电子电路
- 格式:docx
- 大小:115.70 KB
- 文档页数:9
电子电路原理电子电路是现代电子技术的基础,广泛应用于通信、信息处理、工业控制、医疗设备等众多领域。
在本文中,我们将探讨电子电路的原理及其重要性。
一、电子电路的基本原理电子电路是由电子元器件(如电阻、电容、电感、二极管、晶体管等)组成的网络,通过电流和电压信号的传递与处理实现信息的转换和控制。
其主要原理包括以下几个方面:1. 电压和电流关系:欧姆定律描述了电路中电压、电流和电阻之间的关系,即U = IR,其中U表示电压,I表示电流,R表示电阻。
2. 电阻与电流:电阻用于限制电流的流动,通过阻碍电子的流动来转化电能为热能。
根据欧姆定律,电流等于电压除以电阻,即I = U/R。
3. 电容与电压:电容是一种能够存储电荷的元件,通过在两个导体之间形成电场来存储能量。
电容的充电和放电过程中,电容器两端的电压会发生变化。
4. 电感与电流:电感是由线圈等导体构成的元件,通过磁场的感应作用来存储能量。
当电流变化时,电感产生的电磁感应会产生反向电势,抵抗电流的变化。
5. 二极管的整流作用:二极管是一种只允许电流单向通过的元件,可以将交流信号转换为直流信号。
当二极管正向偏置时,电流可以流过二极管;反向偏置时,电流无法流动。
6. 晶体管的放大作用:晶体管可以实现信号的放大,是电子电路中最重要的元件之一。
通过控制输入信号的电流,可以调节晶体管的放大倍数,实现对信号的放大和调节。
二、电子电路的重要性电子电路在现代科技发展中具有不可替代的作用,其重要性主要体现在以下几个方面:1. 信息传递:电子电路作为信息传递的基础,可以将各种形式的信息转换为电信号进行传输,从而实现音视频的传播、数据的处理和存储等功能。
2. 控制和调节:电子电路在工业控制和自动化领域中起到至关重要的作用,可以对各种设备和系统进行精确的控制和调节,提高生产效率和质量。
3. 信号处理:电子电路可以对信号进行放大、滤波、调节等处理,从而改善信号的质量和传输效果。
电子电路基础入门电子电路是现代科技的基石,涉及到我们生活中的各个方面,从手机到电视,从汽车到家电。
学习电子电路的基础知识可以帮助我们更好地理解和应用这些电子设备。
在本文中,我将介绍一些基础的电子电路知识以及学习电子电路的步骤。
一、电子电路的基本概念和分类1.1 电子电路的基本概念电子电路由电子器件组成,通过电流和电压的相互作用来实现信息的传输和处理。
1.2 电子电路的分类电子电路可分为模拟电路和数字电路两类。
模拟电路处理连续信号,数字电路处理离散信号。
二、学习电子电路的步骤学习电子电路需要系统地掌握一系列的理论知识,并通过实践加深理解。
下面是学习电子电路的基本步骤:2.1 掌握基本的电路理论基础了解电流、电压、电阻、电感和电容等基本概念,掌握欧姆定律、基尔霍夫定律、瞬态分析和频率响应等基本理论。
2.2 学习电子器件的基本原理和特性学习并理解二极管、晶体管、场效应管等常见电子器件的原理、特性以及应用。
2.3 学习电路分析和设计的方法学习基本的电路分析方法,包括节点分析法、支路电压法和基尔霍夫定律等。
同时,学习电路设计的基本流程,包括需求分析、电路拓扑设计、元器件选型和电路仿真等。
2.4 进行电路实验实践通过搭建实际电路并进行实验验证,加深对理论知识的理解,并培养动手能力和解决问题的技巧。
2.5 学习电路设计工具的使用学习使用相关的电路设计工具,如仿真软件、布局设计软件和印制电路板制作软件等,提高电路设计和制作的效率。
2.6 深入学习特定领域的电子电路知识根据个人兴趣和需求,进一步学习特定领域的电子电路知识,如信号处理、功率电子和微电子等。
三、学习电子电路的注意事项学习电子电路需要一定的耐心和细心,在学习过程中需要注意以下几点:3.1 多做习题和实验通过多做习题和实验,巩固所学知识,并培养解决问题的能力。
3.2 注意实际应用场景学习电子电路时,要结合实际应用场景来理解知识,增强实际应用的能力。
3.3 多与他人交流和研讨与他人交流和研讨可以帮助我们更好地理解和应用电子电路知识,同时也可以了解到不同的思路和技巧。
电子电路的基本组成与功能电子电路是电子技术的基础,是实现电子设备和系统功能的关键。
本文将详细介绍电子电路的基本组成和功能,并分点列出主要内容。
以下是相关信息:一、电子电路的基本组成1. 电源:电子电路的能量来源,为电子元件提供电力。
2. 电子元件:电子电路的基本构建单元,包括电阻、电容、电感、二极管、晶体管等。
3. 连接线路:将电子元件连接成电路的导线和线路板等。
4. 控制元件:用于控制电子电路的工作状态,例如开关、变阻器等。
二、电子电路的基本功能1. 放大:通过增大电压、电流或功率来增强信号的强度。
2. 开关:控制信号的开关状态,使电路在不同状态下工作。
3. 滤波:通过滤波电路除去杂音,使信号更清晰。
4. 调节:调整电路工作的频率、幅度、相位等参数。
5. 计算:电子电路可以进行数字或模拟的数学运算,例如加法、减法等。
三、电子电路的常见类型1. 放大器电路:用于放大信号的电路,常用于音频放大、射频放大等。
2. 开关电路:通过控制开关状态切换电路信号,常用于数码电子设备中。
3. 滤波电路:用于滤除杂音、滤波电源等,常用于音频、视频等领域。
4. 振荡器电路:产生特定频率的信号,常用于无线电设备、钟表等。
5. 逻辑电路:用于进行数字逻辑运算,常用于计算机内部电路等。
四、电子电路设计的步骤1. 确定电路的功能和要求:根据具体需求确定电路的功能和参数要求。
2. 选择合适的电子元件:根据电路的功能选择合适的电子元件,包括电阻、电容、晶体管等。
3. 组装电路:将选好的电子元件按照电路图进行连接,通常使用线路板进行组装。
4. 进行电路测试:对组装好的电路进行电路图和性能测试,确保电路工作正常。
5. 优化和改进:根据测试结果进行电路优化和改进,提高电路的性能和稳定性。
通过上述分点列出的内容,我们对电子电路的基本组成和功能有了详细了解。
掌握电子电路的基本知识,能够更好地理解和应用电子技术。
电子电路基础知识点汇总电子电路是一门涉及电学、物理学和工程学的重要学科,它是现代科技的基石,广泛应用于通信、计算机、控制工程等众多领域。
下面让我们一起来梳理一下电子电路的基础知识点。
一、电路元件1、电阻电阻是电路中最常见的元件之一,用于限制电流的流动。
其电阻值的大小决定了电流通过时的阻力。
电阻的单位是欧姆(Ω),电阻的阻值可以通过色环法或者直接标注来表示。
2、电容电容是存储电荷的元件,能够在电路中起到滤波、耦合、旁路等作用。
电容的单位是法拉(F),但常用的单位有微法(μF)和皮法(pF)。
电容的特性是“隔直通交”,即对直流信号呈现开路,对交流信号呈现一定的阻抗。
3、电感电感是储存磁场能量的元件,通常由线圈构成。
电感的单位是亨利(H),常用的单位还有毫亨(mH)和微亨(μH)。
电感的特性是“通直阻交”,对直流信号的阻碍很小,对交流信号呈现较大的阻抗。
4、二极管二极管是一种具有单向导电性的半导体器件。
正向偏置时,二极管导通,反向偏置时,二极管截止。
常见的二极管有整流二极管、稳压二极管、发光二极管等。
5、三极管三极管是一种具有放大作用的半导体器件,分为NPN 型和PNP 型。
三极管可以用作放大器、开关等。
二、电路定律1、欧姆定律欧姆定律描述了电阻、电流和电压之间的关系,即 U = IR,其中U 是电压,I 是电流,R 是电阻。
2、基尔霍夫定律基尔霍夫定律包括电流定律(KCL)和电压定律(KVL)。
电流定律指出,在任何一个节点处,流入节点的电流之和等于流出节点的电流之和。
电压定律指出,在任何一个闭合回路中,各段电压的代数和为零。
三、电路分析方法1、等效电路法通过将复杂的电路简化为等效的简单电路,来分析电路的性能。
2、支路电流法以支路电流为未知量,根据基尔霍夫定律列出方程组求解。
3、节点电压法以节点电压为未知量,根据基尔霍夫定律列出方程求解。
4、叠加定理在线性电路中,多个电源共同作用时产生的响应等于每个电源单独作用时产生的响应之和。
电子电路知识入门基础教学电子电路是指由一个或多个电子元器件,如电阻、电容、电感、半导体(如晶体管、集成电路)等,连接起来构成的电路。
它是一种由若干个电子元件组成的电路,通过控制、调节电路中电流的流动来达到预期的功能。
它的作用是使电子元件之间能够对信号进行有效地检测、处理和传输,以满足系统的要求。
二、电子电路的基本原理电子电路的运行原理是电子元件之间有因果关系,互相影响,从而形成电力能量的传输。
当电子元件上的电流变化时,它就会产生电压变化,然后被其它元件感知并发生变化。
在电路中,每一部分的电子元件都起着一定的作用,形成了一个完整的系统,有效实现了电子信号的传输和处理。
三、电子电路常见元件电子电路中最常见的元件有电阻、电容、电感、晶体管、集成电路、光耦合器和变压器等。
1、电阻:电阻是电路中最常见的一种电子元件,它能阻抗电流流动,阻碍电路中的电流通过,从而实现对电流的控制。
2、电容:电容是一种电子元件,它能储存电荷,电荷的多少可以控制电压的变化,从而实现对电压的控制。
3、电感:电感是一种电子元件,它能在电路中形成电磁耦合,从而实现对电流及电压的控制。
4、晶体管:晶体管是一种电子元件,它能像开关一样控制电流的通断,从而实现信号的控制。
5、集成电路:集成电路是一种电子元件,它是由大量晶体管和其他元件集成在一块半导体基材上,可以实现特定功能,从而实现芯片功能。
6、光耦合器:光耦合器是一种电子元件,它能将电路中的电能转换为光能,然后再将光能转换为电能,从而实现信号的传输和处理。
7、变压器:变压器是一种电子元件,它能将输入电磁能量转换为输出电能,从而实现电压的变化,这样可以满足系统的电压需求。
四、电子电路设计原则1、设计原则:在电子电路设计中,应遵循“精确、简洁、熟悉、安全”的原则,即在设计过程中,要考虑电路的有效性和安全性,让电路可以有效地发挥作用,从而获得良好的实际效果。
2、电路的结构:在电子电路的设计中,应当考虑电路的结构,使电路简单易懂,便于系统的维护和后期的升级。
电子电路基础知识入门电子电路是电子技术的基础,它涉及到电子元件的组合和连接,以产生特定的电信号。
如果你对电子电路的了解还很有限,不用担心,本文将为你介绍电子电路的基础知识和入门步骤。
一、什么是电子电路- 电子电路是利用导电材料和电子元件来实现特定功能的电路系统。
它由多个电子元件组成,包括电阻、电容、电感、二极管、三极管等。
二、了解电子元件1. 电阻- 电阻是电子元件中的一种,用于限制电流流动的大小。
它的单位是欧姆(Ω),常用的有固定电阻和可变电阻。
2. 电容- 电容是电子元件中的一种,用于存储电荷。
它的单位是法拉(F),常用的有固定电容和可变电容。
3. 电感- 电感是电子元件中的一种,利用磁场储存能量。
它的单位是亨利(H),常用的有固定电感和可变电感。
4. 二极管- 二极管是电子元件中的一种,它只允许电流在一个方向上通过,具有整流的功能。
5. 三极管- 三极管是电子元件中的一种,它可以放大电流和电压信号。
三、电路基础知识1. 电路的分类- 电路可以分为模拟电路和数字电路两种。
- 模拟电路是用来处理模拟信号的电路,它可以处理连续变化的信号。
- 数字电路是用来处理数字信号的电路,它处理离散的信号。
数字电路常用于计算机、通信等领域。
2. 电路中的电流和电压- 电路中的电流表示电荷的流动,单位是安培(A)。
- 电路中的电压表示电荷的能量,单位是伏特(V)。
3. 电路图的表示方法- 电路图用来表示电子元件之间的连接关系以及其对电流和电压的影响。
- 电路图中使用符号来表示电子元件,例如电阻用矩形表示,电容用两条平行线表示。
四、学习电子电路的步骤1. 学习电子电路的基础理论知识- 了解电子元件的分类、特性以及在电路中的作用。
- 学习电流、电压、功率等基本概念。
- 掌握电路分析的方法和技巧。
2. 进行实验- 实验是学习电子电路的重要手段。
- 首先,准备实验所需的电子元件和仪器设备。
- 按照电路图的要求,连接电子元件,观察实验现象。
电子电路的基本原理与分类电子电路是由电子元件组成的系统,它能够传输和处理电子信号。
电子电路是现代科技中不可或缺的一部分,因为几乎所有的电子设备和系统都依赖于电子电路来实现其功能。
本文将详细介绍电子电路的基本原理和分类,并分步骤进行说明。
一、电子电路的基本原理1. 电流:电子电路中最基本的概念是电流,它描述了电子在导体中的流动。
电流可以通过欧姆定律来计算,即I=V/R,其中I代表电流,V代表电压,R代表电阻。
2. 电压:电压是电子电路中另一个重要的参数,它描述了电子在电路中的电势差。
电压通常由电池或电源提供,它决定了电流的流动方向和大小。
3. 电阻:电阻是电子电路中用来限制电流流动的元件,它的大小决定了电流的大小。
电阻的单位是欧姆(Ω)。
4. 电容:电容是一种储存电荷的元件,它可以在电路中储存电能,并且可以通过电流快速充放电。
电容的单位是法拉(F)。
5. 电感:电感是一种储存磁场能量的元件,它可以改变电流的大小和方向。
电感的单位是亨利(H)。
6. 半导体:半导体是一种特殊的材料,它具有介于导体和绝缘体之间的导电特性。
在电子电路中,半导体器件如二极管和晶体管起到关键作用。
二、电子电路的分类1. 按功能分类- 放大电路:放大电路用于增大信号的幅度,常见的放大电路包括放大器和运算放大器。
- 整流电路:整流电路用于将交流电信号转换为直流电信号,常见的整流电路有整流器和滤波器。
- 开关电路:开关电路用于控制电路的通断,常见的开关电路有开关和触发器。
- 计数电路:计数电路用于对脉冲信号进行计数,常见的计数电路有计数器和时钟。
- 时序电路:时序电路用于控制电路的时序和工作顺序,常见的时序电路有时钟和触发器。
2. 按制作工艺分类- 离散元件电路:离散元件电路是使用独立的电子元件组成的电路,如电阻、电容和电感等。
- 集成电路:集成电路是将多个电子元件集成在一个芯片上的电路,常见的集成电路有逻辑门、微处理器和存储器等。
电子行业电子电路简介电子行业是指涉及研发、制造和销售电子产品的各个领域。
电子电路作为电子产品的核心组成部分,扮演着重要的角色。
本文将介绍电子电路的定义、分类、基本原理和常见应用。
定义电子电路是由元器件(如电阻、电容、电感、二极管、晶体管等)组成的电气部件的互连方式。
通过合理设置元器件的参数和连接方式,电子电路能够完成对电流、电压、频率等电信号的处理和转换。
分类根据电子电路的复杂程度和功能特性,电子电路可以分为以下几类:1.线性电路:线性电路是最基本的电子电路类型,其中的元器件满足线性响应的特性。
线性电路能够对输入信号进行放大、滤波、直流偏置等处理,常用于收音机、音响等应用中。
2.非线性电路:非线性电路中的元器件不满足线性响应的特性,通常用于信号处理、波形生成和模拟计算等应用中。
常见的非线性电路包括放大器、振荡器和计算电路等。
3.数字电路:数字电路能够对数字信号进行处理,通过逻辑门、触发器和计数器等元器件实现逻辑运算和存储功能。
数字电路广泛应用于计算机、通信系统和控制系统等领域。
4.模拟电路:模拟电路能够对连续信号进行处理,通过模拟运算放大器、滤波器和数据转换器等元器件实现信号的调理和转换。
模拟电路常用于音频、视频处理和传感器接口等应用。
5.混合电路:混合电路是线性电路和数字电路的结合,能够同时处理模拟信号和数字信号。
混合电路在嵌入式系统、信号处理器和通信设备等领域有广泛应用。
基本原理电子电路的基本原理包括以下几个方面:1.欧姆定律:欧姆定律是电子电路分析中最基本的定律,描述了电流、电压和电阻之间的关系。
根据欧姆定律,电流等于电压与电阻之比。
2.基尔霍夫定律:基尔霍夫定律包括电流定律和电压定律。
电流定律指出电路中的节点处,进入节点的总电流等于离开节点的总电流。
电压定律指出电路中的回路上,电压上升等于电压下降之和。
3.放大器:放大器是一种能够放大信号的电子电路。
放大器的基本原理是利用电子元器件的非线性特性,在输入信号上进行放大,得到更大的输出信号。
电子电路基础教程简介电子电路是现代科技与工程领域的基础,它涉及到各种电子设备和系统的设计与应用。
本教程将为你介绍电子电路的基础概念、原理和应用,帮助你理解电子电路的工作原理并设计简单的电子电路。
1. 电子电路的基本概念1.1 什么是电子电路电子电路是由电子元件(例如电阻、电容、电感等)和电子器件(例如二极管、晶体管、集成电路等)组成的电路系统。
它包括了电路中的电源、信号源、信号处理器、放大器等元件和器件。
1.2 电子电路的分类电子电路可根据其功能和应用进行分类。
常见的电子电路分类包括:•模拟电路:处理连续变化的信号,如声音、图像等。
•数字电路:处理离散的数字信号,如计算机、电子表格等。
•混合电路:同时处理模拟信号和数字信号,如通信系统等。
2. 电子电路的基本原理2.1 电流、电压和电阻电流是电子在导体中的流动,单位为安培(A)。
电压是电子的电势差,单位为伏特(V)。
电阻是电流受到阻碍的程度,单位为欧姆(Ω)。
2.2 电阻、电流和电压的关系欧姆定律描述了电阻、电流和电压之间的关系:电流等于电压除以电阻。
即 I = V/R,其中 I 为电流,V 为电压,R 为电阻。
2.3 基础电子元件常见的基础电子元件包括:•电阻器:用于限制电流、分压或连接电路的部件。
•电容器:用于存储电荷或改变电路中的信号频率。
•电感器:储存电能或改变电流的部件。
•二极管:仅允许电流沿一个方向通过的元件。
•晶体管:用于放大和控制电流的元件。
•集成电路:在一个芯片上集成多个电子元件和器件。
3. 常见电路的设计与分析3.1 串联电路串联电路是将电子元件或器件按顺序连接的电路。
串联电路中的电流相同,电压分配根据各个元件的电阻值进行。
3.2 并联电路并联电路是将电子元件或器件同时连接在一起的电路。
并联电路中的电压相同,电流分配根据各个元件的电导率进行。
3.3 放大电路放大电路用于增加信号的幅度或功率。
常见的放大电路包括共射极放大电路、共集极放大电路和共射极放大电路。
电子电路基本知识及应用电子电路是电子技术的基础,广泛应用于各种电子设备和系统中。
本文将从电子电路的基本知识和应用两个方面展开阐述。
一、电子电路的基本知识1. 电子电路的基本组成元件:电子电路主要由三个基本组成元件构成,即电源、电阻和电容。
- 电源:提供电路所需的电能,常见的电源有干电池、直流电源和交流电源。
- 电阻:控制电流的流动,通过阻碍电流的流动来消耗电能。
电阻的单位是欧姆(Ω)。
- 电容:储存电荷和能量,具有暂存电荷和放电的功能。
电容的单位是法拉(F)。
2. 电路分类:电子电路可分为模拟电路和数字电路。
- 模拟电路:处理连续信号,不仅能表示0和1两种状态,还可以表示其中间的无限个状态。
常见的模拟电路包括放大电路、滤波电路等。
- 数字电路:处理离散信号,信号只有两种状态,即0和1。
常见的数字电路包括逻辑门电路、计数器电路等。
3. 电路基本定律:电子电路的行为受到一些基本定律的约束。
- 欧姆定律:描述了电流、电压和电阻之间的关系。
根据欧姆定律,电流等于电压与电阻之比。
Ι=U/R。
- 基尔霍夫定律:描述了电流和电压在闭合电路中的分布。
基尔霍夫定律包括电流定律和电压定律。
- 突击定律:描述了电容器的充放电过程。
突击定律指出,电容器两端电压的变化率等于电容器所连接的电路中的电流。
二、电子电路的应用1. 通信电子电路:通信电子电路是现代通信系统中的核心部分,用于处理和传输各种信号。
常见的通信电子电路包括调制解调器、射频放大器等。
2. 数字电子电路:数字电子电路广泛应用于计算机系统、数字通信系统以及数字音频设备等。
数字电路的主要任务是处理和存储数字信号。
3. 家庭电子电路:家庭电子电路主要应用于家庭电器,例如电视机、音响系统、电脑等。
家庭电子电路主要涉及音频放大、视频处理、信号控制等方面。
4. 汽车电子电路:汽车电子电路是现代汽车中的重要组成部分,用于管理和控制车辆的各种功能。
常见的汽车电子电路包括发动机控制单元、车载娱乐系统等。
电子元器件识别与检测一:电阻作为电子行业的工作者,电阻是无人不知无人不晓的。
它的重要性,毋庸置疑。
人们都说“电阻是所有电子电路中使用最多的元件。
”电阻,因为物质对电流产生的阻碍作用,所以称其该作用下的电阻物质。
电阻将会导致电子流通量的变化,电阻越小,电子流通量越大,反之亦然。
没有电阻或电阻很小的物质称其为电导体,简称导体。
不能形成电流传输的物质称为电绝缘体,简称绝缘体。
在物理学中,用电阻(Resistance)来表示导体对电流阻碍作用的大小。
导体的电阻越大,表示导体对电流的阻碍作用越大。
不同的导体,电阻一般不同,电阻是导体本身的一种特性。
电阻元件是对电流呈现阻碍作用的耗能元件。
电阻元件的电阻值大小一般与温度有关,衡量电阻受温度影响大小的物理量是温度系数,其定义为温度每升高1℃时电阻值发生变化的百分数。
电阻在电路中用“R”加数字表示,如:R1表示编号为1的电阻。
电阻在电路中的主要作用为分流、限流、分压、偏置等。
1、参数识别:电阻的单位为欧姆(Ω),倍率单位有:千欧(KΩ),兆欧(MΩ)等。
换算方法是:1兆欧=1000千欧=1000000欧电阻的参数标注方法有3种,即直标法、色标法和数标法。
a、数标法主要用于贴片等小体积的电路,如:472 表示47×100Ω(即4.7K);104则表示100Kb、色环标注法使用最多,现举例如下:四色环电阻五色环电阻(精密电阻)。
2、电阻的色标位置和倍率关系如下表所示:颜色有效数字倍率允许偏差(%)银色/ x0.01 ±10金色/ x0.1 ±5黑色0 +0 /棕色1 x10 ±1红色 2 x100 ±2橙色3 x1000 /黄色4 x10000 /绿色5 x100000 ±0.5蓝色6 x1000000 ±0.2紫色7x10000000 ±0.1灰色8 x100000000 /白色9 x1000000000 / .二:电容电容(或电容量,Capacitance)指的是在给定电位差下的电荷储藏量;记为C,国际单位是法拉(F)。
一般来说,电荷在电场中会受力而移动,当导体之间有了介质,则阻碍了电荷移动而使得电荷累积在导体上;造成电荷的累积储存,最常见的例子就是两片平行金属板。
也是电容器的俗称。
1、电容在电路中一般用“C”加数字表示(如C13表示编号为13的电容)。
电容是由两片金属膜紧靠,中间用绝缘材料隔开而组成的元件。
电容的特性主要是隔直流通交流。
电容容量的大小就是表示能贮存电能的大小,电容对交流信号的阻碍作用称为容抗,它与交流信号的频率和电容量有关。
容抗XC=1/2πf c (f表示交流信号的频率,C表示电容容量)电话机中常用电容的种类有电解电容、瓷片电容、贴片电容、独石电容、钽电容和涤纶电容等。
请登陆:输配电设备网浏览更多信息2、识别方法:电容的识别方法与电阻的识别方法基本相同,分直标法、色标法和数标法3种。
电容的基本单位用法拉(F)表示,其它单位还有:毫法(mF)、微法(uF)、纳法(nF)、皮法(pF)。
其中:1法拉=103毫法=106微法=109纳法=1012皮法容量大的电容其容量值在电容上直接标明,如10 uF/16V容量小的电容其容量值在电容上用字母表示或数字表示字母表示法:1m=1000 uF 1P2=1.2PF 1n=1000PF 数字表示法:一般用三位数字表示容量大小,前两位表示有效数字,第三位数字是倍率。
如:102表示10×102PF=1000PF 224表示22×104PF=0.22 uF3、电容容量误差表符号F G J K L M允许误差±1% ±2% ±5% ±10% ±15% ±20%如:一瓷片电容为104J表示容量为0. 1 uF、误差为±5%.三:晶体二极管晶体二极管(crystaldiode)固态电子器件中的半导体两端器件。
这些器件主要的特征是具有非线性的电流-电压特性。
此后随着半导体材料和工艺技术的发展,利用不同的半导体材料、掺杂分布、几何结构,研制出结构种类繁多、功能用途各异的多种晶体二极管。
制造材料有锗、硅及化合物半导体。
晶体二极管可用来产生、控制、接收、变换、放大信号和进行能量转换等。
晶体二极管在电路中常用“D”加数字表示,如:D5表示编号为5的二极管。
1、作用:二极管的主要特性是单向导电性,也就是在正向电压的作用下,导通电阻很小;而在反向电压作用下导通电阻极大或无穷大。
正因为二极管具有上述特性,无绳电话机中常把它用在整流、隔离、稳压、极性保护、编码控制、调频调制和静噪等电路中。
电话机里使用的晶体二极管按作用可分为:整流二极管(如1N4004)、隔离二极管(如1N4148)、肖特基二极管(如BAT85)、发光二极管、稳压二极管等。
2、识别方法:二极管的识别很简单,小功率二极管的N极(负极),在二极管外表大多采用一种色圈标出来,有些二极管也用二极管专用符号来表示P极(正极)或N极(负极),也有采用符号标志为“P”、“N”来确定二极管极性的。
发光二极管的正负极可从引脚长短来识别,长脚为正,短脚为负。
3、测试注意事项:用数字式万用表去测二极管时,红表笔接二极管的正极,黑表笔接二极管的负极,此时测得的阻值才是二极管的正向导通阻值,这与指针式万用表的表笔接法刚好相反。
4、常用的1N4000系列二极管耐压比较如下:型号1N40011N40021N40031N4004 1N40051N40061N4007耐压(V)50 100 200 400 600 800 1000电流(A)均为1 .四:稳压二极管稳压二极管(又叫齐纳二极管),此二极管是一种直到临界反向击穿电压前都具有很高电阻的半导体器件。
稳压二极管在电路中常用“ZD”加数字表示,如:ZD5表示编号为5的稳压管。
1、稳压二极管的稳压原理:稳压二极管的特点就是击穿后,其两端的电压基本保持不变。
这样,当把稳压管接入电路以后,若由于电源电压发生波动,或其它原因造成电路中各点电压变动时,负载两端的电压将基本保持不变。
2、故障特点:稳压二极管的故障主要表现在开路、短路和稳压值不稳定。
在这3种故障中,前一种故障表现出电源电压升高;后2种故障表现为电源电压变低到零伏或输出不稳定。
常用稳压二极管的型号及稳压值如下表:型号1N47281N4729 1N4730 1N4732 1N4733 1N4734 1N4735 1N4744 1N4750 1N4751 1N4761稳压值3.3V 3.6V 3.9V 4.7V 5.1V 5.6V 6.2V 15V 27V 30V 75V .五:电感电感(inductance of an ideal inductor)是闭合回路的一种属性,是一个物理量。
当线圈通过电流后,在线圈中形成磁场感应,感应磁场又会产生感应电流来抵制通过线圈中的电流。
这种电流与线圈的相互作用关系称为电的感抗,也就是电感,单位是“亨利(H)”,以美国科学家约瑟夫·亨利命名。
电感在电路中常用“L”加数字表示,如:L6表示编号为6的电感。
电感线圈是将绝缘的导线在绝缘的骨架上绕一定的圈数制成。
直流可通过线圈,直流电阻就是导线本身的电阻,压降很小;当交流信号通过线圈时,线圈两端将会产生自感电动势,自感电动势的方向与外加电压的方向相反,阻碍交流的通过,所以电感的特性是通直流阻交流,频率越高,线圈阻抗越大。
电感在电路中可与电容组成振荡电路。
电感一般有直标法和色标法,色标法与电阻类似。
如:棕、黑、金、金表示1uH(误差5%)的电感。
电感的基本单位为:亨(H)换算单位有:1H=103mH=106uH.六:变容二极管变容二极管(Varactor Diodes)又称“可变电抗二极管”.是一种利用PN结电容(势垒电容)与其反向偏置电压Vr的依赖关系及原理制成的二极管,其结构如右图所示。
管变容二极管是根据普通二极管内部“PN结” 的结电容能随外加反向电压的变化而变化这一原理专门设计出来的一种特殊二极管。
变容二极管在无绳电话机中主要用在手机或座机的高频调制电路上,实现低频信号调制到高频信号上,并发射出去。
在工作状态,变容二极管调制电压一般加到负极上,使变容二极管的内部结电容容量随调制电压的变化而变化。
变容二极管发生故障,主要表现为漏电或性能变差:(1)发生漏电现象时,高频调制电路将不工作或调制性能变差。
(2)变容性能变差时,高频调制电路的工作不稳定,使调制后的高频信号发送到对方被对方接收后产生失真。
出现上述情况之一时,就应该更换同型号的变容二极管。
七:晶体三极管晶体三极管,是半导体基本元器件之一,具有电流放大作用,是电子电路的核心元件。
三极管是在一块半导体基片上制作两个相距很近的PN结,两个PN结把正块半导体分成三部分,中间部分是基区,两侧部分是发射区和集电区,排列方式有PNP和NPN两种。
晶体三极管在电路中常用“Q”加数字表示,如:Q17表示编号为17的三极管。
1、特点:晶体三极管(简称三极管)是内部含有2个PN结,并且具有放大能力的特殊器件。
它分NPN型和PNP型两种类型,这两种类型的三极管从工作特性上可互相弥补,所谓OTL电路中的对管就是由PNP型和NPN型配对使用。
电话机中常用的PNP型三极管有:A92、9015等型号;NPN型三极管有:A42、9014、9018、9013、9012等型号。
2、晶体三极管主要用于放大电路中起放大作用,在常见电路中有三种接法。
为了便于比较,将晶体管三种接法电路所具有的特点列于下表,供大家参考。
名称共发射极电路共集电极电路(射极输出器)共基极电路输入阻抗中(几百欧~几千欧)大(几十千欧以上)小(几欧~几十欧)输出阻抗中(几千欧~几十千欧)小(几欧~几十欧)大(几十千欧~几百千欧)电压放大倍数大小(小于1并接近于1)大电流放大倍数大(几十)大(几十)小(小于1并接近于1)功率放大倍数大(约30~40分贝)小(约10分贝)中(约15~20分贝)频率特性高频差好好续表应用多级放大器中间级,低频放大输入级、输出级或作阻抗匹配用高频或宽频带电路及恒流源电路 .八:场效应管场效应晶体管(Field Effect Transistor缩写(FET))简称场效应管。
由多数载流子参与导电,也称为单极型晶体管。
它属于电压控制型半导体器件。
具有输入电阻高(108~109Ω)、噪声小、功耗低、动态范围大、易于集成、没有二次击穿现象、安全工作区域宽等优点,现已成为双极型晶体管和功率晶体管的强大竞争者。
作用1.场效应管可应用于放大。
由于场效应管放大器的输入阻抗很高,因此耦合电容可以容量较小,不必使用电解电容器。