八年级数学上册4.4一次函数的应用第1课时确定一次函数的表达式教案1(新版)北师大版
- 格式:doc
- 大小:125.00 KB
- 文档页数:2
八年级数学上册4.4一次函数的应用第1课时确定一次函数的表达式教案新版北师大版一. 教材分析《新版北师大版八年级数学上册》第四章第四节一次函数的应用,主要让学生掌握一次函数的表达式,并能够运用一次函数解决实际问题。
本节内容是在学习了平面直角坐标系、函数概念、一次函数的基础上进行学习的,是学生进一步学习函数知识的重要环节。
二. 学情分析学生在学习本节内容前,已经掌握了平面直角坐标系、函数概念、一次函数的知识,对函数有一定的认识。
但学生在运用一次函数解决实际问题时,还需要进一步的引导和训练。
三. 教学目标1.让学生掌握一次函数的表达式;2.培养学生运用一次函数解决实际问题的能力;3.提高学生对函数知识的理解和应用。
四. 教学重难点1.一次函数的表达式;2.如何运用一次函数解决实际问题。
五. 教学方法采用问题驱动法、案例教学法、小组合作法等教学方法,引导学生通过自主学习、合作交流,掌握一次函数的表达式,并能够运用一次函数解决实际问题。
六. 教学准备3.练习题;4.小组合作学习材料。
七. 教学过程1.导入(5分钟)利用课件展示一次函数的图像,引导学生回顾一次函数的知识,为新课的学习做好铺垫。
2.呈现(10分钟)教师通过讲解,呈现一次函数的表达式,让学生了解一次函数的一般形式。
3.操练(10分钟)学生根据一次函数的表达式,进行相关的练习,巩固对一次函数的理解。
4.巩固(10分钟)学生分组合作,通过解决实际问题,运用一次函数的表达式,加深对一次函数知识的理解。
5.拓展(10分钟)教师提出一些拓展问题,引导学生思考一次函数在实际生活中的应用,提高学生对函数知识的运用能力。
6.小结(5分钟)教师引导学生总结本节课所学内容,巩固知识点。
7.家庭作业(5分钟)教师布置相关的家庭作业,让学生进一步巩固所学知识。
8.板书(5分钟)教师在黑板上板书一次函数的表达式,方便学生复习和记忆。
教学过程每个环节所用时间共计50分钟。
北师大版数学八年级上册《4.4一次函数的应用》教案一. 教材分析《4.4一次函数的应用》这一节内容,主要让学生了解一次函数在实际生活中的应用,通过具体的实例,让学生学会用一次函数解决实际问题,培养学生的动手操作能力和解决实际问题的能力。
教材中给出了丰富的实例,为学生提供了充足的学习材料。
二. 学情分析八年级的学生已经学习了函数的基本概念和一次函数的性质,对于一次函数的图像和表达式有一定的了解。
但学生在实际应用中,可能会对如何将实际问题转化为一次函数模型感到困惑。
因此,在教学过程中,教师需要引导学生正确地将实际问题抽象为一次函数模型,并运用一次函数的知识解决实际问题。
三. 教学目标1.了解一次函数在实际生活中的应用。
2.学会将实际问题转化为一次函数模型,并运用一次函数的知识解决实际问题。
3.培养学生的动手操作能力和解决实际问题的能力。
四. 教学重难点1.教学重点:一次函数在实际生活中的应用。
2.教学难点:如何将实际问题转化为一次函数模型,并运用一次函数的知识解决实际问题。
五. 教学方法采用案例分析法、问题驱动法、小组合作学习法等,引导学生通过自主学习、合作探讨,提高解决实际问题的能力。
六. 教学准备1.准备与一次函数应用相关的实例。
2.准备教学课件。
七. 教学过程1.导入(5分钟)通过一个实际问题引出本节内容,例如:某商店进行打折活动,原价100元的商品打8折,求打折后的价格。
让学生思考如何用数学模型来表示这个问题。
2.呈现(15分钟)呈现教材中的实例,引导学生了解一次函数在实际生活中的应用,如:手机话费套餐、出租车计费等。
让学生观察这些实例中的一次函数表达式,分析一次函数的构成和特点。
3.操练(15分钟)让学生分组讨论,每组选择一个实例,尝试将实际问题转化为一次函数模型,并求解。
教师巡回指导,解答学生的疑问。
4.巩固(10分钟)请各组学生汇报他们的解题过程和结果,其他学生和教师进行评价和讨论。
通过这个环节,巩固学生对一次函数模型的理解和应用。
4 一次函数的应用第1课时 确定一次函数表达式教师备课 素材示例●置疑导入 如图,观察并填空:问题1:图中直线y =kx +b(k≠0),随着x 的变化,y 的变化规律是__随x 的增大而增大__.问题2:图象经过第__一、三、四__象限.问题3:直线经过这两个点__(4,0),(0,-3)__.问题4:能否求出函数关系式?说明采用什么方法.可以设直线为y =kx +b ,将(0,-3)(4,0)代入函数表达式中,求出k ,b 的值,这种方法叫做待定系数法.这节课我们将学习用待定系数法求一次函数的表达式.【教学与建议】教学:通过一次函数的图象回顾一次函数的相关知识,并通过置疑引出新课的学习.建议:问题1到3学生作答,问题4学生讨论后作答,导出待定系数法.●复习导入 回顾一次函数和正比例函数的图象和性质(多媒体出示问题)问题1:一次函数和正比例函数的关系式分别是什么?问题2:一次函数和正比例函数的图象是什么?问题3:同学们能画出函数v =2t 与y =2x +10的图象吗?问题4:这两个函数的图象有什么相同点和不同点?【教学与建议】教学:学生回顾一次函数和正比例函数的相关知识,使学生深信确定了两点一次函数图象也就确定了.建议:前两个问题较容易,找学生口答完成,后两个问题可小组交流讨论.利用图象确定一次函数的表达式,将函数图象上已知两个点的坐标代入函数关系式中,求出k ,b 的值.【例1】(1)如图,直线AB 对应的函数表达式是(B)A .y =-32x +3B .y =32x +3C .y =-23x +3D .y =23x +3 [第(1)题图] [第(2)题图](2)如图,一次函数的图象过点A ,且与正比例函数y =-x 的图象交于点B ,则该一次函数的表达式为__y =x +2__.已知一个一次函数,平移根据左加右减自变量,上加下减常数项,确定另一个一次函数表达式.【例2】(1)如图,把直线l 向上平移2个单位长度得到直线l′,则直线l′对应的函数表达式为(D)A.y =12x +1 B .y =12x -1 C .y =-12x -1 D .y =-12x +1 (2)已知某一次函数的图象与直线y =-x +1平行且过点(8,2),则这个一次函数的表达式为__y =-x +10__.解答一次函数的应用问题,要弄清题目的已知条件,根据已知求出一次函数表达式,再借助函数表达式解决其他问题.【例3】(1)如图,用每张长6cm 的纸条,重叠1cm 粘贴成一条纸带,纸带的长度y(cm)与纸条的张数x 之间的函数表达式是(D)A.y=6x+1B.y=4x+1C.y=4x+2D.y=5)与燃烧时间x(h)之间为一次函数关系,如图所示.根据图象提供的信息,解答下列问题:①求出蜡烛燃烧时y与x之间的函数表达式;②求蜡烛从点燃到燃尽所用的时间.解:①设函数表达式为y=kx+b(k≠0),由图象知其过(2,12),(0,24)两点,则2k+b=12,b=24,解得k=-6,∴y=-6x+24(0≤x≤4);②当y=0时,-6x+24=0,解得x=4.答:蜡烛从点燃到燃尽共用4h.高效课堂教学设计1.利用待定系数法确定一次函数的表达式.2.能利用所学知识解决简单的实际问题.▲重点利用待定系数法确定一次函数的表达式.▲难点灵活运用一次函数的有关知识解决问题.◆活动1 创设情境导入新课(课件)回顾一次函数和正比例函数的图象和性质(多媒体出示问题)问题1:一次函数和正比例函数的表达式分别是什么?问题2:一次函数和正比例函数的图象是什么?问题3:同学们能画出函数v=2.5t与y=0.5x+14.5的图象吗?问题4:这两个函数的图象有什么相同点和不同点?◆活动2 实践探究交流新知【探究1】正比例函数表达式展示实际情境某物体沿一个斜坡下滑,它的速度v(m/s)与其下滑时间t(s)的关系如图所示.(1)v 与t 之间的函数关系式是__v =52t__. (2)下滑3s 时物体的速度是__152__m/s__. 确定正比例函数的表达式需要几个条件?确定一次函数的表达式呢?【探究2】一次函数表达式展示实际情境由于持续高温和连日无雨,某水库的蓄水量随着时间的增加而减少.干旱持续时间t(天)与蓄水量V(万m 3)的关系如图所示.求蓄水量V(万m 3)与时间t(天)之间的函数表达式.思考:设函数表达式为y =kx +b ,由图象可知直线与y 轴的交点坐标为(0,1200),则b =1200,再知道直线上另外一点的坐标,即可求出函数表达式.【归纳】确定一次函数的表达式需要2个条件,步骤是设、代、解、定.◆活动3 开放训练 应用举例【例1】教材P 89例1【方法指导】运用求一次函数表达式的方法.解:设y =kx +b.根据题意,得__14.5__=b ,①__16__=3k +b.②将①代入②,得k =__0.5__.所以在弹性限度内,y =__0.5x +14.5__.当). 即物体的质量为4kg 时,弹簧长度为__16.5__cm.【例2】如图,直线l 是一次函数y =kx +b 的图象,求l 与两坐标轴所围成的三角形的面积.【方法指导】先求出一次函数y=kx+b的表达式,再求直线与x轴交点坐标,最后求三角形的面积.解:把(0,2),(2,-2)代入y=kx+b中,解得b=2,k=-2.∴y =-2x+2.当y=0时,x=1,∴l与两坐标轴所围成的三角形的面积为12×1×2=1.◆活动4 随堂练习1.油箱中存油10L,油从油箱中均匀流出,流速为0.2L/min,则油箱中剩余油量Q(L)与流出时间t(min)之间的函数关系式是(B) A.Q=0.2tB.Q=10-0.2tC.t=0.2QD.t=10-0.2Q2.一次函数y=kx+b的图象经过点(-1,-1),(0,2),则其函数表达式为__y=3x+2__.3.如图所示的直线是某一次函数的图象,点A(-1,7),B(4,-4)是否在该函数的图象上?解:设直线的函数表达式为y=kx+b.把(2,0),(0,4)代入,解得b=4,k=-2.∴y=-2x+4,当x=-1时,y=6≠7;当x=4时,y=-4,∴点A不在该函数图象上,点B在该函数图象上.4.某地长途汽车客运公司规定旅客可随身携带一定质量的行李,如果超过规定,则需要购买行李票,行李票费用y(元)是行李质量x(kg)的一次函数,其图象如图所示.(1)写出y与x之间的函数关系式;(2)旅客最多可免费携带多少千克的行李?解:(1)y=0.2x-6(x≥30);(2)30kg.◆活动5 课堂小结与作业学生活动:通过这节课的学习,你有哪些收获?有何感想?教学说明:给学生一定的时间去反思回顾,让学生们畅所欲言.然后老师点评.作业:课本P89随堂练习,P90习题4.5中的T1、T2、T3、T4.本节课由浅入深,并利用了丰富的实际情景,既增加了学生学习的兴趣,又让学生深切体会到一次函数就在我们身边,应用非常广泛.。
4 一次函数的应用第1课时 一次函数的应用(1)教学目标【知识与技能】会用待定系数法求一次函数的表达式,并能运用一次函数知识解决简单的实际问题.【过程与方法】通过运用一次函数知识解决实际问题,进一步加深理解并掌握所学知识.【情感、态度与价值观】体会数形结合的思想,了解数学来源于生活,又服务于生活,培养学生的数学应用意识.教学重难点【重点】用待定系数法求一次函数的表达式,并能解决简单的实际问题.【难点】灵活运用所学知识解决实际问题.教学过程一、复习引入1.提问:(1)什么是一次函数?(2)一次函数的图象是什么?(3)一次函数的相关性质.2.做一做.(1)直线y=3x+1经过点(1, ),与y轴的交点是( , ),与x轴的交点是( , ).(2)点(-2,7)是否在直线y=-5x-3上?3.引入.在前面学习一次函数时,我们根据函数关系式知道它的图象,知道图象上相应的点的坐标满足关系式,那么反过来,我们是否能根据图象、点的坐标等信息确定函数关系式呢?这就是我们今天要学习的内容——待定系数法求函数关系式.二、讲授新课师:下面我们来看几个例题.【例1】在弹性限度内,弹簧的长度y(cm)是所挂物体质量x(kg)的一次函数.某弹簧不挂物体时长14.5 cm,当所挂物体的质量为3 kg时,弹簧长16 cm.写出y与x之间的关系式,并求当所挂物体的质量为4 kg时弹簧的长度.【解】设y=kx+b,根据题意,得14.5=b,①16=3k+b.②将①代入②,得k=0.5,所以在弹性限度内,y=0.5x+14.5.当x=4时,y=0.5×4+14.5=16.5(cm).即物体的质量为4 kg时,弹簧长度为16.5 cm.师:在这个例题中,我们首先根据题意设出一次函数的表达式,再利用待定系数法将已知数据代入表达式中,求得了一次函数的表达式,从而进一步解决了实际问题.【例2】某种摩托车的油箱加满油后,油箱中的剩余油量y(L)与摩托车行驶路程x(km)之间的关系如图所示.根据图象回答下列问题:(1)油箱最多可储油多少升?(2)一箱汽油可供摩托车行驶多少千米?(3)摩托车每行驶100 km消耗多少升汽油?(4)油箱中的剩余油量小于1 L时,摩托车将自动报警.行驶多少千米后,摩托车将自动报警?【解】观察图象,得(1)当x=0时,y=10.因此,油箱最多可储油10 L.(2)当y=0时,x=500.因此,一箱汽油可供摩托车行驶500 km.(3)x从0增加到100时,y从10减少到8,减少了2,因此摩托车每行驶100 km消耗2 L汽油.(4)当y=1时,x=450.因此,行驶450 km后,摩托车将自动报警.师:请同学们思考教材P92的“做一做”.学生观察并思考.生:(1)从图象中可以看出,当y=0时,x=-2;(2)这个函数的表达式为y=x+2.师:很好!那么你们知道方程0.5x+1=0与一次函数y=0.5x+1之间有什么联系吗?学生思考并讨论.教师总结:一般地,当一次函数y=kx+b的函数值为0时,相应的自变量的值就是方程kx+b=0的解.从图象上看,一次函数y=kx+b的图象与x轴交点的横坐标就是方程kx+b=0的解.三、课堂小结师:通过本节课的学习,同学们有什么收获?与同伴交流一下.学生发言,教师予以点评.第2课时 一次函数的应用(2)教学目标【知识与技能】会应用一次函数表达式与图象之间的相互关系,处理一些较为复杂的问题,领会数形结合的思想.【过程与方法】经历对实际问题建立数学模型的过程,体验数形结合的作用和一次函数模型的价值.【情感、态度与价值观】1.通过让学生经历用一次函数知识来建立实际问题的函数模型、解决实际问题的过程,使它们感受到数学的用途和数学与生活的紧密联系.2.让学生参与到教学活动中来,提高学习数学、应用数学的积极性.教学重难点【重点】用一次函数知识解决实际问题.【难点】获取一次函数图象中的信息,领会数形结合的思想.教学过程一、共同探究,获取新知问题1:某公司每月付给销售人员的工资有两种方案.方案一:没有底薪,只拿销售提成;方案二:底薪加销售提成.(注:销售提成是销售每件商品得到的销售额中提取一定数量的费用).设销售商品的数量x(件),销售人员的月工资y(元),如图所示,y1为方案一的函数图象,y2为方案二的函数图象.从图中信息解答如下问题:(1)求y1的函数关系式;(2)求点A的坐标,并说出A点的实际意义;(3)请问方案二中每月付给销售人员的底薪是多少元?分析:(1)因为该函数图象过点(0,0),(30,720),所以该函数是正比例函数,利用待定系数法即可求解.(2)利用(1)中表达式,即可得出A 点坐标.(3)把图象上点的坐标代入,即可求出b 的值,从而求出答案.【解】(1)设y 1的函数表达式为y =kx(x≥0).∵y 1经过点(30,720),∴30k =720.∴k =24.∴y 1的函数表达式为y 1=24x(x≥0).(2)根据图象可知x =50,把x =50代入y 1=24x 得:y 1=24×50=1 200,∴A(50,1 200)当销售量为50件时两种方案工资相同,都是1 200元.(3)设y 2的函数表达式为y 2=ax +b(x≥0),经过点(30,960),(50,1 200)∴{960=30a +b 1 200=50a +b ,解得:{a =12b =600,∴b =600,即方案二中每月付给销售人员的底薪为600元.问题2:一家公司招聘销售员,给出以下两种薪金方案供求职人员选择,方案甲:每月的底薪为1500元,再加每月销售额的10%;方案乙:每月的底薪为750元,再加每月销售额的20%,如果你是应聘人员,你认为应该选择怎样的薪金方案?【解】设月薪y(元),月销售额为x(元).方案甲:y =1 500+110x(x≥0)方案乙:y =750+15x(x≥0)当y 甲=y 乙时,1 500+110x =750+15x ,解得x =7 500.求得y 甲=y 乙=2 250即销售额为7 500元时,这两种方案所定的月薪相同.在同一坐标系中画出两种方案中y 关于x 的函数图象.由图象可知:当0≤x<7 500,y甲>y乙,x>7 500时,y甲<y乙.提问:说一说用图象的方法解决问题有哪些优点?二、例题讲解【例】 我边防局接到情报,近海外有一可疑船只A正向公海方向行驶.边防局迅速派出快艇B追赶(图①).图②中l1,l2分别表示两船相对于海岸的距离s(n mile)与追赶时间t(min)之间的关系.根据图象回答下列问题:(1)哪条线表示B到海岸的距离与追赶时间之间的关系?(2)A,B哪个速度快?(3)15 min内B能否追上A?(4)如果一直追下去,那么B能否追上A?(5)当A逃到离海岸12n mile的公海时,B将无法对其进行检查.照此速度,B能否在A逃入公海前将其拦截?(6)l1与l2对应的两个一次函数y=k1x+b1与y=k2x+b2中,k1,k2的实际意义各是什么?可疑船只A与快艇B的速度各是多少?【解】(1)当t=0时,B距海岸0 n mile,即s=0,故l1表示B到海岸的距离与追赶时间之间的关系.(2)t从0增加到10时,l2的纵坐标增加了2,而l1的纵坐标增加了5,即10 min,A行驶了2n mile,B行驶了5n mile,所以B的速度快.(3)延长l1,l2(图③),可以看出,当t=15时,l1上的对应点在l2上对应点的下方,这表明,15 min时B尚未追上A.(4)如图③,l1,l2相交于点P.因此,如果一直追下去,那么B一定能追上A.(5)图③中,l1与l2交点P的纵坐标小于12,这说明,在A逃入公海前,B能够追上A.(6)k1表示快艇B的速度,k2表示可疑船只A的速度.可疑船只A的速度是0.2nmile/min,快艇B的速度是0.5n mile/min.三、练习新知教师多媒体出示课件:小明步行离开家去上学,开始的速度是0.6 m/s,10分钟后发现快迟到了,加快了速度,以1.2m/s的速度用5分钟走完了剩余的路程到达学校.1.求小明家离学校的大致距离和小明走路的平均速度.2.请用函数图象描述小明走路的过程.教师引导学生思考交流,然后找一生板演,其余同学在下面做,订正得到:距离应为0.6×10×60+1.2×5×60=360+360=720(m),平均速度为720÷[(10+5)×60]=720÷900=0.8(m/s).教师多媒体出示图象:其中x表示小明离开家的时间,y表示小明离开家的距离.四、课堂小结师:本节我们学习了什么内容?生:对于实际问题,初步了解如何根据函数表达式和图象描出它的现实意义.。
八年级数学上册4.4一次函数的应用第1课时确定一次函数的表达式教学设计(新版北师大版)一. 教材分析本次教学的内容是北师大版八年级数学上册的4.4一次函数的应用,第1课时。
这部分内容主要让学生掌握一次函数的表达式,并且能够运用一次函数解决实际问题。
教材通过丰富的例题和练习题,帮助学生理解和掌握一次函数的基本概念和应用。
二. 学情分析学生在学习了初中数学基础知识之后,已经掌握了代数的基本概念,对函数有了初步的了解。
但是对于一次函数的表达式,可能还存在着一些困惑。
因此,在教学过程中,需要注重引导学生理解一次函数的表达式,并且通过实际例子,让学生感受一次函数在生活中的应用。
三. 教学目标1.让学生掌握一次函数的表达式。
2.能够运用一次函数解决实际问题。
3.培养学生的逻辑思维能力和解决问题的能力。
四. 教学重难点1.一次函数的表达式。
2.如何运用一次函数解决实际问题。
五. 教学方法采用问题驱动法,通过丰富的例题和练习题,引导学生自主探究一次函数的表达式,并且在实际问题中运用一次函数。
同时,采用小组合作学习,让学生在讨论中加深对一次函数的理解。
六. 教学准备1.准备相关的教学PPT。
2.准备一些实际问题,用于引导学生运用一次函数解决。
3.准备一些练习题,用于巩固学生的学习效果。
七. 教学过程1.导入(5分钟)通过一个实际问题,引导学生思考一次函数的表达式。
例如,假设某商品的售价为80元,如果老板给出8折优惠,那么顾客需要支付多少钱?让学生思考这个问题,引出一次函数的表达式。
2.呈现(15分钟)通过PPT,呈现一次函数的表达式,并且解释一次函数的各个部分的含义。
同时,通过例题,让学生理解一次函数的表达式是如何得出的。
3.操练(15分钟)让学生分组讨论,每组选择一个实际问题,运用一次函数的表达式进行解决。
教师在旁边进行指导,解答学生的疑问。
4.巩固(10分钟)让学生独立完成一些练习题,巩固对一次函数的理解。
教师在旁边进行解答和指导。
4.4 一次函数的应用
第1课时 确定一次函数的表达式
1.会确定正比例函数的表达式;(重点) 2.会确定一次函数的表达式.(重点) 一、情境导入
某农场租用播种机播种小麦,在甲播种机播种2天后,又调来乙播种机参与播种,直至完成800亩的播种任务,播种亩数与天数之间的函数关系如图.你能通过图象提供的信息求出y 与x 之间的关系式吗?你知道乙播种机参与播种的天数是多少呢?学习了本节的内容,你就知道了.
二、合作探究
探究点一:确定正比例函数的表达式
求正比例函数y =(m -4)m 2
-15
的表达式.
解析:本题是利用正比例函数的定义来确定表达式的,即自变量的指数为1,系数不为0,这种类型简称为定义式.
解:由正比例函数的定义知m 2
-15=1且m -4≠0,∴m =-4,∴y =-8x.
方法总结:利用正比例函数的定义确定表达式:自变量的指数为1,系数不为0.
探究点二:确定一次函数的表达式 【类型一】 根据给定的点确定一次函
数的表达式
已知一次函数的图象经过(0,5)、
(2,-5)两点,求一次函数的表达式.
解析:先设一次函数的表达式为y =kx
+b ,因为它的图象经过(0,5)、(2,-5)
两点,所以当
x =0时,y =5;当x =2时,y =-5.由此可以得到两个关于k 、b 的方程,通过解方程即可求出待定系数k 和b 的值,再代回原设即可. 解:设一次函数的表达式为y =kx +b ,
根据题意得,
∴⎩⎪⎨⎪⎧5=b ,-5=2k +b.解得⎩
⎪⎨⎪
⎧k =-5,b =5.∴一次
函数的表达式为y =-5x +5. 方法总结:“两点式”是求一次函数表达式的基本题型.二次函数y =kx +b 中有两个待定系数k 、b ,因而需要知道两个点的坐标才能确定函数的关系式.
【类型二】 根据图象确定一次函数的
表达式
正比例函数与一次函数的图象如
图所示,它们的交点为A(4,3),B 为一次函数的图象与y 轴的交点,且OA =2OB.求正比例函数与一次函数的表达式.
解析:根据A(4,3)可以求出正比例函数表达式,利用勾股定理可以求出OA 的长,从而可以求出点B 的坐标,根据A 、B 两点的坐标可以求出一次函数的表达式.
解:设正比例函数的表达式为y 1=k 1x ,一次函数的表达式为y 2=k 2x +b.∵点A(4,3)是它们的交点,∴代入上述表达式中,得3=4k 1,3=4k 2+b.∴k 1=3
4,即正比例函数
的表达式为y =34
x.∵OA =32+42
=5,且
OA =2OB ,∴OB =5
2.∵点B 在y 轴的负半轴
上,∴B 点的坐标为(0,-5
2).又∵点B 在
一次函数y 2=k 2x +b 的图象上,∴-5
2=b ,
代入3=4k 2+b 中,得k 2=11
8.∴一次函数的
表达式为y 2=118x -5
2
.
方法总结:根据图象确定一次函数的表
达式的方法:从图象上选取两个已知点的坐标,然后运用待定系数法将两点的横、纵坐标代入所设表达式中求出待定系数,从而求出函数的表达式.
【类型三】 根据实际问题确定一次函
数的表达式
某商店售货时,在进价的基础上
加一定利润,其数量x 与售价y 的关系如下表所示,请你根据表中所提供的信息,列出售价y(元)与数量x(千克)的函数关系式,
解析:从图表中可以看出售价由
8+0.4依次向下扩大到2倍、3倍、……
解:由表中信息,得y =(8+0.4)x =8.4x ,即售价y 与数量x 的函数关系式为y =8.4x.当x =2.5时,y =8.4×2.5=21.所以数量是2.5千克时的售价是21元.
方法总结:解此类题要根据所给的条件建立数学模型,得出变化关系,并求出函数的表达式,根据函数的表达式作答.
三、板书设计
确定一次函数表达式
⎩
⎪⎨⎪⎧正比例函数y =kx (k≠0)一次函数y =kx +b (k≠0)
经历对正比例函数及一次函数表达式的探求过程,掌握用待定系数法求一次函数的表达式,进一步使用数形结合的思想方法;经历从不同信息中获取一次函数表达式的过程,体会到解决问题的多样性,拓展学生的思维.。