聚光设计与集热器
- 格式:pptx
- 大小:9.54 MB
- 文档页数:57
槽式光热电站聚光集热系统施工工法槽式光热电站聚光集热系统施工工法一、前言槽式光热电站聚光集热系统是一种利用太阳能进行发电的技术,具有较高的能源利用效率和环境友好性。
本文将介绍槽式光热电站聚光集热系统的施工工法,包括工法特点、适应范围、工艺原理、施工工艺、劳动组织、机具设备、质量控制、安全措施、经济技术分析和工程实例。
二、工法特点槽式光热电站聚光集热系统的特点主要有以下几点:首先,该系统能够将阳光聚焦到聚光器上,使得光热能量得以集中,从而提高了能量转换效率;其次,聚光集热系统具有灵活性和可扩展性,可以根据实际需要进行设计和施工;第三,槽式光热电站聚光集热系统采用的材料和设备均具有较高的耐用性和抗腐蚀性能,能够满足长期使用的要求。
三、适应范围槽式光热电站聚光集热系统适用于多种地域和环境条件,尤其适合太阳能资源丰富的地区。
该系统能够适应不同的地形和气候条件,例如山区、沙漠地带等。
此外,槽式光热电站聚光集热系统还可以应用于农业、工业、城市热供等领域,具有广泛的应用前景。
四、工艺原理槽式光热电站聚光集热系统的工艺原理是利用聚光器将太阳光线聚焦到集热管上,通过介质循环将热能传递给工质,再通过工质驱动涡轮发电机发电。
聚光器主要由反射镜和光吸收器构成,可以将太阳光线聚集到集热管上,提高光热能量的利用效率。
而集热管则起到将热能传递给工质的作用,同时也起到保护聚光器的作用。
五、施工工艺槽式光热电站聚光集热系统的施工工艺一般包括以下几个阶段:场地准备、基础施工、集热器组装、聚光器安装、管道连接和系统测试。
在场地准备阶段,需要对施工场地进行平整和清理;基础施工阶段需要进行基础的浇筑和固化工作;集热器组装阶段需要将集热管和聚光器进行组装和安装;聚光器安装阶段需要将反射镜和光吸收器进行安装;管道连接阶段需要将集热器和发电设备进行连接;系统测试阶段需要对系统进行测试和调试。
六、劳动组织槽式光热电站聚光集热系统的施工工艺需要安排合理的劳动组织,包括施工队伍的划分和施工任务的分工等。
流体力学在太阳能发电工程中的应用太阳能作为可再生能源的一种重要形式,正在逐渐成为解决能源危机和环境污染问题的关键技术。
在太阳能发电工程中,流体力学是一个不可或缺的领域,它研究了在流体中的力和运动规律。
本文将探讨流体力学在太阳能发电工程中的应用,并重点介绍太阳能光热发电和光伏发电两个方面。
一、太阳能光热发电中的流体力学应用太阳能光热发电通过聚光集热器将太阳能转化为热能,进而产生蒸汽推动涡轮机发电。
流体力学在太阳能光热发电中起到了关键作用,主要集中在两个方面:聚光器设计和管路系统优化。
1. 聚光器设计聚光器是将太阳辐射能集中到一个小区域的装置,需要根据太阳辐射特点进行设计。
在聚光器的设计中,流体力学提供了一些重要的参数和模型,如光学性能、热传导和流体流动等。
通过流体力学分析,可以确定适当的聚光器形状、曲率和表面粗糙度,以最大限度地提高光热转换效率。
2. 管路系统优化聚光器通过集热管将热能传送到蒸汽发电装置中。
在管路系统的设计和优化中,流体力学可以提供重要参考。
例如,通过流体流动模拟,可以确定管道的截面积、长度和形状,以减小流体阻力和能量损失。
此外,流体力学还可以帮助优化管道的布局和连接方式,提高整个系统的效率和可靠性。
二、光伏发电中的流体力学应用光伏发电是利用光电效应将太阳能直接转化为电能的技术,流体力学在光伏发电中同样扮演着重要角色。
下面将从光伏面板设计和能量转换效率两个方面介绍流体力学在光伏发电中的应用。
1. 光伏面板设计光伏面板是将太阳能转化为电能的核心部件,其设计与光学、热学和流体力学密切相关。
流体力学可以提供光伏面板表面的特性和微观结构设计等方面的建议。
例如,通过流体力学的分析,可以确定表面的纹理和反射层,以最大限度地提高太阳能的吸收和转换效率。
2. 能量转换效率光伏面板的能量转换效率与大气环境和温度变化密切相关,流体力学可以通过分析空气流动和温度分布等参数,帮助优化光伏发电系统的设计和性能。
全时自动逐日聚光式太阳能槽式集热器施工工法一、前言全时自动逐日聚光式太阳能槽式集热器是一种能够利用太阳能进行集热的设备,广泛应用于农业温室、工业加热、居民热水供应等领域。
本文将详细介绍该工法的特点、适应范围、工艺原理、施工工艺、劳动组织、机具设备、质量控制、安全措施、经济技术分析以及工程实例,旨在为读者提供一份科学且实用的施工指南。
二、工法特点全时自动逐日聚光式太阳能槽式集热器施工工法具有以下特点:1. 高效集热:该工法利用逐日聚光技术,能够最大限度地将太阳能转化为热能,提高能源利用效率。
2. 自动化控制:采用先进的自动化控制系统,实现对集热器的温度、湿度、光照等参数的自动调节,提高工作效率并降低人工干预。
3. 节约空间:由于采用槽式结构,该工法能够最大程度地压缩设备占地面积,节约了空间资源。
4. 耐久性强:采用耐高温、耐腐蚀的材料制作而成,具有较长的使用寿命和较好的耐久性。
三、适应范围全时自动逐日聚光式太阳能槽式集热器适用于各种规模的农业温室、工业加热以及居民热水供应等领域,特别适用于日照充足、温度要求较高的地区。
可以根据实际需求进行灵活组合和扩展,满足不同场景的能源需求。
四、工艺原理全时自动逐日聚光式太阳能槽式集热器施工工法的实际工程与工法之间具有密切的联系,采取了以下技术措施:1. 结构设计:根据集热器需求和工程实际情况,设计出合理的槽式结构,确保光热转换效率最大化。
2. 材料选择:选择耐高温、耐腐蚀的材料,如不锈钢、玻璃等,确保集热器的稳定性和寿命。
3. 自动化控制:采用先进的控制系统,实现对集热器温度、湿度、光照等参数的自动调节,提高工作效率。
4. 储能系统:通过储能系统,将太阳能收集起来,在无太阳能供应的情况下仍然可以继续供热,增加了系统的稳定性和可靠性。
五、施工工艺全时自动逐日聚光式太阳能槽式集热器施工工艺的主要步骤如下:1. 地基施工:根据施工图纸进行地基开挖,平整地面并浇筑混凝土基础。
太阳能腔体式(黑体)集热管设计与优化王磊;朱天宇;刘庆君;薛正东【摘要】在槽式太阳能集热装置中,为了减少吸热管与外界的对流损失,一般采用真空集热管。
为此,设计出一种新型腔体(黑体)式集热管,以质优价廉的优势适应中温(100~250℃)的应用场合。
建立槽式太阳能聚光三维模型,分析了聚光器的焦距、聚光器跟踪误差角与腔体开口宽度之间的关系,对腔体结构进行了优化。
并基于 TracePro 软件,对集热管进行聚光性能模拟。
结果表明,在跟踪误差存在的情况下,聚光器聚光效率达到80%,验证了实际工作中的可能性。
%In order to reduce the convection loss between the solar collector tube and the environ-ment,a vacuum collector is usually used in trough solar collector.A new cavity (black cavity)collec-tor has been designed with its high quality and low price adapting medium temperature (100~250 ℃) applications.A three dimensional model of solar trough collector has been built.The focal length of the condenser has been discussed,the relationship between light concentrator tracking error angle and the cavity opening width has been analyzed,the cavity has also been optimized.The working situa-tion of collector tube has been simulated by soft-ware TracePro.The results show that nearly 80%of the light can be reflected to collector tube in cavity,and the possibility in practical work has been proved.【期刊名称】《机械与电子》【年(卷),期】2014(000)007【总页数】4页(P15-18)【关键词】槽式太阳能集热管;黑体;腔体开口宽度;跟踪误差角【作者】王磊;朱天宇;刘庆君;薛正东【作者单位】河海大学机电工程学院,江苏常州 213022; 南通河海大学海洋与近海工程研究院,江苏南通 226019;河海大学机电工程学院,江苏常州 213022; 南通河海大学海洋与近海工程研究院,江苏南通 226019;河海大学机电工程学院,江苏常州 213022; 南通河海大学海洋与近海工程研究院,江苏南通 226019;河海大学机电工程学院,江苏常州 213022; 南通河海大学海洋与近海工程研究院,江苏南通 226019【正文语种】中文【中图分类】TK5120 引言中高温太阳能集热器中主要包括聚光装置和集热装置,包括聚光器对太阳的实时追踪,跟踪驱动和线性聚焦集热管,实现高温热利用的3项核心技术。
太阳能光热发电系统的设计与实现太阳能光热发电系统是目前世界上最受关注的可再生能源之一。
它不仅可以帮助我们减少使用化石燃料等不可再生资源,也能减少空气污染和温室气体的排放。
这种系统利用太阳能把光能转化为热能,然后再把热能转化为电能。
在这篇文章中,我将介绍太阳能光热发电系统的设计与实现。
I. 太阳能光热发电系统的组成部分太阳能光热发电系统主要由太阳能集热器、传热系统、蒸汽发生器、蒸汽涡轮发电机、储热系统、水循环系统、控制系统等组成。
1.太阳能集热器:太阳能集热器是太阳能光热发电系统的关键组成部分,用于把太阳能转化为热能。
其主要分类有平板集热器和聚光集热器两种。
平板集热器应用较广,因为它的制作成本较低,但其效率较低。
而聚光集热器则可以将太阳辐射能集中到一个小区域,使得温度变得非常高,从而提高发电效率。
2.传热系统:传热系统用来传递集热器中产生的热量到蒸汽发生器,主要包括流体输送管道、换热器、水循环泵等。
其中流体输送管道的选择非常重要,因为它需要承受高温高压的热质料。
3.蒸汽发生器:蒸汽发生器用于将集热器中的热量转化为水蒸汽,用来驱动蒸汽涡轮发电机来产生电能。
目前,常用的蒸汽发生器有自然循环式和强制循环式两种。
4.蒸汽涡轮发电机:蒸汽涡轮发电机是将蒸汽的动能转化为电能的关键设备。
常见的蒸汽涡轮发电机是由几个涡轮级组成的,涡轮级之间通过各自的高压和低压蒸汽输出端合并起来,形成一个完整的流动闭合系统,最后输出电能。
5.储热系统:储热系统用来储存集热器收集到的热能。
这种系统允许把白天的热量储存在储热器中,在晚上和阴雨天时,仍能够产生电能。
6.水循环系统:水循环系统通过传递热量把蒸汽发生器中的液态水转化为蒸汽,驱动发电机产生电能,然后将水再次送回蒸汽发生器,形成循环,节约水的使用量。
7.控制系统:控制系统主要用于监测和控制整个太阳能光热发电系统的运行状况,确保系统运行安全可靠。
II. 太阳能光热发电系统的设计流程太阳能光热发电系统的设计流程主要包括以下几个步骤。
分类号学号M201070981学校代码10487密级硕士学位论文碟式聚光太阳能集热器的性能分析及试验装置设计学位申请人:宋佳学科专业:动力工程指导教师:高伟教授张燕平副教授答辩日期:2012年5月24日A Thesis Submitted in Partial Fulfillment of the Requirementsfor the Degree of Master of EngineeringAnalysis on the Performance of Collector of Dish concentrator System and Design on Testing EquipmentsCandidate:Song JiaMajor:Power EngineeringSupervisor:Prof.Gao WeiAssoc.Prof.Zhang YanPingHuazhong University of Science&TechnologyWuhan430074,P.R.ChinaMay,2012独创性声明本人声明所呈交的学位论文是我个人在导师指导下进行的研究工作及取得的研究成果。
尽我所知,除文中已经标明引用的内容外,本论文不包含任何其他个人或集体已经发表或撰写过的研究成果。
对本文的研究做出贡献的个人和集体,均已在文中以明确方式标明。
本人完全意识到本声明的法律结果由本人承担。
学位论文作者签名:日期:年月日学位论文版权使用授权书本学位论文作者完全了解学校有关保留、使用学位论文的规定,即:学校有权保留并向国家有关部门或机构送交论文的复印件和电子版,允许论文被查阅和借阅。
本人授权华中科技大学可以将本学位论文的全部或部分内容编入有关数据库进行检索,可以采用影印、缩印或扫描等复制手段保存和汇编本学位论文。
保密□,在年解密后适用本授权书。
本论文属于不保密□。
(请在以上方框内打“√”)学位论文作者签名:指导教师签名:日期:年月日日期:年月日华中科技大学硕士学位论文摘要太阳能热发电中碟式太阳能热发电系统与槽式和塔式系统相比有很多优势,可以达到较高的热电转换效率和热效率,因此成为较可行且效率较高的热发电装置。
聚光集热技术聚光集热技术是一种利用太阳能的高效方式,通过聚光器将太阳光线聚焦到一个小范围内,从而提高太阳能的密度和温度,实现太阳能的高效利用。
本文将介绍聚光集热技术的基本原理、分类、应用以及发展趋势。
一、基本原理聚光集热技术是一种利用太阳能的高效方式,主要由聚光器、集热器和跟踪系统三部分组成。
聚光器是将太阳光线聚焦到一个小范围内的装置,通常由反射镜或透镜组成。
集热器是将聚焦后的太阳能转化为热能的装置,通常是由吸热性能较好的材料制成。
跟踪系统则是用于跟踪太阳位置,使聚光器始终对准太阳,从而保证能量的高效收集。
聚光集热技术的基本原理是利用聚光器将太阳光线聚焦到一个小范围内,从而提高太阳能的密度和温度。
聚焦后的太阳能会被集热器吸收,转化为热能,进而用于发电、供暖、热水等应用。
二、分类根据聚光器的类型,聚光集热技术可以分为反射式聚光集热技术和透镜式聚光集热技术两种。
反射式聚光集热技术使用反射镜作为聚光器,通常由多个曲面反射镜组成,将太阳光线反射到一个焦点上。
这种技术结构简单、成本较低,但聚焦效率相对较低。
透镜式聚光集热技术使用透镜作为聚光器,将太阳光线聚焦到一个点上。
这种技术聚焦效率高,但透镜制作工艺复杂,成本较高。
三、应用聚光集热技术广泛应用于太阳能发电、太阳能供暖、太阳能热水等领域。
在太阳能发电方面,聚光集热技术可以用于太阳能热发电和太阳能光热发电。
太阳能热发电通过聚光集热技术将太阳能转化为热能,进而驱动汽轮机发电。
太阳能光热发电则是利用聚光集热技术将太阳能转化为高温高压的蒸汽,直接驱动发电机发电。
在太阳能供暖方面,聚光集热技术可以用于供暖系统,通过聚光集热技术将太阳能转化为热能,供暖室内。
CPC在中高温太阳能集热器中的应用与设计在太阳能中高温热利用中普通的太阳能集热器难以达到100℃以上温度,必须通过聚光来实现中高温集热器。
复合抛物面(CPC)是一种非成像低聚焦度的聚光器。
文章根据边缘光线原理,给出复合抛物面聚光器的曲线方程,并结合实例介绍一种复合抛物面(CPC)的设计方法。
标签:复合抛物面(CPC);热管式真空管;中高温太阳能集热器前言随着发展中国家工业大幅扩张,消耗的蒸汽数量增长迅速,由此造成的环境问题如CO2、SO2等温室气体排放、氮氧化物等有害气体的污染日益加重;另一方面,国际原油价格的飙升,使企业生产成本急剧增加。
从环境、社会经济的可持续发展角度来说,既环保又采之不尽的太阳能中高温热利用成为必然趋势。
中高温蒸汽是指温度范围在100~300℃的蒸汽,在工农业生产中有着广泛的应用。
在太阳能中温应用领域中,由于非聚光集热器很难达到较高的温度,而抛物面聚光器又需要复杂的跟踪系统,价格昂贵,因此复合抛物面聚光器(CPC)有着广泛的应用前景。
1 复合抛物面(CPC)的设计1.1 复合抛物面(CPC)的特点在太阳能中高温热利用中普通的太阳能集热器难以达到100℃以上温度,必须通过聚光来实现中高温集热器。
复合抛物面(CPC)是一种非成像低聚焦度的聚光器,具有以下特点:(1)由于它有较大的接收角,故在运行时不需要连续跟踪太阳能,它的聚光比可达到在10以内,当聚光比在3以下时可做成固定式装置;(2)可接收直射太阳能辐射和部分散射辐射,并能接收一般跟踪聚光器所不能接收的”太阳能周围辐射”;(3)复合抛物面(CPC)的聚光面型加工精度要求不严格,将其应用在太阳能集热器中,可降低成本。
复合抛物面(CPC)型热管式中高温太阳能集热器采用外聚光方式,以热管式真空管作为吸收体,在热管式真空管外增加了复合抛物面聚光反射器(CPC),使集热效率得到大幅度提高,温度可达100~250℃。
1.2 复合抛物面(CPC)聚光器的设计根据边缘光线原理:对于聚光器,以最大入射半角θ入射的所有光线,都必须从出射孔径的边缘出射。