有理数综合练习题2013.10.13
- 格式:doc
- 大小:458.50 KB
- 文档页数:7
有理数的混合运算练习题(含答案)(共17套)有理数混合运算练习题及答案 第1套同步练习(满分100分)1.计算题:(10′×5=50′)(1)3.28-4.76+121-43;(2)2.75-261-343+132;(3)42÷(-121)-143÷(-0.125);(4)(-48) ÷82-(-25) ÷(-6)2;(5)-52+(1276185+-)×(-2.4).2.计算题:(10′×5=50′)(1)-23÷153×(-131)2÷(132)2;(2)-14-(2-0.5)×31×[(21)2-(21)3];(3)-121×[1-3×(-32)2]-( 41)2×(-2)3÷(-43)3(4)(0.12+0.32) ÷101[-22+(-3)2-321×78];(5)-6.24×32+31.2×(-2)3+(-0.51) ×624.【素质优化训练】1.填空题:(1)如是0,0>>c b b a ,那么ac 0;如果0,0<<cbb a ,那么ac0;(2)若042=-++++c c b a ,则abc= ; -a 2b 2c 2=;(3)已知a ,b 互为相反数,c ,d 互为倒数,x 的绝对值等于2,那么x 2-(a+b)+cdx=.2.计算:(1)-32-;)3(18)52()5(223--÷--⨯-(2){1+[3)43(41--]×(-2)4}÷(-5.043101--);(3)5-3×{-2+4×[-3×(-2)2-(-4) ÷(-1)3]-7}.【生活实际运用】甲用1000元人民币购买了一手股票,随即他将这手股票转卖给乙,获利10%,而后乙又将这手股票反卖给甲,但乙损失了10%.最后甲按乙卖给甲的价格的九折将这手股票卖给了乙,在上述股票交易中( )A .甲刚好亏盈平衡;B .甲盈利1元;C .甲盈利9元;D .甲亏本1.1元.参考答案【同步达纲练习】1.(1)-0.73 (2)-121; (3)-14; (4)-181; (5)-2.92.(1)-351 (2)-1161; (3)- 5437; (4)1; (5)-624.【素质优化训练】1.(1)>,>; (2)24,-576; (3)2或6.[提示:∵x =2 ∴x 2=4,x=±2].2.(1)-31;(2)-8;2719(3)224 【生活实际运用】 B有理数的四则混合运算练习 第2套◆warmup知识点 有理数的混合运算(一)1.计算:(1)(-8)×5-40=_____;(2)(-1.2)÷(-13)-(-2)=______.2.计算:(1)-4÷4×14=_____;(2)-212÷114×(-4)=______.3.当||a a=1,则a____0;若||a a =-1,则a______0.4.(教材变式题)若a<b<0,那么下列式子成立的是( ) A .1a <1b B .ab<1 C .a b <1 D .ab>1 5.下列各数互为倒数的是( )A .-0.13和-13100B .-525和-275C .-111和-11D .-414和4116.(体验探究题)完成下列计算过程:(-25)÷113-(-112+15)解:原式=(-25)÷43-(-1-12+15)=(-25)×()+1+12-15=____+1+52 10 -=_______.◆Exersising7.(1)若-1<a<0,则a______1a;(2)当a>1,则a_______1a;(3)若0<a≤1,则a______1a.8.a,b互为相反数,c,d互为倒数,m的绝对值为2,则||4a bm++2m2-3cd值是()A.1 B.5 C.11 D.与a,b,c,d值无关9.下列运算正确的个数为()(1)(+34)+(-434)+(-6)=-10 (2)(-56)+1+(-16)=0(3)0.25+(-0.75)+(-314)+34=-3(4)1+(-3)+5+(-7)+9+(-1)=4 A.3个 B.4个 C.2个 D.1个10.a,b为有理数,在数轴上的位置如右上图所示,则()A.1a>1b>1 B.1a>1>-1bC.1>-1a>1bD.1>1a>1b11.计算:(1)-20÷5×14+5×(-3)÷15 (2)-3[-5+(1-0.2÷35)÷(-2)](3)[124÷(-114)]×(-56)÷(-316)-0.25÷14-1ob a◆Updating 12.(经典题)对1,2,3,4可作运算(1+2+3)×4=24,现有有理数3,4,-6,10,请运用加,减,乘,除法则写出三种不同的计算算式,使其结果为24. (1)____________ (2)____________ (3)____________ 答案: 课堂测控1.(1)-80 (2)535 2.(1)-14(2)83.>,< 4.D 5.C 6.34,-310,1[总结反思]先乘除,后加减,有括号先算括号内的. 课后测控 7.(1)> (2)> (3)≤ 8.B 9.B 10.B11.解:(1)原式=-20×15×14+5×(-3)×115=-1-1=-2(2)原式=124×(-45)×(-56)×(-619)-14÷14=124×(-419)-1=-1114-1=-11114(3)原式=-3[-5+(1-15×53)÷(-2)]=-3[-5+23×(-12)]=-3[-5-13]=15+1=16[解题技巧]除法转化为乘法,先乘除,后加减,有括号先算括号内的. 拓展测控 12.解:(1)4-(-6)÷3×10 (2)(10-6+4)×3 (3)(10-4)×3-(-6)[解题思路]运用加,减,乘除四种运算拼凑得24点.有理数的混合运算习题 第3套一.选择题1. 计算3(25)-⨯=( ) A.1000 B.-1000 C.30 D.-302. 计算2223(23)-⨯--⨯=( )A.0B.-54C.-72D.-183. 计算11(5)()555⨯-÷-⨯=A.1B.25C.-5D.354. 下列式子中正确的是( ) A.4232(2)(2)-<-<- B. 342(2)2(2)-<-<- C. 4322(2)(2)-<-<-D. 234(2)(3)2-<-<-5. 422(2)-÷-的结果是( ) A.4B.-4C.2D.-26. 如果210,(3)0a b -=+=,那么1ba+的值是( )A.-2B.-3C.-4D.4二.填空题1.有理数的运算顺序是先算 ,再算 ,最算 ;如果有括号,那么先算 。
有理数的混合运算练习题(含答案)(共17套)有理数混合运算练习题及答案 第1套同步练习(满分100分)1.计算题:(10′×5=50′)(1)3.28-4.76+121-43;(2)2.75-261-343+132;(3)42÷(-121)-143÷(-0.125);(4)(-48) ÷82-(-25) ÷(-6)2;(5)-52+(1276185+-)×(-2.4).2.计算题:(10′×5=50′)(1)-23÷153×(-131)2÷(132)2;(2)-14-(2-0.5)×31×[(21)2-(21)3];(3)-121×[1-3×(-32)2]-( 41)2×(-2)3÷(-43)3(4)(0.12+0.32) ÷101[-22+(-3)2-321×78];(5)-6.24×32+31.2×(-2)3+(-0.51) ×624.【素质优化训练】1.填空题:(1)如是0,0>>c b b a ,那么ac 0;如果0,0<<cbb a ,那么ac0;(2)若042=-++++c c b a ,则abc= ; -a 2b 2c 2=;(3)已知a ,b 互为相反数,c ,d 互为倒数,x 的绝对值等于2,那么x 2-(a+b)+cdx=.2.计算:(1)-32-;)3(18)52()5(223--÷--⨯-(2){1+[3)43(41--]×(-2)4}÷(-5.043101--);(3)5-3×{-2+4×[-3×(-2)2-(-4) ÷(-1)3]-7}.【生活实际运用】甲用1000元人民币购买了一手股票,随即他将这手股票转卖给乙,获利10%,而后乙又将这手股票反卖给甲,但乙损失了10%.最后甲按乙卖给甲的价格的九折将这手股票卖给了乙,在上述股票交易中( )A .甲刚好亏盈平衡;B .甲盈利1元;C .甲盈利9元;D .甲亏本1.1元.参考答案【同步达纲练习】1.(1)-0.73 (2)-121; (3)-14; (4)-181; (5)-2.92.(1)-351 (2)-1161; (3)- 5437; (4)1; (5)-624.【素质优化训练】1.(1)>,>; (2)24,-576; (3)2或6.[提示:∵x =2 ∴x 2=4,x=±2].2.(1)-31;(2)-8;2719(3)224 【生活实际运用】 B有理数的四则混合运算练习 第2套◆warmup知识点 有理数的混合运算(一)1.计算:(1)(-8)×5-40=_____;(2)(-1.2)÷(-13)-(-2)=______.2.计算:(1)-4÷4×14=_____;(2)-212÷114×(-4)=______.3.当||a a=1,则a____0;若||a a =-1,则a______0.4.(教材变式题)若a<b<0,那么下列式子成立的是( ) A .1a <1b B .ab<1 C .a b <1 D .ab>1 5.下列各数互为倒数的是( )A .-0.13和-13100B .-525和-275C .-111和-11D .-414和4116.(体验探究题)完成下列计算过程:(-25)÷113-(-112+15)解:原式=(-25)÷43-(-1-12+15)=(-25)×()+1+12-15=____+1+52 10 -=_______.◆Exersising7.(1)若-1<a<0,则a______1a;(2)当a>1,则a_______1a;(3)若0<a≤1,则a______1a.8.a,b互为相反数,c,d互为倒数,m的绝对值为2,则||4a bm++2m2-3cd值是()A.1 B.5 C.11 D.与a,b,c,d值无关9.下列运算正确的个数为()(1)(+34)+(-434)+(-6)=-10 (2)(-56)+1+(-16)=0(3)0.25+(-0.75)+(-314)+34=-3(4)1+(-3)+5+(-7)+9+(-1)=4 A.3个 B.4个 C.2个 D.1个10.a,b为有理数,在数轴上的位置如右上图所示,则()A.1a>1b>1 B.1a>1>-1bC.1>-1a>1bD.1>1a>1b11.计算:(1)-20÷5×14+5×(-3)÷15 (2)-3[-5+(1-0.2÷35)÷(-2)](3)[124÷(-114)]×(-56)÷(-316)-0.25÷14ob a◆Updating 12.(经典题)对1,2,3,4可作运算(1+2+3)×4=24,现有有理数3,4,-6,10,请运用加,减,乘,除法则写出三种不同的计算算式,使其结果为24. (1)____________ (2)____________ (3)____________ 答案: 课堂测控1.(1)-80 (2)535 2.(1)-14(2)83.>,< 4.D 5.C 6.34,-310,1[总结反思]先乘除,后加减,有括号先算括号内的. 课后测控 7.(1)> (2)> (3)≤ 8.B 9.B 10.B11.解:(1)原式=-20×15×14+5×(-3)×115=-1-1=-2(2)原式=124×(-45)×(-56)×(-619)-14÷14=124×(-419)-1=-1114-1=-11114(3)原式=-3[-5+(1-15×53)÷(-2)]=-3[-5+23×(-12)]=-3[-5-13]=15+1=16[解题技巧]除法转化为乘法,先乘除,后加减,有括号先算括号内的. 拓展测控 12.解:(1)4-(-6)÷3×10 (2)(10-6+4)×3 (3)(10-4)×3-(-6)[解题思路]运用加,减,乘除四种运算拼凑得24点.有理数的混合运算习题 第3套一.选择题1. 计算3(25)-⨯=( ) A.1000 B.-1000 C.30 D.-302. 计算2223(23)-⨯--⨯=( )A.0B.-54C.-72D.-183. 计算11(5)()555⨯-÷-⨯=A.1B.25C.-5D.354. 下列式子中正确的是( ) A.4232(2)(2)-<-<- B. 342(2)2(2)-<-<- C. 4322(2)(2)-<-<-D. 234(2)(3)2-<-<-5. 422(2)-÷-的结果是( ) A.4B.-4C.2D.-26. 如果210,(3)0a b -=+=,那么1ba +的值是( )A.-2B.-3C.-4D.4二.填空题1.有理数的运算顺序是先算 ,再算 ,最算 ;如果有括号,那么先算 。
有理数的混合运算(一)填空4.23-17-(+23)=______.5.-7-9+(-13)=______.6.-11+|12-(39-8)|=______.7.-9-|5-(9-45)|=______.8.-5.6+4.7-|-3.8-3.8|=______.9.-|-0.2|+[0.6-(0.8-5.4)]=______.12.9.53-8-(2-|-11.64+1.53-1.36|)=______.13.73.17-(812.03-|219.83+518|)=______.36.38×(-7)+5[(-2)3(-32)-(-22)]-38×339÷(-3)38=______.48.(-2)×{(-3)×[(-5)+2×(0.3-0.3)÷83-3]+4}=______.112.413-74-(-5+26).116.-84-(16-3)+7.118.-0.182+3.105-(0.318-6.065).119.-2.9+[1.7-(7+3.7-2.1)].121.34.23-[194.6-(5.77-5.4)].125.23.6+[3.9-(17.8-4.8+15.4)].134.(-3)2÷2.5.135.(-2.52)×(-4).136.(-32)÷(-2)2.173.(-1)2×5+(-1)×52-12×5+(-1×5)2.174.(-2)(-3)(-36)+(-1)20×63.178.(-32)÷(3×2)×(-3-2).180.3×(-2)2+(-2×3)2+(-2+3)2.188.2+42×(-8)×16÷32.190.[5.78+3.51-(0.7)2]÷(0.2)3×11.191.(1.25)4÷(0.125)4×0.0036-(0.6)2.194.(-42×26+132×2)÷(-3)7×(-3)5.195.(3-9)4×23×(-0.125)2.201.741×[(-30)2-(-402)]3÷(1250)2.211.[(-5)3+3.4×2-2×4+53]2.213.(24-5.1×3-3×5+33)2.234.(-5)×(-3)×(-4)2+(-2)3×(-8)×(-3)-(-12)×3÷24.240.-18-23×[(-4)3÷(-43)+0.2×8+(-3)2÷(-32)].(四)用符号“>”,“<”,“≥”,“≤”,“=”之一填空241.当两个数和的绝对值______这两个数差的绝对值时,这两个数同号.242.一个正数与一个负数差的绝对值______这两个数绝对值的和.243.一个正数与一个负数和的绝对值______这两个数绝对值的差.244.一个正数与一个负数差的绝对值______这两个数绝对值的差.245.一个正数与一个负数和的绝对值______这两个数绝对值的和.246.当两个数和的绝对值______这两个数差的绝对值时,这两个数异号.247.当两数和的绝对值______这两个数差的绝对值时,这两个数至少有一个是零.248.当两数和的绝对值______这两个数的绝对值之和时,这两个数可以是任意的有理数.249.当两数差的绝对值______这两个数的绝对值之和时,这两个数可以是任意的有理数.250.当两个数和的绝对值______这两个数绝对值的差时,这两个数可以是任意的有理数.251.当两个数差的绝对值______这两个数绝对值的差时,这两个数可以是任意的有理数.252.欲使两个数的绝对值的和等于这两个数的和的绝对值,这两个数必须是怎样的数?253.欲使两个数和的绝对值不小于这两个数的差的绝对值,这两个数必须是怎样的数?254.欲使两数和的绝对值不大于这两数差的绝对值,这两个数必须是怎样的数?255.欲使两数和的绝对值不小于这两个数的绝对值的和,这两个数必须是怎样的数?256.一个盛有水的圆柱形水桶,其底面半径为1.6分米①.现将一个半径为1.2分米的铁球沉没在桶内水面下,问桶内水面升高多少分米?(列综合算式计算,球的体积公式为,其中V表示体积,R表示球的半径)257.一个盛有水的长方体状容器,它的底面是边长为2.4分米的正方形,现将一个半径是1.2分米的铁球放在容器内,正好铁球体积的1/3在水面下,问放入铁球后,水面升高了多少分米?(列综合算式计算,球的体积公式为V表示体积,R表示球的半径,π取3.14。
第一章《有理数》综合测试卷(100分钟120分)一、填空题:(每题2分,共20分)1、绝对值等于4的数有 个,它们是 .2、绝对值等于-3的数有 个.3、绝对值等于本身的数有 个,它们是4、已知a 是绝对值最小的负整数,b 是最小正整数,c 是绝对值最小的有理数,则c+a+b= 。
5、若 a 、b 互为相反数,c 、d 互为倒数,则(a +b )20 -(c d )20 = 。
6、若 | a|<2 ,且a 是整数,那么a = 。
7、已知|x |=3,()412=+y , 且xy <0 ,则x -y 的值是 . 8、比-8大3的数是 ,比a 大-5的数是9、 相反数等于它本身的数是 ,绝对值等于它本身的数是 ,倒数等于它本身的数是10、如果2-=-x ,则x =______二、思考题:(1、2题每小题2分,3、4题各5分,共20分)1、观察等式:1+3=4=2 2,1+3+5=9=3 2 ,1+3+5+7=16=4 2 ,1+3+5+7+9=25=5 2 ,……猜想:(1) 1+3+5+7…+99 = ;(2) 1+3+5+7+…+(2n-1)= _____________ .(结果用含n 的式子表示,其中n =1,2,3,……)。
2、如图21所示,数轴上标出了7个点,相邻两点之间的距离都相等,已知点A 表示-4,点G 表示8(1)点B 表示的有理数是表示原点的是点 (2)图21中的数轴上另有点M 到点A ,点G 距离之和为13,则这样的点M 表示的有理数是 。
(3)若将原点取在点D ,则点C 表示的有理数是 ,此时点B 与点 表示的有理数互为相反数。
3、甲、乙、丙、丁四个有理数讨论大小问题.甲说:我是正整数中最小的.•乙说:我是绝对值最小的.丙说:我与甲的一半相反.丁说:我是丙的倒数.你能写出它们分别是多少吗?然后按从小到大的顺序排列.4、已知数轴上有A 和B 两点,它们之间的距离为1,点A 和原点的距离为2,•那么所有满足条件的点B 对应的数有哪些?三、选择题:(每题2分,共44分)1、在算式 1○(-3)<-2中的○中填入一种运算符号可使不等关系成立,则这个运算符号是( ).A 、+B 、-C 、×D 、÷2、两个有理数a ,b 在数轴上的位置如图,下列四个式子中运算结果为正数的式子是( ).A 、a+bB 、a -bC 、abD 、b a 3、计算(1-2)(3-4)(5-6)……(9-10)的结果是( ).A 、-1B 、1C 、-5D 、104、甲、乙、丙三只电子跳蚤在数轴上分别以每秒9个、7个、6.5个单位长度的速度向右移动,开始时乙在甲、丙两者之间,且丙在甲右边(如图),当x 秒后三只跳蚤的位置变为甲在乙、丙之间,则x 值可能是下列数中的( ).A 、11B 、14C 、17D 、205、已知两个有理数相加,和小于每一个加数,请写出满足上述条件的 一个算式: .6、已知m 、n 为有理数时,关于2m +n 值的判断正确的是( )A 、2m +n ≥0B 、2m +n ≤0C 、2m +n >0D 、2m +n >17、已知m 为有理数时,1122++m m =( ) A 、1 B 、-1 C 、1± D 、不能确定 8、已知有理数a 、b 满足(),0212=-+-b a 另有两个不等于零的有理数nm ,使得1-=++-=-mn mn n n m m n m n m 且,试比较bn am 与的大小。
有理数的混合运算练习题(含答案)(大综合17套)有理数混合运算练习题及答案 第1套同步练习(满分100分)1.计算题:(10′×5=50′)(1)3.28-4.76+121-43;(2)2.75-261-343+132;(3)42÷(-121)-143÷(-0.125);(4)(-48) ÷82-(-25) ÷(-6)2; (5)-52+(1276185+-)×(-2.4).2.计算题:(10′×5=50′)(1)-23÷153×(-131)2÷(132)2;(2)-14-(2-0.5)×31×[(21)2-(21)3];(3)-121×[1-3×(-32)2]-( 41)2×(-2)3÷(-43)3(4)(0.12+0.32) ÷101[-22+(-3)2-321×78];(5)-6.24×32+31.2×(-2)3+(-0.51) ×624.【素质优化训练】1.填空题:(1)如是0,0>>cbb a ,那么ac 0;如果0,0<<cbb a ,那么ac 0;(2)若042=-++++c c b a ,则abc=; -a 2b 2c 2=;(3)已知a ,b 互为相反数,c ,d 互为倒数,x 的绝对值等于2,那么x 2-(a+b)+cdx=.2.计算:(1)-32-;)3(18)52()5(223--÷--⨯-(2){1+[3)43(41--]×(-2)4}÷(-5.043101--);(3)5-3×{-2+4×[-3×(-2)2-(-4) ÷(-1)3]-7}.【生活实际运用】甲用1000元人民币购买了一手股票,随即他将这手股票转卖给乙,获利10%,而后乙又将这手股票反卖给甲,但乙损失了10%.最后甲按乙卖给甲的价格的九折将这手股票卖给了乙,在上述股票交易中( )A .甲刚好亏盈平衡;B .甲盈利1元;C .甲盈利9元;D .甲亏本1.1元.参考答案【同步达纲练习】1.(1)-0.73 (2)-121; (3)-14; (4)-181; (5)-2.9 2.(1)-351 (2)-1161; (3)- 5437; (4)1; (5)-624.【素质优化训练】1.(1)>,>; (2)24,-576; (3)2或6.[提示:∵x =2 ∴x 2=4,x=±2].2.(1)-31; (2)-8;2719(3)224【生活实际运用】 B有理数的四则混合运算练习 第2套◆warmup知识点 有理数的混合运算(一)1.计算:(1)(-8)×5-40=_____;(2)(-1.2)÷(-13)-(-2)=______. 2.计算:(1)-4÷4×14=_____;(2)-212÷114×(-4)=______. 3.当||a a=1,则a____0;若||a a =-1,则a______0.4.(教材变式题)若a<b<0,那么下列式子成立的是( ) A .1a <1b B .ab<1 C .a b <1 D .ab>15.下列各数互为倒数的是()A.-0.13和-13100B.-525和-275C.-111和-11 D.-414和4116.(体验探究题)完成下列计算过程:(-25)÷113-(-112+15)解:原式=(-25)÷43-(-1-12+15)=(-25)×()+1+12-15=____+1+52 10 -=_______.◆Exersising7.(1)若-1<a<0,则a______1a;(2)当a>1,则a_______1a;(3)若0<a≤1,则a______1a.8.a,b互为相反数,c,d互为倒数,m的绝对值为2,则||4a bm++2m2-3cd值是()A.1 B.5 C.11 D.与a,b,c,d值无关9.下列运算正确的个数为()(1)(+34)+(-434)+(-6)=-10 (2)(-56)+1+(-16)=0(3)0.25+(-0.75)+(-314)+34=-3(4)1+(-3)+5+(-7)+9+(-1)=4A.3个 B.4个 C.2个 D.1个10.a,b为有理数,在数轴上的位置如右上图所示,则()A.1a>1b>1 B.1a>1>-1bC.1>-1a>1bD.1>1a>1b11.计算:(1)-20÷5×14+5×(-3)÷15 (2)-3[-5+(1-0.2÷35)÷(-2)]ob a(3)[124÷(-114)]×(-56)÷(-316)-0.25÷14◆Updating 12.(经典题)对1,2,3,4可作运算(1+2+3)×4=24,现有有理数3,4,-6,10,请运用加,减,乘,除法则写出三种不同的计算算式,使其结果为24. (1)____________ (2)____________ (3)____________ 答案: 课堂测控1.(1)-80 (2)535 2.(1)-14(2)8 3.>,< 4.D 5.C 6.34,-310,1[总结反思]先乘除,后加减,有括号先算括号内的.课后测控 7.(1)> (2)> (3)≤ 8.B 9.B 10.B11.解:(1)原式=-20×15×14+5×(-3)×115=-1-1=-2 (2)原式=124×(-45)×(-56)×(-619)-14÷14=124×(-419)-1=-1114-1=-11114(3)原式=-3[-5+(1-15×53)÷(-2)]=-3[-5+23×(-12)]=-3[-5-13]=15+1=16[解题技巧]除法转化为乘法,先乘除,后加减,有括号先算括号内的. 拓展测控 12.解:(1)4-(-6)÷3×10 (2)(10-6+4)×3 (3)(10-4)×3-(-6)[解题思路]运用加,减,乘除四种运算拼凑得24点.有理数的混合运算习题 第3套一.选择题1. 计算3(25)-⨯=( )A.1000B.-1000C.30D.-302. 计算2223(23)-⨯--⨯=( )A.0B.-54C.-72D.-183. 计算11(5)()555⨯-÷-⨯=A.1B.25C.-5D.354. 下列式子中正确的是( )A.4232(2)(2)-<-<- B. 342(2)2(2)-<-<- C. 4322(2)(2)-<-<-D. 234(2)(3)2-<-<-5. 422(2)-÷-的结果是( )A.4B.-4C.2D.-26. 如果210,(3)0a b -=+=,那么1ba+的值是( ) A.-2 B.-3C.-4D.4二.填空题1.有理数的运算顺序是先算 ,再算 ,最算 ;如果有括号,那么先算 。
实用文档之"有理数的混合运算练习题(含答案)(大综合17套)"有理数混合运算练习题及答案 第1套同步练习(满分100分)1.计算题:(10′×5=50′)(1)3.28-4.76+121-43;(2)2.75-261-343+132;(3)42÷(-121)-143÷(-0.125);(4)(-48) ÷82-(-25) ÷(-6)2; (5)-52+(1276185+-)×(-2.4).2.计算题:(10′×5=50′)(1)-23÷153×(-131)2÷(132)2;(2)-14-(2-0.5)×31×[(21)2-(21)3];(3)-121×[1-3×(-32)2]-( 41)2×(-2)3÷(-43)3(4)(0.12+0.32) ÷101[-22+(-3)2-321×78];(5)-6.24×32+31.2×(-2)3+(-0.51) ×624.【素质优化训练】1.填空题:(1)如是0,0>>cbb a ,那么ac 0;如果0,0<<cbb a ,那么ac0;(2)若042=-++++c c b a ,则abc=; -a 2b 2c 2=;(3)已知a ,b 互为相反数,c ,d 互为倒数,x 的绝对值等于2,那么x 2-(a+b)+cdx=.2.计算:(1)-32-;)3(18)52()5(223--÷--⨯-(2){1+[3)43(41--]×(-2)4}÷(-5.043101--);(3)5-3×{-2+4×[-3×(-2)2-(-4) ÷(-1)3]-7}.【生活实际运用】甲用1000元人民币购买了一手股票,随即他将这手股票转卖给乙,获利10%,而后乙又将这手股票反卖给甲,但乙损失了10%.最后甲按乙卖给甲的价格的九折将这手股票卖给了乙,在上述股票交易中( )A .甲刚好亏盈平衡;B .甲盈利1元;C .甲盈利9元;D .甲亏本1.1元.参考答案【同步达纲练习】1.(1)-0.73 (2)-121; (3)-14; (4)-181; (5)-2.9 2.(1)-351 (2)-1161; (3)- 5437; (4)1; (5)-624.【素质优化训练】1.(1)>,>; (2)24,-576; (3)2或 6.[提示:∵x =2 ∴x 2=4,x=±2].2.(1)-31; (2)-8;2719(3)224 【生活实际运用】 B有理数的四则混合运算练习 第2套◆warmup知识点 有理数的混合运算(一)1.计算:(1)(-8)×5-40=_____;(2)(-1.2)÷(-13)-(-2)=______.2.计算:(1)-4÷4×14=_____;(2)-212÷114×(-4)=______.3.当||aa=1,则a____0;若||aa=-1,则a______0.4.(教材变式题)若a<b<0,那么下列式子成立的是()A.1a<1bB.ab<1 C.ab<1 D.ab>15.下列各数互为倒数的是()A.-0.13和-13100B.-525和-275C.-111和-11 D.-414和4116.(体验探究题)完成下列计算过程:(-25)÷113-(-112+15)解:原式=(-25)÷43-(-1-12+15)=(-25)×()+1+12-15=____+1+52 10 -=_______.◆Exersising7.(1)若-1<a<0,则a______1a;(2)当a>1,则a_______1a;(3)若0<a≤1,则a______1a.8.a,b互为相反数,c,d互为倒数,m的绝对值为2,则||4a bm++2m2-3cd值是()A.1 B.5 C.11 D.与a,b,c,d值无关9.下列运算正确的个数为()(1)(+34)+(-434)+(-6)=-10 (2)(-56)+1+(-16)=0(3)0.25+(-0.75)+(-314)+34=-3-1ob a(4)1+(-3)+5+(-7)+9+(-1)=4A.3个 B.4个 C.2个 D.1个10.a,b为有理数,在数轴上的位置如右上图所示,则()A.1a>1b>1 B.1a>1>-1bC.1>-1a>1bD.1>1a>1b11.计算:(1)-20÷5×14+5×(-3)÷15 (2)-3[-5+(1-0.2÷35)÷(-2)](3)[124÷(-114)]×(-56)÷(-316)-0.25÷14◆Updating12.(经典题)对1,2,3,4可作运算(1+2+3)×4=24,现有有理数3,4,-6,10,请运用加,减,乘,除法则写出三种不同的计算算式,使其结果为24.(1)____________ (2)____________ (3)____________答案:课堂测控1.(1)-80 (2)5352.(1)-14(2)83.>,< 4.D 5.C 6.34,-310,1[总结反思]先乘除,后加减,有括号先算括号内的.课后测控7.(1)> (2)> (3)≤ 8.B 9.B 10.B11.解:(1)原式=-20×15×14+5×(-3)×115=-1-1=-2(2)原式=124×(-45)×(-56)×(-619)-14÷14=124×(-419)-1=-1114-1=-11114(3)原式=-3[-5+(1-15×53)÷(-2)] =-3[-5+23×(-12)] =-3[-5-13]=15+1=16[解题技巧]除法转化为乘法,先乘除,后加减,有括号先算括号内的. 拓展测控 12.解:(1)4-(-6)÷3×10 (2)(10-6+4)×3 (3)(10-4)×3-(-6)[解题思路]运用加,减,乘除四种运算拼凑得24点.有理数的混合运算习题 第3套一.选择题1. 计算3(25)-⨯=( )A.1000B.-1000C.30D.-302. 计算2223(23)-⨯--⨯=( )A.0B.-54C.-72D.-183. 计算11(5)()555⨯-÷-⨯=A.1B.25C.-5D.354. 下列式子中正确的是( )A.4232(2)(2)-<-<- B. 342(2)2(2)-<-<- C. 4322(2)(2)-<-<-D. 234(2)(3)2-<-<-5. 422(2)-÷-的结果是( )A.4B.-4C.2D.-26. 如果210,(3)0a b -=+=,那么1ba+的值是( ) A.-2 B.-3C.-4D.4二.填空题1.有理数的运算顺序是先算 ,再算 ,最算 ;如果有括号,那么先算 。
有理数的混合运算习题一、选择题1. 在有理数中,有( )A.绝对值最大的数 B.绝对值最小的数C.最大的数 D.最小的数2. 计算 ( 7)( 5)( 3) ( 5) 2 1的结果为 ( )3 A . 71B . 72C . 121D . 12133 3 33. 下列说法错误的是 ( )A.绝对值等于本身的数只有 1B .平方后等于本身的数只有 0、1C .立方后等于本身的数是1,0,1D .倒数等于本身的数是 1和 14. 下列结论正确的是( )10 A.数轴上表示6的点与表示4的点相距 B.数轴上表示 +6 的点与表示- 4 的点相距 10 C.数轴上表示- 4 的点与表示 4 的点相距 10 D.数轴上表示- 6 的点与表示- 4 的点相距 10 5. 下列说法中不正确的是 ( )A. 0 既不是正数 ,也不是负数 B .0 不是自然数 C .0 的相反数是零 D .0 的绝对值是 06. 下列计算中,正确的有 ( )(1) ( 5) ( 3) 8 (2) 0 ( 5) 5(3) ( 3) ( 3)(4) ( 5)( 1) 2663A .0 个B . 1 个C . 2 个D . 3 个 二、填空题7. 平方得 25 的数是 _____,立方得 64 的数是 _____.8. 若 xy 0, z 0 ,那么 xyz=______0.9. 某冷库的温度是 16 ℃,下降了 5℃,又下降了 4℃,则两次变化后的冷库的温度是 ______.10. 已知 a 1 b 3 0 ,则 a ______ b ______ .11. 2 的倒数是 _____;2的倒数是 ______; 1 2的倒数是 ______.3312. 如果 a 、 b 互为倒数,那么 5ab=______.13.2 ( 2) 21 1_____ ; ( 3)( ) 3 _____ .3314. 用算式表示:温度由 4 ℃上升 7 ℃,达到的温度是 ______.15. 若三个有理数的乘积为负数,在这三个有理数中,有 _____个负数.16. 5 3 _____;515 0.216_____;若 m 、 n 互为相反数,则 m1 n =_____三、运算题17. 计算: 1(1 0.51)2 ( 3)2318.确定下列各式和的符号(1) ( 1) ( 2)(2)( 101)( 100)(3) 0 ( 0.1)(4)122319.计算下列各题(1)(-7)+(-4);(2)3+(-12);(3)(-2)+2;(4)0+(-7);(5)3141.2320. 5( 22)5554 757123四、应用题21.一条南北走向的公路,规定向南为正.怎样表示向北 36 千米 ?向南 48 千米?向北 12.5 千米? 20 千米是什么意思 ?+25 千米是什么意思?22. 若数轴上的点 A 和点 B 表示两个互为相反数的数,并且这两个数间的距离为 8.4,求 A 点和 B 点表示的数是什么. (A>B)计算练习 :(1)1253(2)1111 1361(2) 110 2434(3) 21(6)(12)(4)50 2 (1) 4725(5) -6÷(-3×2)(6) 17-8÷(-2)+4×(-3)(7) 3 2-50 ÷ (-2) 2×(+0.1)-1(8)11(0.52)11339 (9)–13-[1-(1-0.5× 43)](10) (-8÷ 23)-(-8÷2)31. –55+7+99-872.1 ( 1) (2 1 ) ( 1 1)3263. (-5)×(-2 )24. -32×(-3) 25. - 32÷2÷ 26. 20-5 ÷(-15)7. ( 3 6) ( 0.32 ) ( 0.1)8. (-12) × 5+(-1) ×52 - 1 2×5+(-1 × 5) 279. (-2)2-(-5 2) ×(-1) 5-87 ÷(-3) ×(-1)410.– 14-(1-0.5) ×1×[2-(-3)2]311. (-1) 8- (1 3 +2 1 -3 3) ×(-24) 12.( 3) 2( 3 ) ( 2 ) 2 ( 3) 8 3 424 3 4。
有理数综合练习题班级 姓名一、 判断正误:1、一个数的平方是16,这个数一定是4。
( )2、a n2是非负数。
( ) 3、()nna a -=-( )4、如果a a n<>00,,那么n 为偶数。
( ) 5、()a b n -2等于()b a n -2 () 6、()a b n -+21等于21()n b a +-()7、()a b a b +=+222永远成立 ( ) 8、如果m n 22=,那么m n = ()9、如果m n 33=,那么m n =( ) 10、近似数0.031040有四位有效数字()11、两个数相乘,乘积不一定大于每个因数 ( ) 12、无论x 是什么数,()-÷=-x x 1( )13、任何一个有理数的平方都大于零( )二、选择题:1、()()-+-2219891990应等于( ) A .()-21989B .-21990C .-1D .+219892、一个数的平方等于这个数的绝对值,这个数一定为( ) A .0 B .1 C .-1 D .0,1或-13、若a ,b 是互为相反数,则( )A .a b n n 22,也是互为相反数B .a b n n 2121++,也是互为相反数C .a b n n,也是互为相反数D .以上三种情况都不可能4、若a 、b 、c 都是有理数,且a b b c c a 222000><>,,,则( ) A .a b c >>>000,, B .a b c <>>000,, C .a b c <<<000,, D .a b c >><000,,5、若-=a a a 2,则a 是( )A .正数B .负数C .零D .非正数 6、一个有理数的平方小于这个有理数,则有( )A .这个数的倒数是负数B .这个数的相反数大于这个数C .这个数的二次幂大于四次幂D .这样的有理数不存在7、如果x ,y 表示有理数,且x ,y 满足条件x y x y y x ==-=-52,,,那么x y +2的值 ( )A .-1B .-9C .-1或-9D .以上都不对8、任意的有理数a ,它的平方a 2的末位数字不可能出现在()中A .3,4,9,0B .2,3,7,8C .4,5,6,7D .1,5,6,9 9、若a b ≠≠00,,则下面四个式子中一定成立的是( ) A .a b +≠0B .a b ·≠0C .a b -≠0D .a b -≠010、下面四个不等式中,正确的是( )A .()()->->-020310346.. B .()()->->-031002463..C .()()->->-100203634..D .()()->->-030210436..11、一个有理数的平方是正数,那么这个有理数的立方( )A .是正数B .是负数C .也可能是正数,也可能是负数D .不可能是负数12、数-94与-⎛⎝ ⎫⎭⎪322的( )A .和为0B .差为0C .积为1D .商为113、如果一个有理数的偶次幂不是负数,那么这个有理数( )A .是任何有理数B .是正有理数C .是非负有理数D .是负有理数 14、若x 是有理数,则下列代数式的值一定是正数的是( ) A .1999xB .x +1999C .|x|D .x 21999+15、下列各式中,计算正确的是( ) A .----=235B .--÷-⎛⎝ ⎫⎭⎪=121254C .-÷-⎛⎝ ⎫⎭⎪⨯=34433434 D .()()---+-⎛⎝ ⎫⎭⎪÷-=221224142316、近似数1.101×105的有效数字有( )A .2个B .3个C .4个D .5个 17、下列说法正确的是( )A .有理数a 的倒数都可以是1aB .a 与b 互为相反数,ba =1C .如果()a a n n=-,那么n 一定是偶数 D .a n 与-a n一定不相等18、如果两个数的和与积都是正数,那么只要( )A .这两个数均为正数B .这两个数均为负数C .这两个数符号相同D .有一个数为正,并且它的绝对值大于另一个数的绝对值19、下面说法正确的是( )A .若a b +=0,则ab =-1 B .若a a =-,则a <0 C .若a b >>0,则-<-<a b 0 D .若a b <<0,则11a b <<20、若a b <<0,则下列不等式中成立的是( )A .11a b <B .ab <1C .a b <1D .ab >1二、填空: 1、13553÷⨯=2、当a =-2时,代数式31212a a -+的值为3、用科学记数法表示-=346002.4、2.5967保留三个有效数字的近似值是;140.5保留两个有效数字的近似数是 5、比较大小(用“>”“<”或“=”连接)-+⎛⎝ ⎫⎭⎪+-⎛⎝ ⎫⎭⎪3434()()--2232()()()()-⨯+-⨯+8383()----22336、近似数1.6×104精确到 位,有个有效数字,它们分别是7、近似数2.4万,精确到位,有个有效数字。
有理数的混合运算练习题1.填空题:(1)如是0,0>>c b b a ,那么ac 0;如果0,0<<cb b a ,那么ac 0; (2)若042=-++++c c b a ,则abc=; -a 2b 2c 2= ; (3)已知a ,b 互为相反数,c ,d 互为倒数,x 的绝对值等于2,那么x 2-(a+b)+cdx=. 2.计算:(1)-32-;)3(18)52()5(223--÷--⨯- (2){1+[3)43(41--]×(-2)4}÷(-5.043101--);1.计算:(1)(-8)×5-40=_____;(2)(-1.2)÷(-13)-(-2)=______. 2.计算:(1)-4÷4×14=_____;(2)-212÷114×(-4)=______. 3.当||a a =1,则a____0;若||a a =-1,则a______0.4.若a<b<0,那么下列式子成立的是( ) A .1a <1b B .ab<1 C .a b <1 D .a b >1 5.下列各数互为倒数的是( )A .-0.13和-13100 B .-525和-275 C .-111和-11 D .-414和4117.(1)若-1<a<0,则a___1a ;(2)当a>1,则a____1a ;(3)若0<a ≤1,则a___1a. 8.a ,b 互为相反数,c ,d 互为倒数,m 的绝对值为2,则||4a b m++2m 2-3cd 值是( ) A .1 B .5 C .11 D .与a ,b ,c ,d 值无关 10.a ,b 为有理数,在数轴上的位置如右上图所示,则( )o b a A .1a >1b >1 B .1a >1>-1b C .1>-1a >1b D .1>1a >1b(1)-20÷5×14+5×(-3)÷15 (2)-3[-5+(1-0.2÷35)÷(-2)](3)[124÷(-114)]×(-56)÷(-316)-0.25÷14 3. [65÷(–21–31)+281]÷(–181)1、 1、53中,3是____,2是 ____,幂是_____. -54表示_____.结果是________. 2、 -53的底数是______,指数是______,计算结果是__ .3.78×107是________位数。
有理数的混合运算练习题(含答案)(共17套)有理数混合运算练习题及答案 第1套同步练习(满分100分)1.计算题:(10′×5=50′)(1)3.28-4.76+121-43;(2)2.75-261-343+132;(3)42÷(-121)-143÷(-0.125);(4)(-48) ÷82-(-25) ÷(-6)2;(5)-52+(1276185+-)×(-2.4).2.计算题:(10′×5=50′)(1)-23÷153×(-131)2÷(132)2;(2)-14-(2-0.5)×31×[(21)2-(21)3];(3)-121×[1-3×(-32)2]-( 41)2×(-2)3÷(-43)3(4)(0.12+0.32) ÷101[-22+(-3)2-321×78];(5)-6.24×32+31.2×(-2)3+(-0.51) ×624.【素质优化训练】1.填空题:(1)如是0,0>>c b b a ,那么ac 0;如果0,0<<cbb a ,那么ac0;(2)若042=-++++c c b a ,则abc= ; -a 2b 2c 2=;(3)已知a ,b 互为相反数,c ,d 互为倒数,x 的绝对值等于2,那么x 2-(a+b)+cdx=.2.计算:(1)-32-;)3(18)52()5(223--÷--⨯-(2){1+[3)43(41--]×(-2)4}÷(-5.043101--);(3)5-3×{-2+4×[-3×(-2)2-(-4) ÷(-1)3]-7}.【生活实际运用】甲用1000元人民币购买了一手股票,随即他将这手股票转卖给乙,获利10%,而后乙又将这手股票反卖给甲,但乙损失了10%.最后甲按乙卖给甲的价格的九折将这手股票卖给了乙,在上述股票交易中( )A .甲刚好亏盈平衡;B .甲盈利1元;C .甲盈利9元;D .甲亏本1.1元.参考答案【同步达纲练习】1.(1)-0.73 (2)-121; (3)-14; (4)-181; (5)-2.92.(1)-351 (2)-1161; (3)- 5437; (4)1; (5)-624.【素质优化训练】1.(1)>,>; (2)24,-576; (3)2或6.[提示:∵x =2 ∴x 2=4,x=±2].2.(1)-31;(2)-8;2719(3)224 【生活实际运用】 B有理数的四则混合运算练习 第2套◆warmup知识点 有理数的混合运算(一)1.计算:(1)(-8)×5-40=_____;(2)(-1.2)÷(-13)-(-2)=______.2.计算:(1)-4÷4×14=_____;(2)-212÷114×(-4)=______.3.当||a a=1,则a____0;若||a a =-1,则a______0.4.(教材变式题)若a<b<0,那么下列式子成立的是( ) A .1a <1b B .ab<1 C .a b <1 D .ab>1 5.下列各数互为倒数的是( )A .-0.13和-13100B .-525和-275C .-111和-11D .-414和4116.(体验探究题)完成下列计算过程:(-25)÷113-(-112+15)解:原式=(-25)÷43-(-1-12+15)=(-25)×()+1+12-15=____+1+52 10 -=_______.◆Exersising7.(1)若-1<a<0,则a______1a;(2)当a>1,则a_______1a;(3)若0<a≤1,则a______1a.8.a,b互为相反数,c,d互为倒数,m的绝对值为2,则||4a bm++2m2-3cd值是()A.1 B.5 C.11 D.与a,b,c,d值无关9.下列运算正确的个数为()(1)(+34)+(-434)+(-6)=-10 (2)(-56)+1+(-16)=0(3)0.25+(-0.75)+(-314)+34=-3(4)1+(-3)+5+(-7)+9+(-1)=4 A.3个 B.4个 C.2个 D.1个10.a,b为有理数,在数轴上的位置如右上图所示,则()A.1a>1b>1 B.1a>1>-1bC.1>-1a>1bD.1>1a>1b11.计算:(1)-20÷5×14+5×(-3)÷15 (2)-3[-5+(1-0.2÷35)÷(-2)](3)[124÷(-114)]×(-56)÷(-316)-0.25÷14-1ob a◆Updating 12.(经典题)对1,2,3,4可作运算(1+2+3)×4=24,现有有理数3,4,-6,10,请运用加,减,乘,除法则写出三种不同的计算算式,使其结果为24. (1)____________ (2)____________ (3)____________ 答案: 课堂测控1.(1)-80 (2)535 2.(1)-14(2)83.>,< 4.D 5.C 6.34,-310,1[总结反思]先乘除,后加减,有括号先算括号内的. 课后测控 7.(1)> (2)> (3)≤ 8.B 9.B 10.B11.解:(1)原式=-20×15×14+5×(-3)×115=-1-1=-2(2)原式=124×(-45)×(-56)×(-619)-14÷14=124×(-419)-1=-1114-1=-11114(3)原式=-3[-5+(1-15×53)÷(-2)]=-3[-5+23×(-12)]=-3[-5-13]=15+1=16[解题技巧]除法转化为乘法,先乘除,后加减,有括号先算括号内的. 拓展测控 12.解:(1)4-(-6)÷3×10 (2)(10-6+4)×3 (3)(10-4)×3-(-6)[解题思路]运用加,减,乘除四种运算拼凑得24点.有理数的混合运算习题 第3套一.选择题1. 计算3(25)-⨯=( ) A.1000 B.-1000 C.30 D.-302. 计算2223(23)-⨯--⨯=( )A.0B.-54C.-72D.-183. 计算11(5)()555⨯-÷-⨯=A.1B.25C.-5D.354. 下列式子中正确的是( ) A.4232(2)(2)-<-<- B. 342(2)2(2)-<-<- C. 4322(2)(2)-<-<-D. 234(2)(3)2-<-<-5. 422(2)-÷-的结果是( ) A.4B.-4C.2D.-26. 如果210,(3)0a b -=+=,那么1ba+的值是( )A.-2B.-3C.-4D.4二.填空题1.有理数的运算顺序是先算 ,再算 ,最算 ;如果有括号,那么先算 。
初2013级数学综合练习题姓 名__________________一、选择题:1.31-的绝对值是 ( )A.-3B.31-C.3D.31 2. 如果a 与2的和为0,那么a 为 ( ) A.2 B.21 C. -2 D. 21- 3. 一种巧克力的质量标识为“25±0.25千克”,则下列哪种巧克力合格的是 ( )A .25.30千克B .24.80千克C .25.51千克D .24.70千克4. 下列说法正确的是 ( )A.有理数的绝对值为正数B. 任何数都有倒数C.如果两数互为相反数,则这两个数的绝对值相等D. 只有正数或负数才有相反数5.在数轴上距 -2有3个单位长度的点所表示的数是 ( )A.-5B.1C.-1D.-5或16. a >0,b <0,且b a <,则a 、-a 、b 、-b 的大小关系是 ( )A. b<-a <a <-bB. -a <a <b<-bC. -a <b<a <-bD. -b<-a <a <-b7.下列运算正确的是 ( )A.(—8)—8=0B. (—3)=×312—316 C.(—436)×31= —6314331×+× D. ∣—3∣—3=0 8. 在-(-2)、-|-2|、+(-2)、|-(-2)|中正数有 ( )A. 1个B. 2个C. 3个D. 4个9. 已知|a+3|+|b-2|=0,则ab-a 的值为 ( )A .3 B.-3 C.-1 D. 610.计算)12()4131211(-⨯++-,运用哪种运算律可避免通分 ( ) A.加法交换律 B.加法结合律 C.乘法交换律 D.分配律11.数轴上表示―10与10这两个点之间的距离是 ( )A.0B.10C.20D.无法计算12.,数轴上标出若干个点,每相邻两点相距一个单位长度,点A 、B 、C 、D 对应的数分别是数a ,b ,c ,d ,且d-2a=10,那么数轴的原点应是 ( )A.点AB.点BC.点CD.点D13.有理数a 、b 在数轴上的对应的位置如图所示:则 ( ) 0-11abA .a + b <0B .a + b >0C .a -b = 0D .a -b >0143. 下列说法正确的有 ( )① π的相反数是-3.14; ②符号相反的数互为相反数; ③ -(-3.8)的相反数是3.8;④ 一个数和它的相反数不可能相等; ⑤正数与负数互为相反数。
A .0个B .1个C .2个D .3个15.下列运算结果正确的是 ( )A.-6-6=0B.-4-4=8C.1125.0811-=--D.25.1)811(125.0=-- 16.两个有理数相加,若和为负数,则加数中负数的个数 ( )A.有2个B.只有1个C.至少1个D.也可能是0个17.下列说法中:①-a 一定是负数;②|-a |一定是正数;③倒数等它本身的数是±1;④绝对值等于它本身的数是1。
其中正确的个数是 ( )A .1个B .2个C .3个D .4个二.填空题:18.若a ≥0;若a =-a,则a 取值范围是____________。
19.在数+8.3, 4-,-0.8, 51-, 0, 90, 334-,|24|--中,________________是正数,____________________________不是整数。
20.用“>”、“<”、“=”号填空:(1)1___02.0-; (2)][)75.0(___)43(-+---; (3)43___54; (4)14.3___722--; (5)—43 -|-54|。
21.最大的负整数是_______;最小的非负整数是_______;绝对值大于1而小于4的整数有____________,其和为_________。
22.满足3x ≤的所有负整数为____________。
23.35-的倒数的绝对值是___________。
D24.两个有理数a 、b 在数轴上对应的点如图所示: 则a b -_______0,a b +_______0。
25.与数轴上表示-2的点相距3个单位,则此点表示的数是__________。
26.|-3.2|的相反数为__________,-|0.5|的倒数为__________。
27.某地气象资料表明,高度每增加1000米,气温就下降大约6℃,现在10000米高空的气温是-23℃,则地面气温约为__________。
28.若|m-2|=2-m ,则m 的取值范围是___________。
29.某升降机上升了4米,表示为+4米,那么下降了3米,应记作_____ 米。
30.在等式3215⨯-⨯=的两个方格内分别填入一个数,使这两个数是互为相反数且等式成立,则第一个方格内的数是 。
31.对于有理数 a ,()a f 、()a g 分别表示两种新的运算,且()12-=a a f ,()aa g 1=。
则())500(-+f 1003g 1= _____ 。
32.把下列各数填在相应的大括号内:15,21-,0.81,-3,41,-3.1,-4,171,0,3.14, 2π, –0.101001. 负数集合{ …}非负数集合{ …}有理数集合{ …}三. 解答题;33.计算: (1).411132131511--⨯⎪⎭⎫ ⎝⎛-⨯⎪⎭⎫ ⎝⎛ (2).()()137********--⨯+-⨯(3). 211+-+3121+-+4131+-+ ┉ +10191+-(4).(-431)-[(-431)-(-332)] (5).211143623324⎛⎫⎛⎫⎛⎫⎛⎫-+-+++- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭(6).(-243)×[(-354)-(-354)+1116]×14(7).-1.53×0.75-0.53×(43-)(8).()().116105.1725.211594317⎪⎭⎫ ⎝⎛-+-+-+⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛+34.若a =19,b =97,且b a +=a +b ,求a+b 的值。
35. 若2350x y z -+++-=,求x y -y z +xz 的值。
36. 若3-y 与42-x 互为相反数,求x y +的值。
37.若2<a <4,化简24a a -+-。
38.已知a 、b 互为相反数,c 、d 互为倒数,x 的绝对值等于3,求2a+2b -3cd-5x 的值。
39.已知5=a ,b 的倒数等于-1,且ab <0,求b a +的值。
40.小明早晨跑步,他从家向东跑了2千米到达小彬家,继续向东跑了1.5千米到达小红家, 然后向西跑了4.5千米到达中心广场,最后回到家。
(1)以小明家为原点,以向东的方向为正方向,用1个单位长度表示1千米,你能在数轴上....表示出...中心广场,小彬家和小红家的位置吗? (2)小彬家距中心广场多远?(3)小明一共跑了多少千米?41. 目前市场上有一种数码照相机,售价为3800元/架,预计今后几年内平均每年比上一年降价4%。
3年后这种数码相机的售价估计为每架多少元(精确到1元)?42.气象统计资料表明浙西南地区,当高度增加100米,气温降低大约0.6℃.小明和小亮为考证教材中有关浙南第一高峰白云尖的海拔高度,国庆期间它们两个进行实地测量,小明在山下一个海拔高度为11米的小山坡上测得的气温为24℃,小亮在“白云尖”最高位置测得的气温为14.4℃,那么你知道“白云尖”的海拔高度是多少米吗?请列式计算。
43.如图所示,一个点从数轴上的原点开始,先向右移动3单位长度,•再向左移动5个单位 长度,可以看到终点表示的数是-2,已知点A ,B 是数轴上的点,•请参照图1-8并思考,完 成下列各题:-5-4-3-2-10234567853(1)如果点A 表示数-3,•将点A•向右移动7•个单位长度,•那么终点B•表示的数是_______, A ,B 两点间的距离是________;(2)如果点A 表示数3,将A 点向左移动7个单位长度,再向右移动5个单位长度,• 那 么终点B 表示的数是_______,A ,B 两点间的距离为________;(3)如果点A 表示数-4,将A 点向右移动168个单位长度,再向左移动256•个单位长度, 那么终点B 表示的数是_________,A ,B 两点间的距离是________。
(4)一般地,如果A 点表示的数为m ,将A 点向右移动n 个单位长度,再向左移动p•个单位长度,那么,请你猜想终点B 表示什么数?A ,B 两点间的距离为多少?44.请先阅读下列一组内容,然后解答问题: 因为:111111111111,,12223233434910910=-=-=-⋯=-⨯⨯⨯⨯ 所以:1111122334910+++⋯+⨯⨯⨯⨯ 1111112334910⎛⎫⎛⎫⎛⎫=+-+-+⋯+- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭1111112334910=-+-+⋯+- 1911010=-= 计算: ①111112233420042005+++⋯+⨯⨯⨯⨯ ② 11111335574951+++⋯+⨯⨯⨯⨯45.观察下面的点阵图和相应的等式,探究其中的规律:(1)在④和⑤后面的横线上分别写出相应的等式;(2)试用含有n 的式子表示这一规律;(3)根据上面算式的规律,请计算:1+3+5+ (99)46.如果规定符号“﹡”的意义是a ﹡b =ab a b+,求2﹡(3)-﹡4的值。
47.一口水井,水面比井口低3米,一只蜗牛从水面沿着井壁往井口爬,第一次往上爬了0.42米 ,却下滑了0.15米;第二次往上爬了0.5米后又往下滑了0.1米;第三次往上爬了0.7米又下滑了0.15米;第四次往上爬了0.75米又下滑0.1米,第五次往上爬了0.55米,没有下滑;第六次蜗牛又往上爬了0.48米没有下滑。
请回答:(1)第二次爬之前,蜗牛离井口还有 米;第四次爬之前,蜗牛离井口还有 米。
(2)最后一次蜗牛有没有爬到井口?若没有,那么离井口还有多少米?48. 体育课上,全班男同学进行了100米测验,达标成绩为15秒,下表是某小组8名男生的问:(1)这个小组男生的达标率为多少?(=达标人数达标率总人数) (2)这个小组男生的平均成绩是多少秒?…… …… ①1=12; ②1+3=22; ③1+3+5=32; ④ ; ⑤ ;。