【人教版】天津市西青区2016-2017年九年级数学上期末模拟题及答案
- 格式:pdf
- 大小:343.85 KB
- 文档页数:10
(完整)最新2016-2017学年人教版九年级上册数学期末测试卷及答案(完整)最新2016-2017学年人教版九年级上册数学期末测试卷及答案编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整)最新2016-2017学年人教版九年级上册数学期末测试卷及答案)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整)最新2016-2017学年人教版九年级上册数学期末测试卷及答案的全部内容。
第1 页共6 页2016—-—2017学年度九年级上册数学期末试卷(时间120分钟,满分120分)一、选择题(每小题3分,共30分)1.下列图形中,既是中心对称图形又是轴对称图形的是( )2.将函数y=2x2的图象向左平移1个单位,再向上平移3个单位,可得到的抛物线是( )A.y=2(x-1)2-3 B.y=2(x-1)2+3C.y=2(x+1)2-3 D.y=2(x+1)2+33.如图,将Rt△ABC(其中∠B=35°,∠C=90°)绕点A按顺时针方向旋转到△AB1C1的位置,使得点C、A、B1在同一条直线上,那么旋转角等于 ( )A.55° B。
70° C。
125° D。
145°4.一条排水管的截面如下左图所示,已知排水管的半径OB=10,水面宽AB=16,则截面圆心O到水面的距离OC是( )A。
4 5.一个半径为2cm的圆内接正六边形A.24cm2 B.63 cm2 C .6.如图,若AB是⊙O的直径,CD是A.35° B.45° C.55°7.函数mxxy+--=822的图象上有两点B。
2016-2017学年九年级(上)期末数学试卷一、选择题(本大题共12小题,每小题3分,满分36分,在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知点(a,8)在二次函数y=ax2的图象上,则a的值是()A.2 B.﹣2 C.±2 D.±2.如果二次函数y=ax2+bx+c(a>0)的顶点在x轴上方,那么()A.b2﹣4ac≥0 B.b2﹣4ac<0 C.b2﹣4ac>0 D.b2﹣4ac=03.国家实施惠农政策后,某镇农民人均收入经过两年由1万元提高到1.44万元.这两年该镇农民人均收入的平均增长率是()A.10% B.11% C.20% D.22%4.三角形两边的长分别是8和6,第三边的长是一元二次方程x2﹣16x+60=0的一个实数根,则该三角形的面积是()A.24 B.24或8C.48 D.85.将二次函数y=x2﹣2x+3化为y=(x﹣h)2+k的形式,结果为()A.y=(x+1)2+4 B.y=(x+1)2+2 C.y=(x﹣1)2+4 D.y=(x﹣1)2+26.抛物线y=x2+x﹣4的对称轴是()A.x=﹣2 B.x=2 C.x=﹣4 D.x=47.随机掷两枚硬币,落地后全部正面朝上的概率是()A.1 B.C.D.8.下列二次根式中,与是同类二次根式的是()A. B. C. D.9.如图,⊙O的直径AB垂直弦CD于P,且P是半径OB的中点,CD=6cm,则直径AB 的长是()A.2cm B.3cm C.4cm D.4cm10.如图,⊙O的弦AB=6,M是AB上任意一点,且OM最小值为4,则⊙O的半径为()A.5 B.4 C.3 D.211.如图,AB是⊙O的弦,OD⊥AB于D交⊙O于E,则下列说法错误的是()A.AD=BD B.∠ACB=∠AOE C.D.OD=DE12.关于二次函数y=x2+4x﹣7的最大(小)值,叙述正确的是()A.当x=2时,函数有最大值B.x=2时,函数有最小值C.当x=﹣1时,函数有最大值 D.当x=﹣2时,函数有最小值二、填空题(本大题共8小题,每小题3分,满分24分)13.方程x(x﹣1)=x的解为.14.抛物线y=x2+8x﹣4与直线x=4的交点坐标是.15.二次函数y=﹣x2+3的开口方向是.16.已知:△ABC中,∠C=90°,AC=5cm,AB=13cm,以B为圆心,以12cm长为半径作⊙B,则C点在⊙B.17.有五张分别印有圆、等腰三角形、矩形、菱形、正方形图案的卡片(卡片中除图案不同外,其余均相同),现将有图案的一面朝下任意摆放,从中任意抽取一张,抽到有中心对称图案的卡片的概率是.18.在同一时刻,一杆高为2m,影长为1.2m,某塔的影长为18m,则塔高为m.19.要用一条长为24cm的铁丝围成一个斜边长是10cm的直角三角形,则两直角边的长分别为.20.如图所示,某河堤的横断面是梯形ABCD,BC∥AD,迎水坡AB长26米,且斜坡AB的坡度为,则河堤的高BE为米.三、解答题(本大题共8小题,满分60分)21.计算:(﹣)﹣1+﹣2+|π﹣sin30°|0.22.已知抛物线y=x2﹣2x﹣8与x轴的两个交点分别为A、B(A在B的左边),且它的顶点为P,求△ABP的面积.23.如图,一根水平放置着的圆柱形输水管道的横截面如图所示,期中有水部分水面宽0.8米,最深处水深0.2米,则此输水管道的直径是多少米?24.如图,在⊙O中,D、E分别为半径OA、OB上的点,且AD=BE.点C为弧AB上一点,连接CD、CE、CO,∠AOC=∠BOC.求证:CD=CE.25.已知:如图,△ABC内接于⊙O,AE是⊙O的直径,CD是△ABC中AB边上的高,求证:AC•BC=AE•CD.26.某中学九年级学生在学习“直角三角形的边角关系”一章时,开展测量物体高度的实践活动,他们要测量学校一幢教学楼的高度.如图,他们先在点C测得教学楼AB的顶点A的仰角为30°,然后向教学楼前进60米到达点D,又测得点A的仰角为45度.请你根据这些数据,求出这幢教学楼的高度.(计算过程和结果均不取近似值)27.已知:如图,在Rt△ABC中,∠C=90°,BC=4,AC=8,点D在斜边AB上,分别作DE⊥AC,DF⊥BC,垂足分别为E、F,得四边形DECF,设DE=x,DF=y.(1)求出cosB的值;(2)用含y的代数式表示AE;(3)求y与x之间的函数关系式,并求出x的取值范围;(4)设四边形DECF的面积为S,求出S的最大值.28.如图,抛物线y=﹣x2+x+2与x轴交于A、B两点,与y轴交于C点.(1)求A、B、C三点的坐标;(2)证明:△ABC为直角三角形;(3)在抛物线上除C点外,是否还存在另外一个点P,使△ABP是直角三角形?若存在,请求出点P的坐标;若不存在,请说明理由.2016-2017学年九年级(上)期末数学试卷参考答案与试题解析一、选择题(本大题共12小题,每小题3分,满分36分,在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知点(a,8)在二次函数y=ax2的图象上,则a的值是()A.2 B.﹣2 C.±2 D.±【考点】二次函数图象上点的坐标特征.【分析】因为点(a,8)在二次函数y=ax2的图象上,所以(a,8)符合解析式,代入解析式得8=a3,即a=2.【解答】解:把点(a,8)代入解析式得8=a3,即a=2.故选A.2.如果二次函数y=ax2+bx+c(a>0)的顶点在x轴上方,那么()A.b2﹣4ac≥0 B.b2﹣4ac<0 C.b2﹣4ac>0 D.b2﹣4ac=0【考点】抛物线与x轴的交点.【分析】先看二次函数y=ax2+bx+c(a>0)的a的值a>0,故二次函数开口向上;再看二次函数y=ax2+bx+c(a>0)的顶点在x轴上方,故可得此二次函数与x轴没有交点,由此得解.【解答】解:∵a>0,∴二次函数开口向上;又因为二次函数y=ax2+bx+c(a>0)的顶点在x轴上方,所以此二次函数与x轴没有交点,所以b2﹣4ac<0.故选B.3.国家实施惠农政策后,某镇农民人均收入经过两年由1万元提高到1.44万元.这两年该镇农民人均收入的平均增长率是()A.10% B.11% C.20% D.22%【考点】一元二次方程的应用.【分析】增长率问题,一般用增长后的量=增长前的量×(1+增长率),如果设这两年该镇农民人均收入的平均增长率是x,那么由题意可得出1×(1+x)2=1.44,解方程即可求解.【解答】解:设这两年该镇农民人均收入的平均增长率是x,根据题意得:1×(1+x)2=1.44解得x=﹣2.2(不合题意舍去),x=0.2所以这两年该镇农民人均收入的平均增长率是20%.故选C.4.三角形两边的长分别是8和6,第三边的长是一元二次方程x2﹣16x+60=0的一个实数根,则该三角形的面积是()A.24 B.24或8C.48 D.8【考点】一元二次方程的应用;三角形三边关系;等腰三角形的性质;勾股定理的逆定理.【分析】本题应先解出x的值,然后讨论是何种三角形,接着对图形进行分析,最后运用三角形的面积公式S=×底×高求出面积.【解答】解:x2﹣16x+60=0⇒(x﹣6)(x﹣10)=0,∴x=6或x=10.当x=6时,该三角形为以6为腰,8为底的等腰三角形.∴高h==2,∴S△=×8×2=8;当x=10时,该三角形为以6和8为直角边,10为斜边的直角三角形.∴S△=×6×8=24.∴S=24或8.故选:B.5.将二次函数y=x2﹣2x+3化为y=(x﹣h)2+k的形式,结果为()A.y=(x+1)2+4 B.y=(x+1)2+2 C.y=(x﹣1)2+4 D.y=(x﹣1)2+2【考点】二次函数的三种形式.【分析】根据配方法进行整理即可得解.【解答】解:y=x2﹣2x+3,=(x2﹣2x+1)+2,=(x﹣1)2+2.故选:D.6.抛物线y=x2+x﹣4的对称轴是()A.x=﹣2 B.x=2 C.x=﹣4 D.x=4【考点】二次函数的性质.【分析】可以用配方法将抛物线的一般式写成顶点式,或者用对称轴公式x=.【解答】解:∵抛物线y=x2+x﹣4=(x﹣2)2﹣3,∴顶点横坐标为x=2,对称轴就是直线x=2.故选B.7.随机掷两枚硬币,落地后全部正面朝上的概率是()A.1 B.C.D.【考点】列表法与树状图法.【分析】列表得出所有等可能的情况数,找出全部正面朝上的情况数,即可求出所求的概率.【解答】解:列表如下:所有等可能的情况有4种,其中全部正面朝上的情况有1种,则掷两枚硬币,落地后全部正面朝上的概率为.故选D.8.下列二次根式中,与是同类二次根式的是()A. B. C. D.【考点】同类二次根式.【分析】先将各二次根式化简为最简二次根式,然后根据同类二次根式的定义判断即可.【解答】解:A、=3,故A错误;B、,故B错误;C、=4,故C正确;D、=4,故D错误.故选:C.9.如图,⊙O的直径AB垂直弦CD于P,且P是半径OB的中点,CD=6cm,则直径AB 的长是()A.2cm B.3cm C.4cm D.4cm【考点】垂径定理;相交弦定理.【分析】利用垂径定理和相交弦定理求解.【解答】解:利用垂径定理可知,DP=CP=3,∵P是半径OB的中点.∴AP=3BP,AB=4BP,利用相交弦的定理可知:BP•3BP=3×3,解得BP=,即AB=4.故选D.10.如图,⊙O的弦AB=6,M是AB上任意一点,且OM最小值为4,则⊙O的半径为()A.5 B.4 C.3 D.2【考点】垂径定理;等边三角形的性质.【分析】当OM⊥AB时值最小.根据垂径定理和勾股定理求解.【解答】解:根据直线外一点到直线的线段中,垂线段最短,知:当OM⊥AB时,为最小值4,连接OA,根据垂径定理,得:BM=AB=3,根据勾股定理,得:OA==5,即⊙O的半径为5.故选A.11.如图,AB是⊙O的弦,OD⊥AB于D交⊙O于E,则下列说法错误的是()A.AD=BD B.∠ACB=∠AOE C.D.OD=DE【考点】圆周角定理;垂径定理.【分析】由垂径定理和圆周角定理可证,AD=BD,AD=BD,,而点D不一定是OE 的中点,故D错误.【解答】解:∵OD⊥AB∴由垂径定理知,点D是AB的中点,有AD=BD,,∴△AOB是等腰三角形,OD是∠AOB的平分线,有∠AOE=∠AOB,由圆周角定理知,∠C=∠AOB,∴∠ACB=∠AOE,故A、B、C正确,D中点D不一定是OE的中点,故错误.故选D.12.关于二次函数y=x2+4x﹣7的最大(小)值,叙述正确的是()A.当x=2时,函数有最大值B.x=2时,函数有最小值C.当x=﹣1时,函数有最大值 D.当x=﹣2时,函数有最小值【考点】二次函数的最值.【分析】本题考查二次函数最小(大)值的求法.【解答】解:原式可化为y=x2+4x+4﹣11=(x+2)2﹣11,由于二次项系数1>0,故当x=﹣2时,函数有最小值﹣11.故选D.二、填空题(本大题共8小题,每小题3分,满分24分)13.方程x(x﹣1)=x的解为x1=0,x2=2.【考点】解一元二次方程-因式分解法.【分析】移项后分解因式,即可得出两个一元一次方程,求出方程的解即可.【解答】解:x(x﹣1)=x,x(x﹣1)﹣x=0,x(x﹣1﹣1)=0,x=0,x﹣1﹣1=0,x1=0,x2=2.故答案为:x1=0,x2=2.14.抛物线y=x2+8x﹣4与直线x=4的交点坐标是(4,44).【考点】二次函数图象上点的坐标特征.【分析】将x=4代入y=x2+8x﹣4中求y,可确定交点坐标.【解答】解:将x=4代入y=x2+8x﹣4中,得y=42+8×4﹣4=44,故交点坐标为(4,44).15.二次函数y=﹣x2+3的开口方向是向下.【考点】二次函数的性质.【分析】根据二次项系数的符号,直接判断开口方向.【解答】解:根据二次函数的性质可知a=﹣<0,所以开口向下.16.已知:△ABC中,∠C=90°,AC=5cm,AB=13cm,以B为圆心,以12cm长为半径作⊙B,则C点在⊙B上.【考点】点与圆的位置关系.【分析】首先根据勾股定理可求出BC的长,在根据点与圆的位置关系判定即可.【解答】解:∵∠C=90°,AC=5cm,AB=13cm,∴BC==12cm,∵以B为圆心,以12cm长为半径作⊙B,∴则C点在⊙B上,故答案为:上.17.有五张分别印有圆、等腰三角形、矩形、菱形、正方形图案的卡片(卡片中除图案不同外,其余均相同),现将有图案的一面朝下任意摆放,从中任意抽取一张,抽到有中心对称图案的卡片的概率是.【考点】概率公式;中心对称图形.【分析】让有中心对称图案的卡片的情况数除以总情况数即为所求的概率【解答】解:根据概率的求简单事件的概率的计算及中心对称图形概念的理解;理论上抽到中心对称图案卡片的概率是中心对称图案的卡片的个数除以所有所有卡片的个数,而中心对称图案有圆、矩形、菱形、正方形,所以概率为.18.在同一时刻,一杆高为2m,影长为1.2m,某塔的影长为18m,则塔高为30m.【考点】平行线分线段成比例.【分析】因为在同一时刻同一地点任何物体的高与其影子长的比值相同,所以利用题目的参照物就可以直接求出塔高.【解答】解:设塔高为x,根据同一时刻同一地点任何物体的高与其影子长的比值相同.得∴x=30.∴塔高为30m.19.要用一条长为24cm的铁丝围成一个斜边长是10cm的直角三角形,则两直角边的长分别为6cm,8cm.【考点】一元二次方程的应用;勾股定理.【分析】首先设一直角边长为xcm,则另一直角边长为(14﹣x)cm,由题意得等量关系:两直角边的平方和等于10的平方,进而列出方程,再解方程即可.【解答】解:设一直角边长为xcm,根据勾股定理得:(14﹣x)2+x2=102,解得x1=6,x2=8,故答案为:6cm,8cm.20.如图所示,某河堤的横断面是梯形ABCD,BC∥AD,迎水坡AB长26米,且斜坡AB的坡度为,则河堤的高BE为24米.【考点】解直角三角形的应用-坡度坡角问题.【分析】由已知斜坡AB的坡度,可得到BE、AE的比例关系,进而由勾股定理求得BE、AE的长,由此得解.【解答】解:由已知斜坡AB的坡度,得:BE:AE=12:5,设AE=5x,则BE=12x,在直角三角形AEB中,根据勾股定理得:262=5x2+(12x)2,即169x2=676,解得:x=2或x=﹣2(舍去),5x=10,12x=24即河堤高BE等于24米.故答案为:24.三、解答题(本大题共8小题,满分60分)21.计算:(﹣)﹣1+﹣2+|π﹣sin30°|0.【考点】实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.【分析】原式第一项利用负整数指数幂法则计算,第二项利用绝对值的代数意义化简,最后一项利用零指数幂法则计算即可得到结果.【解答】解:原式=﹣2+3﹣5﹣2+1=﹣6+.22.已知抛物线y=x2﹣2x﹣8与x轴的两个交点分别为A、B(A在B的左边),且它的顶点为P,求△ABP的面积.【考点】抛物线与x轴的交点.【分析】分别求出抛物线顶点P坐标,与x轴交点A、B坐标,即可解决问题.【解答】解:∵抛物线y=x2﹣2x﹣8,令y=0得x2﹣2x﹣8=0,∴x=4或﹣2,∴点A(﹣2,0),点B(4,0),∵y=(x﹣1)2﹣9,∴顶点P(1,﹣9),∴S△ABP=×6×9=27.23.如图,一根水平放置着的圆柱形输水管道的横截面如图所示,期中有水部分水面宽0.8米,最深处水深0.2米,则此输水管道的直径是多少米?【考点】垂径定理的应用;勾股定理.【分析】设⊙O的半径是R,过点O作OD⊥AB于点D,交⊙O于点C,连接OA,由垂径定理得出AD的长,在Rt△AOD中利用勾股定理即可求出OA的长.【解答】解:设⊙O的半径是R,过点O作OD⊥AB于点D,交⊙O于点C,连接OA,∵AB=0.8m,OD⊥AB,∴AD==0.4m,∵CD=0.2m,∴OD=R﹣CD=R﹣0.2,在Rt△OAD中,OD2+AD2=OA2,即(R﹣0.2)2+0.42=R2,解得R=0.5m.∴2R=2×0.5=1米.答:此输水管道的直径是1米.24.如图,在⊙O中,D、E分别为半径OA、OB上的点,且AD=BE.点C为弧AB上一点,连接CD、CE、CO,∠AOC=∠BOC.求证:CD=CE.【考点】圆心角、弧、弦的关系;全等三角形的判定.【分析】证CD和CE所在的三角形全等即可.【解答】证明:∵OA=OB AD=BE,∴OA﹣AD=OB﹣BE,即OD=OE.在△ODC和△OEC中,,∴△ODC≌△OEC(SAS).∴CD=CE.25.已知:如图,△ABC内接于⊙O,AE是⊙O的直径,CD是△ABC中AB边上的高,求证:AC•BC=AE•CD.【考点】三角形的外接圆与外心;相似三角形的判定与性质.【分析】通过分析易证△BDC∽△ECA,利用相似比得出.即可得出AC•BC=AE•CD.【解答】证明:连接EC.∵AE是⊙O的直径,CD是△ABC中AB边上的高,∴∠ACE=∠CDB=90°.又∵∠B=∠E,∴△BDC∽△ECA.∴.∴AC•BC=AE•CD.26.某中学九年级学生在学习“直角三角形的边角关系”一章时,开展测量物体高度的实践活动,他们要测量学校一幢教学楼的高度.如图,他们先在点C测得教学楼AB的顶点A的仰角为30°,然后向教学楼前进60米到达点D,又测得点A的仰角为45度.请你根据这些数据,求出这幢教学楼的高度.(计算过程和结果均不取近似值)【考点】解直角三角形的应用-仰角俯角问题.【分析】首先根据题意分析图形;本题涉及到两个直角三角形,应利用其公共边AB及CD=BC﹣BD=60构造方程关系式,进而可解,即可求出答案.【解答】解:由已知,可得:∠ACB=30°,∠ADB=45°,∴在Rt△ABD中,BD=AB.又在Rt△ABC中,∵tan30°=,∴,即BC=AB.∵BC=CD+BD,∴AB=CD+AB,即(﹣1)AB=60,∴AB=米.答:教学楼的高度为30(+1)米.27.已知:如图,在Rt△ABC中,∠C=90°,BC=4,AC=8,点D在斜边AB上,分别作DE⊥AC,DF⊥BC,垂足分别为E、F,得四边形DECF,设DE=x,DF=y.(1)求出cosB的值;(2)用含y的代数式表示AE;(3)求y与x之间的函数关系式,并求出x的取值范围;(4)设四边形DECF的面积为S,求出S的最大值.【考点】相似三角形的判定与性质;二次函数的最值.【分析】(1)根据勾股定理求出AB后,然后根据角的三角函数即可求出结论;(2)根据题意求证四边形DECF为矩形,即可推出DF=EC=y,然后结合图形即可求出AE=8﹣y;(3)根据余角的性质即可推出∠A=∠BDF,继而求证△ADE∽△DBF,结合对应边成比例和BF=4﹣x,AE=8﹣y,即可求出y=﹣2x+8(0<x<4);(4)根据(3)所推出的结论,结合矩形的面积公式通过等量代换,即可求出二次函数S=DE•DF=﹣2x2+8x,然后根据二次函数的最值公式即可求出S的最大值.【解答】解:(1)∵∠C=90°,BC=4,AC=8,∴cosB=BC:AB=4:4=,(2)∵∠C=90°,DE⊥AC,DF⊥BC,∴四边形DECF为矩形,∵DF=y,∴DF=EC=y,∵AC=8,AE=AC﹣EC,∴AE=8﹣y,(3)∵∠C=90°,DE⊥AC,DF⊥BC,∴∠A+∠B=90°,∠BDF+∠ADE=90°,∴∠A=∠BDF,∴△ADE∽△DBF,∴,∵矩形DECF,DF=y,DE=x,∴CF=x,CE=y,∴BF=BC﹣CF=4﹣x,∵AE=8﹣y,∴,∴y=﹣2x+8(0<x<4),(4)∵y=﹣2x+8,DE=x,DF=y,∴S=DE•DF=xy=x(﹣2x+8)=﹣2x2+8x=﹣2(x2﹣4x+4)+8,即S=﹣2(x﹣2)2+8,∴当x=2时,S的值最大,S的最大值为8.28.如图,抛物线y=﹣x2+x+2与x轴交于A、B两点,与y轴交于C点.(1)求A、B、C三点的坐标;(2)证明:△ABC为直角三角形;(3)在抛物线上除C点外,是否还存在另外一个点P,使△ABP是直角三角形?若存在,请求出点P的坐标;若不存在,请说明理由.【考点】抛物线与x轴的交点;勾股定理的逆定理.【分析】(1)抛物线y=﹣x2+x+2与x轴交于A、B两点,与y轴交于C点,分别将x=0,y=0代入求得A、B、C的坐标;(2)由(1)得到边AB,AC,BC的长,再根据勾股定理的逆定理来判定△ABC为直角三角形;(3)根据抛物线的对称性可得另一点的坐标.【解答】解:(1)∵抛物线y=﹣x2+x+2与x轴交于A、B两点,∴﹣x2+x+2=0.即x2﹣x﹣4=0.解之得:x1=﹣,x2=2.∴点A、B的坐标为A(﹣,0)、B(2,0).将x=0代入y=﹣x2+x+2,得C点的坐标为(0,2);(2)∵AC=,BC=2,AB=3,∴AB2=AC2+BC2,则∠ACB=90°,∴△ABC是直角三角形;(3)当PC∥x轴,即P点与C点是抛物线的对称点,而C点坐标为(0,2)设y=2,把y=2代入y=﹣x2+x+2得:﹣x2+x+2=2,∴x1=0,x2=.∴P点坐标为(,2).第21页(共21页)。
APO2016-2017学年九年级上数学期末模拟检测试卷含答案2016---2017学年度上学期期末模拟检测九年数学试题一、选择题(每题3分,共30分)1.若方程(m-1)x m2+1-2x-m=0是关于x 的一元二次方程,则m 的值为( ) A .-1 B .1 C .5 D .-1或12. 下图中不是中心对称图形的是( )A B C D 3.如图,线段AB 是⊙O 的直径,弦CD 丄AB ,∠CAB =20°, 则∠AOD 等于 ( )A .160°B .150°C .140°D .120°4.如图,圆锥体的高h 23cm =,底面圆半径r 2cm =,则圆锥体的全面 积为( )cm 2A. π12B.π8C. π34D. π)434(+5.一个盒子内装有大小、形状相同的四个球,其中红球1个、绿球1个、白球2个,小明摸出一个球不放回,再摸出一个球,则两次都摸到白球的概率是 A .12 B .14 C .16 D .1126. 关于x 的一元二次方程有两个不相等的实数根,则k 的取值范围是7.如图,AB 与⊙O 相切于点B ,AO 的延长线交⊙O 于点C ,连接BC ,若∠A=36°,则∠C 等于( ) A . 36° B . 54°C . 60°D . 27°8.将二次函数1822--=x x y 化成k h x a y +-=2)(的形式,结果为( ) A .1)2(22--=x y B . 32)4(22+-=x yC .9)2(22--=x yD .33)4(22--=x y 9.在Rt△ABC 中,∠C=Rt∠ ,AC=3cm, AB=5cm,若以C 为圆心,4cm 为半径画一个圆,则下列结论中,正确的是( )A.点A 在圆C 内,点B 在圆C 外B.点A 在圆C 外,点B 在圆C 内C.点A 在圆C 上,点B 在圆C 外D.点A 在圆C 内,点B 在圆C 上10.如图,已知双曲线(k<0)经过直角三角形OAB 斜边OA 的中点D ,且与直角边AB 相交于点C .若点A 的坐标为(﹣6,4),则△AOC 的面积为( ) A.12 B.9 C.6 D.4 二、填空题(每小题3分,24分)11.若一个三角形的三边长满足方程x 2-6x+8=0,则此三角形的周长为 .12. 如图,已知PA ,PB 分别切⊙O 于点A 、B ,60P ∠=o ,8PA =,那么弦AB 的长是 。
2016-2017学年度(上)期末数学九年级质量检测试题(卷面满分:120分 考试时间 120分钟)一、选择题:(每小题3分,共30分) 1.点P (-2,b )是反比例函数y=x2的图象上的一点,则b =( ) A.-2 B. -1 C. 1 D. 22.用因式分解法解一元二次方程x (x -3) =x-3时,原方程可化为( )A .(x -1)(x-3)=0 B. (x+1)(x -3) =0 C. x (x -3)=0 D. (x-2)(x-3)=0 3.准备两组相同的牌,每组两张且大小相同,两张牌的牌面数字分别是0,1,从每组牌中各摸出一张牌,两张牌的牌面数字和为1的概率为( )A.43 B. 31 C. 21 D. 414.已知关于x 的一元二次方程x 2+(m-2)x+m+1=0有两个相等的实数根,则m 的值是( )A. 0B. 8C. 42D .0或85. 某几何体的主视图和左视图完全一样如图所示,则该几何体的俯视图不可能是( )6.如图,△ABC 中,D 、E 、F 分别是AB ,AC ,BC 上的点,且DE ∥BC ,EF ∥AB ,AD:DB=1:2,BC=30cm ,则FC 的长为( )A. 10 cm B . 20cm C. 5cm D. 6cm 7.如图,在Rt △ABC 中,∠C =90°,AM 是BC 边上的中线,sin ∠CAM =35,则tanB 的值为( )A.32B.23C.56D.438. 关于二次函数y =ax 2+bx +c 的图象有下列命题:①当c =0时,函数的图象经过原点;②当c>0且函数图象开口向下时,方程ax 2+bx +c =0必有两个不相等的实数根;③函数图象的最高点的纵坐标是4ac -b24a;④当b =0时,函数的图象关于y 轴对称.其中正确命题的个数是( )A .1个B .2个C .3个D .4个9.如图,在△ABC 中,∠ACB=90°,BC 的垂直平分线EF 交BC 于点D ,交AB 于点E ,且BE=BF,添加一个条件,仍不能证明四边形BECF 为正方形的是( ) A. BC=AC B. CF ⊥BF C.BD=DF D.AC=BF 10.如图,菱形ABCD 和菱形ECGF 的边长分别是2和3,∠A=120°,则图中阴影部分的面积是( )A.3B.2C.3D.2二.填空题:(每小题3分,共18分)11.方程(x-2)2=9的解是 . 12.反比例函数y=xk经过点(-2,1),则一次函数y=x+k 的图象经过点(-1, ). 13.写一个你喜欢的实数m 的值 ,使关于x 的一元二次方程x 2+x+m=0有两个不相等的实数根. 14.等腰三角形的三边分别为1,1,3,那么它的一个底角为 .15.在平面直角坐标系中,有两点A(6,2),B(6,0),以原点为位似中心,相似比为3:1,把线段AB 缩小为线段A ´B ´,则点A ´的坐标为 .16.按一定规律排列的一列数:21、22、23、25、28、213………,若x 、y 、z 表示这数列中的连续三个数,猜想x 、y 、z 满足的关系式是 . 三.解答题:(本大题共9小题,共72分,解答题写出必要的文字说明、证明过程或演算步骤) 17.(本小题满分5分) 已知,如图,AB 和DE 是直立在地面上的两根立柱,AB =5 m ,某一时刻AB 在阳光下的投影BC =3 m.(1)请你在图中画出此时DE 在阳光下的投影;(2)在测量AB 的投影时,同时测量出DE 在阳光下的投影长为6 m ,请你计算DE 的长.18.(本小题满分6分)已知关于x 的一元二次方程x 2+2x+m=0(1)当m=3时,判定方程的根的情况. (2)当m =-3时,求方程的根.19.(本小题满分6分)如图所示是一个直四棱柱及其主视图和俯视图(等腰梯形). (1)根据图中所给数据,可得俯视图(等腰梯形)的高为________;(2)在虚线框内画出其左视图,并标出各边的长.(尺规作图,不写作法,保留作图痕迹)20.(本小题满分6分)如图,在平面直第5题图 A . B . C . D . 第6题图 AB C D E F 第7题图 第9题图 D B C A F E 第10题图 B G E F A C D 第17题图第22题图 角坐标系中,一次函数y =kx +b(k ≠0)的图象与x 、y 轴交于点A (2,0),B (0,-2)与反比例函数y =xm在第一象限内的图象交于点C ,点C 的纵坐标为1. (1)求一次函数的解析式(2)求点C 的坐标及反比例函数的解析式。
最新人教版九年级数学上册期末考试试题(含答案)一、选择题(本题共16分,每小题2分)第1-8题均有四个选项,符合题意的选项只有..一个. 1.如果2m=3n(n≠0),那么下列比例式中正确的是 (A)(B) (C) (D)2.将抛物线2y x 向下平移2个单位长度,得到的抛物线为(A) y=x 2+2 (B)y=x 2-2 (C)y=(x-2)2 (D) y=(x+2)2 3.在Rt △ABC 中,∠C= 90°,,若AC=1,AB=2,则cosA 的值为 (A)21(B)22 (C)23 (D)25 4.如图,AB 是圆O 的弦,OD ⊥AB 于点C ,交圆O 于点D ,若AB=6,OC=1,则圆O 的半径为(A)5(B)22(C)10(D)375.如图,将△ABO 的三边扩大一倍得到△CED (顶点均在格点上),它们是以点P 为位似中心的位似图形,则点P 的坐标是(A) (0,3) (B) (0,0) (C) (0,2) (D) (0,-3)6.在平行四边形ABCD 中,E 是AD 上一点,AC, BE 交于点O ,若AE:ED= 1:2,OE=2,则OB 的长为(A) 4 (B) 5 (C) 6 (D) 77.如图,在平面直角坐标系xOy中,二次函数y=ax2 +bx+1的图象经过点A, B,对系数a和b判断正确的是(A) a>0,b>0 (B) a<0,b<0(C) a>0,b<0 (D) a<0,b>08.如图,等边三角形和正方形的边长均为a,点B,C,D, E在同一直线上,点C与点D重合.△ABC 以每秒1个单位长度的速度沿BE向右匀速运动.当点C与点E重合时停止运动.设△ABC的运动时间为t秒,△ABC与正方形DEFG重叠部分的面积为S,则下列图象中,能表示S 与t的函数关系的图象大致是二、填空题(本题共16分,每小题2分)9.如图,△ABC∽△A'B'C', AH, A'H'分别为△ABC和△A'B'C'对应边上的高,若AB:A'B'=2:3,则AH:A'H'=__________.10.请写出一个反比例函数的表达式,满足条件“当x>0时,y随x的增大而增大”,则此函数的表达式可以为__________.11.如图,圆O是正方形ABCD的外接圆,若E是上一点,则∠DEC=______________°.12.如图,DE是△ABC的中位线,若△ADE的面积为1,则四边形DBCE的面积为__________.13.走进中国科技馆,同学们会在数学区发现截面为“莱洛三角形”的轮子,如图,分别以等边△ABC的三个顶点为圆心,边长为半径画弧,则组成的封闭图形就是“莱洛三角形”若AB=3,则此“莱洛三角形”的周长为______________.14.如图,在平面直角坐标系xOy中,函数y==(x> 0)的图象经过点A, B, AC⊥x轴于点C, BD ⊥y轴于点D,连接OA, OB,则△OAC与△OBD的面积之和为____________.15.如图,某中学综合楼入口处有两级台阶,台阶高AD= BE= 15cm,,深DE=30cm,在台阶处加装一段斜坡作为无障碍通道,设台阶起点为A,斜坡的起点为C,若斜坡CB的坡度i=1:9,则AC的长为____________.cm.2下面有四个论断:①抛物线y= ax2+ bx+c(a≠0)的顶点为(2,-3);②b2- 4ac=0;③关于x的方程ax2 +bx+c=-2的解为x1=1,x2=3;④m=-3.其中,正确的有____________________.三、解答题(本题共68分,第17-22题,每小题5分,第23-26题,每小题6分,第27,28 题,每小题7分)解答应写出文字说明,演算步骤或证明过程.17.下面是小飞设计的“过圆外一点作圆的切线”的尺规作图过程.已知: P为外一点,求作:经过点P的的切线.作法:如图,①连接OP,作线段OP 的垂直平分线交OP 于点A; ②以点A 为圆心,OA 的长为半径作圆,交于B, C 两点;③作直线PB, PC .所以直线PB,PC 就是所求作的切线. 根据小飞设计的尺规作图过程,(1)使用直尺和圆规补全图形(保留作图痕迹);(2)完成下面的证明(说明:括号里填写推理的依据).证明:连接OB, OC, ∵PO 为圆A 的直径,∴∠PBO=∠PCO =______(_______________ ). ∴PB ⊥OB,PC ⊥OC . ∴PB, PC 为的切线(_________________).18.计算: 3tan30° + sin45°-2sin 60° . 19.如图,在Rt △ABC 中,∠ABC=90°,cosA=32,AB=4,过点C 作CD //AB ,且CD=2,连接BD ,求BD 的长.20.如图,△ABC的高AD, BE 交于点F.写出图中所有与△AFE相似的三角形,并选择一个进行证明.21.如图,在平面直角坐标系xOy中,二次函数y=x2 + bx+c的图象与x轴,y 轴的交点分别为(1,0)和(0,-3).(1)求此二次函数的表达式;(2)结合函数图象,直接写出当y>-3时,x的取值范围.22.某数学小组在郊外水平空地上对无人机进行测高实验,以便与遥控器显示的高度数据进行对比.如图,在E处测得无人机C的仰角∠CAB=45°,在D处测得无人机C的仰角∠CBA= 30°,已知测角仪的高AE= BD=1m, E, D两处相距50m,请根据数据计算无人机C的高(结果精确到0.1m,参考数据: ≈1.41,≈1.73).23.在平面直角坐标系xOy 中,一次函数y=21x+b 的图象经过点A(43),与反比例函数y==(k≠0)图象的一个交点为B(2,n) .(1)求一次函数与反比例函数的表达式;(2)若点P 在x 轴上,且PB= AB ,则点P 的坐标是________________.24.小明用篱笆围出一块周长为12m 的矩形空地做生物试验,已知矩形的一边长为x (单位: m),面积为y (单位: m 2).(1)求y 与x 的函数表达式,并写出自变量x 的取值范围: (2)当x 为何值时,矩形的面积最大?并求出此最大面积. 25.如图,AB 是的直径,C 为AB 延长线上一点,过点C 作的切线CD ,D 为切点,点F 是的中点,连接OF 并延长交CD 于点E,连接BD, BF .(1)求证: BD // OE; (2)若OE =3,tanC=43,求的半径.26. 在平面直角坐标系xOy 中,直线)0(≠+=k b kx y 与抛物线a ax ax y 342+-=的对称交于点A (m ,-1),点A 关于x 轴的对称点恰为抛物线的顶点。
2016-2017学年九年级(上)期末数学试卷一、选择题(本大题共8个小题,每小题3分,满分24分.每小题只有一个正确选项,答案写在答题卷上)1.﹣的倒数是()A.B.C.﹣D.﹣2.如图,由四个正方体组成的图形,观察这个图形,不能得到的平面图形是()A.B.C.D.3.函数中,自变量x的取值范围是()A.x>1 B.x≥1 C.x>﹣2 D.x≥﹣24.现有四个外观完全一样的粽子,其中有且只有一个有蛋黄.若从中一次随机取出两个,则这两个粽子都没有蛋黄的概率是()A.B.C.D.5.如图,为估算某河的宽度,在河岸边选定一个目标点A,在对岸取点B、C,D,使得AB⊥BC,CD⊥BC,点E在BC上,并且点A、E、D在同一条直线上,若测得BE=20m,EC=10m,CD=20m,则河的宽度AB等于()A.60m B.40m C.30m D.20m6.如图,将△ABC沿BC方向平移得到△DCE,连接AD,下列条件能够判定四边形ABCD为菱形的是()A.AB=BC B.AC=BC C.∠B=60°D.∠ACB=60°7.二次函数y=ax2+bx+c的图象如图所示,对于下列结论:①a<0;②b<0;③c>0;④b+2a=0;⑤a+b+c<0.其中正确的个数是()A.1个B.2个C.3个D.4个8.如图,Rt△ABC的顶点B在反比例函数的图象上,AC边在x轴上,已知∠ACB=90°,∠A=30°,BC=4,则图中阴影部分的面积是()A.12 B. C.D.二、填空题(本大题共6个小题,每小题3分,满分18分.答案写在答题卷上)9.一元二次方程2x2﹣3x+1=0的解为.10.点(2,y1),(3,y2)在函数y=﹣的图象上,则y1y2(填“>”或“<”或“=”).11.若一个三角形的各边长扩大为原来的5倍,则此三角形的周长扩大为原来的倍.12.如图,在Rt△ABC中,CD是斜边AB上的中线,已知CD=2,AC=3,则tanB的值是.13.如图,O是矩形ABCD的对角线AC的中点,M是AD的中点.若AB=5,AD=12,则四边形ABOM的周长为.14.观察下列各数,它们是按一定规律排列的,则第n个数是.,,,,,…三、解答题(本大题共9个小题,满分58分.答案写在答题卷上)15.计算:(1﹣)0+|﹣|﹣2cos45°+()﹣1.16.如图,在△ABC中,点D、E分别是AB和AC上的点,DE∥BC,AD=3BD,S△ABC=48,求S四边形BCED.17.如图,已知△ABC,以点O为位似中心画一个△DEF,使它与△ABC位似,且相似比为2.18.如图,小明在教学楼上的窗口A看地面上的B、C两个花坛,测得俯角∠EAB=30°,俯角∠EAC=45°.已知教学楼基点D与点C、B在同一条直线上,且B、C两花坛之间的距离为6m.求窗口A到地面的高度AD.(结果保留根号)19.在不透明的袋子中有四张标着数字1,2,3,4的卡片,小明、小华两人按照各自的规则玩抽卡片游戏.小明画出树状图如图所示:(1)根据小明画出的树形图分析,他的游戏规则是,随机抽出一张卡片后(填“放回”或“不放回”),再随机抽出一张卡片;(2)根据小华的游戏规则,表格中①表示的有序数对为;(3)规定两次抽到的数字之和为奇数的获胜,你认为谁获胜的可能性大?为什么?20.如图,长100m、宽90m的长方形绿地上修建宽度相同的道路,6块绿地的面积共8448m2,求道路的宽.21.如图,在等腰Rt△ABC中,∠C=90°,正方形DEFG的顶点D在边AC上,点E、F在边AB 上,点G在边BC上.(1)求证:△ADE≌△BGF;(2)若正方形DEFG的面积为16cm2,求AC的长.22.如图所示,等边三角形ABC放置在平面直角坐标系中,已知A(0,0)、B(6,0),反比例函数的图象经过点C.(1)求点C的坐标及反比例函数的解析式.(2)将等边△ABC向上平移n个单位,使点B恰好落在双曲线上,求n的值.23.如图,已知直线y=kx﹣6与抛物线y=ax2+bx+c相交于A,B两点,且点A(1,﹣4)为抛物线的顶点,点B在x轴上.直线AB交y轴于点D,抛物线交y轴于点C.(1)求直线AB的解析式;(2)求抛物线的解析式;(3)在y轴上是否存在点Q,使△ABQ为直角三角形?若存在,请求出点Q的坐标;若不存在,请说明理由.参考答案与试题解析一、选择题(本大题共8个小题,每小题3分,满分24分.每小题只有一个正确选项,答案写在答题卷上)1.﹣的倒数是()A.B.C.﹣D.﹣【考点】倒数.【分析】根据倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.【解答】解:∵(﹣)×(﹣)=1,∴﹣的倒数是﹣.故选D.【点评】本题主要考查倒数的定义,要求熟练掌握.需要注意的是:倒数的性质:负数的倒数还是负数,正数的倒数是正数,0没有倒数.倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.2.如图,由四个正方体组成的图形,观察这个图形,不能得到的平面图形是()A.B.C.D.【考点】简单组合体的三视图.【分析】分别找出这个图形的主视图、俯视图、左视图,然后结合选项选出正确答案即可.【解答】解:该图形的主视图为:,俯视图为:,左视图为:,A、该图形为原图形的主视图,本选项正确;B、该图形为原图形的俯视图,本选项正确;C、该图形为原图形的左视图,本选项正确;D、观察原图形,不能得到此平面图形,故本选项错误;故选D.【点评】本题考查了简单组合体的三视图,要求同学们掌握主视图是从物体的正面看得到的视图,俯视图是从物体的上面看得到的视图,左视图是从物体的左面看得到的视图.3.函数中,自变量x的取值范围是()A.x>1 B.x≥1 C.x>﹣2 D.x≥﹣2【考点】函数自变量的取值范围.【分析】根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,可以求出x的范围.【解答】解:根据题意得:x﹣1>0,解得:x>1.故选A.【点评】考查了函数自变量的取值范围,函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.4.现有四个外观完全一样的粽子,其中有且只有一个有蛋黄.若从中一次随机取出两个,则这两个粽子都没有蛋黄的概率是()A.B.C.D.【考点】列表法与树状图法.【分析】根据概率的求法,先画出树状图,求出所有出现的情况,即可求出答案.【解答】解:用A表示没蛋黄,B表示有蛋黄的,画树状图如下:∵一共有12种情况,两个粽子都没有蛋黄的有6种情况,∴则这两个粽子都没有蛋黄的概率是=故选B.【点评】此题主要考查了画树状图求概率,如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.5.如图,为估算某河的宽度,在河岸边选定一个目标点A,在对岸取点B、C,D,使得AB⊥BC,CD⊥BC,点E在BC上,并且点A、E、D在同一条直线上,若测得BE=20m,EC=10m,CD=20m,则河的宽度AB等于()A.60m B.40m C.30m D.20m【考点】相似三角形的应用.【分析】由两角对应相等可得△BAE∽△CDE,利用对应边成比例可得两岸间的大致距离AB.【解答】解:∵AB⊥BC,CD⊥BC,∴△BAE∽△CDE,∴=,∵BE=20m,CE=10m,CD=20m,∴,解得:AB=40,故选B.【点评】考查相似三角形的应用;用到的知识点为:两角对应相等的两三角形相似;相似三角形的对应边成比例.6.如图,将△ABC沿BC方向平移得到△DCE,连接AD,下列条件能够判定四边形ABCD为菱形的是()A.AB=BC B.AC=BC C.∠B=60°D.∠ACB=60°【考点】菱形的判定;平移的性质.【分析】首先根据平移的性质得出AB平行且等于CD,得出四边形ABCD为平行四边形,根据邻边相等的平行四边形是菱形可得添加条件AB=BC即可.【解答】解:∵将△ABC沿BC方向平移得到△DCE,∴AB平行且等于CD,∴四边形ABCD为平行四边形,当AB=BC时,平行四边形ACED是菱形.故选:A.【点评】此题主要考查了平移的性质和平行四边形的判定和菱形的判定,得出AB平行且等于CD是解题关键.7.二次函数y=ax2+bx+c的图象如图所示,对于下列结论:①a<0;②b<0;③c>0;④b+2a=0;⑤a+b+c<0.其中正确的个数是()A.1个B.2个C.3个D.4个【考点】二次函数图象与系数的关系.【分析】由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.【解答】解:如图,①抛物线开口方向向下,则a<0.故①正确;②∵对称轴x=﹣=1,∴b=﹣2a>0,即b>0.故②错误;③∵抛物线与y轴交于正半轴,∴c>0.故③正确;④∵对称轴x=﹣=1,∴b+2a=0.故④正确;⑤根据图示知,当x=1时,y>0,即a+b+c>0.故⑤错误.综上所述,正确的说法是①③④,共有3个.故选C.【点评】本题考查了二次函数图象与系数的关系.二次函数y=ax2+bx+c系数符号由抛物线开口方向、对称轴、抛物线与y轴的交点抛物线与x轴交点的个数确定.8.如图,Rt△ABC的顶点B在反比例函数的图象上,AC边在x轴上,已知∠ACB=90°,∠A=30°,BC=4,则图中阴影部分的面积是()A.12 B. C.D.【考点】反比例函数系数k的几何意义;含30度角的直角三角形;勾股定理.【分析】先由∠ACB=90°,BC=4,得出B点纵坐标为4,根据点B在反比例函数的图象上,求出B点坐标为(3,4),则OC=3,再解Rt△ABC,得出AC=4,则OA=4﹣3.设AB与y 轴交于点D,由OD∥BC,根据平行线分线段成比例定理得出=,求得OD=4﹣,最后根据梯形的面积公式即可求出阴影部分的面积.【解答】解:∵∠ACB=90°,BC=4,∴B点纵坐标为4,∵点B在反比例函数的图象上,∴当y=4时,x=3,即B点坐标为(3,4),∴OC=3.在Rt△ABC中,∠ACB=90°,∠A=30°,BC=4,∴AB=2BC=8,AC=BC=4,OA=AC﹣OC=4﹣3.设AB与y轴交于点D.∵OD∥BC,∴=,即=,解得OD=4﹣,∴阴影部分的面积是:(OD+BC)•OC=(4﹣+4)×3=12﹣.故选:D.【点评】本题考查了反比例函数图象上点的坐标特征,含30度角的直角三角形的性质,平行线分线段成比例定理,梯形的面积公式,难度适中,求出B点坐标及OD的长度是解题的关键.二、填空题(本大题共6个小题,每小题3分,满分18分.答案写在答题卷上)9.一元二次方程2x2﹣3x+1=0的解为x1=,x2=1.【考点】解一元二次方程-因式分解法.【分析】分解因式后即可得出两个一元一次方程,求出方程的解即可.【解答】解:2x2﹣3x+1=0,(2x﹣1)(x﹣1)=0,2x﹣1=0,x﹣1=0,x1=,x2=1,故答案为:x1=,x2=1【点评】本题考查了解一元一次方程和解一元二次方程的应用,关键是能把一元二次方程转化成解一元一次方程.10.点(2,y1),(3,y2)在函数y=﹣的图象上,则y1<y2(填“>”或“<”或“=”).【考点】反比例函数图象上点的坐标特征.【分析】根据反比例函数图象所经过的象限与函数图象的增减性进行填空.【解答】解:∵函数y=﹣中的﹣2<0,∴函数y=﹣的图象经过第二、四象限,且在每一象限内,y随x的增大而增大,∴点(2,y1),(3,y2)同属于第四象限,∵2<3,∴y1<y2.故填:<.【点评】本题主要考查反比例函数图象上点的坐标特征.解答该题时,利用了反比例函数图象的增减性.当然了,解题时也可以把已知两点的坐标分别代入函数解析式,求得相应的y值后,再来比较它们的大小.11.若一个三角形的各边长扩大为原来的5倍,则此三角形的周长扩大为原来的5倍.【考点】相似图形.【分析】由题意一个三角形的各边长扩大为原来的5倍,根据相似三角形的性质及对应边长成比例来求解.【解答】解:∵一个三角形的各边长扩大为原来的5倍,∴扩大后的三角形与原三角形相似,∵相似三角形的周长的比等于相似比,∴这个三角形的周长扩大为原来的5倍,故答案为:5.【点评】本题考查了相似三角形的性质:相似三角形的周长的比等于相似比.12.如图,在Rt△ABC中,CD是斜边AB上的中线,已知CD=2,AC=3,则tanB的值是.【考点】解直角三角形.【分析】根据直角三角形斜边上的中线等于斜边的一半求出AB的长度,再利用勾股定理求出BC 的长度,然后根据锐角的正切等于对边比邻边解答.【解答】解:∵CD是斜边AB上的中线,CD=2,∴AB=2CD=4,根据勾股定理,BC==,tanB===.故答案为:.【点评】本题考查了锐角三角函数的定义,直角三角形斜边上的中线等于斜边的一半的性质,勾股定理的应用,在直角三角形中,锐角的正弦为对边比斜边,余弦为邻边比斜边,正切为对边比邻边应熟练掌握.13.如图,O是矩形ABCD的对角线AC的中点,M是AD的中点.若AB=5,AD=12,则四边形ABOM的周长为20.【考点】矩形的性质;三角形中位线定理.【专题】几何图形问题.【分析】根据题意可知OM是△ADC的中位线,所以OM的长可求;根据勾股定理可求出AC的长,利用直角三角形斜边上的中线等于斜边的一半可求出BO的长,进而求出四边形ABOM的周长.【解答】解:∵O是矩形ABCD的对角线AC的中点,M是AD的中点,∴OM=CD=AB=2.5,∵AB=5,AD=12,∴AC==13,∵O是矩形ABCD的对角线AC的中点,∴BO=AC=6.5,∴四边形ABOM的周长为AB+AM+BO+OM=5+6+6.5+2.5=20,故答案为:20.【点评】本题考查了矩形的性质、三角形的中位线的性质以及直角三角形斜边上的中线等于斜边的一半这一性质,题目的综合性很好,难度不大.14.观察下列各数,它们是按一定规律排列的,则第n个数是.,,,,,…【考点】规律型:数字的变化类.【专题】规律型.【分析】观察不难发现,分母为2的指数次幂,分子比分母小1,根据此规律解答即可.【解答】解:∵2=21,4=22,8=23,16=24,32=25,…∴第n个数的分母是2n,又∵分子都比相应的分母小1,∴第n个数的分子为2n﹣1,∴第n个数是.故答案为:.【点评】本题是对数字变化规律的考查,熟练掌握2的指数次幂是解题的关键.三、解答题(本大题共9个小题,满分58分.答案写在答题卷上)15.计算:(1﹣)0+|﹣|﹣2cos45°+()﹣1.【考点】实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.【专题】计算题.【分析】分别进行零指数幂、绝对值、特殊角的三角函数值、负整数指数幂等运算,然后按照实数的运算法则计算即可.【解答】解:原式=1+﹣2×+4=5.【点评】本题考查了实数的运算,涉及了零指数幂、绝对值、负整数指数幂及特殊角的三角函数值,属于基础题,注意各部分的运算法则.16.如图,在△ABC中,点D、E分别是AB和AC上的点,DE∥BC,AD=3BD,S△ABC=48,求S四边形BCED.【考点】相似三角形的判定与性质.【分析】根据DE∥BC,于是得到△ADE∽△ABC,根据相似三角形的性质得到=()2,于是求得S△ADE=27,即可得到结论.【解答】解:∵DE∥BC,∴△ADE∽△ABC,∴=()2,∵AD=3BD,∴=,∴=,∵S△ABC=48,∴S△ADE=27,∴S四边形BCED=S△ABC﹣S△ADE=48﹣27=21.【点评】此题考查了相似三角形的判定与性质.此题难度不大,注意掌握相似三角形面积的比等于相似比的平方定理的应用是解此题的关键.17.如图,已知△ABC,以点O为位似中心画一个△DEF,使它与△ABC位似,且相似比为2.【考点】作图-位似变换.【专题】作图题.【分析】延长OA到A′,使AA′=OA,则点A′为点A的对应点,用同样方法作出B、C的对应点B′、C′,则△A′B′C′与△ABC位似,且相似比为2.【解答】解:如图,△A′B′C′为所作.【点评】本题考查了作图﹣位似变换:画位似图形的一般步骤为:先确定位似中心;再分别连接并延长位似中心和能代表原图的关键点;然后根据位似比,确定能代表所作的位似图形的关键点;最后顺次连接上述各点,得到放大或缩小的图形.18.如图,小明在教学楼上的窗口A看地面上的B、C两个花坛,测得俯角∠EAB=30°,俯角∠EAC=45°.已知教学楼基点D与点C、B在同一条直线上,且B、C两花坛之间的距离为6m.求窗口A到地面的高度AD.(结果保留根号)【考点】解直角三角形的应用-仰角俯角问题.【分析】设窗口A到地面的高度AD为xm,根据题意在直角三角形ABD和直角三角形ACD中,利用锐角三角函数用含x的代数式分别表示线段BD和线段CD的长,再根据BD﹣CD=BC=6列出方程,解方程即可.【解答】解:设窗口A到地面的高度AD为xm.由题意得:∠ABC=30°,∠ACD=45°,BC=6m.∵在Rt△ABD中,BD==xm,在Rt△ADC中,CD==xm,∵BD﹣CD=BC=6,∴x﹣x=6,∴x=3+3.答:窗口A到地面的高度AD为(3+3)米.【点评】本题考查了解直角三角形的应用,解题的关键是从实际问题中整理出直角三角形并选择合适的边角关系求解.19.在不透明的袋子中有四张标着数字1,2,3,4的卡片,小明、小华两人按照各自的规则玩抽卡片游戏.小明画出树状图如图所示:(1)根据小明画出的树形图分析,他的游戏规则是,随机抽出一张卡片后不放回(填“放回”或“不放回”),再随机抽出一张卡片;(2)根据小华的游戏规则,表格中①表示的有序数对为(3,2);(3)规定两次抽到的数字之和为奇数的获胜,你认为谁获胜的可能性大?为什么?【考点】列表法与树状图法.【分析】(1)根据小明画出的树形图知数字1在第一次中出现,但没有在第二次中出现可以判断;(2)根据横坐标表示第一次,纵坐标表示第二次可以得到答案;(3)根据树状图和统计表分别求得其获胜的概率,比较后即可得到答案.【解答】解:(1)观察树状图知:第一次摸出的数字没有在第二次中出现,∴小明的实验是一个不放回实验,(2)观察表格发现其横坐标表示第一次,纵坐标表示第二次,(3)理由如下:∵根据小明的游戏规则,共有12种等可能的结果,数字之和为奇数的有8种,∴概率为:=;∵根据小华的游戏规则,共有16种等可能的结果,数字之和为奇数的有8种,∴概率为:=,∵>∴小明获胜的可能性大.故答案为:不放回;(3,2).【点评】本题考查了列表法和树状图法,利用列表法或树状图法展示某一随机事件中所有等可能出现的结果数n,再找出其中某一事件所出现的可能数m,然后根据概率的定义可计算出这个事件的概率=.20.如图,长100m、宽90m的长方形绿地上修建宽度相同的道路,6块绿地的面积共8448m2,求道路的宽.【考点】一元二次方程的应用.【专题】几何图形问题.【分析】设道路的宽为x米,则绿地的面积就为(100﹣2x)(90﹣x),就有(100﹣2x)(90﹣x)=8448建立方程求出其解即可.【解答】解:设道路的宽为x米,由题意,得(100﹣2x)(90﹣x)=8448,解得:x1=2,x2=138(不符合题意,舍去)∴道路的宽为2米.【点评】本题考查了列一元二次方程解实际问题的运用,矩形面积公式的运用,一元二次方程的解法的运用,解答时根据绿地的面积为8448建立方程是关键.21.如图,在等腰Rt△ABC中,∠C=90°,正方形DEFG的顶点D在边AC上,点E、F在边AB 上,点G在边BC上.(1)求证:△ADE≌△BGF;(2)若正方形DEFG的面积为16cm2,求AC的长.【考点】相似三角形的判定与性质;全等三角形的判定与性质;等腰直角三角形.【分析】(1)先根据等腰直角三角形的性质得出∠B=∠A=45°,再根据四边形DEFG是正方形可得出∠BFG=∠AED,故可得出∠BGF=∠ADE=45°,GF=ED,由全等三角形的判定定理即可得出结论;(2)过点C作CG⊥AB于点G,由正方形DEFG的面积为16cm2可求出其边长,故可得出AB的长,在Rt△ADE中,根据勾股定理可求出AD的长,再由相似三角形的判定定理得出△ADE∽△ACG,由相似三角形的对应边成比例即可求出AC的长.【解答】(1)证明:∵△ABC是等腰直角三角形,∠C=90°,∴∠B=∠A=45°,∵四边形DEFG是正方形,∴∠BFG=∠AED=90°,故可得出∠BGF=∠ADE=45°,GF=ED,∵在△ADE与△BGF中,,∴△ADE≌△BGF(ASA);(2)解:过点C作CG⊥AB于点H,∵正方形DEFG的面积为16cm2,∴DE=AE=4cm,∴AB=3DE=12cm,∵△ABC是等腰直角三角形,CH⊥AB,∴AH=AB=×12=6cm,在Rt△ADE中,∵DE=AE=4cm,∴AD===4cm,∵CH⊥AB,DE⊥AB,∴CH∥DE,∴△ADE∽△ACH,∴=,=,解得AC=6cm.【点评】本题考查的是相似三角形的判定与性质,熟知相似三角形的对应边成比例是解答此题的关键.22.如图所示,等边三角形ABC放置在平面直角坐标系中,已知A(0,0)、B(6,0),反比例函数的图象经过点C.(1)求点C的坐标及反比例函数的解析式.(2)将等边△ABC向上平移n个单位,使点B恰好落在双曲线上,求n的值.【考点】反比例函数综合题.【分析】(1)过C点作CD⊥x轴,垂足为D,设反比例函数的解析式为y=,根据等边三角形的知识求出AC和CD的长度,即可求出C点的坐标,把C点坐标代入反比例函数解析式求出k的值.(2)若等边△ABC向上平移n个单位,使点B恰好落在双曲线上,则此时B点的横坐标即为6,求出纵坐标,即可求出n的值.【解答】解:(1)过C点作CD⊥x轴,垂足为D,设反比例函数的解析式为y=,∵△ABC是等边三角形,∴AC=AB=6,∠CAB=60°,∴AD=3,CD=sin60°×AC=×6=3,∴点C坐标为(3,3),∵反比例函数的图象经过点C,∴k=9,∴反比例函数的解析式y=;(2)若等边△ABC向上平移n个单位,使点B恰好落在双曲线上,则此时B点的横坐标为6,即纵坐标y==,也是向上平移n=.【点评】本题主要考查反比例函数的综合题,解答本题的关键是熟练掌握反比例函数的性质以及平移的相关知识,此题难度不大,是中考的常考点.23.如图,已知直线y=kx﹣6与抛物线y=ax2+bx+c相交于A,B两点,且点A(1,﹣4)为抛物线的顶点,点B在x轴上.直线AB交y轴于点D,抛物线交y轴于点C.(1)求直线AB的解析式;(2)求抛物线的解析式;(3)在y轴上是否存在点Q,使△ABQ为直角三角形?若存在,请求出点Q的坐标;若不存在,请说明理由.【考点】二次函数综合题.【分析】(1)把点A坐标代入y=kx﹣6,根据待定系数法即可求得直线AB的解析式;(2)根据直线AB的解析式求出点B的坐标,点A是抛物线的顶点,那么可以将抛物线的解析式设为顶点式,再代入点B的坐标,依据待定系数法即可求解;(3)分别以A、B、Q为直角顶点,分类进行讨论.找出相关的相似三角形,依据对应线段成比例进行求解即可.【解答】解:(1)把A(1,﹣4)代入y=kx﹣6,得k=2,∴直线AB的解析式为y=2x﹣6,(2)∵抛物线的顶点为A(1,﹣4),∴设此抛物线的解析式为y=a(x﹣1)2﹣4,∵点B在直线y=2x﹣6上,且横坐标为0,∴点B的坐标为(3,0),又∵点B在抛物线y=a(x﹣1)2﹣4上,∴a(3﹣1)2﹣4=0,解之得a=1,∴此抛物线的解析式为y=(x﹣1)2﹣4,即y=x2﹣2x﹣3;(3)在y轴上存在点Q,使△ABQ为直角三角形.理由如下:作AE⊥y轴,垂足为点E.又∵点D是直线y=2x﹣6与y轴的交点,点C是抛物线y=x2﹣2x﹣3与y轴的交点∴E(0,﹣4),D(0,﹣6),C(0,﹣3)∴OD=6,OE=4,AE=1,ED=2,OC=3,OB=3,BD=,AD=①如图,当∠Q1AB=90°时,△DAQ1∽△DOB,∴=,即=,∴DQ1=,∴OQ1=6﹣=,即Q1(0,﹣);②如图,当∠Q2BA=90°时,△BOQ2∽△DOB,∴=,即=,∴OQ2=,即Q2(0,);③如图,当∠AQ3B=90°时,则△BOQ3∽△Q3EA,∴=,即=,∴OQ32﹣4OQ3+3=0,∴OQ3=1或3,即Q3(0,﹣1),Q4(0,﹣3).综上,Q点坐标为(0,﹣)或(0,)或(0,﹣1)或(0,﹣3).【点评】本题主要考查了利用待定系数法求函数解析式的方法、直角三角形的判定、相似三角形应用等重点知识.(3)题较为复杂,需要考虑的情况也较多,因此要分类进行讨论.。
人教版2016-2017学年九年级(上册)期末数学试卷及答案2016-2017学年九年级(上册)期末数学试卷一、选择题(共8小题,每小题4分,满分32分)1.一个不透明的盒子中装有2个红球和1个白球,它们除颜色外都相同。
若从中任意摸出一个球,则下列叙述正确的是()A.摸到红球是必然事件B.摸到白球是不可能事件C.摸到红球比摸到白球的可能性相等D.摸到红球比摸到白球的可能性大2.圆内接四边形ABCD中,已知∠A=70°,则∠C=()A.20°B.30°C.70°D.110°3.若关于x的方程2x²-ax+a-2=0有两个相等的实根,则a 的值是()A.-4B.4C.4或-4D.24.二次函数y=-x²+2x+4的最大值为()A.3B.4C.5D.65.在平面直角坐标系中,点A的坐标为(-1,-2),将OA绕原点O逆时针旋转180°得到OA',点A'的坐标为(a,b),则a-b等于()A.1B.-1C.3D.-36.如图,在平面直角坐标系中,点A,B,C的坐标为(1,4),(5,4),(1,-2),则△ABC外接圆的圆心坐标是()A.(2,3)B.(3,2)C.(1,3)D.(3,1)7.若c(c≠0)为关于x的一元二次方程x²+bx+c=0的根,则c+b的值为()A.1B.-1C.2D.-28.如图,已知Rt△ABC中,∠ACB=90°,AC=4,BC=3,以AB边所在的直线为轴,将△ABC旋转一周,则所得几何体的表面积是()A.πB.24πC.πD.12π二、填空题(共6小题,每小题3分,满分18分)9.小红有一个正方体玩具,6个面上分别画有线段、角、平行四边形、圆、菱形和等边三角形这6个图形。
抛掷这个正方体一次,向上一面的图形既是轴对称图形,又是中心对称图形的概率是_______。
2016-2017学年天津XX中学九年级(上)期末数学模拟试卷一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一个选项是符合题目要求的)1.在平面直角坐标系中,点P(1,2)关于原点对称的点的坐标是()A.(﹣1,﹣2)B.(﹣1,2)C.(1,﹣2)D.(2,1)2.下列图形是我国国产品牌汽车的标识,在这些汽车标识中,是中心对称图形的是()A.B.C.D.3.如图,已知抛物线与x轴的一个交点A(1,0),对称轴是x=﹣1,则该抛物线与x轴的另一交点坐标是()A.(﹣3,0)B.(﹣2,0)C.x=﹣3 D.x=﹣24.如图,在△ABC中,点D、E分别在AB、AC边上,DE∥BC.若=,AD=9,则AB等于()A.10 B.11 C.12 D.165.如图,AB为⊙O的直径,C为⊙O外一点,过点C作⊙O的切线,切点为B,连结AC交⊙O于D,∠C=38°.点E在AB右侧的半圆上运动(不与A、B重合),则∠AED的大小是()A .19°B .38°C .52°D .76°6.四张质地、大小相同的卡片上,分别画上如图所示的四个图形.在看不到图形的情况下从中任意抽取一张,则抽取的卡片是轴对称图形的概率为( )A .B .C .D .17.已知=,则代数式的值为( )A .B .C .D .8.如图,小华同学设计了一个圆直径的测量器,标有刻度的尺子OA ,OB 在0点钉在一起,并使它们保持垂直,在测直径时,把0点靠在圆周上,读得刻度OE=8个单位,OF=6个单位,则圆的直径为( )A .12个单位B .10个单位C .4个单位D .15个单位9.如果一个正多边形的中心角为72°,那么这个多边形的边数是( ) A .4 B .5 C .6 D .710.如图,四边形ABCD 内接于⊙O ,如果它的一个外角∠DCE=64°,那么∠BOD=( )A.128°B.100°C.64°D.32°11.如图,⊙O的半径为5,弦AB的长为8,M是弦AB上的动点,则线段OM 长的最小值为()A.2 B.3 C.4 D.512.如图,菱形ABCD中,AB=2,∠B=60°,M为AB的中点.动点P在菱形的边上从点B出发,沿B→C→D的方向运动,到达点D时停止.连接MP,设点P运动的路程为x,MP 2=y,则表示y与x的函数关系的图象大致为()A.B.C.D.二、填空题(本大题共6小题,每小题3分,共18分)13.如图,在矩形ABCD中,AB=4,AD=3,以顶点D为圆心作半径为r的圆,若要求另外三个顶点A、B、C中至少有一个点在圆内,且至少有一个点在圆外,则r的取值范围是.14.如图,把Rt△ABC绕点A逆时针旋转44°,得到Rt△AB′C′,点C′恰好落在边AB上,连接BB′,则∠BB′C′=.15.如图,在平面直角坐标系xOy中,△ABC与△A′B′C′顶点的横、纵坐标都是整数.若△ABC与△A′B′C′是位似图形,则位似中心的坐标是.16.请写出一个开口向上,对称轴为直线x=2,且与y轴的交点坐标为(0,3)的抛物线的解析式.17.如图,正方形ABCD的边长为2,AE=EB,MN=1,线段MN的两端在CB,CD 上滑动,当CM=时,△AED与以M,N,C为顶点的三角形相似.18.如图,以扇形OAB的顶点O为原点,半径OB所在的直线为x轴,建立平面直角坐标系,点B的坐标为(2,0),若抛物线y=x2+k与扇形OAB的边界总有两个公共点,则实数k的取值范围是.三、解答题(本大题共6小题,共52分)19.(6分)已知二次函数y=2x2﹣4x﹣6.(1)用配方法将y=2x2﹣4x﹣6化成y=a (x﹣h)2+k的形式;并写出对称轴和顶点坐标.(2)当x取何值时,y随x的增大而减少?(3)求函数图象与两坐标轴交点所围成的三角形的面积.20.(10分)在初三综合素质评定结束后,为了了解年级的评定情况,现对初三某班的学生进行了评定等级的调查,绘制了如下男女生等级情况折线统计图和全班等级情况扇形统计图.(1)调查发现评定等级为合格的男生有2人,女生有1人,则全班共有名学生.(2)补全女生等级评定的折线统计图.(3)根据调查情况,该班班主任从评定等级为合格和A的学生中各选1名学生进行交流,请用树形图或表格求出刚好选中一名男生和一名女生的概率.21.(8分)如图,已知正方形ABCD中,BE平分∠DBC且交CD边于点E,将△BCE绕点C顺时针旋转到△DCF的位置,并延长BE交DF于点G.(1)求证:△BDG∽△DEG;(2)若EG•BG=4,求BE的长.22.(10分)如图,在Rt△ABC中,∠B=90°,点O在边AB上,以点O为圆心,OA为半径的圆经过点C,过点C作直线MN,使∠BCM=2∠A.(1)判断直线MN与⊙O的位置关系,并说明理由;(2)若OA=4,∠BCM=60°,求图中阴影部分的面积.23.(12分)九(1)班数学兴趣小组经过市场调查,整理出某种商品在第x(1≤x≤90)天的售价与销量的相关信息如下表:已知该商品的进价为每件30元,设销售该商品的每天利润为y元.(1)求出y与x的函数关系式;(2)问销售该商品第几天时,当天销售利润最大,最大利润是多少?(3)该商品在销售过程中,共有多少天每天销售利润不低于4800元?请直接写出结果.24.(10分)把两个直角边长均为6的等腰直角三角板ABC和EFG叠放在一起(如图①),使三角板EFG的直角顶点G与三角板ABC的斜边中点O重合.现将三角板EFG绕O点顺时针旋转(旋转角α满足条件:0°<α<90°),四边形CHGK是旋转过程中两三角板的重叠部分(如图②).(1)探究:在上述旋转过程中,BH与CK的数量关系以及四边形CHGK的面积的变化情况(直接写出探究的结果,不必写探究及推理过程);(2)利用(1)中你得到的结论,解决下面问题:连接HK,在上述旋转过程中,是否存在某一位置,使△GKH的面积恰好等于△ABC面积的?若存在,求出此时BH的长度;若不存在,说明理由.四、综合题(本大题共1小题,共10分)25.(10分)如图,在矩形OABC中,AO=10,AB=8,沿直线CD折叠矩形OABC 的一边BC,使点B落在OA边上的点E处.分别以OC,OA所在的直线为x轴,y轴建立平面直角坐标系,抛物线y=ax2+bx+c经过O,D,C三点.(1)求AD的长及抛物线的解析式;(2)一动点P从点E出发,沿EC以每秒2个单位长的速度向点C运动,同时动点Q从点C出发,沿CO以每秒1个单位长的速度向点O运动,当点P运动到点C时,两点同时停止运动.设运动时间为t秒,当t为何值时,以P、Q、C为顶点的三角形与△ADE相似?2016-2017学年天津XX中学九年级(上)期末数学模拟试卷参考答案与试题解析一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一个选项是符合题目要求的)1.在平面直角坐标系中,点P(1,2)关于原点对称的点的坐标是()A.(﹣1,﹣2)B.(﹣1,2)C.(1,﹣2)D.(2,1)【考点】关于原点对称的点的坐标.【分析】根据关于原点对称的点的坐标特点:两个点关于原点对称时,它们的坐标符号相反,即点P(x,y)关于原点O的对称点是P′(﹣x,﹣y),可以直接写出答案.【解答】解:∵P(1,2),∴点P关于原点对称的点的坐标是:(﹣1,﹣2),故选:A.【点评】此题主要考查了关于原点对称的点的坐标特点,关键是掌握两个点关于原点对称时坐标变化特点:横纵坐标均互为相反数.2.下列图形是我国国产品牌汽车的标识,在这些汽车标识中,是中心对称图形的是()A.B.C.D.【考点】中心对称图形.【分析】根据中心对称图形的概念求解即可.【解答】解:A、不是中心对称图形,本选项错误;B、不是中心对称图形,本选项错误;C、不是中心对称图形,本选项错误;D、是中心对称图形,本选项正确.故选D.【点评】本题考查了中心对称图形的概念.中心对称图形是要寻找对称中心,旋转180度后两部分重合.3.如图,已知抛物线与x轴的一个交点A(1,0),对称轴是x=﹣1,则该抛物线与x轴的另一交点坐标是()A.(﹣3,0)B.(﹣2,0)C.x=﹣3 D.x=﹣2【考点】抛物线与x轴的交点.【分析】设抛物线与x轴的另一个交点为B(b,0),再根据AB两点关于对称轴对称即可得出.【解答】解:抛物线与x轴的另一个交点为B(b,0),∵抛物线与x轴的一个交点A(1,0),对称轴是x=﹣1,∴=﹣1,解得b=﹣3,∴B(﹣3,0).故选A.【点评】本题考查的是抛物线与x轴的交点问题,熟知抛物线与x轴的交点关于对称轴对称是解答此题的关键.4.如图,在△ABC中,点D、E分别在AB、AC边上,DE∥BC.若=,AD=9,则AB等于()A.10 B.11 C.12 D.16【考点】平行线分线段成比例.【分析】根据平行线分线段成比例定理得到=,代入计算即可得到答案.【解答】解:∵DE∥BC,∴==,又AD=9,∴AB=12,故选:C.【点评】本题考查平行线分线段成比例定理,灵活运用定理、找准对应关系是解题的关键.5.如图,AB为⊙O的直径,C为⊙O外一点,过点C作⊙O的切线,切点为B,连结AC交⊙O于D,∠C=38°.点E在AB右侧的半圆上运动(不与A、B重合),则∠AED的大小是()A.19°B.38°C.52°D.76°【考点】切线的性质;圆周角定理.【分析】首先连接BD,由AB为⊙O的直径,BC是⊙O的切线,根据圆周角定理与切线的性质,可得∠ADB=90°,AB⊥BC,又由同角的余角相等,易证得∠AED=∠ABD=∠C.【解答】解:连接BD,∵AB为⊙O的直径,BC是⊙O的切线,∴∠ADB=90°,AB⊥BC,∴∠C+∠BAC=∠BAC+∠ABD=90°,∴∠ABD=∠C,∵∠AED=∠ABD,∴∠AED=∠C=38°.故选B.【点评】此题考查了切线的性质以及圆周角定理.此题难度适中,注意掌握辅助线的作法,注意数形结合思想的应用.6.四张质地、大小相同的卡片上,分别画上如图所示的四个图形.在看不到图形的情况下从中任意抽取一张,则抽取的卡片是轴对称图形的概率为()A.B.C.D.1【考点】概率公式;轴对称图形.【分析】卡片共有四张,轴对称图形有等腰梯形、圆,根据概率公式即可得到抽取的卡片是轴对称图形的概率.【解答】解:四张卡片中,轴对称图形有等腰梯形、圆,根据概率公式,P(轴对称图形)==.故选A.【点评】此题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.7.已知=,则代数式的值为()A.B.C.D.【考点】比例的性质.【分析】用b表示出a,然后代入比例式进行计算即可得解.【解答】解:由=得到:a=b,则==.故选:B.【点评】本题考查了比例的性质,用b表示出a是解题的关键.8.如图,小华同学设计了一个圆直径的测量器,标有刻度的尺子OA,OB在0点钉在一起,并使它们保持垂直,在测直径时,把0点靠在圆周上,读得刻度OE=8个单位,OF=6个单位,则圆的直径为()A.12个单位B.10个单位C.4个单位D.15个单位【考点】圆周角定理;勾股定理.【分析】根据圆中的有关性质“90°的圆周角所对的弦是直径”.从而得到EF即可是直径,根据勾股定理计算即可.【解答】解:连接EF,∵OE⊥OF,∴EF是直径,∴EF====10.故选:B.【点评】考查了圆中的有关性质:90°的圆周角所对的弦是直径.此性质是判断直径的一个有效方法,也是构造直角三角形的一个常用方法.9.如果一个正多边形的中心角为72°,那么这个多边形的边数是()A.4 B.5 C.6 D.7【考点】多边形内角与外角.【分析】根据正多边形的中心角和为360°和正多边形的中心角相等,列式计算即可.【解答】解:这个多边形的边数是360÷72=5,故选:B.【点评】本题考查的是正多边形的中心角的有关计算,掌握正多边形的中心角和为360°和正多边形的中心角相等是解题的关键.10.如图,四边形ABCD内接于⊙O,如果它的一个外角∠DCE=64°,那么∠BOD=()A.128°B.100°C.64°D.32°【考点】圆内接四边形的性质;圆周角定理.【分析】由圆内接四边形的外角等于它的内对角知,∠A=∠DCE=64°,由圆周角定理知,∠BOD=2∠A=128°.【解答】解:∵四边形ABCD内接于⊙O,∴∠A=∠DCE=64°,∴∠BOD=2∠A=128°.故选A.【点评】本题利用了圆内接四边形的性质和圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.11.如图,⊙O的半径为5,弦AB的长为8,M是弦AB上的动点,则线段OM 长的最小值为()A.2 B.3 C.4 D.5【考点】垂径定理;勾股定理.【分析】根据垂线段最短知,当OM⊥AB时,OM有最小值.根据垂径定理和勾股定理求解.【解答】解:根据垂线段最短知,当OM⊥AB时,OM有最小值,此时,由垂径定理知,点M是AB的中点,连接OA,AM=AB=4,由勾股定理知,OM=3.故选:B.【点评】本题利用了垂径定理和勾股定理求解.12.如图,菱形ABCD中,AB=2,∠B=60°,M为AB的中点.动点P在菱形的边上从点B出发,沿B→C→D的方向运动,到达点D时停止.连接MP,设点P运动的路程为x,MP 2=y,则表示y与x的函数关系的图象大致为()A.B.C.D.【考点】动点问题的函数图象.【分析】分三种情况:(1)当0≤x≤时,(2)当<x≤2时,(3)当2<x ≤4时,根据勾股定理列出函数解析式,判断其图象即可求出结果.【解答】解:(1)当0≤x≤时,如图1,过M作ME⊥BC与E,∵M为AB的中点,AB=2,∴BM=1,∵∠B=60°,∴BE=,ME=,PE=﹣x,在R t△BME中,由勾股定理得:MP2=ME2+PE2,∴y==x2﹣x+1;(2)当<x≤2时如图2,过M作ME⊥BC与E,由(1)知BM=1,∠B=60°,∴BE=,ME=,PE=x﹣,∴MP2=ME2+PE2,∴y==x2﹣x+1;(3)当2<x≤4时,如图3,连结MC,∵BM=1,BC=AB=2,∠B=60°,∴∠BMC=90°,MC==,∵AB∥DC,∴∠MCD=∠BMC=90°,∴MP2=MC2+PC2,∴y==x2﹣4x+7;综合(1)(2)(3),只有B选项符合题意.故选B.【点评】本题考查了动点问题的函数图象,勾股定理,正确的理解题意,画出图形是解题的关键.二、填空题(本大题共6小题,每小题3分,共18分)13.如图,在矩形ABCD中,AB=4,AD=3,以顶点D为圆心作半径为r的圆,若要求另外三个顶点A、B、C中至少有一个点在圆内,且至少有一个点在圆外,则r的取值范围是3<r<5.【考点】点与圆的位置关系.【分析】要确定点与圆的位置关系,主要根据点与圆心的距离与半径的大小关系来进行判断.当d>r时,点在圆外;当d=r时,点在圆上;当d<r时,点在圆内.【解答】解:在直角△ABD中,CD=AB=4,AD=3,则BD==5.由图可知3<r<5.故答案为:3<r<5.【点评】此题主要考查了点与圆的位置关系,解决本题要注意点与圆的位置关系,要熟悉勾股定理,及点与圆的位置关系.14.如图,把Rt△ABC绕点A逆时针旋转44°,得到Rt△AB′C′,点C′恰好落在边AB上,连接BB′,则∠BB′C′=22°.【考点】旋转的性质.【分析】根据旋转的性质可得AB=AB′,∠BAB′=44°,然后根据等腰三角形两底角相等求出∠ABB′,再利用直角三角形两锐角互余列式计算即可得解.【解答】解:解:∵Rt△ABC绕点A逆时针旋转40°得到Rt△AB′C′,∴AB=AB′,∠BAB′=44°,在△ABB′中,∠ABB′=(180°﹣∠BAB′)=(180°﹣44°)=68°,∵∠AC′B′=∠C=90°,∴B′C′⊥AB,∴∠BB′C′=90°﹣∠ABB′=90°﹣68°=22°.故答案为:22°.【点评】本题考查了旋转的性质,等腰三角形的性质,直角三角形的两锐角互余,比较简单,熟记旋转变换只改变图形的位置不改变图形的形状与大小得到等腰三角形是解题的关键.15.如图,在平面直角坐标系xOy中,△ABC与△A′B′C′顶点的横、纵坐标都是整数.若△ABC与△A′B′C′是位似图形,则位似中心的坐标是(8,0).【考点】位似变换;坐标与图形性质.【分析】根据位似图形的主要特征:每对位似对应点与位似中心共线画图解答.【解答】解:直线AA′与直线BB′的交点坐标为(8,0),所以位似中心的坐标为(8,0).故答案为:(8,0)【点评】本题考查的是位似图形的概念,如果两个图形不仅是相似图形,而且对应顶点的连线相交于一点,对应边互相平行,那么这样的两个图形叫做位似图形,这个点叫做位似中心.16.请写出一个开口向上,对称轴为直线x=2,且与y轴的交点坐标为(0,3)的抛物线的解析式y=(x﹣2)2﹣1.【考点】待定系数法求二次函数解析式.【分析】已知抛物线的顶点或对称轴时,常设其解析式为顶点式来求解.顶点式:y=a(x﹣h)2+k(a,h,k是常数,a≠0),其中(h,k)为顶点坐标.【解答】解:因为开口向上,所以a>0∵对称轴为直线x=2,∴﹣=2∵y轴的交点坐标为(0,3),∴c=3.答案不唯一,如y=x2﹣4x+3,即y=(x﹣2)2﹣1.【点评】此题是开放题,考查了学生的综合应用能力,解题时要注意别漏条件.已知抛物线的顶点或对称轴时,常设其解析式为顶点式来求解.17.如图,正方形ABCD的边长为2,AE=EB,MN=1,线段MN的两端在CB,CD上滑动,当CM=或时,△AED与以M,N,C为顶点的三角形相似.【考点】相似三角形的判定与性质;正方形的性质.【分析】根据题意不难确定Rt△AED的两直角边AD=2AE.再根据相似的性质及变化,可考虑Rt△MCN的两直角边MC、NC间的关系满足是或2倍.求得CM 的长.【解答】解:设CM的长为x.在Rt△MNC中∵MN=1,∴NC=,①当Rt△AED∽Rt△CMN时,则,即,解得x=或x=(不合题意,舍去),②当Rt△AED∽Rt△CNM时,则,即,解得x=或(不合题意,舍去),综上所述,当CM=或时,△AED与以M,N,C为顶点的三角形相似.故答案为:或.【点评】本题考查相似三角形的判定与性质、正方形的性质.解决本题特别要考虑到①当Rt△AED∽Rt△CMN时②当Rt△AED∽Rt△CNM时这两种情况.18.如图,以扇形OAB的顶点O为原点,半径OB所在的直线为x轴,建立平面直角坐标系,点B的坐标为(2,0),若抛物线y=x2+k与扇形OAB的边界总有两个公共点,则实数k的取值范围是﹣2<k<.【考点】二次函数的性质.【分析】根据∠AOB=45°求出直线OA的解析式,然后与抛物线解析式联立求出有一个公共点时的k值,即为一个交点时的最大值,再求出抛物线经过点B时的k的值,即为一个交点时的最小值,然后写出k的取值范围即可.【解答】解:由图可知,∠AOB=45°,∴直线OA的解析式为y=x,联立消掉y得,x2﹣2x+2k=0,△=b2﹣4ac=(﹣2)2﹣4×1×2k=0,即k=时,抛物线与OA有一个交点,此交点的横坐标为1,∵点B的坐标为(2,0),∴OA=2,∴点A的坐标为(,),∴交点在线段AO上;当抛物线经过点B(2,0)时,×4+k=0,解得k=﹣2,∴要使抛物线y=x2+k与扇形OAB的边界总有两个公共点,实数k的取值范围是﹣2<k<.故答案为:﹣2<k<.【点评】本题考查了二次函数的性质,主要利用了联立两函数解析式确定交点个数的方法,根据图形求出有一个交点时的最大值与最小值是解题的关键.三、解答题(本大题共6小题,共52分)19.已知二次函数y=2x2﹣4x﹣6.(1)用配方法将y=2x2﹣4x﹣6化成y=a (x﹣h)2+k的形式;并写出对称轴和顶点坐标.(2)当x取何值时,y随x的增大而减少?(3)求函数图象与两坐标轴交点所围成的三角形的面积.【考点】抛物线与x轴的交点;二次函数的三种形式.【分析】(1)配方成顶点式可得;(2)根据顶点式结合二次函数的性质可得;(3)分别求出函数图象与两坐标轴的交点,再根据三角形面积公式可得答案.【解答】解:(1)∵y=2x2﹣4x﹣6=2(x2﹣2x+1﹣1)﹣6=2(x﹣1)2﹣8,∴对称轴为直线x=1,顶点坐标为(1,﹣8);(2)由(1)知,当x<1时,y随x的增大而减小;(3)在y=2x2﹣4x﹣6中,当x=0时,y=﹣6,∴抛物线与y轴的交点为(0,﹣6),当y=0时,有2x2﹣4x﹣6=0,解得:x=﹣1或x=3,∴抛物线与x轴的交点为(﹣1,0)和(3,0),则函数图象与两坐标轴交点所围成的三角形的面积为×4×6=12.【点评】本题主要考查二次函数的三种形式及抛物线与坐标轴的交点,熟练掌握二次函数的顶点式及函数性质是解题的关键.20.(10分)(2016•重庆校级模拟)在初三综合素质评定结束后,为了了解年级的评定情况,现对初三某班的学生进行了评定等级的调查,绘制了如下男女生等级情况折线统计图和全班等级情况扇形统计图.(1)调查发现评定等级为合格的男生有2人,女生有1人,则全班共有50名学生.(2)补全女生等级评定的折线统计图.(3)根据调查情况,该班班主任从评定等级为合格和A的学生中各选1名学生进行交流,请用树形图或表格求出刚好选中一名男生和一名女生的概率.【考点】折线统计图;扇形统计图;列表法与树状图法.【分析】(1)根据合格的男生有2人,女生有1人,得出合格的总人数,再根据评级合格的学生占6%,即可得出全班的人数;(2)根据折线统计图和扇形统计图以及全班的学生数,即可得出女生评级3A 的学生和女生评级4A的学生数,即可补全折线统计图;(3)根据题意画出图表,再根据概率公式即可得出答案.【解答】解:因为合格的男生有2人,女生有1人,共计2+1=3人,又因为评级合格的学生占6%,所以全班共有:3÷6%=50(人).故答案为:50.(2)根据题意得:女生评级3A的学生是:50×16%﹣3=8﹣3=5(人),女生评级4A的学生是:50×50%﹣10=25﹣10=15(人),如图:(3)根据题意如表:∵共有12种等可能的结果数,其中一名男生和一名女生的共有7种,∴P=,答:选中一名男生和一名女生的概率为:.【点评】此题考查的是折线统计图、扇形统计图和用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;用到的知识点为:概率=所求情况数与总情况数之比.21.如图,已知正方形ABCD中,BE平分∠DBC且交CD边于点E,将△BCE绕点C顺时针旋转到△DCF的位置,并延长BE交DF于点G.(1)求证:△BDG∽△DEG;(2)若EG•BG=4,求BE的长.【考点】相似三角形的判定与性质;正方形的性质;旋转的性质.【分析】(1)根据旋转性质求出∠EDG=∠EBC=∠DBE,根据相似三角形的判定推出即可;(2)先求出BD=BF,BG⊥DF,求出BE=DF=2DG,根据相似求出DG的长,即可求出答案.【解答】(1)证明:∵将△BCE绕点C顺时针旋转到△DCF的位置,∴△BCE≌△DCF,∴∠FDC=∠EBC,∵BE平分∠DBC,∴∠DBE=∠EBC,∴∠FDC=∠EBD,∵∠DGE=∠DGE,∴△BDG∽△DEG.(2)解:∵△BCE≌△DCF,∴∠F=∠BEC,∠EBC=∠FDC,∵四边形ABCD是正方形,∴∠DCB=90°,∠DBC=∠BDC=45°,∵BE平分∠DBC,∴∠DBE=∠EBC=22.5°=∠FDC,∴∠BEC=67.5°=∠DEG,∴∠DGE=180°﹣22.5°﹣67.5°=90°,即BG⊥DF,∵∠BDF=45°+22.5°=67.5°,∠F=90°﹣22.5°=67.5°,∴∠BDF=∠F,∴BD=BF,∴DF=2DG,∵△BDG∽△DEG,BG×EG=4,∴=,∴BG×EG=DG×DG=4,∴DG2=4,∴DG=2,∴BE=DF=2DG=4.【点评】本题考查了相似三角形的性质和判定,正方形的性质,旋转的性质的应用,主要考查学生运用定理进行推理的能力,本题综合性比较强,有一定的难度.22.(10分)(2016•淮安)如图,在Rt△ABC中,∠B=90°,点O在边AB上,以点O为圆心,OA为半径的圆经过点C,过点C作直线MN,使∠BCM=2∠A.(1)判断直线MN与⊙O的位置关系,并说明理由;(2)若OA=4,∠BCM=60°,求图中阴影部分的面积.【考点】直线与圆的位置关系;扇形面积的计算.【分析】(1)MN是⊙O切线,只要证明∠OCM=90°即可.(2)求出∠AOC以及BC,根据S阴=S扇形OAC﹣S△OAC计算即可.【解答】解:(1)MN是⊙O切线.理由:连接OC . ∵OA=OC , ∴∠OAC=∠OCA ,∵∠BOC=∠A +∠OCA=2∠A ,∠BCM=2∠A , ∴∠BCM=∠BOC , ∵∠B=90°,∴∠BOC +∠BCO=90°, ∴∠BCM +∠BCO=90°, ∴OC ⊥MN , ∴MN 是⊙O 切线.(2)由(1)可知∠BOC=∠BCM=60°, ∴∠AOC=120°,在RT △BCO 中,OC=OA=4,∠BCO=30°,∴BO=OC=2,BC=2∴S 阴=S 扇形OAC ﹣S △OAC =﹣=﹣4.【点评】本题考查直线与圆的位置关系、扇形面积、三角形面积等知识,解题的关键是记住切线的判定方法,扇形的面积公式,属于中考常考题型.23.(12分)(2014•武汉)九(1)班数学兴趣小组经过市场调查,整理出某种商品在第x (1≤x ≤90)天的售价与销量的相关信息如下表:已知该商品的进价为每件30元,设销售该商品的每天利润为y 元. (1)求出y 与x 的函数关系式;(2)问销售该商品第几天时,当天销售利润最大,最大利润是多少?(3)该商品在销售过程中,共有多少天每天销售利润不低于4800元?请直接写出结果.【考点】二次函数的应用.【分析】(1)根据单价乘以数量,可得利润,可得答案;(2)根据分段函数的性质,可分别得出最大值,根据有理数的比较,可得答案;(3)根据二次函数值大于或等于4800,一次函数值大于或等于48000,可得不等式,根据解不等式组,可得答案.【解答】解:(1)当1≤x<50时,y=(200﹣2x)(x+40﹣30)=﹣2x2+180x+2000,当50≤x≤90时,y=(200﹣2x)(90﹣30)=﹣120x+12000,综上所述:y=;(2)当1≤x<50时,二次函数开口向下,二次函数对称轴为x=45,2×452+180×45+2000=6050,当x=45时,y最大=﹣当50≤x≤90时,y随x的增大而减小,当x=50时,y最大=6000,综上所述,该商品第45天时,当天销售利润最大,最大利润是6050元;(3)当1≤x<50时,y=﹣2x2+180x+2000≥4800,解得20≤x≤70,因此利润不低于4800元的天数是20≤x<50,共30天;当50≤x≤90时,y=﹣120x+12000≥4800,解得x≤60,因此利润不低于4800元的天数是50≤x≤60,共11天,所以该商品在销售过程中,共41天每天销售利润不低于4800元.【点评】本题考查了二次函数的应用,利用单价乘以数量求函数解析式,利用了函数的性质求最值.24.(10分)(2016秋•河西区校级期末)把两个直角边长均为6的等腰直角三角板ABC和EFG叠放在一起(如图①),使三角板EFG的直角顶点G与三角板ABC的斜边中点O重合.现将三角板EFG绕O点顺时针旋转(旋转角α满足条件:0°<α<90°),四边形CHGK是旋转过程中两三角板的重叠部分(如图②).(1)探究:在上述旋转过程中,BH与CK的数量关系以及四边形CHGK的面积的变化情况(直接写出探究的结果,不必写探究及推理过程);(2)利用(1)中你得到的结论,解决下面问题:连接HK,在上述旋转过程中,是否存在某一位置,使△GKH的面积恰好等于△ABC面积的?若存在,求出此时BH的长度;若不存在,说明理由.【考点】旋转的性质;一元二次方程的应用;三角形的面积;等腰直角三角形.【分析】(1)先由ASA证出△CGK≌△BGH,再根据全等三角形的性质得出BH=CK,根据全等得出四边形CKGH的面积等于三角形ACB面积一半;=S四边形CKGH﹣S△CKH=x2﹣3x+9,根据△GKH的面积(2)根据面积公式得出S△GHK恰好等于△ABC面积的,代入得出方程,求出即可.【解答】解:(1)BH与CK的数量关系:BH=CK,理由是:连接OC,由直角三角形斜边上中线性质得出OC=BG,∵AC=BC,O为AB中点,∠ACB=90°,∴∠B=∠ACG=45°,CO⊥AB,∴∠CGB=90°=∠KGH,∴都减去∠CGH得:∠BGH=∠CGK,在△CGK和△BGH中∵,∴△CGK≌△BGH(ASA),∴CK=BH,即BH=CK;四边形CHGK的面积的变化情况:四边形CHGK的面积不变,始终等于四边形CQGZ 的面积,即等于△ACB面积的一半,等于9;(2)假设存在使△GKH的面积恰好等于△ABC面积的的位置.设BH=x,由题意及(1)中结论可得,CK=BH=x,CH=CB﹣BH=6﹣x,=CH×CK=3x﹣x2,∴S△CHK=S四边形CKGH﹣S△CKH=9﹣(3x﹣x2)=x2﹣3x+9,∴S△GHK∵△GKH的面积恰好等于△ABC面积的,∴x2﹣3x+9=××6×6,解得(经检验,均符合题意).∴存在使△GKH的面积恰好等于△ABC面积的的位置,此时x的值为.【点评】本题考查了旋转的性质,三角形的面积,全等三角形的性质和判定等知识点,此题有一定的难度,但是一道比较好的题目.四、综合题(本大题共1小题,共10分)25.(10分)(2016秋•天津期末)如图,在矩形OABC中,AO=10,AB=8,沿直线CD折叠矩形OABC的一边BC,使点B落在OA边上的点E处.分别以OC,OA所在的直线为x轴,y轴建立平面直角坐标系,抛物线y=ax2+bx+c经过O,D,C三点.(1)求AD的长及抛物线的解析式;(2)一动点P从点E出发,沿EC以每秒2个单位长的速度向点C运动,同时动点Q从点C出发,沿CO以每秒1个单位长的速度向点O运动,当点P运动到点C时,两点同时停止运动.设运动时间为t秒,当t为何值时,以P、Q、C为顶点的三角形与△ADE相似?【考点】二次函数综合题.【分析】(1)根据折叠图形的轴对称性,△CED、△CBD全等,首先在Rt△CEO 中求出OE的长,进而可得到AE的长;在Rt△AED中,AD=AB﹣BD、ED=BD,利用勾股定理可求出AD的长.进一步能确定D点坐标,利用待定系数法即可求出抛物线的解析式;(2)分两种情况进行讨论:①当∠PQC=∠DAE=90°时,△ADE∽△QPC,②当∠QPC=∠DAE=90°时,△ADE∽△PQC,分别根据相似三角形的性质,得出关于t 的方程,求得t的值.【解答】解:(1)∵四边形ABCO为矩形,∴∠OAB=∠AOC=∠B=90°,AB=CO=8,AO=BC=10.由折叠的性质得,△BDC≌△EDC,∴∠B=∠DEC=90°,EC=BC=10,ED=BD.由勾股定理易得EO=6.∴AE=10﹣6=4.。
天津市西青区2016-2017年九年级数学上册
期末模拟题
一、选择题(本大题共12小题,每小题3分,共36分。
在每小题给出的四个选项中,只有一个选项是符合
题目要求的)
1.下列事件是必然事件的是()
A .打开电视机正在播放广告
B .投掷一枚质地均匀的硬币100次,正面向上的次数为50次
C .任意一个一元二次方程都有实数根
D .在平面上任意画一个三角形,其内角和是180°2.掷一枚质地均匀的硬币一次,反面朝上的概率是(
)
A .1
B .
C .
D .
3..下列四个图形中,不是中心对称图形的是(
)
A .
B .
C .
D .
4.若反比例函数y=-的图象经过点A(3,m),则m的值是(
)
A.﹣3
B.3
C.
D.
5.如图,△ODC是由△OAB绕点O顺时针旋转31°后得到的图形,若点D恰好落在AB上,且∠AOC的度数为100°,则∠DOB的度数是(
)
A.34°
B.36°
C.38°
D.40°
6.如图,已知AB 是⊙O 的直径,AD 切⊙O 于点A,点C 是弧BE 的中点,则下列结论不成立的是()
A.OC∥AE B.EC=BC C.∠DAE=∠ABE D.AC⊥OE
7.周长相等的正三角形、正四边形、正六边形的面积S 3、S 4、S 6之间的大小关系是(
)
A.S 3>S 4>S 6
B.S 6>S 4>S 3
C.S 6>S 3>S 4
D.S 4>S 6>S 3
8.正三角形的高、外接圆半径、边心距之比为(
)
A.3∶2∶1
B.4∶3∶2
C.4∶2∶1
D.6∶4∶3
9.如图,正方形ABCD 中,分别以B,D 为圆心,以正方形的边长a 为半径画弧,形成树叶形(阴影部分)图案,则树叶形图案的周长为(
)
A.πa
B.2πa
C.πa
D.3a 10.对于二次函数y=(x-1)2
+2的图象,下列说法正确的是(
)
A.开口向下
B.对称轴是x=-1
C.顶点坐标是(1,2)
D.与x 轴有两个交点
11.用10米长的铝材制成一个矩形窗框,使它的面积为6平方米.若设它的一条边长为x 米,则根据题意可列出关于x 的方程为()
A.x(5+x)=6
B.x(5﹣x)=6
C.x(10﹣x)=6
D.x(10﹣2x)=6
12.如图,△OAC 和△BAD 都是等腰直角三角形,∠ACO=∠ADB=90°,反比例函数y=在第一象限的图象经过点B ,则△OAC 与△BAD 的面积之差S △OAC ﹣S △BAD 为(
)
A .36
B .12
C .6
D .3
二、填空题(本大题共6小题,每小题3分,共18分)13.已知点(-1,y 1),(2,y 2),(3,y 3)在反比例函数
图像上,用“<”连接y 1,y 2,y 3为.
14.点A (a ,3)与点B (﹣4,b )关于原点对称,则a+b=
.
15.小明把如图所示的矩形纸板ABCD挂在墙上,E为AD中点,且∠ABD=60°,并用它玩飞镖游戏(每次飞镖均。