第二讲 半导体二极管讲解
- 格式:ppt
- 大小:442.50 KB
- 文档页数:13
半导体二极管工作原理
半导体二极管是一种基本的电子器件,其工作原理基于真空二极管的热阴极和阳极间的电子流动现象。
半导体二极管由P
型和N型半导体材料构成,形成一个PN结。
在PN结中,由于P型半导体内含有多余的空穴(正电荷载体),而N型半导体内含有多余的自由电子(负电荷载体)。
当N型半导体接触到P型半导体时,多余的自由电子和空穴
会进行扩散。
由于自由电子迁移到P区,形成负离子,而空
穴迁移到N区,形成正离子。
这就导致PN结的两侧形成了一个带有固定电荷的区域,称为耗尽层。
当外加一个电压到二极管时,如果正电压加在P区,而负电
压加在N区,这就称为正向偏置。
在正向偏置下,正电压将
加速电子和空穴的运动。
自由电子将迁移到P区,而空穴将
迁移到N区,这样当电流通过二极管时,电子就会在PN结处再次重组,产生电子空穴对,并且继续流动到外部电路。
因此,二极管在正向偏置下成为导电状态,也被称为ON(导通)状态。
相反地,如果负电压加在P区,而正电压加在N区,这称为
反向偏置。
在反向偏置下,负电压阻止了电子和空穴的运动,这使得电流无法通过PN结。
因此,二极管在反向偏置下处于
非导电状态,也被称为OFF(截止)状态。
总之,半导体二极管的工作原理基于PN结的形成和正反向偏
置下电子和空穴的运动。
这使得二极管可以用作整流、变压、开关和放大等许多电子电路中的基本组件。
半导体二极管的工作原理宝子,今天咱们来唠唠半导体二极管这个超有趣的小玩意儿的工作原理哈。
半导体二极管呢,就像是一个很有个性的小门卫。
它主要是由PN结组成的哦。
啥是PN结呢?这就像是两个不同性格的小团体,P型半导体里面有好多带正电的空穴,就像一群热情好客的小东道主;N型半导体呢,有好多带负电的电子,像是一群活泼好动的小访客。
这俩凑到一块儿,在它们交界的地方就形成了PN结。
当二极管正向偏置的时候,就像是给这个小门卫开了绿灯呢。
电源的正极接到P 区,负极接到N区。
这时候啊,P区的那些空穴就像是收到了邀请函,欢天喜地地朝着PN结跑去;N区的电子呢,也迫不及待地朝着PN结涌过来。
它们在PN结这里就像老朋友见面一样,顺利地通过,形成了电流。
这个电流就像一群欢快奔跑的小动物,在电路里撒欢儿呢。
而且啊,只要这个正向电压达到一定的值,也就是二极管的导通电压,这个小门卫就会大开方便之门,让电流顺畅地通过。
硅二极管的导通电压大概是0.7伏左右,就像是一个小小的门槛,跨过这个门槛,电流就能自由通行啦。
但是呢,要是二极管反向偏置,那可就完全不一样喽。
电源正极接到N区,负极接到P区。
这时候啊,P区的空穴被负极吸引,都往回跑,离PN结越来越远;N区的电子也被正极吸引,同样远离PN结。
就像在PN结这里设了一道屏障,两边的小伙伴都被隔开了。
这时候啊,只有一丁点儿超级小的反向电流,就像几个调皮的小蚂蚁在偷偷摸摸地想穿过屏障,这个电流小到几乎可以忽略不计呢。
不过呢,要是这个反向电压太大了,超过了二极管的击穿电压,那就像洪水冲破了堤坝一样,二极管就被击穿啦,这时候反向电流就会突然变得很大,二极管可能就会被损坏,就像小门卫被强大的外力给推倒了,整个秩序就乱套了。
在我们的生活中啊,二极管可起着大作用呢。
比如说在收音机里,它就像一个小筛子,把不需要的信号给筛掉,只让有用的信号通过,这样我们才能听到清晰的广播。
还有在那些酷炫的LED灯里,二极管也是核心部件呢。
半导体二极管二极管是由一个PN结、电极引线以及外壳封装构成的。
二极管的最大特点是:单向导电性。
其主要包括:稳压、整流、检波、开关、光/电转换等。
1.二极管的分类(1)按材料来分,可分为:硅二极管、锗二极管。
(2)按结构来分,可分为:点接触型二极管、面接触型二极管。
(3)按用途来分,可分为:稳压二极管、整流二极管、检波二极管、开关二极管、发光二极管、光电二极管等。
图1 常用二极管的外形和电路符号2.二极管性能的检测(1)外观判别二极管的极性二极管的正、负极性一般都标注在其外壳上。
有时会将二极管的图形直接画在其外壳上如图2(a)示。
对于二极管引线是轴向引出的,则会在其外壳上标出色环(色点),有色环(色点)的一端为二极管的负极端,如图2(b)所示。
若二极管引线是同向引出,其判断如图2(c)所示。
若二极管是透明玻瑞壳,则可直接看出极性,即二极管内部连触丝的一端为正极。
图2根据判断外观二极管极性(2)万用表检测二极管的极性与好坏检测原理:根据二极管的单向导电性这一特点,性能良好的二极管,其正向电阻小,反向电阻大;这两个数值相差越大越好。
若相差不多,说明二极管的性能不好或已经损坏。
测量时,选用万用表的“欧姆”档。
一般用Rx100或Rx lk档。
而不用Rx1或Rx10k 档。
因为Rx l档的电流太大,容易烧坏二极管。
Rx l0k档的内电源电压太大,易击穿二极管。
测量方法:将两表棒分别接在二极管的两个电极上,读出测量的阻值;然后将表棒对换,再测量一次。
记下第二次阻值。
若两次阻值相差很大,说明该二极管性能良好;并根据测.量电阻小的那次的表棒接法(称之为正向连接),判断出与黑表棒连接的是二极管的正极。
与红表榜连接的是二极管的负极。
因为万用表的内电源的正极与万用表的“—”插孔连通,内电源的负极与万用表的“+”插孔连通。
如采两次测量的阻值都很小,说明二极管己经击穿;如果两次测量的阻值都很大,说明二极管内部己经断路;两次测量的阻值相差不大,说明悦极管性能欠佳。
二极管的原理与作用的详解一、二极管的原理1.1 二极管的结构和材料二极管是由P型半导体和N型半导体通过P-N结焊接而成的。
P型半导体中的空穴是载流子,N型半导体中的自由电子是载流子。
在P-N结区域,由于P型半导体与N型半导体之间的电子互相扩散,产生了内建电场。
当二极管处于正向偏置时,外加电场与内建电场相反,减弱内建电场,使电子和空穴互相推动,形成电流。
当二极管处于反向偏置时,外加电场与内建电场相同,增强内建电场,阻止电子和空穴互相推动,电流几乎为零。
1.2 二极管的I-V特性在二极管的工作过程中,通过正向偏置和反向偏置测试电压和电流的关系,得到了二极管的I-V特性曲线。
对于正向偏置,当初始时电压较小时,电流增加较快,此时二极管呈现出导通状态。
当电压较大时,电流增加的速度迅速放缓,呈现出近似于垂直的I-V特性曲线。
对于反向偏置,随着电压增加,电流一直保持在很小的数量级上,此时二极管处于截止状态。
从I-V特性曲线可以看出,二极管在正向偏置下具有导通特性,在反向偏置下具有截止特性。
1.3 二极管的载流子运动和电压分布在正向偏置下,P-N结区域的载流子受到外加电场的作用,不断地向结区域移动,形成电流。
P型半导体中的空穴向N型半导体区域移动,N型半导体中的自由电子向P型半导体区域移动,二者在P-N结区域重组,产生光子辐射。
在反向偏置下,P-N结区域的载流子受到内建电场的作用,难以移动,形成电流非常小的状态。
此时,二极管的内部电压分布非常重要,它会影响二极管的导通和截止状态。
1.4 二极管的能带图和禁带宽度能带图是根据半导体的能带结构绘制的图像,它反映了半导体的导电性和光电性。
对于二极管而言,能带图反映了P-N结区域的特性。
在P型半导体中,价带较高,导带较低,禁带宽度较小;在N型半导体中,价带较高,导带较低,禁带宽度较小。
在P-N结区域,由于电子的扩散和重组,形成了内建电场,使得P-N结处的禁带宽度增加。
禁带宽度的变化影响了二极管的导通和截止状态。
半导体二极管的基本知识教案教案主题:半导体二极管的基本知识教学目标:1.了解半导体二极管的基本结构和工作原理;2.掌握二极管的正向导通和反向截止的条件和特点;3.理解二极管的特性曲线和特殊用途。
教学内容:一、半导体二极管的基本结构和工作原理(200字)1.半导体材料的基本原理;2.半导体二极管的结构组成;3.P-N结的形成和特点;4.二极管的工作原理。
二、二极管的正向导通和反向截止条件和特点(400字)1.正向偏置的条件和特点;2.正向截止的条件和特点;3.反向偏置的条件和特点;4.反向击穿的条件和特点。
三、二极管的特性曲线(300字)1.静态特性曲线的形状和解读;2.动态特性曲线的形状和解读;3.特殊二极管的特性曲线解读。
四、二极管的应用(300字)1.整流二极管的应用;2.稳压二极管的应用;3.发光二级管的应用;4.激光二级管的应用;5.双极型晶体管的应用。
教学过程:一、导入(100字)1.通过展示实际应用中常见的二极管图标引起学生兴趣;2.提问:你了解二极管吗?你知道它有什么作用吗?二、引入新知(400字)1.介绍半导体材料的基本知识,引出半导体二极管的概念;2.讲解半导体二极管的结构组成和工作原理;3.演示实验:用示波器观察二极管的导通和截止过程。
三、学习重点(300字)1.引导学生理解正向导通和反向截止的条件和特点;2.演示实验:观察不同偏置条件下二极管的特性曲线。
四、拓展应用(300字)1.介绍不同类型的二极管的特点和应用;2.分组讨论:学生选择一个特殊二极管进行详细解读。
五、巩固练习(200字)1.课堂练习:选择题和解答题;2.讲解答案,提醒学生注意知识点。
六、总结与评价(100字)1.总结课堂内容,强调重点;2.鼓励学生将所学知识应用到实际问题中。
教学方法:讲授、演示、实验、讨论、练习教学辅助工具:白板、投影仪、示波器、二极管模块、试卷布置作业:让学生自主选择一个二极管的应用领域,撰写一篇短文介绍该应用领域及二极管的作用。