算下列曲线积分:(1)⎰-+++-Ldy x y dx y x )635()42(, 其中L 为三顶点分别为(0, 0)、 (3, 0)和(3, 2)的三角形正向边界;解 L 所围区域D 如图所示, P =2x -y +4, Q =5y +3x -6,4)1(3=--=∂∂-∂∂yP x Q , 故由格林公式,得⎰-+++-L dy x y dx y x )6315()42(dxdy y P x Q D)(∂∂-∂∂=⎰⎰ 124==⎰⎰dxdy D.(2)⎰-+-+Lx x dy ye x x dx e y x xy x y x )2sin ()sin 2cos (222, 其中L 为正 向星形线323232a y x =+(a >0);解 x e y x xy x y x P 22sin 2cos -+=, x ye x x Q 2sin 2-=,0)2cos sin 2()2cos sin 2(22=-+--+=∂∂-∂∂x x ye x x x x ye x x x x yP x Q , 由格林公式⎰-+-+L x x dy ye x x dx e y x xy x y x )2sin ()sin 2cos (2220)(=∂∂-∂∂=⎰⎰dxdy yP x Q D . (3)⎰+-+-Ldy y x x y dx x y xy )3sin 21()cos 2(2223, 其中L 为在抛物线 2x =πy 2上由点(0, 0)到)1 ,2(π的一段弧; 解 x y xy P cos 223-=, 223sin 21y x x y Q +-=,0)cos 26()6cos 2(22=--+-=∂∂-∂∂x y xy xy x y yP x Q , 所以由格林公式0)(=∂∂-∂∂=+⎰⎰⎰++-dxdy yP x Q Qdy Pdx D OB OA L , 其中L 、OA 、OB 、及D 如图所示.故 ⎰⎰++=+AB OA L Qdy Pdx Qdy Pdx4)4321(02201022πππ=+-+=⎰⎰dy y y dx . (4)⎰+--L dy y x dx y x )sin ()(22, 其中L 是在圆周22x x y -=上由点(0, 0)到点(1, 1)的一段弧.解 P =x 2-y , Q =-x -sin 2y ,0)1(1=---=∂∂-∂∂y P x Q , 由格林公式有0)(=∂∂-∂∂-=+⎰⎰⎰++dxdy y P x Q Qdy Pdx DBO AB L , 其中L 、AB 、BO 及D 如图所示.故 ⎰⎰++--=+--L OB BA dy y x dx y x dy y x dx y x )sin ()()sin ()(22222sin 4167)sin 1(102102+-=++-=⎰⎰dx x dy y .6. 验证下列P (x , y )dx +Q (x , y )dy 在整个xOy 平面内是某一函数u (x , y )的全微分, 并求这样的一个u (x , y ):(1)(x +2y )dx +(2x +y )dy ;证明 因为yP x Q ∂∂==∂∂2, 所以P (x , y )dx +Q (x , y )dy 是某个定义在整 个xOy 面内的函数u (x , y )的全微分.⎰++++=),()0,0()2()2(),(y x C dy y x dx y x y x u C y xy x +++=22222. (2)2xydx +x 2dy ;解 因为y P x x Q ∂∂==∂∂2, 所以P (x , y )dx +Q (x , y )dy 是某个定义在整个 xOy 面内的函数u (x , y )的全微分.⎰++=),()0,0(22),(y x C dy x xydx y x u ⎰⎰+=++=y yC y x C xydx dy 00220. (3)4sin x sin3y cos xdx –3cos3y cos2xdy解 因为yP x y x Q ∂∂==∂∂2sin 3cos 6, 所以P (x , y )dx +Q (x , y )dy 是某个 定义在整个xOy 平面内的函数u (x , y )的全微分.⎰+-=),()0,0(2cos 3cos 3cos 3sin sin 4),(y x C xdy y xdx y x y x u C y x C xdy y dx xy +-=+-+=⎰⎰3sin 2cos 2cos 3cos 3000. (4)dy ye y x x dx xy y x y )128()83(2322++++解 因为yP xy x x Q ∂∂=+=∂∂1632, 所以P (x , y )dx +Q (x , y )dy 是某个定 义在整个xOy 平面内的函数u (x , y )的全微分. ⎰+++++=),()0,0(232)128()823(),(y x y C dy ye y x x dx xy iy xh y x u C dx xy y x dy ye yx y +++=⎰⎰0022)83(12C e ye y x y x y y +-++=)(124223.(5)dy y x x y dx x y y x )sin sin 2()cos cos 2(22-++解 因为yP y x x y x Q ∂∂=-=∂∂sin 2cos 2, 所以P (x , y )dx +Q (x , y )dy 是 某个函数u (x , y )的全微分 ⎰⎰+-+=x y C dy y x x y xdx y x u 002)sin sin 2(2),( C y x x y ++=cos sin 22.7. 设有一变力在坐标轴上的投影为X =x +y 2, Y =2xy -8, 这变力确 定了一个力场, 证明质点在此场内移动时, 场力所做的功与路径无关. 解 场力所作的功为⎰Γ-++=dy xy dx y x W )82()(2. 由于yX y x Y ∂∂==∂∂2, 故以上曲线积分与路径无关, 即场力所作的功 与路径无关.习题10-41. 设有一分布着质量的曲面∑, 在点(x , y , z )处它的面密度为μ(x , y , z ), 用对面积的曲面积分表达这曲面对于x 轴的转动惯量.解. 假设μ(x , y , z )在曲面∑上连续, 应用元素法, 在曲面∑上任意一点(x , y , z )处取包含该点的一直径很小的曲面块dS (它的面积也记做dS ), 则对于x 轴的转动惯量元素为dI x =(y 2+z 2)μ(x , y , z )dS ,对于x 轴的转动惯量为dS z y x z y I x ),,()(22μ+=∑⎰⎰.2. 按对面积的曲面积分的定义证明公式dS z y x f dS z y x f dS z y x f ),,(),,(),,(21∑∑∑⎰⎰⎰⎰⎰⎰+=,其中∑是由∑1和∑2组成的.证明 划分∑1为m 部分, ∆S 1, ∆S 2, ⋅⋅⋅, ∆S m ;划分∑2为n 部分, ∆S m +1, ∆S m +2, ⋅⋅⋅, ∆S m +n ,则∆S 1, ⋅⋅⋅, ∆S m , ∆S m +1, ⋅⋅⋅, ∆S m +n 为∑的一个划分, 并且i i i i nm m i i i i i m i i i i i n m i S f S f S f ∆∑+∆∑=∆∑++==+=),,(),,(),,(111ζηξζηξζηξ. 令}{max 11i mi S ∆=≤≤λ, }{max 12i n m i m S ∆=+≤≤+λ, } ,max{21λλλ=, 则当 λ→0时, 有dS z y x f dS z y x f dS z y x f ),,(),,(),,(21∑∑∑⎰⎰⎰⎰⎰⎰+=.3. 当∑是xOy 面内的一个闭区域时, 曲面积分dSz y x f ),,(∑⎰⎰与二重积分有什么关系?解 ∑的方程为z =0, (x , y )∈D ,dxdy dxdy z z dS y x=++=221, 故 dxdy z y x f dS z y x f D),,(),,(⎰⎰⎰⎰=∑.4. 计算曲面积分dS z y x f ),,(∑⎰⎰, 其中∑为抛物面z =2-(x 2+y 2)在xOy 面上方的部分, f (x , y , z )分别如下:(1) f (x , y , z )=1;解 ∑: z =2-(x 2+y 2), D xy : x 2+y 2≤2,dxdy y x dxdy z z dS y x22224411++=++=. 因此 dxdy y x dS z y x f xyD 22441),,(++=⎰⎰⎰⎰∑ ⎰⎰+=πθ2020241rdr r d ππ313])41(121[2202/32=+=r . (2) f (x , y , z )=x 2+y 2;解 ∑: z =2-(x 2+y 2), D xy : x 2+y 2≤2, dxdy y x dxdy z z dS y x22224411++=++=. 因此 dxdy y x y x dS z y x f xyD 2222441)(),,(+++=⎰⎰⎰⎰∑ ⎰⎰+=πθ2020241rdr r d ππ301494122022=+=⎰rdr r r . (3) f (x , y , z )=3z .解 ∑: z =2-(x 2+y 2), D xy : x 2+y 2≤2,dxdy y x dxdy z z dS y x22224411++=++=. 因此 dS z y x f ),,(∑⎰⎰dxdy y x y x xyD 2222441)](2[3+++-=⎰⎰⎰⎰+-=πθ20202241)2(3rdr r r d ππ1011141)2(62022=+-=⎰rdr r r . 5. 计算dS y x )(22+∑⎰⎰, 其中∑是: (1)锥面22y x z +=及平面z =1所围成的区域的整个边界曲面;解 将∑分解为∑=∑1+∑2, 其中∑1: z =1 , D 1: x 2+y 2≤1, dS =dxdy ;∑1:22y x z +=, D 2: x 2+y 2≤1, dxdy dxdy z z dS y x2122=++=. dS y x dS y x dS y x )()()(22222221+++=+∑∑∑⎰⎰⎰⎰⎰⎰ dxdy y x dxdy y x D D )()(222221+++=⎰⎰⎰⎰⎰⎰=πθ20103dr r d +⎰⎰πθ201032dr r d πππ221222+=+=. 提示: dxdy dxdy yx y y x x dS 21222222=++++=.(2)锥面z 2=3(x 2+y 2)被平面z =0及z =3所截得的部分. 解 ∑:223y x z +=, D xy : x 2+y 2≤3,dxdy dxdy z z dS y x2122=++=, 因而 πθπ922)()(302202222==+=+⎰⎰⎰⎰⎰⎰∑rdr r d dxdy y x dS y x xy D . 提示: dxdy dxdy y x y y x x dS 2])(326[])(326[1222222=++++=.6. 计算下面对面积的曲面积分:(1)dS y x z )342(++∑⎰⎰, 其中∑为平面1432=++z y x 在第一象限中的部分;解 y x z 3424:--=∑, x y x D xy 2310 ,20 :-≤≤≤≤, dxdy z z dS y x 221++=dxdy 361=, 61436143614)342(==⋅=++⎰⎰⎰⎰⎰⎰∑dxdy dxdy dS y x z xy xyD D . (2)dS z x x xy )22(2+--∑⎰⎰, 其中∑为平面2x +2y +z =6在第一象限中的部分;解 ∑: z =6-2x -2y , D xy : 0≤y ≤3-x , 0≤x ≤3,dxdy dxdy z z dS y x3122=++=, dS z x x xy )22(2+--∑⎰⎰ dxdy y x x x xy xyD 3)22622(2--+--=⎰⎰⎰⎰--+--=x dy y xy x x dx 30230)22236(3 427)9103(33023-=+-=⎰dx x x . (3)dS z y x )(++∑⎰⎰, 其中∑为球面x 2+y 2+z 2=a 2上z ≥h (0<h <a )的部分;解 ∑:222y x a z --=, D xy : x 2+y 2≤a 2-h 2,dxdy z z dS y x 221++=dxdy y x a a 222--=,dxdy yx a a y x a y x dS z y x xy D 222222)()(----++=++⎰⎰⎰⎰∑ )(||22h a a D a adxdy xy D xy-===⎰⎰π(根据区域的对称性及函数的奇偶性).提示: dxdy yx a y y x a x dS 22222222)()(1+--++--+=dxdy y x a a 222--=, (4)dS zx yz xy )(++∑⎰⎰, 其中∑为锥面22y x z +=被x 2+y 2=2ax所截得的有限部分.解 ∑: 22y x z +=, D xy : x 2+y 2≤2ax ,dxdy dxdy z z dS y x2122=++=, dxdy y x y x xy dS zx yz xy xyD ])([2)(22+++=++⎰⎰⎰⎰∑ ⎰⎰++=-θππθθθθcos 202222)]sin (cos cos sin [2a rdr q r r dθθθθθθππd a )cos sin cos cos (sin 24422554⎰-++= 421564a =. 提示: dxdy yx y y x x dS 2222221++++=. 7. 求抛物面壳)10)((2122≤≤+=z y x z 的质量, 此壳的面密度为μ=z .解 ∑: )(2122y x z +=, D xy : x 2+y 2≤2, dxdy y x dxdy z z dS y x222211++=++=.故 dxdy y x y x zdS M xyD 22221)(21+++==⎰⎰⎰⎰∑ ⎰⎰+=πθ202022121rdr r r d )136(152+=π. 8. 求面密度为μ0的均匀半球壳x 2+y 2+z 2=a 2(z ≥0)对于z 轴的转动惯量. 解 ∑: 222y x a z --=, D xy : x 2+y 2≤a 2,dxdy z z dS y x 221++=dxdy yx a a 222--=, dxdy y x a a y x dS y x I z 222022022)()(--+=+=∑∑⎰⎰⎰⎰μμ ⎰⎰-=a dr ya r d a 0223200πθμ 4034a πμ=.提示:dxdy yx a y y x a x dS 22222222)()(1---+---+=dxdy y x a a 222--=.习题10-51. 按对坐标的曲面积分的定义证明公式:dydz z y x P z y x P )],,(),,([21±∑⎰⎰dydz z y x P dydz z y x P )],,(),,(21∑∑⎰⎰⎰⎰±=.解 证明把∑分成n 块小曲面∆S i (∆S i 同时又表示第i 块小曲面的面 积), ∆S i 在yOz 面上的投影为(∆S i )yz , (ξi , ηi ,ζi )是∆S i 上任意取定的一点, λ是各小块曲面的直径的最大值, 则dydzz y x P z y x P )],,(),,([21±∑⎰⎰ yz i i i i i i i n i S P P ))](,(),([lim ,2,110∆±==→∑ζηξζηξλyz i i i i ni yz i i i i n i S P S P ))(,(lim ))(,(lim ,210,110∆±∆==→=→∑∑ζηξζηξλλ dydz z y x P dydz z y x P )],,(),,(21∑∑⎰⎰⎰⎰±=.2. 当∑为xOy 面内的一个闭区域时, 曲面积分dxdy z y x R ),,(∑⎰⎰与二重积分有什么关系?解 因为∑: z =0, (x , y )∈D xy , 故dxdy z y x R dxdy z y x R xyD ),,(),,(⎰⎰⎰⎰±=∑,当∑取的是上侧时为正号, ∑取的是下侧时为负号.3. 计算下列对坐标的曲面积分:(1)zdxdy y x 22∑⎰⎰其中∑是球面x 2+y 2+z 2=R 2的下半部分的下侧;解 ∑的方程为222y x R z ---=, D xy : x 2+y 2≤R , 于是zdxdy y x 22∑⎰⎰dxdy y x R y x xyD )(22222----=⎰⎰ ⎰⎰⋅-⋅⋅=πθθθ20222202sin cos rdr r R r r d R⎰⎰-=πθθ20052222sin 41R dr r r R d 71052R π=. (2)ydzdx xdydz zdxdy ++∑⎰⎰, 其中z 是柱面x 2+y 2=1被平面z =0及z =3所截得的第一卦限内的部分的前侧;解 ∑在xOy 面的投影为零, 故0=∑⎰⎰zdxdy .∑可表示为21y x -=, (y , z )∈D yz ={(y , z )|0≤y ≤1, 0≤z ≤3}, 故 ⎰⎰⎰⎰⎰⎰⎰-=-=-=∑3010102221311dy y dy y dz dydz y xdyz yz D ∑可表示为21x y -=, (z , x )∈D zx ={(z , x )|0≤z ≤3, 0≤x ≤1}, 故dzdx x ydzdx zx D 21-=⎰⎰⎰⎰∑⎰⎰⎰-=-=30101022131dx x dx x dz . 因此 ydzdx xdydz zdxdy ++∑⎰⎰)13(2102dx x ⎰-=ππ2346=⨯=. 解法二 ∑前侧的法向量为n =(2x , 2y , 0), 单位法向量为)0 , ,(1)cos ,cos ,(cos 22y x y x +=γβα, 由两种曲面积分之间的关系,dS z y x ydzdx xdydz zdxdy )cos cos cos (γβα++=++∑∑⎰⎰⎰⎰π23)(222222==+=+⋅++⋅=∑∑∑⎰⎰⎰⎰⎰⎰dS dS y x dS y x y y y x x x . 提示: dS ∑⎰⎰表示曲面的面积.(3)dxdy z z y x f dzdx y z y x f dydz x z y x f ]),,([]),,(2[]),,([+++++∑⎰⎰, 其中f (x , y , z )为连续函数, ∑是平面x -y +z =1在第四卦限部分的上侧; 解 曲面∑可表示为z =1-x +y , (x , y )∈D xy ={(x , y )|0≤x ≤1, 0≤y ≤x -1}, ∑上侧的法向量为n =(1, -1, 1), 单位法向量为)31 ,31 ,31()cos ,cos ,(cos -=γβα, 由两类曲面积分之间的联系可得dxdy z z y x f dzdx y z y x f dydz x z y x f ]),,([]),,(2[]),,([+++++∑⎰⎰dS z f y f x f ]cos )(cos )2(cos )[(γβα+++++=∑⎰⎰dS z f y f x f ]31)()31()2(31)(⋅++-⋅++⋅+=∑⎰⎰ 2131)(31===+-=⎰⎰⎰⎰⎰⎰∑∑dxdy dS dS z y x xyD .(4)⎰⎰∑++yzdzdx xydydz xzdxdy , 其中∑是平面x =0, y =0, z =0, x +y +z =1所围成的空间区域的整个边界曲面的外侧.解 ∑=∑1+∑2+∑3+∑4, 其中∑1: x =0, D yz : 0≤y ≤1, 0≤z ≤1-y ,∑2: y =0, D zx : 0≤z 1, 0≤x ≤1-z ,∑3: z =0, D xy : 0≤x ≤1, 0≤y ≤1-x ,∑4: z =1-x -y , D xy : 0≤x ≤1, 0≤y ≤1-x ,于是 ⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰∑∑∑∑∑+++=4321xzdxdy xzdxdy 4000∑⎰⎰+++= dxdy y x x xy D )1(--=⎰⎰⎰⎰-=--=1010241)1(x dy y x xdx . 由积分变元的轮换对称性可知241⎰⎰⎰⎰∑∑==yzdzdx xydydz . 因此⎰⎰∑=⨯=++812413yzdzdx xydydz xzdxdy .解 ∑=∑1+∑2+∑3+∑4, 其中∑1、∑2、∑3是位于坐标面上的三块; ∑4: z =1-x -y , D xy : 0≤x ≤1, 0≤y ≤1-x .显然在∑1、∑2、∑3上的曲面积分均为零, 于是⎰⎰∑++yzdzdx xydydz xzdxdyyzdzdx xydydz xzdxdy ++=∑⎰⎰4dS xz yz xy )cos cos cos (4γβα++=∑⎰⎰dS xz yz xy )(34++=∑⎰⎰81)]1)(([3=--++=⎰⎰dxdy y x y x xy xyD . 4. 把对坐标的曲面积分dxdy z y x R dzdx z y x Q dydz z y x P ),,(),,(),,(++∑⎰⎰化成对面积的曲面积分:(1)∑为平面63223=++z y x 在第一卦限的部分的上侧;解 令63223),,(-++=z y x z y x F , ∑上侧的法向量为:)32 ,2 ,3(),,(==z y x F F F n ,单位法向量为)32 ,2 ,3(51)cos ,cos ,(cos =γβα, 于是 Rdxdy Qdzdx Pdydz ++∑⎰⎰dS R Q P )cos cos cos (γβα++=∑⎰⎰dS R Q P )3223(51++=∑⎰⎰. (2)∑是抛物面z =8-(x 2+y 2)在xOy 面上方的部分的上侧.解 令F (x , y , z )=z +x 2+y 2-8, ∑上侧的法向量n =(F x , F y , F z )=(2x , 2y , 1),单位法向量为)1 ,2 ,2(4411)cos ,cos ,(cos 22y x y x ++=γβα, 于是 Rdxdy Qdzdx Pdydz ++∑⎰⎰dS R Q P )cos cos cos (γβα++=∑⎰⎰dS R yQ xP yx )22(441122++++=∑⎰⎰.10-61. 利用高斯公式计算曲面积分:(1)⎰⎰∑++dxdy z dzdx y dydz x 222, 其中∑为平面x =0, y =0, z =0, x =a ,y =a , z =a 所围成的立体的表面的外侧;解 由高斯公式原式dv z y x dv z R y Q x P )(2)(++=∂∂+∂∂+∂∂=ΩΩ⎰⎰⎰⎰⎰⎰ ⎰⎰⎰⎰⎰⎰===Ωaa a a dz dy xdx xdv 0400366(这里用了对称性).(2)⎰⎰∑++dxdy z dzdx y dydz x 333, 其中∑为球面x 2+y 2+z 2=a 2的外侧;解 由高斯公式原式dv z y x dv z R y Q x P )(3)(222++=∂∂+∂∂+∂∂=ΩΩ⎰⎰⎰⎰⎰⎰ ⎰⎰⎰=ππϕϕθ20004sin 3a dr r d d 5512a π=. (3)⎰⎰∑++-+dxdy z y xy dzdx z y x dydz xz )2()(2322, 其中∑为上半球体 x 2+y 2≤a 2, 2220y x a z --≤≤的表面外侧;解 由高斯公式原式dv y x z d z R y Q x P )()(222++=∂∂+∂∂+∂∂=ΩΩ⎰⎰⎰⎰⎰⎰ ⎰⎰⎰=ππϕϕθ2020022sin a dr r r d d 552a π=. (4)⎰⎰∑++zdxdy ydzdx xdydz 其中∑界于z =0和z =3之间的圆柱体x 2+y 2≤9的整个表面的外侧;解 由高斯公式原式π813)(==∂∂+∂∂+∂∂=ΩΩ⎰⎰⎰⎰⎰⎰dv dv z R y Q x P . (5)⎰⎰∑+-yzdxdy dzdx y xzdydz 24,其中∑为平面x =0, y =0, z =0, x =1,y =1, z =1所围成的立体的全表面的外侧.解 由高斯公式原式dv y y z dv z R y Q x P )24()(+-=∂∂+∂∂+∂∂=ΩΩ⎰⎰⎰⎰⎰⎰ ⎰⎰⎰=-=10101023)4(dz y z dy dx . 2. 求下列向量A 穿过曲面∑流向指定侧的通量: (1)A =yz i +xz j +xy k , ∑为圆柱x +y 2≤a 2(0≤z ≤h )的全表面, 流向外侧; 解 P =yz , Q =xz , R =xy ,⎰⎰∑++=Φxydxdy xzdzdx yzdydzdv z xy y xz x yz ))()()((∂∂+∂∂+∂∂=Ω⎰⎰⎰00==Ω⎰⎰⎰dv . (2)A =(2x -z )i +x 2y j - xz 2k , ∑为立方体0≤x ≤a , 0≤y ≤a , 0≤z ≤a ,的全表面, 流向外侧;解 P =2x -z , Q =x 2y , R =-xz 2,⎰⎰∑++=ΦRdxdy Qdzdx Pdydzdv xz x dv z r y Q x P )22()(2-+=∂∂+∂∂+∂∂=ΩΩ⎰⎰⎰⎰⎰⎰ ⎰⎰⎰-=-+=a a a a a dz xz x dy dx 023200)62()22(. (3)A =(2x +3z )i -(xz +y )j +(y 2+2z )k , ∑是以点(3, -1, 2)为球心, 半径R =3的球面, 流向外侧.解 P =2x +3z , Q =-(xz +y ), R =y 2+2z ,⎰⎰∑++=ΦRdxdy Qdzdx Pdydzdv dv z R y Q x P )212()(+-=∂∂+∂∂+∂∂=ΩΩ⎰⎰⎰⎰⎰⎰π1083==Ω⎰⎰⎰dv . 3. 求下列向量A 的散度:(1)A =(x 2+yz )i +(y 2+xz )j +(z 2+xy )k ;解 P =x 2+yz , Q =y 2+xz , R =-z 2+xy ,)(2222div z y x z y x zR y Q x P ++=++=∂∂+∂∂+∂∂=A . (2)A =e xy i +cos(xy )j +cos(xz 2)k ;解 P =e xy , Q =cos(xy ), R =cos(xz 2),)sin(2sin div 2xz xz xy x ye zR y Q x P xy --=∂∂+∂∂+∂∂=A . (3)A =y 2z i +xy j +xz k ;解 P =y 2, Q =xy , R =xz ,x x x zR y Q x P 20div =++=∂∂+∂∂+∂∂=A . 4. 设u (x , y , z )、v (x , y , z )是两个定义在闭区域Ω上的具有二阶连续 偏导数的函数, n u ∂∂, nv ∂∂依次表示u (x , y , z )、v (x , y , z )沿∑的外法线方向 的方向导数. 证明dS n u v n v u dxdydz u v v u )()∂∂-∂∂=∆-∆⎰⎰⎰⎰⎰∑Ω, 其中∑是空间闭区间Ω的整个边界曲面, 这个公式叫作林第二公式. 证明 由第一格林公式(见书中例3)知dxdydz z v y v x v u )(222222∂∂+∂∂+∂∂Ω⎰⎰⎰ dxdydz z v z u y v y u x v x u dS n v u )(∂∂∂∂+∂∂∂∂+∂∂∂∂-∂∂=⎰⎰⎰⎰⎰∑Ω, dxdydz z u y u x u v )(222222∂∂+∂∂+∂∂Ω⎰⎰⎰dxdydz z v z u y v y u x v x u dS n u v )(∂∂∂∂+∂∂∂∂+∂∂∂∂-∂∂=⎰⎰⎰⎰⎰∑Ω. 将上面两个式子相减, 即得dxdyd z u y u x u v z v y v x v u )]()([222222222222∂∂+∂∂+∂∂-∂∂+∂∂+∂∂Ω⎰⎰⎰ ⎰⎰∑∂∂-∂∂=dS n u v n v u )(. 5. 利用高斯公式推证阿基米德原理: 浸没在液体中所受液体的压力 的合力(即浮力)的方向铅直向上, 大小等于这物体所排开的液体的重力. 证明 取液面为xOy 面, z 轴沿铅直向下, 设液体的密度为ρ, 在物 体表面∑上取元素dS 上一点, 并设∑在点(x , y , z )处的外法线的方向余 弦为cos α, cos β, cos γ, 则dS 所受液体的压力在坐标轴x , y , z 上的分量 分别为-ρz cos αdS , -ρz cos β dS , -ρz cos γ dS ,∑所受的压力利用高斯公式进行计算得00cos ==-=Ω∑⎰⎰⎰⎰⎰dv dS z F x αρ,00cos ==-=Ω∑⎰⎰⎰⎰⎰dv dS z F y βρ,||cos Ω-=-=-=-=ΩΩ∑⎰⎰⎰⎰⎰⎰⎰⎰ρρργρdv dv dS z F z ,其中|Ω|为物体的体积. 因此在液体中的物体所受液体的压力的合力, 其方向铅直向上, 大小等于这物体所排开的液体所受的重力, 即阿基 米德原理得证.习题10-71. 利用斯托克斯公式, 计算下列曲线积分:(1)⎰Γ++xdz zdy ydx , 其中Γ为圆周x 2+y 2+z 2=a 2, , 若从z 轴 的正向看去, 这圆周取逆时针方向;解 设∑为平面x +y +z =0上Γ所围成的部分, 则∑上侧的单位法向量为)31,31,31()cos ,cos ,(cos ==γβαn .于是 ⎰Γ++xdz zdy ydx dS x z y zy x ∂∂∂∂∂∂=∑⎰⎰γβαcos cos cos 2333)cos cos cos (a dS dS πγβα-=-=---=∑∑⎰⎰⎰⎰.提示:dS ∑⎰⎰表示∑的面积, ∑是半径为a 的圆.(2)⎰Γ-+-+-dz y x dy x z dz z y )()()(, 其中Γ为椭圆x 2+y 2=a 2, 1=+b z a x(a >0, b >0), 若从x 轴正向看去, 这椭圆取逆时针方向;解 设∑为平面1=+b z a x 上Γ所围成的部分, 则∑上侧的单位法向量为) ,0 ,()cos ,cos ,(cos 2222b a b b a b ++==γβαn . 于是 ⎰Γ-+-+-dz y x dy x z dx z y )()()(dS y x x z z y zy x ---∂∂∂∂∂∂=∑⎰⎰γβαcos cos cos dS b a b a dS ∑∑⎰⎰⎰⎰++-=---=22)(2)cos 2cos 2cos 2(γβα)(2)(2)(22222b a a dxdy a b a dxdy a b a b a b a xyxyD D +-=+-=+++-=⎰⎰⎰⎰π.提示: ∑(即x ab b z -=)的面积元素为dxdy a b a dxdy a b dS 222)(1+=+=.(3)⎰Γ+-dz yz xzdy ydx 23, 其中Γ为圆周x 2+y 2=2z , z =2, 若从z 轴的正向看去, 这圆周是取逆时针方向;解 设∑为平面z =2上Γ所围成的部分的上侧, 则⎰Γ+-dz yz xzdy ydx 2323yz xz y zy x dxdydzdx dydz -∂∂∂∂∂∂=∑⎰⎰ ππ2025)3()(22-=⨯-=+-+=∑⎰⎰dxdy z dydz x z .(4)⎰Γ-+dz z xdy ydx 232, 其中Γ为圆周x 2+y 2+z 2=9, z =0, 若从z 轴的正向看去, 这圆周是取逆时针方向.解 设∑为xOy 面上的圆x 2+y 2≤9的上侧, 则⎰Γ-+dz z xdy ydx 232232z x y zy x dxdydzdx dydz -∂∂∂∂∂∂=∑⎰⎰ π9===⎰⎰⎰⎰∑dxdy dxdy xyD .2. 求下列向量场A 的旋度: (1)A =(2z -3y )i +(3x -z )j +(-2x )k ;解 k j i kj i A 6422332++=---∂∂∂∂∂∂=x y z x y z z y x rot . (2)A =(sin y )i -(z -x cos y )k ;解 j i kji A +=--+∂∂∂∂∂∂=0)cos (sin y x z y z z yx rot . (3)A =x 2sin y i +y 2sin(xz )j +xy sin(cos z )k .解 )sin(cos )sin(sin 22z xy xz y y x z y x ∂∂∂∂∂∂=kj i A rot=[x sin(cos z )-xy 2cos(xz )]i -y sin(cos z )j +[y 2z cos(xz )-x 2cos y ]k . 3. 利用斯托克斯公式把曲面积分dS n A ⋅∑⎰⎰rot 化为曲线积分, 并计算积分值,其中A 、∑及n 分别如下:(1)A =y 2i +xy j +xz k , ∑为上半球面221y x z --=, 的上侧, n 是∑的 单位法向量;解 设∑的边界Γ : x 2+y 2=1, z =0, 取逆时针方向, 其参数方程为 x =cos θ, y =sin θ, z =0(0≤θ≤2π, 由托斯公式dS n A ⋅∑⎰⎰rot ⎰Γ++=Rdz Qdy Pdx ⎰Γ++=xzdz xydy dx y 2⎰=+-=πθθθθθ20220]sin cos )sin ([sin d .(2)A =(y -z )i +yz j -xz k , ∑为立方体0≤x ≤2, 0≤y ≤2, 0≤z ≤2的表面外侧 去掉xOy 面上的那个底面, n 是∑的单位法向量. 解dS n A ⋅∑⎰⎰rot ⎰Γ++=Rdz Qdy Pdx⎰Γ-++-=dz xz yzdy dx x y )()(⎰⎰Γ-===0242dx ydx .4. 求下列向量场A 沿闭曲线Γ(从z 轴正向看依逆时针方向)的环流量: (1)A =-y i +x j +c k (c 为常量), Γ为圆周x 2+y 2=1, z =0; 解θθθθθπd cdz xdy ydx L ]cos cos )sin ()(sin [(20+--=++-⎰⎰⎰==ππθ202d .(2)A =(x -z )i +(x 3+yz )j -3xy 2k , 其中Γ为圆周222y x z +-=, z =0. 解 有向闭曲线Γ的参数方程为x =2cos θ, y =2sin θ, z =0(0≤π≤2π). 向量场A 沿闭曲线Γ的环流量为⎰⎰-++-=++LL dz xy dy yz x dx z x Rdz Qdy Pdx 223)()(。
高等数学2课后习题答案高等数学2课后习题答案高等数学2作为大学数学课程的一部分,是一门相对较难的课程。
在学习过程中,课后习题是巩固和深化知识的重要手段。
然而,对于许多学生来说,课后习题往往是一个难以逾越的障碍。
因此,为了帮助大家更好地学习和掌握高等数学2,本文将提供一些常见习题的答案及解析。
一、极限与连续1. 计算极限这类题目主要考察对极限的计算能力。
在计算过程中,我们需要运用一些基本的极限性质和运算法则。
例如,当求解形如lim(x→a) (f(x) + g(x))时,我们可以利用极限的加法法则,将其拆分为lim(x→a) f(x) + lim(x→a) g(x)。
2. 判断函数的连续性对于连续性的判断,我们需要掌握连续函数的定义和连续函数的性质。
例如,根据连续函数的定义,如果一个函数在某个点a处连续,那么lim(x→a) f(x) = f(a),这是判断函数连续性的一个重要条件。
二、导数与微分1. 求导函数求导函数是导数与微分章节的重点内容之一。
在求导函数时,我们需要掌握导数的基本定义和运算法则。
例如,当求解f(x) = x^n的导数时,我们可以利用幂函数的导数公式,即f'(x) = n*x^(n-1)。
2. 利用导数求解问题在实际问题中,我们常常需要利用导数来求解一些相关的问题。
例如,求解函数的极值点、判断函数的单调性等。
在这类题目中,我们需要将问题转化为数学模型,然后利用导数的性质来求解。
三、定积分1. 计算定积分计算定积分是定积分章节的核心内容之一。
在计算过程中,我们需要掌握定积分的基本定义和运算法则。
例如,当计算∫[a,b] f(x)dx时,我们可以利用定积分的性质,将其转化为求解不定积分的问题。
2. 利用定积分解决几何问题定积分在解决几何问题中有着广泛的应用。
例如,我们可以利用定积分来计算曲线与坐标轴所围成的面积、计算曲线的弧长等。
在这类题目中,我们需要将几何问题转化为数学模型,然后利用定积分的性质来求解。
医用高等数学教材例题在医学领域中,数学与统计学的应用日益广泛,从医疗设备的设计到疾病模型的建立,数学都扮演着重要的角色。
而医用高等数学教材中的例题是帮助医学生理解和应用数学概念的重要工具。
下面将介绍一些常见的医用高等数学教材例题,并通过解析说明其在医学中的应用。
1. 题目:求解微分方程已知某连续血糖监测仪测量的血糖浓度变化满足微分方程:\[ \frac{dC}{dt} = -k(C-C_0) \]其中,C表示血糖浓度,t表示时间,k为常数,C_0为初始血糖浓度。
解析:这是一个一阶线性微分方程,通过求解该微分方程,我们可以得到血糖浓度随时间的变化规律。
这对血糖控制及糖尿病患者的治疗具有指导意义。
2. 题目:概率统计与医学诊断某疾病的检测结果通过检验可以分为阴性(正常)和阳性(患病)。
已知该检测方法的灵敏度为98%,特异度为95%。
假设该疾病的发病率为0.2%,求以下概率:(1)一个人被诊断为阳性,真正患病的概率是多少?(2)一个人被诊断为阴性,但实际上患病的概率是多少?解析:这是一个涉及医学诊断中的概率统计问题。
通过概率统计的方法,我们可以评估出现阳性或阴性结果与实际患病情况之间的关系,从而提高医学诊断的准确性。
3. 题目:最小二乘法与医学影像处理某医学影像处理算法通过最小二乘法拟合出一条曲线,以辅助医生对疾病进行诊断。
已知医学影像数据点为{(x_i, y_i)},曲线方程为y =a + bx,其中a和b为待定常数。
试求解最小二乘问题,拟合出最优曲线。
解析:最小二乘法是一种常用的数学工具,可以通过最小化残差平方和来寻找最优的拟合曲线。
在医学影像处理中,通过最小二乘法,我们可以获得最佳的拟合曲线来辅助医生对疾病进行诊断。
4. 题目:矩阵运算与医学图像处理某种医学图像处理方法使用了线性变换矩阵来对图像进行处理。
已知原始图像矩阵为X,处理后的图像矩阵为Y,线性变换矩阵为A。
试通过矩阵运算,求解Y的表达式。
第一章 函数、极限与连续习题题解(P27)一、判断题题解1. 正确。
设h (x )=f (x )+f (x ), 则h (x )= f (x )+f (x )=h (x )。
故为偶函数。
2. 错。
y =2ln x 的定义域(0,+), y =ln x 2的定义域(,0)∪(0,+)。
定义域不同。
3. 错。
+∞=→21lim x x 。
故无界。
4. 错。
在x 0点极限存在不一定连续。
5. 错。
01lim =-+∞→xx 逐渐增大。
6. 正确。
设A x f x x =→)(lim 0,当x 无限趋向于x 0,并在x 0的邻域内,有εε+<<-A x f A )(。
7. 正确。
反证法:设F (x )=f (x )+g (x )在x 0处连续,则g (x ) =F (x )f (x ),在x 0处F (x ),f (x )均连续,从而g (x )在x =x 0处也连续,与已知条件矛盾。
8. 正确。
是复合函数的连续性定理。
二、选择题题解1. ())( 22)]([,2)(,)(222D x f x x x f x x x ====ϕϕ2. y =x (C )3. 01sin lim 0=→xx x (A ) 4. 0cos 1sinlim0=→xx x x (B ) 5. )1(2)(lim ,2)3(lim )(lim ,2)13(lim )(lim 11111f x f x x f x x f x x x x x ≠=∴=-==-=→→→→→++--(B )6. 3092<⇒>-x x(D )7. 画出图形后知:最大值是3,最小值是10。
(A )8. 设1)(4--=x x x f ,则13)2(,1)1(=-=f f ,)(x f 连续,由介质定理可知。
(D )三、填空题题解 1. 210≤-≤x 31≤≤x2. )arctan(3x y =是奇函数,关于原点对称。
3. 31=ω,πωπ62==T 。
4. y x -=,可以写成x y -=。
5. 设6t x =,1,1→→t x ,3211lim 11lim 21321=+++=--→→t t t t t t t6. 2arctan π≤x 有界,01lim =∞→xx ,故极限为0。
7. 42)2sin(2lim )2sin(4lim222=--+=--→→x x x x x x x 8. cx c x c x x b ax x++-=+--=++)1())(1(22)1(,+-==c a c b ,而5)(lim 1=+-→c x x ,得c =6, 从而b =6, a=7。
9. 1sin sin 1010)sin 1(lim )sin 1(lim --⋅-→→=-=-e x x xxx x xx10. 52522cos 15sin 522sin lim 5sin 2cos 2sin lim 5sin 2tan lim 0=⋅⋅⋅=⋅=→→→x x x x x x x x x x x x x 11. 设u =e x1,1ln 1)1ln(1lim)1ln(lim10==+=+→→eu u uuu u 12. 由0=x 处连续定义,1lim )(lim 00===+-+→→xx x ea x a ,得:a =1。
四、解答题题解 1. 求定义域(1) ⎩⎨⎧≥-≥⇒⎩⎨⎧≥-≥0)1(000x x x x x x , 定义域为),1[+∞和x=0(2) ⎪⎩⎪⎨⎧≥-≤-0251512x x ⎩⎨⎧≤≤-≤≤-5564x x 定义域为]5,4[-(3) 设圆柱底半径为r ,高为h ,则v=r 2h , 2rv h π=,则罐头筒的全面积⎪⎭⎫ ⎝⎛+=+=r v r rh rS 22222πππ,其定义域为(0,+)。
(4) 经过一天细菌数为)1(0001r N r N N N +=+=,经过两天细菌数为201112)1()1(r N r N r N N N +=+=+=,故经过x 天的细菌数为xr N N )1(0+=,其定义域为[0,+)。
2. 12)(+-=x x x f ,41222)2(-=+---=-f ,)1( 12)(-≠+++-+=+b a b a b a b a f 。
3. ue y =,xt t v v u 1,sin ,3===。
4. 证明:)1()()1ln(ln )1(ln )]1([++=++=+=+x f x f x x x x x x f 。
5.令x +1=t , 则x=t 1。
⎩⎨⎧≤<-≤≤-=⎩⎨⎧≤-<-≤-≤-==+32 , )1(221 , )1(211 , )1(2110 , )1()()1(22t t t t t t t t t f x f ,所以:⎩⎨⎧≤<-≤≤-=32 , )1(221 , )1()(2x x x x x f 。
6. 求函数的极限(1) 原式=343/113112/11211lim 11=----++→∞n n n 。
(2) 原式=⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛+-++⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-∞→1113121211lim n nn =1111lim =⎪⎭⎫ ⎝⎛+-→∞n n 。
(3) 原式=3211)1(3lim x x x x -++-→=112lim )1)(1()2)(1(lim 2121=+++=++-+-→→x x xx x x x x x x 。
(4) 原式=31323322lim =+⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛∞→n nn 。
(5) 原式=2sin 2sin 2lim x x x x →=4sin 22sin 4lim 0=⋅⋅→xxx x x 。
(P289常见三角公式提示)(6) 原式=xxx x x arctan arcsin lim 210⋅→,令tx =arcsin ,则xt =sin ,1sin lim arcsin lim00==→→ttx x t x令t x =arctan ,则x t =tan ,1cos sin lim tan lim arctan lim 0=⋅==→→→t t t t t x x t t x ,原式=21。
(7) 原式=()3tan 3122tan 31lim ⋅→+xx x =()3tan 31202tan 31lim ⎪⎭⎫ ⎝⎛+→xx x = e 3。
(8) 原式=122121221lim -⋅+→∞⎪⎭⎫ ⎝⎛++x x x =22121221lim ⎪⎪⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛+++∞→x x x 11221lim -→∞⎪⎭⎫ ⎝⎛++x x = e 2。
(9) 原式=)1sin 1(2sin 2sin lim 20++→x x x x x x =11sin 112sin 2sin lim 220=++⎪⎪⎪⎪⎭⎫⎝⎛→x x x x x x x 。
(10) 令a x t -=,则t a x +=,原式=a t a t e te e =-→)1(lim0(填空题11)。
7. 221233sin 21a a a S=⋅=π,242233sin 2221a a a S =⋅⋅=π,26223233sin 2221a a a S =⋅⋅=π,,2211233sin 2221a a a S n n n n =⋅⋅=--π, ⎪⎭⎫ ⎝⎛+++=n a S 414141322 =)(3341141141322∞→→-⎪⎭⎫⎝⎛-n a a n8. 指出下列各题的无穷大量和无穷小量(1) 0cos 1sin lim 0=+→xxx ,为无穷小量。
(2) 01arctanlim 2=+→∞xxx ,为无穷小量。
(3) 0sin lim =⋅-∞→x exx ,为无穷小量。
(4) ∞=+→xx x sin 1lim 0,为无穷大量。
9. 比较下列无穷小量的阶3111lim31=--→x x x ,1)1(211lim 21=--→x xx ,当x 1时,1x 与1x 3是同阶无穷小。
1x 与)1(212x -是等阶无穷小。
10. 当x 0时,x 2是无穷小量,当x时,x 2是无穷大量;当x ±1时,321xx -是无穷小量,当x 0时,321xx -是无穷大量;当x+时,e x是无穷小量,当x时,e x是无穷大量。
11. 16319)112()132()1()3(22=-=+⋅-+⋅=-=∆f f y 。
12. 1sin lim 0=-→x x x ,b b x x x =⎪⎭⎫⎝⎛++→1sin lim 0,∴b =1,2)0(+=a f =1,∴a=-113. []22111121)1(1lim lim e x xx x x x =⎪⎭⎫ ⎝⎛-+=-→-→,2 , )1()(lim 21=⇒=∴=→k e e f x f k x 14. 设2)(-=x e x f ,01)0(<-=f ,02)2(2>-=e f ,由介质定理推论知:在(0,2)上至少存在一点x 0使得0)(0=x f ,即02=-xe 。
15. 设x b x a x f -+=sin )(,它在[0,a +b ]上连续,且0)0(>=b f ,0]1)[sin()(≤-+=+b a a b a f ,若0)(=+b a f ,则a+b 就是方程0)(=x f 的根。
若0)(<+b a f ,由介质定理推论知:至少存在一点ξ∈(0, a+b ), 使得0)(=ξf ,即ξ是0)(=x f 的根。
综上所述,方程b x a x +=sin 至少且个正根,并且它不超过a+b 。
16. (1)312630126)0(0=+=e w (g );(2)2630126lim 32max =+=-+∞→t t ew (g );(3)t e 3230126226-+=⇒530ln 23≈=t (周)。
17. 设)()()(x g x f x F -=,则F (x )在[a,b ]上连续,0)()()(>-=a g a f a F ,0)()()(<-=b g b f b F ,由介质定理推论知:至少存在一点ξ∈(a, b ), 使得0)(=ξF 。
即)()(0)()(ξξξξg f g f =⇒=-。
所以)(x f y =与)(x g y =在(a,b )内至少有一个交点。
第二章 一元函数微分学习题题解(P66)一、判断题题解1. 正确。
设y =f (x ), 则00)lim (lim lim lim 0000=⋅'=∆⎪⎭⎫ ⎝⎛∆∆=⎪⎭⎫⎝⎛∆⋅∆∆=∆→∆→∆→∆→∆y x x y x x y y x x x x 。