凸轮的matlab绘制
- 格式:doc
- 大小:97.50 KB
- 文档页数:6
基于MATLAB的凸轮轮廓曲线设计作者:丁昊昊,牛成亮,蒋超猛,龚伟来源:《科技传播》2011年第15期摘要凸轮机构的运动设计主要包括从动件运动规律的确定和凸轮轮廓曲线的设计等。
通常是先确定从动件的运动规律,然后根据从动件的运动规律确定凸轮的轮廓曲线。
本文是在从动件运动规律确定的情况下,利用MATLAB强大的数据处理功能来确定凸轮轮廓曲线。
本文以尖底直动从动件盘形凸轮为例,对其凸轮轮廓曲线进行设计。
结果表明:在从动件运动规律确定的情况下,利用MATLAB软件,可以很方便的得到相应的轮廓曲线。
关键词凸轮机构;凸轮轮廓曲线;MATLAB中图分类号TP31 文献标识码A 文章编号 1674-6708(2011)48-0176-021 凸轮轮廓曲线参数方程的建立1.1 盘形凸轮轮廓曲线1)如图1所示为偏置尖底直动从动件、凸轮逆时针方向转动的情况。
偏距e、基圆半径r0和从动件运动规律已给出。
假想凸轮固定不动,则机架按-w方向转动,这种运动称为“反转运动”。
从动件做复合运动,以从动件上与凸轮接触的点B为动点,静止坐标系固结于凸轮上,动坐标系固结于机架上。
动点B对于机架的相对运动为直线运动,机架对于凸轮的牵连运动为-w方向的转动,动点B对于凸轮的绝对运动所产生的轨迹便是凸轮的轮廓曲线。
如图1所示B0点是从动件处于最低位置时动点B的位置,设此点为凸轮轮廓曲线的起始点,当凸轮转过角度以后,从动件上升距离s,动点B从B0点上升到B1点。
然后将B1以O点为圆心转过-w角度便得到B点位置。
利用平面矢量旋转矩阵便可得到B 点位置坐标。
整理得到凸轮轮廓曲线上的点B的坐标与凸轮转角之间的关系。
2)对心平底直动从动件、凸轮顺时针转动的情况。
类似于偏置尖底直动从动件、凸轮逆时针方向转动的情况,对心平底直动从动件盘形凸轮的基圆半径和从动件运动规律已经给出。
对于平底直动从动件盘形凸轮机构,利用“反转运动”和从动件运动规律,可以得到平底运动所得到的直线族,直线族的包络线就是凸轮的轮廓曲线。
H a r b i n I n s t i t u t e o f T e c h n o l o g y课程名称:精密机械学基础设计题目:直动从动件盘形凸轮的设计院系:航天学院控制科学与工程系班级: 0904102班设计者:陈学坤学号: ********** 设计时间: 2011年10月直动从动件盘形凸轮机构的计算机辅助设计说明:凸轮轮阔曲线的设计,一般可分为图解法和解析法,尽管应用图解法比较简便,能简单地绘制出各种平面凸轮的轮廓曲线,但由于作图误差比较大,故对一些精度要求高的凸轮已不能满足设计要求。
此次应用MATLAB 软件结合轮廓线方程用计算机辅助设计。
首先,精确地计算出轮廓线上各点的坐标,然后运用MATLAB 绘制比较精确的凸轮轮廓曲线以及其S-α曲线、v-t 曲线、a-t 曲线。
。
1 凸轮轮廓方程*()()*()()*()*()X OE EF E Cos J So S Sin J Y BD FD So S Cos J E Sin J =+=++=-=+-(X,Y):凸轮轮廓线上的任意一点的坐标。
E :从动件的偏心距,OC 。
R :凸轮的基园半径,OA 。
J :凸轮的转角。
S :S=f(J)为从动件的方程。
So :O S =H 为从动件的最大位移(mm )。
J1、J2、J3、J4为从动件的四个转角的区域。
S1、S2、S3、S4为与J1、J2、J3、J4对应的从动件的运动规律。
2 实例R=40,E=10,H=50,J1=J2=J3=J4=900。
3 MATLAB 程序设计用角度值计算,对于给定的J1、J2、J3、J4,把相应的公式代入其中,求出位移S 和轮廓线上的各点的坐标X 、Y ,最终求出描述凸轮的数组:J=[J1,J2,J3,J4];S=[S1,S2,S3,S4]; X=[X1,X2,X3,X4]; Y=[Y1,Y2,Y3,Y4];用函数plot (X,,Y )画出凸轮的轮廓曲线; 用plot (J,S )函数位移S 的曲线; 对于速度曲线V-t 和加速度曲线a-t ,ds ds ds dt dt V dJ dJ dtω===在算例中已假设凸轮匀速转动的角速度为1wad/s ,所以ds ds ds ds dt dt V dJ dt dJ dtω====速度 同理可得:dJds dtdva 22==加速度4 程序运行结果图一:余弦速运动规律下的凸轮轮廓曲线图二:余弦加速作用下的S-α曲线图三:余弦加速作用下的v-t曲线图四:余弦加速作用下的a-t曲线5 附程序:function tulunR=40;E=10;H=50;J1=90;J2=90;J3=90;J4=90;S0=(R^2-E^2)^(1/2);syms J S dJ dS d2J d2SJ11=linspace(0,J1,500);S1=(H/2).*(1-cos(pi.*J11/J1));X1=E.*cos(J11.*pi/180)+(S0+S1).*sin(J11.*pi/180); Y1=(S0+S1).*cos(J11.*pi/180)-E.*sin(J11.*pi/180);J22=linspace(J1,J1+J2,300);S2=J22./J22.*H;X2=E.*cos(J22.*pi/180)+(S0+H).*sin(J22.*pi/180); Y2=(S0+H).*cos(J22.*pi/180)-E.*sin(J22.*pi/180);J33=linspace(J1+J2,J1+J2+J3,300);S3=H-(H/2).*(1-cos(pi*J33/J3));X3=E*cos(J33*pi/180)+(S0+S3).*sin(J33*pi/180);Y3=(S0+S3).*cos(J33*pi/180)-E*sin(J33*pi/180);J44=linspace(J1+J2+J3,J1+J2+J3+J4,300);X4=E.*cos(J44*pi/180)+S0*sin(J44*pi/180);Y4=S0.*cos(J44*pi/180)-E*sin(J44*pi/180);S4=J44./J44.*0;X=[X1,X2,X3,X4];Y=[Y1,Y2,Y3,Y4];figure(1);plot(X,Y);hold on;t=linspace(0,2*pi,500);x=R*cos(t);y=R*sin(t);plot(x,y);title('凸轮的轮廓曲线');axis([-90,90,-90,90]);axis square;figure(2);plot(J11,S1);hold on;plot(J22,S2);plot(J33,S3);plot(J44,S4);ylabel('S');xlabel('α/rad');title('S-α曲线');J=[J11,J22,J33,J44];S=[S1,S2,S3,S4];dS=diff(S)./diff(J); %通过对位移求导后可得速度。
MATLAB在摆动滚子从动件盘形凸轮机构设计中的应用摘要:凸轮机构可以使从动件准确的实现某种预期的运动规律,它广泛的应用于自动机械、自动控制装置和装配生产线中。
本文将从凸轮机构的压力角及其基本尺寸的设计、从动件的运动规律、凸轮廓线的设计等方面介绍matlab在摆动滚子从动件盘形凸轮机构设计中的应用。
关键词:摆动滚子从动件盘形凸轮机构 matlabthe application of matlab in the oscillating roller follower disc cam mechanism designli hailong, luo fengming(southwest jiaotong university emei, le shan si chuan province ,614202)abstract:cam mechanism can make the follower accurately realize some expected movement which is widely used in automatic machinery, automatic control equipment and assembly production line. the article will introduce the application of matlab in the oscillating roller follower disc cam mechanism design from the pressure angle of cam and its basic size design, the motion law of the follower and cam profile design etc.key words: disk cam mechanism with oscillating roller follower;matlab1.问题的描述设计一个摆动滚子凸轮机构,要求导杆机构的最大压力角应为最小值;凸轮机构的最大压力角应在许用值[α]之内,摆动从动件的升、回程运动规律均为等加速等减速运动。
下面我们来简单地介绍一下怎么样用matlab来绘制凸轮的工作轮廓线主要涉及解析法首先看一下理论轮廓线的方程式X=(S0+S1)sinθ+ ecosθY= (S0+S1) cosθ+ esinθ式中,e为偏心距,S0=sqrt(r0^2-e^2),r0为偏心圆半径只要在matlab的函数编辑中,输入一下代码即可下面我们来画一个偏置直动滚子推杆盘形凸轮机构的轮廓线我已经在程序中写了很详细的备注了,希望大家都能看懂附程序:%先设置凸轮的基本参数,偏心距离e,基圆半径rb,滚轮半径rr,角速度w,推杆上升的最大行程h。
h=30;w=12;rb=50;e=12;rr=10;s0=sqrt(rb*rb-e*e);% 偏心距e=12,基圆rb=50,滚轮半径rr=10,角速度w=12,最大上升h=30q=120*pi/180;%这里我规定推程运动角为120度qs=(120+30)*pi/180;%远休止角为150度q1=(120+30+150)*pi/180;%回程运动角为300度for i=1:1:120 %将120度按1度均分,从而得到各个度数上的轮廓坐标qq(i)=i*pi/180.0;s1=(h*qq(i)/q)-(h/(2*pi))*sin(2*pi*qq(i)/q);v1=w*(h/q)-(w*h/q)*cos(2*pi*qq(i)/q);x(i)=(s0+s1)*sin(qq(i))+e*cos(qq(i));y(i)=(s0+s1)*cos(qq(i))-e*sin(qq(i));%理论轮廓线的坐标a(i)=(s0+s1)*cos(qq(i))-e*sin(qq(i)); %cos(i)b(i)=(s0+s1)*sin(qq(i))-e*cos(qq(i)); %sin(i)xx(i)=x(i)+rr*b(i)/sqrt(a(i)*a(i)+b(i)*b(i));yy(i)=y(i)+rr*a(i)/sqrt(a(i)*a(i)+b(i)*b(i));%实际工作轮廓线的坐标endfor i=121:1:150qq(i)=i*pi/180;s2=h;v2=0;x(i)=(s0+s2)*sin(qq(i))+e*cos(qq(i));y(i)=(s0+s2)*cos(qq(i))-e*sin(qq(i));a(i)=(s0+s2)*cos(qq(i))-e*sin(qq(i));b(i)=(s0+s2)*sin(qq(i))-e*cos(qq(i));xx(i)=x(i)+rr*b(i)/sqrt(a(i)*a(i)+b(i)*b(i));yy(i)=y(i)+rr*a(i)/sqrt(a(i)*a(i)+b(i)*b(i));endfor i=151:1:300qq(i)=i*pi/180;qq1(i)=qq(i)-150*pi/180;s3=h-h*qq1(i)/(q1-qs);v3=-w*h/(q1-qs);x(i)=(s0+s3)*sin(qq(i))+e*cos(qq(i));y(i)=(s0+s3)*cos(qq(i))-e*sin(qq(i));a(i)=(s0+s3)*cos(qq(i))-e*sin(qq(i));b(i)=(s0+s3)*sin(qq(i))-e*cos(qq(i));xx(i)=x(i)+rr*b(i)/sqrt(a(i)*a(i)+b(i)*b(i));yy(i)=y(i)+rr*a(i)/sqrt(a(i)*a(i)+b(i)*b(i)); endfor i=301:1:360qq(i)=i*pi/180;x(i)=(s0+0)*sin(qq(i))+e*cos(qq(i));y(i)=(s0+0)*cos(qq(i))-e*sin(qq(i));a(i)=(s0+0)*cos(qq(i))-e*sin(qq(i));b(i)=(s0+0)*sin(qq(i))-e*cos(qq(i));xx(i)=x(i)+rr*b(i)/sqrt(a(i)*a(i)+b(i)*b(i));yy(i)=y(i)+rr*a(i)/sqrt(a(i)*a(i)+b(i)*b(i)); endplot(x,y,'r',xx,yy,'g')%用plot函数绘制曲线text(0,20,'理论轮廓线')%理论轮廓线的坐标位于为(0,20)text(65,40,'实际轮廓线')%实际轮廓线的坐标位于(65,40)hold on附图:。
微型汽车发动机凸轮型线仿真优化设计及应用研究本文旨在探讨微型汽车发动机凸轮型线的仿真优化设计及其应用研究。
微型汽车发动机是一种小型、轻量化的发动机,具有体积小、重量轻、功率高、燃油经济性好等优点。
在内燃机领域中,微型汽车发动机获得了广泛的应用和研究。
凸轮是微型汽车发动机中的关键部件,控制着气门的开关和气门升程,直接影响发动机的性能。
凸轮型线的合理设计对发动机性能具有重要影响。
本文对微型汽车发动机凸轮型线进行仿真优化设计并进行了应用研究。
具体研究过程如下:一、凸轮型线的建模在仿真优化设计过程中,首先需要建立凸轮型线的数学模型。
本文采用MATLAB软件进行建模,绘制凸轮型线的曲线图并进行数据处理。
通过示波器观察发动机工作过程中气门的开关情况,得到气门开启和关闭的时刻,并将这些数据转换成MATLAB软件中的离散点数据。
二、凸轮型线的仿真优化设计在建立好凸轮型线的数学模型之后,本文采用遗传算法对凸轮型线进行仿真优化设计。
遗传算法是一种模仿自然进化机制的优化算法,通过模拟进化过程来搜索最优解。
将凸轮形状参数作为遗传算法的“基因”,设置适应度函数来衡量凸轮性能,不断演化优化得到最优解。
三、凸轮型线的应用研究通过仿真优化设计,本文得到了一组优化后的凸轮型线参数,再将这些参数应用于实际微型汽车发动机中,进行燃烧室压力测量和性能测试。
实验结果显示,优化后的凸轮型线可以明显提升发动机的输出功率和燃油经济性。
综上所述,通过对微型汽车发动机凸轮型线的仿真优化设计及应用研究,本文取得了一定的研究成果。
在未来的研究中,可以进一步探究凸轮型线的优化方案,并将其应用于更广泛的内燃机领域中,为内燃机的发展提供有价值的参考。
进一步探究凸轮型线的优化方案,可以从以下几个方面进行研究:一、不同工况下的凸轮型线优化不同工况下发动机对凸轮型线的要求不同,因此凸轮型线的优化也需要根据不同工况进行制定。
比如,在高速运转状态下,发动机需要更高的输出功率,因此凸轮型线的参数需要针对高负荷、高转速的要求进行优化。
附2:习题4-3解答(1)凸轮的理论廓线方程:000()sin cos ()cos sin x s s e y s s e s ϕϕϕϕ=++⎧⎨=+-⎩=式中 (2)从动件在不同阶段的位移方程:2sin()[0,120]230[120,150][150,300]'0[300,360]h h s h h πϕϕϕφπφϕϕϕφϕ⎧-∈︒︒⎪⎪∈︒︒⎪=⎨⎪-∈︒︒⎪⎪∈︒︒⎩推程阶段远休止阶段回程阶段近休止阶段(3)求解凸轮的实际廓线:a r a r 00x =x-r cos y =y-r sin sin cos ()cos sin sin ()sin cos cos dx dy dxds s s e d d dy ds s s e d d θθθθϕϕϕϕϕϕϕϕϕϕ⎧⎨⎩⎧⎪=⎪⎪⎪⎪⎪⎨⎪-⎪=⎪⎪⎪⎪⎩⎧=++-⎪⎪⎨⎪=++-⎪⎩式中而同样,由于位移s 与从动件所处的运动阶段有关,所以有:2cos()[0,120]0[120,150]s [150,300]'0[300,360]h hd hd πϕϕφφφϕϕϕφϕ⎧-∈︒︒⎪⎪∈︒︒⎪=⎨⎪∈︒︒⎪⎪∈︒︒⎩推程阶段远休止阶段回程阶段近休止阶段(4)代入已知条件,并用Matlab 语言编程求解,编程代码如下: disp ' ******** 偏置直动滚子从动件盘形凸轮设计 ********' disp '已知条件:'disp ' 凸轮作逆时针方向转动,从动件偏置在凸轮轴心的右边'disp ' 从动件在推程作摆线运动规律运动,在回程作等速运动规律运动' ro = 50;rr = 10;e = 12;h = 30;ft = 120;fs = 30;fh = 150;fprintf (1,' 基圆半径 ro = %3.4f mm \n',ro) fprintf (1,' 滚子半径 rr = %3.4f mm \n',rr) fprintf (1,' 推杆偏距 e = %3.4f mm \n',e) fprintf (1,' 推程行程 h = %3.4f mm \n',h) fprintf (1,' 推程运动角 ft = %3.4f 度 \n',ft) fprintf (1,' 远休止角 fs = %3.4f 度 \n',fs) fprintf (1,' 回程运动角 fh = %3.4f 度 \n',fh) hd = pi / 180;du = 180 / pi; so = sqrt( ro^2 - e^2 ); d1 = ft + fs;d2 = ft + fs + fh; disp ' 'disp '计算过程和输出结果:'disp ' 1-1 推程(摆线运动规律运动)' s = zeros(ft);ds = zeros(ft);d2s = zeros(ft); for f = 1 : fts(f) = h * f / ft - h * sin(2 * pi * f / ft) / (2 * pi);s = s(f);ds(f) = h / (ft * hd) - h / (ft * hd) * cos(2 * pi * f / ft);ds = ds(f); d2s(f) = 2 * pi * h / (ft * hd) ^ 2 * sin(2 * pi * f / ft);d2s = d2s(f); enddisp ' 1-2 回程(等速运动规律运动)' s = zeros(fh);ds = zeros(fh);d2s = zeros(fh); for f = d1 : d2s(f) = h - h * (f-150) / fh; s = s(f); ds(f) = - h / (fh * hd);ds = ds(f); d2s(f) = 0;d2s = d2s(f); enddisp ' 2- 计算凸轮理论廓线与实际廓线的直角坐标'n = 360;s = zeros(n);ds = zeros(n);r = zeros(n);rp = zeros(n);x = zeros(n);y = zeros(n);dx = zeros(n);dy = zeros(n);xx = zeros(n);yy = zeros(n);xa = zeros(n);ya = zeros(n);xxa = zeros(n);yya = zeros(n);for f = 1 : nif f <= fts(f) = h * f / ft - h * sin(2 * pi * f / ft) / (2 * pi);s = s(f);ds(f) = h /(ft * hd) - h / (ft * hd) * cos(2 * pi * f / ft); ds = ds(f);elseif f > ft & f <= d1s = h;ds = 0;elseif f > d1 & f <= d2s(f) = h - h * (f-150) / fh; s = s(f);ds(f) = - h / (fh * hd);ds = ds(f);elseif f > d2 & f <= ns = 0;ds = 0;endxx(f) = (so + s) * sin(f * hd) + e * cos(f * hd); x = xx(f);yy(f) = (so + s) * cos(f * hd) - e * sin(f * hd); y = yy(f);dx(f) = (ds - e) * sin(f * hd) + (so + s) * cos(f * hd); dx = dx(f);dy(f) = (ds - e) * cos(f * hd) - (so + s) * sin(f * hd); dy = dy(f);xxa(f) = x + rr * dy / sqrt(dx ^ 2 + dy ^ 2);xa = xxa(f);yya(f) = y - rr * dx / sqrt(dx ^ 2 + dy ^ 2);ya = yya(f);r(f) = sqrt (x ^2 + y ^2 );rp(f) = sqrt (xa ^2 + ya ^2 );enddisp ' 2-1 推程(摆线运动规律运动)'disp ' 凸轮转角理论x 理论y 实际x 实际y' for f = 10 : 10 :ftnu = [f xx(f) yy(f) xxa(f) yya(f)];disp(nu)enddisp ' 2-2 回程(等速运动规律运动)'disp ' 凸轮转角理论x 理论y 实际x 实际y' for f = d1 : 10 : d2nu = [f xx(f) yy(f) xxa(f) yya(f)];disp(nu)enddisp ' 2-3 凸轮轮廓向径'disp ' 凸轮转角理论r 实际r'for f = 10 : 10 : nnu = [f r(f) rp(f)];disp(nu)enddisp '绘制凸轮的理论轮廓和实际轮廓:'plot(xx,yy,'r-.') % 理论轮廓(红色,点划线)axis ([-(ro+h-10) (ro+h+10) -(ro+h+10) (ro+rr+10)]) % 横轴和纵轴的下限和上限axis equal % 横轴和纵轴的尺度比例相同text(ro+h+3,0,'X') % 标注横轴text(0,ro+rr+3,'Y') % 标注纵轴text(-5,5,'O') % 标注直角坐标系原点title('偏置直动滚子从动件盘形凸轮设计') % 标注图形标题hold on; % 保持图形plot([-(ro+h) (ro+h)],[0 0],'k') % 横轴(黑色)plot([0 0],[-(ro+h) (ro+rr)],'k') % 纵轴(黑色)plot([e e],[0 (ro+rr)],'k--') % 初始偏置位置(黑色,虚线) ct = linspace(0,2*pi); % 画圆的极角变化范围plot(ro*cos(ct),ro*sin(ct),'g') % 基圆(绿色)plot(e*cos(ct),e*sin(ct),'c--') % 偏距圆(蓝绿色,虚线)plot(e + rr*cos(ct),so + rr*sin(ct),'y') % 滚子圆(黄色)plot(xxa,yya,'b') % 实际轮廓(蓝色)(5)求解凸轮理论廓线和实际廓线坐标值如下:******** 偏置直动滚子从动件盘形凸轮设计********已知条件:凸轮作逆时针方向转动,从动件偏置在凸轮轴心的右边从动件在推程作摆线运动规律运动,在回程作等速运动规律运动基圆半径ro = 50.0000 mm滚子半径rr = 10.0000 mm推杆偏距 e = 12.0000 mm推程行程h = 30.0000 mm推程运动角ft = 120.0000 度远休止角fs = 30.0000 度回程运动角fh = 150.0000 度计算过程和输出结果:1-1 推程(摆线运动规律运动)1-2 回程(等速运动规律运动)计算凸轮理论廓线与实际廓线的直角坐标2-1 推程(摆线运动规律运动)凸轮转角理论x 理论y 实际x 实际y10.0000 20.2659 45.8284 16.5674 36.537520.0000 28.1734 42.3200 23.8536 33.301230.0000 36.0243 38.3959 31.4216 29.518140.0000 44.1625 33.9622 39.1460 25.311550.0000 52.6430 28.5078 46.7788 20.407760.0000 61.0261 21.3770 53.9159 14.345370.0000 68.4036 12.1267 59.9368 6.8057 80.0000 73.6533 0.8019 64.1128 -2.1946 90.0000 75.8133 -12.0000 65.8180 -12.3064 100.0000 74.4098 -25.3056 64.6887 -22.9602 110.0000 69.5921 -38.0996 60.7079 -33.5092 120.0000 62.0165 -49.6616 54.2107 -43.41102-2 回程(等速运动规律运动)凸轮转角理论x 理论y 实际x 实际y 150.0000 28.8770 -74.0165 25.2424 -64.7004 160.0000 14.9014 -76.0270 14.3851 -66.0404 170.0000 1.1258 -75.4900 2.4259 -65.5749 180.0000 -12.0000 -72.5386 -8.9229 -63.0238 190.0000 -24.0666 -67.3832 -19.3110 -58.5864 200.0000 -34.7179 -60.3010 -28.4390 -52.5180 210.0000 -43.6616 -51.6242 -36.0665 -45.1192 220.0000 -50.6772 -41.7260 -42.0190 -36.7223 230.0000 -55.6208 -31.0065 -46.1908 -27.6786 240.0000 -58.4280 -19.8770 -48.5462 -18.3440 250.0000 -59.1126 -8.7451 -49.1177 -9.0659 260.0000 -57.7635 1.9999 -48.0018 -0.1704 270.0000 -54.5386 12.0000 -45.3524 8.0487 280.0000 -49.6567 20.9409 -41.3723 15.3401 290.0000 -43.3865 28.5615 -36.3031 21.5028 300.0000 -36.0357 34.6616 -30.4141 26.39132-3 凸轮轮廓向径凸轮转角理论r 实际r10.0000 50.1094 40.118220.0000 50.8402 40.962930.0000 52.6498 43.111940.0000 55.7114 46.616350.0000 59.8663 51.036660.0000 64.6619 55.791770.0000 69.4702 60.322080.0000 73.6577 64.150490.0000 76.7571 66.9586100.0000 78.5951 68.6426110.0000 79.3387 69.3420120.0000 79.4501 69.4501130.0000 79.4501 69.4501140.0000 79.4501 69.4501150.0000 79.4501 69.4501160.0000 77.4736 67.5889170.0000 75.4984 65.6197180.0000 73.5245 63.6524190.0000 71.5521 61.6869200.0000 69.5812 59.7237210.0000 67.6121 57.7628220.0000 65.6448 55.8044230.0000 63.6795 53.8489240.0000 61.7165 51.8964250.0000 59.7559 49.9474260.0000 57.7981 48.0021270.0000 55.8432 46.0611280.0000 53.8916 44.1247290.0000 51.9438 42.1935300.0000 50.0000 40.2681310.0000 50.0000 40.0000320 50 40330.0000 50.0000 40.0000340 50 40350.0000 50.0000 40.0000360.0000 50.0000 40.0000(6)由Matlab绘制的实际图轮廓线和理论图轮廓线如下:图例:绿色——基圆;红色点划线——理论廓线;蓝色——实际廓线;黄色——滚子圆;蓝绿色,虚线——偏距圆;黑色,虚线——初始偏置位置;。