基于MATLAB的高次多项式凸轮型线优化设计
- 格式:docx
- 大小:676.90 KB
- 文档页数:8
基于MATLAB和C++ Builder平台的发动机凸轮型线仿真
设计方法研究
褚超美;李兆建;吴佐铭
【期刊名称】《内燃机工程》
【年(卷),期】2009(030)002
【摘要】针对发动机凸轮型线设计开发中计算工作量大,参数优选过程复杂的问题,研究并开发了以 MATLAB作为数值计算引擎,C++ Builder作为应用程序混合编程的发动机凸轮型线设计平台,实现了凸轮型线设计过程中方便、快捷、计算精确的目标,对几种典型凸轮型线的设计应用表明,该系统均能满足各型线特征参数优选设计的要求,并已在产品设计开发中得到了实际应用.
【总页数】5页(P69-72,77)
【作者】褚超美;李兆建;吴佐铭
【作者单位】上海理工大学,机械工程学院,上海,200093;上海理工大学,机械工程学院,上海,200093;上海理工大学,机械工程学院,上海,200093
【正文语种】中文
【中图分类】TK413.4
【相关文献】
1.基于C++ BUILDER和MATLAB的电动汽车仿真软件的接口技术研究 [J], 程飞;过学迅;别辉
2.基于Matlab与DSP Builder的2PSK调制解调器设计与仿真 [J], 李鹏飞;李金
平;陆小菊;赵欣
3.基于Matlab和Visual C++的惯导误差仿真方法研究 [J], 陈永冰;陈绵云;谢纯乐;李文魁
4.基于C++ Builder和Matlab实现天线方向图可视化软件的设计 [J], 王勋志;王玲丽
5.基于Matlab和C++ Builder的数字滤波仿真实现 [J], 林知明;杨高波
因版权原因,仅展示原文概要,查看原文内容请购买。
基于MATLAB软件的凸轮轮廓曲线设计摘要:以偏置移动从动件盘形凸轮为例,基于MATLAB软件对凸轮轮廓曲线进展了解析法设计.绘制出轮廓曲线。
运行结果说明:在从动件运动规律确定的情况下,利用MATLAB软件以很方便、快捷地得到凸轮的轮廓曲线。
关键词:凸轮机构;凸轮轮廓曲线;MATLAB;解析法前言凸轮轮廓曲线的设计,一般可分为图解法和解析法.利用图解法能比拟方便地绘制出各种平面凸轮的轮廓曲线.但这种方法仅适用于比拟简单的构造,用它对复杂构造进展设计那么比拟困难,而且利用图解法进展构造设计,作图误差较大,对一些精度要求高的构造不能满足设计要求。
解析法可以根据设计要求,通过推导机构中各局部之间的几何关系,建立相应的方程,准确地计算出轮廓线上各点的坐标,然后把凸轮的轮廓曲线准确地绘制出来.但是,当从动件运动规律比拟复杂时,利用解析法获得凸轮的轮廓曲线的工作量比拟大.而MATLAB软件提供了强大的矩阵处理和绘图功能,具有核心函数和工具箱.其编程代码接近数学推导公式,简洁直观,操作简易,人机交互性能好,且可以方便迅速地用三维图形、图像、声音、动画等表达计算结果、拓展思路[1]。
因此,基于MATLAB软件进展凸轮机构的解析法设计,可以解决设计工作量大的问题。
本文基于MATLAB软件进展凸轮轮廓曲线的解析法设计,利用?机械原理?课程的计算机辅助教学,及常用机构的计算机辅助设计.其具体方法为首先准确地计算出轮廓线上各点的坐标,然后运用MATLAB绘制比拟准确的凸轮轮廓曲线。
1 设计的意义与条件1.1意义凸轮机构是由具有曲线轮廓或凹槽的构件,通过高副接触带动从动件实现预期运动规律的一种高副机构,它广泛地应用于各种机械,特别是自动机械、自动控制装置和装配生产线中,是工程实际中用于实现机械化和自动化的一种常用机构。
所以,在凸轮的加工中,准确确实定凸轮的轮廓,这对于保证凸轮所带动从动件的运动规律是尤为重要的。
1.2条件偏置移动从动件盘形凸轮设计条件〔图1〕:凸轮作逆时针方向转动,从动件偏置在凸轮轴心的右边从动件在推程作等加速/等减速运动,在回程作余弦加速度运动基圆半径rb = 40 mm,滚子半径rt = 10mm,推杆偏距e = 15 mm,推程升程h = 50 mm,推程运动角ft = 100度,远休止角fs = 60度回程运动角fh = 90度,推程许用压力角alp = 35度。
微型汽车发动机凸轮型线仿真优化设计及应用研究本文旨在探讨微型汽车发动机凸轮型线的仿真优化设计及其应用研究。
微型汽车发动机是一种小型、轻量化的发动机,具有体积小、重量轻、功率高、燃油经济性好等优点。
在内燃机领域中,微型汽车发动机获得了广泛的应用和研究。
凸轮是微型汽车发动机中的关键部件,控制着气门的开关和气门升程,直接影响发动机的性能。
凸轮型线的合理设计对发动机性能具有重要影响。
本文对微型汽车发动机凸轮型线进行仿真优化设计并进行了应用研究。
具体研究过程如下:一、凸轮型线的建模在仿真优化设计过程中,首先需要建立凸轮型线的数学模型。
本文采用MATLAB软件进行建模,绘制凸轮型线的曲线图并进行数据处理。
通过示波器观察发动机工作过程中气门的开关情况,得到气门开启和关闭的时刻,并将这些数据转换成MATLAB软件中的离散点数据。
二、凸轮型线的仿真优化设计在建立好凸轮型线的数学模型之后,本文采用遗传算法对凸轮型线进行仿真优化设计。
遗传算法是一种模仿自然进化机制的优化算法,通过模拟进化过程来搜索最优解。
将凸轮形状参数作为遗传算法的“基因”,设置适应度函数来衡量凸轮性能,不断演化优化得到最优解。
三、凸轮型线的应用研究通过仿真优化设计,本文得到了一组优化后的凸轮型线参数,再将这些参数应用于实际微型汽车发动机中,进行燃烧室压力测量和性能测试。
实验结果显示,优化后的凸轮型线可以明显提升发动机的输出功率和燃油经济性。
综上所述,通过对微型汽车发动机凸轮型线的仿真优化设计及应用研究,本文取得了一定的研究成果。
在未来的研究中,可以进一步探究凸轮型线的优化方案,并将其应用于更广泛的内燃机领域中,为内燃机的发展提供有价值的参考。
进一步探究凸轮型线的优化方案,可以从以下几个方面进行研究:一、不同工况下的凸轮型线优化不同工况下发动机对凸轮型线的要求不同,因此凸轮型线的优化也需要根据不同工况进行制定。
比如,在高速运转状态下,发动机需要更高的输出功率,因此凸轮型线的参数需要针对高负荷、高转速的要求进行优化。
基于matlab的凸轮轮廓曲线设计凸轮是机械中常见的关键零件之一,其主要功能是将旋转的运动转化为直线运动,用于推动某些机械元件进行工作。
凸轮轮廓曲线的设计对于凸轮的运动和工作效率有着重要的影响。
在本文中,我们将介绍基于matlab的凸轮轮廓曲线设计方法,以帮助读者了解凸轮轮廓曲线设计的基本概念和方法。
凸轮的形状通常是复杂的非圆形曲线。
凸轮的轮廓曲线设计过程中,需要考虑控制凸轮输送运动的速度和加速度等因素,同时还需要考虑各种机械元件之间的协调性和协定性。
针对以上问题,我们提出了基于连续逼近法的凸轮轮廓曲线设计方法。
1. 连续逼近法的基本原理连续逼近法是一种典型的非线性规划方法,其基本思想是将目标函数逐渐逼近最优解。
在凸轮轮廓曲线设计中,我们可以将凸轮轮廓曲线视为目标函数,通过不断调整曲线的形状,逐渐逼近最优轮廓曲线。
连续逼近法的具体实现过程包括以下步骤:(1)确定初始值首先需要确定一个初始轮廓曲线,通常可以使用圆弧、抛物线等基本曲线来作为起始轮廓曲线。
(2)建立数学模型接着需要建立凸轮轮廓曲线的数学模型,以便于通过数值方法来求解最优轮廓曲线。
其中,常见的模型包括三次贝塞尔曲线、三次样条曲线等。
(3)计算目标函数根据建立的数学模型,通过计算目标函数来评估轮廓曲线的性能。
通常,目标函数包括运动速度、加速度、平衡性等因素。
(4)优化轮廓曲线通过对目标函数的优化,不断调整轮廓曲线的形状,逐渐逼近最优曲线。
(5)确定最优解最终确定最优解,并验证其性能。
matlab是一种常见的数学软件,可以运用其强大的计算能力来进行凸轮轮廓曲线的设计。
具体实现过程如下:(1)数据处理将凸轮相关的数据通过matlab进行存储和处理。
常见的数据包括凸轮的尺寸、旋转角度、轮廓曲线等。
根据凸轮的数据建立轮廓曲线的数学模型,其中包括选择适当的曲线类型、确定曲线参数等。
(5)性能验证3. 总结。
机械装备优化设计三级项目基于MATLAB的高次多项式凸轮型线优化设计班级:12级机械装备-2班设计人员(按贡献大小排序):唐俊杰(12011010093)卫健行(120101010092)王荟博(120101010095)摘要动力凸轮型线的设计十分重要,以高次多项式凸轮型线为例,在基于丰满系数和磨损设计多目标函数情况下,利用MATLAB及其优化工具箱(optimizationtoolbox)对目标函数数学模型进行优化求解。
应用MATLAB的优化函数提供的强大计算功能,确定了凸轮型线高次五项式函数中的系数,并能快速找到目标函数的优化值。
显著提高了型线优化设计的速度和精度,还可根据实际情况灵活地调整权重系数W1和W2的值的大小,计算方便快捷。
在与传统设计方法比较结果表明,经优化设计,提高了动力凸轮的丰满系数,降低了凸轮型线的磨损。
关键词:优化设计; MATLAB; 高次多项式; 凸轮型线前言随着工程技术的发展和最优化技术的广泛应用,科学技术领域中需要求解很多优化问题。
而工程中的最优化问题,绝大多数是有约束的,且多属于非线性规划问题[1]。
内燃机配气系统中凸轮型线的设计就是这一种有约束非线性规划问题。
由于各种限制条件的复杂性,传统凸轮曲线设计方法难以找到合适的曲线参数,本文讨论此类情况下,利用MATLAB优化工具箱(optimizationtoolbox)解决多目标函数情况下凸轮型线优化设计问题。
通过MAT-LAB强大的计算功能,确定了凸轮型线高次五项式函数中的系数,利用其优化工具箱寻找了以丰满系数和磨损设计为数学模型的最优值。
小组分工:唐俊杰负责MATLAB编程和WORD的制作王荟博负责WORD的制作和PPT的制作卫健行负责WORD的制作,查阅资料一、高次五项式凸轮型线凸轮曲线采用高次多项式型线,多项式项位向右影响渐弱,通常高次多项式取五项至七项。
第六项以后对动力性能指标的影响力已很小,随着高次多项式项数的增加,凸轮丰满系数减小,加速度的绝对值变大,凸轮机构工作性能下降。
基于MATLAB汽车发动机配气凸轮的型线设计与接触应力分析MATLAB是一款功能强大的工程计算软件,被广泛应用于各个领域。
在汽车工业中,MATLAB可以用来进行发动机配气凸轮的型线设计和接触应力分析。
本文将详细介绍MATLAB在汽车发动机配气凸轮设计中的应用。
汽车发动机配气凸轮是发动机中重要的构件之一,它负责控制气门的开合以调节进出气量,影响整个发动机的性能。
因此,设计一款合理的配气凸轮是非常重要的工作。
在实际设计中,需要考虑凸轮曲线的连续性、尺寸和形状等,并通过模拟和分析来评估其性能和强度。
MATLAB提供了丰富的函数和工具箱,可以用来进行凸轮曲线的设计和分析。
其中,MATLAB的Symbolic Math Toolbox可以用来进行符号计算,求解形式化的数学问题,包括曲线的导数和积分等。
同时,MATLAB的Simscape Multibody可以用来进行动力学仿真和接触分析。
对于配气凸轮的设计,首先需要确定凸轮的基本参数,如凸轮半径、凸轮角度等。
然后,可以根据相应的曲线算法生成凸轮曲线。
接着,可以使用MATLAB的Symbolic Math Toolbox来求解曲线的导数和积分,以计算凸轮曲线的切线和法线。
最后,根据切线和法线的数据,可以绘制出凸轮曲线图像。
接下来是接触应力分析。
在凸轮和气门接触时,会产生接触应力。
为了更好的评估凸轮的强度,需要进行接触应力分析。
可以使用MATLAB的Simscape Multibody进行动力学仿真和接触分析。
首先,需要将凸轮和气门模型导入到模拟环境中,并设置相应的初始参数。
然后,在模拟过程中,MATLAB会计算出接触应力,生成相应的分析报告。
总之,MATLAB在汽车发动机配气凸轮的设计中是非常实用的工具。
通过使用MATLAB的Symbolic Math Toolbox和Simscape Multibody,可以快速、准确地进行凸轮型线设计和接触应力分析,为发动机的性能和强度评估提供有力支持。
Matlab 课程设计李俊机自091设计题目一:凸轮机构设计已知轮廓为圆形的凸轮(圆的半径为100mm、偏心距为20mm),推杆与凸轮运动中心的距离20mm,滚子半径为10mm,请利用matlab仿真出凸轮推杆的运动轨迹和运动特性(速度,加速度),并利用动画演示出相关轨迹和运动特性。
%总程序代码clc;clf;clear;p=figure('position',[100 100 1200 600]);for i=1:360%画圆形凸轮R=100; %圆形凸轮半径A=0:0.006:2*pi;B=i*pi/180;e=20; %偏心距a=e*cos(B);b=e*sin(B);x=R*cos(A)+a;y=R*sin(A)+b;subplot(1,2,1)plot(x,y,'b','LineWidth',3);%填充fill(x,y,'y')axis([-R-e,R+e,-R-e,R+e+100]);set(gca,'Xlim',[-R-e,R+e])set(gca,'Ylim',[-R-e,R+e+100])axis equal;axis manual;axis off;hold on;plot(a,b,'og')plot(e,0,'or')plot(0,0,'or','LineWidth',3)%画滚子gcx=0; %滚子中心X坐标r=10; %滚子半径gcy=sqrt((R+r)^2-a^2)+b; %滚子中心Y坐标gx=r*cos(A)+gcx; %滚子X坐标gy=r*sin(A)+gcy; %滚子Y坐标plot(gx,gy,'b','LineWidth',2);%画其它部分plot([0 a],[0 b],'k','LineWidth',4)plot([3 3],[170 190],'m','LineWidth',4)plot([-3 -3],[170 190],'m','LineWidth',4)%画顶杆gc=120;dgx=[0 0];dgy=[gcy gcy+gc];plot(dgx,dgy,'LineWidth',4);hold off%画位移图sx(i)=B;sy(i)=gcy;subplot(3,2,2)plot(sx,sy,'b','LineWidth',3)title('位移线图')grid onhold off;%画速度图vx(i)=B;vy(i)=20*cos(B) + (40*cos(B).*sin(B))./(121 - 4*cos(B).^2).^(1/2);subplot(3,2,4)plot(vx,vy,'g','LineWidth',3)title('速度线图')grid onhold off;%画加速度图ax(i)=B;ay(i)=(40*cos(B).^2)./(121 - 4*cos(B).^2).^(1/2) - 20*sin(B) - (40*sin(B).^2)/(121 -4*cos(B).^2).^(1/2) - (160*cos(B).^2.*sin(B).^2)/(121 - 4*cos(B).^2).^(3/2); subplot(3,2,6)plot(ax,ay,'r','LineWidth',3),xlabel('B')title('加速度线图')grid onhold off;M=getframe;end截图附:通过求导求速度和加速度%求速度syms B;a=e*cos(B);b=e*sin(B);s=sqrt((R+r).^2-a.^2)+b;v=diff(s)结果:v =20*cos(B) + (40*cos(B)*sin(B))/(121 - 4*cos(B)^2)^(1/2)%求加速度syms B;v =20*cos(B) + (40*cos(B)*sin(B))/(121 - 4*cos(B)^2)^(1/2);a=diff(v)结果:a =(40*cos(B)^2)/(121 - 4*cos(B)^2)^(1/2) - 20*sin(B) - (40*sin(B)^2)/(121 - 4*cos(B)^2)^(1/2) - (160*cos(B)^2*sin(B)^2)/(121 - 4*cos(B)^2)^(3/2)。
■2凸轮轮廓及其综合1.凸轮机构从动件的位移凸轮是把一种运动转化为另一种运动的装置。
凸轮的廓线和从动件一起实现运动形式的转换。
凸轮通常是为定轴转动,凸轮旋转运动可被转化成摆动、直线运动或是两者的结合。
凸轮机构设计的内容之一是凸轮廓线的设计。
定义一个凸轮基圆r b 作为最小的圆周半径。
从动件的运动方程如下:L(「)=r b +s(「)a( :) = 0 2 3 w ' w 2n设凸轮的推程运动角和回程运动角均为 3,从动件的运动规律均为正弦加速度运动规律, 则有:s( :) = h(:—sin(2 n / 3 )) Ow w 3s( :) = h — h(心―|31- sin(2 n (「- 3 / 3 ))s( :) = 0 2上式是从动件的位移,h 是从动件的最大位移,并且 o w3w如果假设凸轮的旋转速度 3= d 「/dt 是个常量,则速度 加速度a 和瞬时加速度j(加速度对时间求异)分别如下:速度:h(:)=(1-cos(2 n ■■ / 3 ))0W W加速度:h(;:)=—:(1-cos(2 n (「- 3 )/(;:)=0 2 3 w w 2 na(「)=..厂sin(2 n ■■/ 3 ))a( J =-sin(2 n ( ■- 3 )/ 3 )3w w 23beta=60*pi/180;phi=li nspace(0,beta,40);phi2=[beta+phi]; ph=[phi phi2]*180/pi; arg=2*pi*phi/beta;arg2=2*pi*(phi2-beta)/beta;s=[phi/beta-si n(arg)/2/pi 1-(arg2-si n(arg2))/2/pi]; v=[(1_cos(arg))/beta_(1_cos(arg2))/beta]; a=[2*pi/beta A 2*si n(arg)2*pi/beta A 2*si n(arg2)];j=[4*pi A 2/beta A 3*cos(arg)4*pi A 2/beta A 3*cos(arg2)]:subplot(2,2,1) plot(ph,s, / K x ) xlabel( / Cam angle(degrees) / ) ylabel( / Displacement(S) x ) g=axis; g(2)=120; axis(g) subplot(2,2,2) plot(ph,v, / k x,[0 120],[0 0],/ k-- / ) xlabel( / Cam angle(degrees) / )ylabel(/ Velocity(V)')g=axis; g(2)=120; axis(g) subplot(2,2,3)plot(ph,a, / k x ,[0 120],[0 0], / k--')xlabel( / Cam angle(degrees) / ) ylabel( / Acceleration(A) x ) g=axis; g(2)=120; axis(g) subplot(2,2,4)plot(ph,j, / k ,,[0 120],[0 0],/ k-- j瞬时加速度:j(.)=4-:3 hcos(2 n ■■/ 3 )) j(伫4n ( - 3)/ 3)j(定义无量纲位移S=s/h 、无量纲速度 V=u / 3 h 、无量纲加速度 A=a/h 3 3和无量纲瞬时加速度 J=j/h 3 3。
矿产资源开发利用方案编写内容要求及审查大纲
矿产资源开发利用方案编写内容要求及《矿产资源开发利用方案》审查大纲一、概述
㈠矿区位置、隶属关系和企业性质。
如为改扩建矿山, 应说明矿山现状、
特点及存在的主要问题。
㈡编制依据
(1简述项目前期工作进展情况及与有关方面对项目的意向性协议情况。
(2 列出开发利用方案编制所依据的主要基础性资料的名称。
如经储量管理部门认定的矿区地质勘探报告、选矿试验报告、加工利用试验报告、工程地质初评资料、矿区水文资料和供水资料等。
对改、扩建矿山应有生产实际资料, 如矿山总平面现状图、矿床开拓系统图、采场现状图和主要采选设备清单等。
二、矿产品需求现状和预测
㈠该矿产在国内需求情况和市场供应情况
1、矿产品现状及加工利用趋向。
2、国内近、远期的需求量及主要销向预测。
㈡产品价格分析
1、国内矿产品价格现状。
2、矿产品价格稳定性及变化趋势。
三、矿产资源概况
㈠矿区总体概况
1、矿区总体规划情况。
2、矿区矿产资源概况。
3、该设计与矿区总体开发的关系。
㈡该设计项目的资源概况
1、矿床地质及构造特征。
2、矿床开采技术条件及水文地质条件。