2015年高考湖北文科数学试题及答案(word解析版)
- 格式:docx
- 大小:913.51 KB
- 文档页数:7
2015年高考湖北卷文数试题解析(精编版)(解析版)一、选择题(本大题共8个小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.i为虚数单位,607i=()A.i-B.i C.1-D.1【答案】A.【考点定位】本题考查复数的概念及其运算,涉及分数指数幂的运算性质.【名师点睛】将复数的幂次运算和分数指数幂运算结合在一起,不仅考查了复数的概念,也考查了分数指数幂的运算性质,充分体现了学科内知识之间的联系性,能够较好的反应学生基础知识的识记能力和计算能力.2.我国古代数学名著《九章算术》有“米谷粒分”题:粮仓开仓收粮,有人送来米1534石,验得米内夹谷,抽样取米一把,数得254粒内夹谷28粒,则这批米内夹谷约为()A.134石 B.169石 C.338石 D.1365石【答案】B.【考点定位】本题考查简单的随机抽样,涉及近似计算.【名师点睛】本题以数学史为背景,重点考查简单的随机抽样及其特点,通过样本频率估算总体频率,虽然简单,但仍能体现方程的数学思想在解题中的应用,能较好考查学生基础知识的识记能力和估算能力、实际应用能力. 3.命题“0(0,)x ∃∈+∞,00ln 1x x =-”的否定是( ) A .0(0,)x ∃∈+∞,00ln 1x x ≠-B .0(0,)x ∃∉+∞,00ln 1x x =-C .(0,)x ∀∈+∞,ln 1x x ≠-D .(0,)x ∀∉+∞,ln 1x x =- 【答案】C .【考点定位】本题考查特称命题和全称命题的否定形式,,属识记基础题. 【名师点睛】本题主要考查特称命题的否定,其解题的关键是正确理解并识记其否定的形式特征.扎根基础知识,强调教材的重要性,充分体现了教材在高考中的地位和重要性,考查了基本概念、基本规律和基本操作的识记能力. 4.已知变量x 和y 满足关系0.11y x =-+,变量y 与z 正相关. 下列结论中正确的是( )A .x 与y 负相关,x 与z 负相关B .x 与y 正相关,x 与z 正相关C .x 与y 正相关,x 与z 负相关D .x 与y 负相关,x 与z 正相关 【答案】A .【考点定位】本题考查正相关、负相关,涉及线性回归方程的内容.【名师点睛】将正相关、负相关、线性回归方程等联系起来,充分体现了方程思想在线性回归方程中的应用,能较好的考查学生运用基础知识的能力.其易错点有二:其一,未能准确理解正相关与负相关的定义;其二,不能准确的将正相关与负相关问题进行转化为直线斜率大于和小于0的问题.5.12,l l 表示空间中的两条直线,若p :12,l l 是异面直线;q :12,l l 不相交,则( ) A .p 是q 的充分条件,但不是q 的必要条件 B .p 是q 的必要条件,但不是q 的充分条件C .p 是q 的充分必要条件D .p 既不是q 的充分条件,也不是q 的必要条件 【答案】A .【考点定位】本题考查充分条件与必要条件、异面直线,属基础题.【名师点睛】以命题与命题间的充分条件与必要条件为契机,重点考查空间中直线的位置关系,其解题的关键是弄清谁是谁的充分条件谁是谁的必要条件,正确理解异面直线的定义,注意考虑问题的全面性、准确性. 6.函数256()4||lg3x x f x x x -+=-+-的定义域为( ) A .(2,3) B .(2,4]C .(2,3)(3,4]D .(1,3)(3,6]-【答案】C .【考点定位】本题考查函数的定义域,涉及根式、绝对值、对数和分式、交集等内容.【名师点睛】本题看似是求函数的定义域,实质上是将根式、绝对值、对数和分式、交集等知识联系在一起,重点考查学生思维能力的全面性和缜密性,凸显了知识之间的联系性、综合性,能较好的考查学生的计算能力和思维的全面性.7.设x ∈R ,定义符号函数1,0,sgn 0,0,1,0.x x x x >⎧⎪==⎨⎪-<⎩则( ) A .|||sgn |x x x =B .||sgn ||x x x =C .||||sgn x x x =D .||sgn x x x =【答案】D.【考点定位】本题考查分段函数及其表示法,涉及新定义,属能力题. 【名师点睛】以新定义为背景,重点考查分段函数及其表示,其解题的关键是准确理解题意所给的新定义,并结合分段函数的表示准确表达所给的函数.不仅新颖别致,而且能综合考察学生信息获取能力以及知识运用能力.8.在区间[0,1]上随机取两个数,x y ,记1p 为事件“12x y +≤”的概率,2p 为事件“12xy ≤”的概率,则( )A .1212p p <<B .1212p p <<C .2112p p <<D .2112p p <<【答案】B .【考点定位】本题考查几何概型和微积分基本定理,涉及二元一次不等式所表示的区域和反比例函数所表示的区域.【名师点睛】以几何概型为依托,融合定积分的几何意义、二元一次不等式所表示的区域和反比例函数所表示的区域等内容,充分体现了转化的数学思想在实际问题中的应用,能较好的考查学生灵活运用基础知识解决实际问题的能力. 9.将离心率为1e 的双曲线1C 的实半轴长a 和虚半轴长()b a b ≠同时增加(0)m m >个单位长度,得到离心率为2e 的双曲线2C ,则( ) A .对任意的,a b ,12e e > B .当a b >时,12e e >;当a b<时,12e e <C .对任意的,a b ,12e e <D .当a b >时,12e e <;当a b <时,12e e > 【答案】D .【考点定位】本题考查双曲线的定义及其简单的几何性质,考察双曲线的离心率的基本计算,涉及不等式及不等关系.【名师点睛】将双曲线的离心率的计算与初中学习的溶液浓度问题联系在一起,突显了数学在实际问题中实用性和重要性,充分体现了分类讨论的数学思想方法在解题中的应用,能较好的考查学生思维的严密性和缜密性. 10.已知集合22{(,)1,,}A x y x y x y =+≤∈Z ,{(,)||2,||2,,}B x y x y x y =≤≤∈Z ,定义集合12121122{(,)(,),(,)}A B x x y y x y A x y B ⊕=++∈∈,则A B ⊕中元素的个数为( )A .77B .49C .45D .30【答案】C .【考点定位】本题考查用不等式表示平面区域和新定义问题,属高档题.【名师点睛】用集合、不等式的形式表示平面区域,以新定义为背景,涉及分类计数原理,体现了分类讨论的思想方法的重要性以及准确计数的科学性,能较好的考查学生知识间的综合能力、知识迁移能力和科学计算能力.第Ⅱ卷(共110分)(非选择题共110分)二、填空题(每题7分,满分36分,将答案填在答题纸上)11.已知向量OA AB⊥,||3OA =,则OA OB⋅=_________.【答案】9.【考点定位】本题考查向量的数量积的基本运算,属基础题.【名师点睛】将向量的加法运算法则(平行四边形法则和三角形法则)和向量的数量积的定义运算联系在一起,体现数学学科知识间的内在联系,渗透方程思想在解题中的应用,能较好的考查学生基础知识的识记能力和灵活运用能力.12.若变量,x y满足约束条件4,2,30,x yx yx y+≤⎧⎪-≤⎨⎪-≥⎩则3x y+的最大值是_________.【答案】10.【考点定位】本题考查线性规划的最值问题,属基础题.【名师点睛】这是一道典型的线性规划问题,重点考查线性规划问题的基本解决方法,体现了数形结合的思想在数学解题中重要性和实用性,能较好的考查学生准确作图能力和灵活运用基础知识解决实际问题的能力. 13.函数2π()2sin sin()2f x x x x =+-的零点个数为_________.【答案】2.【考点定位】本题考查函数与方程,涉及常见函数图像绘画问题,属中档题. 【名师点睛】将函数的零点问题和方程根的问题、函数的交点问题联系在一起,凸显了数学学科内知识间的内在联系,充分体现了转化化归的数学思想在实际问题中的应用,能较好的考查学生准确绘制函数图像的能力和灵活运用基础知识解决实际问题的能力.14.某电子商务公司对10000名网络购物者2014年度的消费情况进行统计,发现消费金额(单位:万元)都在区间[0.3,0.9]内,其频率分布直方图如图所示. (Ⅰ)直方图中的a =_________;(Ⅱ)在这些购物者中,消费金额在区间[0.5,0.9]内的购物者的人数为_________.【答案】(Ⅰ)3;(Ⅱ)6000.【考点定位】本题考查频率分布直方图,属基础题.【名师点睛】以实际问题为背景,重点考查频率分布直方图,灵活运用频率直方图的规律解决实际问题,能较好的考查学生基本知识的识记能力和灵活运用能力.15.如图,一辆汽车在一条水平的公路上向正西行驶,到A处时测得公路北侧一山顶D在西偏北30的方向上,行驶600m后到达B处,测得此山顶在西偏北75的方向上,仰角为30,则此山的高度CD _________m.【答案】1006.【考点定位】本题考查解三角形的实际应用举例,属中档题.【名师点睛】以实际问题为背景,将抽象的数学知识回归生活实际,凸显了数学的实用性和重要性,体现了“数学源自生活,生活中处处有数学”的数学学科特点,能较好的考查学生识记和理解数学基本概念的能力和基础知识在实际问题中的运用能力.16.如图,已知圆C与x轴相切于点(1,0)T,与y轴正半轴交于两点A,B(B在A的上方),且2AB=.(Ⅰ)圆C的标准..方程为_________;(Ⅱ)圆C在点B处的切线在x轴上的截距为_________.【答案】(Ⅰ)22--.-+-=;(Ⅱ)12x y(1)(2)2【考点定位】本题考查圆的标准方程和圆的切线问题, 属中高档题.【名师点睛】将圆的标准方程、圆的切线方程与弦长问题联系起来,注重实际问题的特殊性,合理的挖掘问题的实质,充分体现了数学学科特点和知识间的内在联系,渗透着方程的数学思想,能较好的考查学生的综合知识运用能力.其解题突破口是观察出点C的横坐标.17.a为实数,函数2g a. 当a=_________=-在区间[0,1]上的最大值记为()()||f x x ax时,()g a的值最小.【答案】222-.【考点定位】本题考查分段函数的最值问题和函数在区间上的最值问题,属高档题.【名师点睛】将含绝对值的二次函数在区间上的最值问题和分段函数的最值问题融合在一起,运用分类讨论的思想将含绝对值问题转化为分段函数的问题,充分体现了分类讨论和化归转化的数学思想,能较好的考查知识综合能力.其解题的关键是运用分类讨论求出()g a 的表达式和分段函数在区间上的最值求法. 三、解答题 (本大题共5小题,共65分.解答应写出文字说明、证明过程或演算步骤.)18.(本小题满分12分)某同学用“五点法”画函数π()sin()(0,||)2f x A x ωϕωϕ=+><在某一个周期内的图象时,列表并填入了部分数据,如下表:x ωϕ+ 0 π2 π3π2 2πxπ35π6 sin()A x ωϕ+55-(Ⅰ)请将上表数据补充完整,填写在答题卡上相应位置...........,并直接写出函数()f x 的解析式; (Ⅱ)将()y f x =图象上所有点向左平行移动π6个单位长度,得到()y g x =图象,求()y g x =的图象离原点O 最近的对称中心.【答案】(Ⅰ)根据表中已知数据,解得π5,2,6A ωϕ===-.数据补全如下表:x ωϕ+π2 π3π2 2πxπ12 π3 7π125π6 13π12 sin()A x ωϕ+55-且函数表达式为π()5sin(2)6f x x =-;(Ⅱ)离原点O 最近的对称中心为π(,0)12-.【考点定位】本题考查五点作图法和三角函数图像的平移与三角函数的图像及其性质,属基础题.【名师点睛】将五点作图法、三角函数图像的平移与三角函数的图像及其性质联系在一起,正确运用方程组的思想,合理的解三角函数值,准确使用三角函数图像的平移和三角函数的图像及其性质是解题的关键,能较好的考查学生基础知识的实际应用能力、准确计算能力和规范解答能力. 19.(本小题满分12分)设等差数列{}n a 的公差为d ,前n 项和为n S ,等比数列{}n b 的公比为q .已知11b a =,22b =,q d =,10100S =.(Ⅰ)求数列{}n a ,{}n b 的通项公式;(Ⅱ)当1d >时,记n n na cb =,求数列{}nc 的前n 项和n T .【答案】(Ⅰ)121,2.n n na nb -=-⎧⎪⎨=⎪⎩或11(279),929().9n n n a n b -⎧=+⎪⎪⎨⎪=⋅⎪⎩;(Ⅱ)12362n n n T -+=-.【考点定位】本题综合考查等差数列、等比数列和错位相减法求和,属中档题. 【名师点睛】这是一道简单综合试题,其解题思路:第一问直接借助等差、等比数列的通项公式列出方程进行求解,第二问运用错位相减法直接对其进行求和.体现高考坚持以基础为主,以教材为蓝本,注重计算能力培养的基本方向. 20.(本小题满分13分)《九章算术》中,将底面为长方形且有一条侧棱与底面垂直的四棱锥称之为阳马,将四个面都为直角三角形的四面体称之为鳖臑.在如图所示的阳马P ABCD -中,侧棱PD ⊥底面ABCD ,且PD CD =,点E 是PC 的中点,连接,,DE BD BE.(Ⅰ)证明:DE ⊥平面PBC . 试判断四面体EBCD 是否为鳖臑,若是,写出其每个面的直角(只需 写出结论);若不是,请说明理由; (Ⅱ)记阳马P ABCD -的体积为1V ,四面体EBCD 的体积为2V ,求12V V 的值.【答案】(Ⅰ)因为PD ⊥底面ABCD ,所以PD BC ⊥. 由底面ABCD 为长方形,有BC CD ⊥,而PDCD D =,所以BC ⊥平面PCD . DE ⊂平面PCD ,所以BC DE ⊥. 又因为PD CD =,点E 是PC 的中点,所以DE PC ⊥. 而PC BC C =,所以DE ⊥平面PBC.四面体EBCD 是一个鳖臑;(Ⅱ)124.V V =【考点定位】本题考查直线与平面垂直的判定定理、直线与平面垂直的性质定理和简单几何体的体积,属中高档题.【名师点睛】以《九章算术》为背景,给予新定义,增添了试题的新颖性,但其实质仍然是考查线面垂直与简单几何体的体积计算,其解题思路:第一问通过线线、线面垂直相互之间的转化进行证明,第二问关键注意底面积和高之比,运用锥体的体积计算公式进行求解. 结合数学史料的给予新定义,不仅考查学生解题能力,也增强对数学的兴趣培养,为空间立体几何注入了新的活力. 21.(本小题满分14分)设函数()f x ,()g x 的定义域均为R ,且()f x 是奇函数,()g x 是偶函数,()()e x f x g x +=,其中e 为自然对数的底数.(Ⅰ)求()f x ,()g x 的解析式,并证明:当0x >时,()0f x >,()1g x >; (Ⅱ)设0a ≤,1b ≥,证明:当0x >时,()()(1)()(1)f x ag x a bg x b x+-<<+-. 【答案】(Ⅰ)1()(e e )2x x f x -=-,1()(e e )2x x g x -=+.证明:当0x >时,e 1x >,0e 1x -<<,故()0.f x >又由基本不等式,有1()(e e )e e 12x x x x g x --=+>=,即() 1.g x > (Ⅱ)由(Ⅰ)得2111e 1()(e )(e )(e e )()2e 2e 2x x x x x x x f x g x -''=-=+=+=⑤2111e 1()(e )(e )(e e )()2e 2e 2x x x x x x x g x f x -''=+=-=-=⑥当0x >时,()()(1)f x ag x a x >+-等价于()()(1)f x axg x a x >+- ⑦ ()()(1)f x bg x b x<+-等价于()()(1).f x bxg x b x <+- ⑧于是设函数 ()()()(1)h x f x cxg x c x =---,由⑤⑥,有()()()()(1)h x g x cg x cxf x c '=----(1)[()1]().c g x cxf x =--- 当0x >时,(1)若0c ≤,由③④,得()0h x '>,故()h x 在[0,)+∞上为增函数,从而()(0)0h x h >=,即()()(1)f x cxg x c x >+-,故⑦成立.(2)若1c ≥,由③④,得()0h x'<,故()h x 在[0,)+∞上为减函数,从而()(0)0h x h <=,即()()(1)f x cxg x c x <+-,故⑧成立.综合⑦⑧,得 ()()(1)()(1)f x ag x a bg x b x+-<<+-【考点定位】本题考查函数的奇偶性和导数在研究函数的单调性与极值中的应用,属高档题.【名师点睛】将函数的奇偶性和导数在研究函数的单调性与极值中的应用联系在一起,重点考查函数的综合性,体现了函数在高中数学的重要地位,其解题的关键是第一问需运用奇函数与偶函数的定义及性质建立方程组进行求解;第二问属于函数的恒成立问题,需借助导数求解函数最值来解决.22.(本小题满分14分)一种画椭圆的工具如图1所示.O是滑槽AB的中点,短杆ON可绕O转动,长杆MN通过N处铰链与ON连接,MN上的栓子D可沿滑槽AB滑动,且1MN=.当栓子D在DN ON==,3滑槽AB内作往复运动时,带动..N绕O转动,M处的笔尖画出的椭圆记为C.以O为原点,AB 所在的直线为x 轴建立如图2所示的平面直角坐标系. (Ⅰ)求椭圆C 的方程;(Ⅱ)设动直线l 与两定直线1:20l x y -=和2:20l x y +=分别交于,P Q 两点.若直线l总与椭圆C 有且只有一个公共点,试探究:OPQ ∆的面积是否存在最小值?若存在,求出该最小值;若不存在,说明理由.【答案】(Ⅰ)221.164x y +=(Ⅱ)当直线l 与椭圆C在四个顶点处相切时,OPQ ∆的面积取得最小值8.【考点定位】本题考查椭圆的标准方程与直线与椭圆相交综合问题,属高档题. 【名师点睛】作为压轴大题,其第一问将椭圆的方程与课堂实际教学联系在一起,重点考查学生信息获取与运用能力和实际操作能力,同时为椭圆的实际教学提供教学素材;第二问考查直线与椭圆相交的综合问题,借助函数思想进行求解.其解题的关键是注重基本概念的深层次理解,灵活运用所学知识.。
2015年湖北省高考数学试卷(文科)一、选择题:本大题10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1.(3分)i为虚数单位,i607=()A.﹣i B.i C.1 D.﹣12.(3分)我国古代数学名著《九章算术》有“米谷粒分”题:粮仓开仓收粮,有人送来米1534石,验得米内夹谷,抽样取米一把,数得254粒内夹谷28粒,则这批米内夹谷约为()A.134石B.169石C.338石D.1365石3.(3分)命题“∃x0∈(0,+∞),lnx0=x0﹣1”的否定是()A.∃x0∈(0,+∞),lnx0≠x0﹣1 B.∃x0∉(0,+∞),lnx0=x0﹣1C.∀x∈(0,+∞),lnx≠x﹣1 D.∀x∉(0,+∞),lnx=x﹣14.(3分)已知变量x和y满足关系y=﹣0.1x+1,变量y与z正相关,下列结论中正确的是()A.x与y负相关,x与z负相关 B.x与y正相关,x与z正相关C.x与y正相关,x与z负相关 D.x与y负相关,x与z正相关5.(3分)l1,l2表示空间中的两条直线,若p:l1,l2是异面直线,q:l1,l2不相交,则()A.p是q的充分条件,但不是q的必要条件B.p是q的必要条件,但不是q的充分条件C.p是q的充分必要条件D.p既不是q的充分条件,也不是q的必要条件6.(3分)函数f(x)=+lg的定义域为()A.(2,3) B.(2,4]C.(2,3)∪(3,4]D.(﹣1,3)∪(3,6] 7.(3分)设x∈R,定义符号函数sgnx=,则()A.|x|=x|sgnx| B.|x|=xsgn|x| C.|x|=|x|sgnx D.|x|=xsgnx8.(3分)在区间[0,1]上随机取两个数x,y,记p1为事件“x+y≤”的概率,P2为事件“xy≤”的概率,则()A.p1<p2<B.C.p2<D.9.(3分)将离心率为e1的双曲线C1的实半轴长a和虚半轴长b(a≠b)同时增加m(m>0)个单位长度,得到离心率为e2的双曲线C2,则()A.对任意的a,b,e1>e2B.当a>b时,e1>e2;当a<b时,e1<e2C.对任意的a,b,e1<e2D.当a>b时,e1<e2;当a<b时,e1>e210.(3分)已知集合A={(x,y)|x2+y2≤1,x,y∈Z},B={(x,y)||x|≤2,|y|≤2,x,y∈Z},定义集合A⊕B={(x1+x2,y1+y2)|(x1,y1)∈A,(x2,y2)∈B},则A⊕B中元素的个数为()A.77 B.49 C.45 D.30二、填空题11.(3分)已知向量⊥,||=3,则•=.12.(3分)设变量x,y满足约束条件,则3x+y的最大值为.13.(3分)f(x)=2sin xsin(x+)﹣x2的零点个数为.14.(3分)某电子商务公司对10000名网络购物者2014年度的消费情况进行统计,发现消费金额(单位:万元)都在区间[0.3,0.9]内,其频率分布直方图如图所示.(1)直方图中的a=.(2)在这些购物者中,消费金额在区间[0.5,0.9]内的购物者的人数为.15.(3分)如图,一辆汽车在一条水平的公路上向正西行驶,到A处时测得公路北侧一山顶D在西偏北30°的方向上,行驶600m后到达B处,测得此山顶在西偏北75°的方向上,仰角为30°,则此山的高度CD=m.16.(3分)如图,已知圆C与x轴相切于点T(1,0),与y轴正半轴交于两点A,B(B在A的上方),且|AB|=2.(1)圆C的标准方程为.(2)圆C在点B处切线在x轴上的截距为.17.(3分)a为实数,函数f(x)=|x2﹣ax|在区间[0,1]上的最大值记为g(a).当a=时,g(a)的值最小.三、解答题18.(12分)某同学将“五点法”画函数f(x)=Asin(wx+φ)(w>0,|φ|<)在某一个时期内的图象时,列表并填入部分数据,如下表:π2πwx+φxAsin(wx+φ)05﹣50(1)请将上述数据补充完整,填写在答题卡上相应位置,并直接写出函数f(x)的解析式;(2)将y=f(x )图象上所有点向左平移个单位长度,得到y=g(x)图象,求y=g(x)的图象离原点O最近的对称中心.19.(12分)设等差数列{a n}的公差为d,前n项和为S n,等比数列{b n}的公比为q,已知b1=a1,b2=2,q=d,S10=100.(1)求数列{a n},{b n}的通项公式(2)当d>1时,记c n =,求数列{c n}的前n项和T n.20.(13分)《九章算术》中,将底面为长方形且有一条侧棱与底面垂直的四棱锥称之为阳马,将四个面都为直角三角形的四面体称之为鳖臑.在如图所示的阳马P﹣ABCD中,侧棱PD⊥底面ABCD,且PD=CD,点E是PC的中点,连接DE、BD、BE.(Ⅰ)证明:DE⊥平面PBC.试判断四面体EBCD是否为鳖臑.若是,写出其每个面的直角(只需写出结论);若不是,请说明理由;(Ⅱ)记阳马P﹣ABCD的体积为V1,四面体EBCD的体积为V2,求的值.21.(14分)设函数f(x),g(x)的定义域均为R,且f(x)是奇函数,g(x)是偶函数,f(x)+g(x)=e x,其中e为自然对数的底数.(1)求f(x),g(x)的解析式,并证明:当x>0时,f(x)>0,g(x)>1;(2)设a≤0,b≥1,证明:当x>0时,ag(x)+(1﹣a)<<bg(x)+(1﹣b).22.(14分)一种画椭圆的工具如图1所示.O是滑槽AB的中点,短杆ON可绕O转动,长杆MN通过N处铰链与ON连接,MN上的栓子D可沿滑槽AB滑动,且DN=ON=1,MN=3,当栓子D在滑槽AB内作往复运动时,带动N绕O转动,M处的笔尖画出的椭圆记为C,以O为原点,AB所在的直线为x轴建立如图2所示的平面直角坐标系.(1)求椭圆C的方程;(2)设动直线l与两定直线l1:x﹣2y=0和l2:x+2y=0分别交于P,Q两点.若直线l总与椭圆C有且只有一个公共点,试探究:△OPQ的面积是否存在最小值?若存在,求出该最小值;若不存在,说明理由.2015年湖北省高考数学试卷(文科)参考答案与试题解析一、选择题:本大题10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的。
2015年普通高等学校招生全国统一考试(某某卷)文科数学试题解析1. 解析6076061ii 1i i +==-⨯=-,故选B.2. 解析设一石米中有n 粒谷,这批米内夹谷x 石,则281534254x n n ⋅=⋅,得153428169254x ⨯=≈.故选B.3. 解析由特称命题的否定为全称命题可知,所求命题的否定为()0x ∀∈+∞,,ln 1x x ≠-.故选A.4. 解析因为变量x 和y 满足关系0.11y x =-+,其中0.10-<,所以x 与y 成负相关;又因为变量y 与z 正相关,可设()0z ky b k =+>,则将0.11y x =-+代入即可得到,()()0.110.1z k x b kx k b =-++=-++,所以0.10k -<,所以x 与z 负相关.故选A.5. 解析若p :1l ,2l 是异面直线,由异面直线的定义知,1l ,2l 不相交,所以命题q :1l ,2l 不相交成立,即p 是q 的充分条件;反过来,若q :1l ,2l 不相交,则1l ,2l 可能平行,也可能异面,所以,不能推出1l ,2l 是异面直线,即p 不是q 的必要条件,故选A.6. 解析由函数()y f x =的表达式可知,函数()f x 的定义域应满足条件:2405603x x x x ⎧-⎪⎨-+>⎪-⎩,解之得4423x x x -⎧⎪>⎨⎪≠⎩,即函数()f x 的定义域为()(]2334,,.故选C. 7. 解析对于选项A ,右边0sgn 00x x x x x ≠⎧==⎨=⎩,,,而左边00x x x x x ⎧==⎨-<⎩,,,显然不正确;对于选项B ,右边0sgn 00x x x x x ≠⎧==⎨=⎩,,,而左边00x x x x x ⎧==⎨-<⎩,,,显然不正确;对于选项C ,右边0sgn 000x x x x x x x >⎧⎪===⎨⎪<⎩,,,,而左边00x x x x x ⎧==⎨-<⎩,,,显然不正确;对于选项D ,右边0sgn 000x x x x x x x >⎧⎪===⎨⎪-<⎩,,,,而左边00x x x x x ⎧==⎨-<⎩,,,正确.故选D.8. 解析123p p p 、、依次为三个图形的面积,观察知,选B.也可作如下的计算:因为正方形的面积为1,所以由图(1)得11111=2228p ⨯⨯=, 由图(2)得111212211111ln 2=1ln 222222p dx x x ⨯+=+=+⎰,1212p p 、、三个值比较得1212p p <<,故选D.9. 解析()()()()()2222221222a m b m m b a a b b b m e e a a a m a a m a m +++-++⎛⎫-=-=+ ⎪++⎝⎭+,当a b >时,22120e e -<,12e e <;当a b <时,22120e e ->,12e e >.故选B.10. 解析如图所示集合B 有25个元素(点)(构成正中的正方形),()()()()(){}0010100101A =--,,,,,,,,,.当()11()00x y =,,时,()()121222x x y y x y ++=,,,共25个点; 当()()1110x y =-,,时,左边增加5个点,当()()1101x y =,,,()()1110x y =,,,()()1101x y =-,,时,上面,右边,下面各增加5个点,则A B ⊕中元素中共有254545+⨯=个点.故选C.11. 解析因为OA AB ⊥,所以0OA AB ⋅=,即()=0OA OB OA ⋅-,22239OA OB OA OA ⋅====.+-1,0(+0,-1()+1,0()12. 解析首先根据题意所给的约束条件画出其表示的平面区域如图所示,然后根据图像可得,目标函数3z x y =+过点()31B ,取得最大值,即max 33110z =⨯+=.13. 解析函数()2π2sin sin 2f x x x x ⎛⎫=+- ⎪⎝⎭的零点个数等价于方程π2sin sin 2x x ⎛⎫+- ⎪⎝⎭20x =的根的个数,即函数()π2sin sin 2sin cos sin 22g x x x x x x ⎛⎫=+== ⎪⎝⎭与函数()2h x x =的图像交点个数.于是,分别画出其函数图像如图所示,由图可知,函数()g x 与函数()h x 的图像有2个交点.14. 解析由频率分布直方图及频率和等于1可得0.20.10.80.1 1.50.120.1⨯+⨯+⨯+⨯+2.50.10.11a ⨯+⨯=,解之得3a =.于是消费金额在区间[]0.50.9,内的频率为0.20.1⨯+0.80.120.130.10.6⨯+⨯+⨯=,所以消费金额在区间[]0.50.9,内的购物者的人数为0.6100006000⨯=.15. 解析在ABC △中,30BAC ∠=,105ABC ∠=,所以45ACB ∠=, 因为600AB =,由正弦定理可得600sin 45sin 30BC=,即BC =, 在Rt BCD △中,因为30CBD ∠=,BC =所以tan 30CD BC ==,所以CD =m. 16. 解析(1)由条件可设圆C 的标准方程为2(1)()22x +y r r --=(r 为半径),因为2AB=,所以r ==,故圆C 的标准方程为()(2212x y -+-=.(2)在()(2212x y -+-=中令0x =得()01B,又(C 1,所以1BC k ==-,所以圆C 在点B 处的切线斜率为1,即圆C 在点B 处的切线方程为)1y x =+.令0y =可得1x =--C 在点B 处的切线在x 轴上的截距为1-.17.解析当0a =时,2()f x x =,则g()(1)1a f ==;当0a <时,()()22,0()0x ax x a x f x x ax a x ⎧-=⎨-+<<⎩,(如图(1)所示), 则g()(1)1a f a ==-;当0a >时,()()220()0x ax x x a f x x ax x a ⎧-<>=⎨-+⎩,,(如图(2)所示), 此时222a a f ⎛⎫⎛⎫=-+ ⎪ ⎪⎝⎭⎝⎭24a ,由22(0)4a x ax x -=>得12x a =.1,a 即02(21)a <-时,g()(1)1a f a ==-;若1122aa <<,即1)2a <<时,2g()24a aa f ⎛⎫== ⎪⎝⎭;若12a,即2a 时,g()(1)1a f a ==-+.综上所述,()())21221212412a a ag a a a a ⎧--⎪⎪=<<⎨⎪⎪-⎩,,,,易得当1)a =时,()g a 取最小值3-.18.解析(1)根据表中已知数据,解得5A =,2ω=,π6ϕ=-,数据补全如表所示:且函数表达式为()π5sin 26f x x ⎛⎫=- ⎪⎝⎭.(2)由(1)知π()5sin(2)6f x x =-,因此πππ()5sin 25sin 2666g x x x ⎡⎤⎛⎫⎛⎫=+-=+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦.因为sin y x =的对称中心为()π0k ,,k ∈Z . 令π2π6x k +=,解得ππ212k x =-,k ∈Z ,即()y g x =图象的对称中心为ππ0212k ⎛⎫- ⎪⎝⎭,,k ∈Z ,其中离原点O 最近的对称中心为π012⎛⎫- ⎪⎝⎭,.19. 解析(1)由题意有,1110451002a d a d +=⎧⎨=⎩,即1129202a d a d +=⎧⎨=⎩.解得112a =d =⎧⎨⎩,或1929a d =⎧⎪⎨=⎪⎩.故1212n n n a n b -=-⎧⎪⎨=⎪⎩或()112799299n n n a n b -⎧=+⎪⎪⎨⎛⎫⎪=⋅⎪⎪⎝⎭⎩. (2)由1d >,知21n a n =-,12n n b -=,故1212n n n c --=, 于是数列的前n 项和2341357921122222n n n T --=++++++,①2345113579212222222n n n T -=++++++. ② 式①-式②可得221111212323222222n n n nn n T --+=++++-=-.故12362n n n T -+=-. 20.解析(1)因为PD ⊥底面ABCD ,所以PD BC ⊥.由底面ABCD 为长方形,有BC CD ⊥而PD CD D =,所以BC ⊥平面PCD .DE ⊂平面PCD ,所以BC DE ⊥. 又因为PD CD =,点E 是PC 的中点,所以DE PC ⊥. 而PCBC C =,所以DE ⊥平面PBC .由BC ⊥平面PCD ,DE ⊥平面PBC ,可知四面体EBCD 的四个面都是直角三角形,即四面体EBCD 是一个鳖臑,其四个面的直角分别是.BCD BCE DEC DEB ∠∠∠∠,,,(2)由已知,PD 是阳马-P ABCD 的高,所以11133ABCD V S PD BC CD PD =⋅=⋅⋅;由(1)知,DE是鳖臑-D BCE 的高,BC CE ⊥,所以21136BCE V S DE BC CE DE ∆=⋅=⋅⋅.在Rt PDC △中,因为PD CD =,点E 是PC的中点,所以DE CE ==, 于是12123 4.16BC CD PD V CD PD V CE DEBC CE DE ⋅⋅⋅===⋅⋅⋅21.解析(1)由()f x ,()g x 的奇偶性及条件()()e x f x g x +=① 得()()e x f x g x --+=②联立式①式②解得1()(e e )2x x f x -=-,1()(e e )2x x g x -=+.当0x >时,e 1x >,0e 1x -<<,故()0f x >.③又由基本不等式,有1()(e e )12x x g x -=+=,即()1g x >.④(2)由(1)得2111e 1()(e )(e )(e e )()2e 2e 2x x x x x x x f x g x -''=-=+=+=, ⑤2111e 1()(e )(e )(e e )()2e 2e 2x x x x x x x g x f x -''=+=-=-=, ⑥当0x >时,()()(1)f x ag x a x>+-等价于()()(1)f x axg x a x >+-, ⑦ ()()(1)f x bg x b x<+-等价于()()(1).f x bxg x b x <+-⑧ 设函数 ()()()(1)h x f x cxg x c x =---,由式⑤式⑥,有()()()()(1)h x g x cg x cxf x c '=----=(1)[()1]().c g x cxf x --- 当0x >时, (1)若0c,由式③式④,得()0h x '>,故()h x 在[0)+∞,上为增函数,从而()(0)0h x h >=,即()()(1)f x cxg x c x >+-,故式⑦成立.(2)若1c ,由③④,得()0h x '<,故()h x 在[0)+∞,上为减函数,从而()(0)0h x h <=,即()()(1)f x cxg x c x <+-,故式⑧成立. 综合式⑦式⑧,得()()(1)()(1)f x ag x a bg x b x+-<<+-. 22.解析(1)因为||||||314OM MN NO +=+=,当M N ,在x 轴上时,等号成立; 同理||||||312OM MN NO -=-=,当D O ,重合,即MN x ⊥轴时,等号成立.所以椭圆C 的中心为原点O ,长半轴长为4,短半轴长为2,其方程为22 1.164x y +=(2)(ⅰ)当直线l 的斜率不存在时,直线l 为4x =或4x =-,都有14482OPQ S =⨯⨯=△.(ⅱ)当直线l 的斜率存在时,设直线l :1()2y kx m k =+≠±,由22416y kx m x y =+⎧⎨+=⎩,消去y ,可得222(14)84160k x kmx m +++-=.因为直线l 总与椭圆C 有且只有一个公共点,所以()()2222644144160k m k m ∆=-+-=,即22164m k =+. ①又由20y kx m x y =+⎧⎨-=⎩,可得21212m m P k k ⎛⎫ ⎪--⎝⎭,;同理可得21212mm Q k k -⎛⎫ ⎪++⎝⎭,.由原点O 到直线PQ 的距离为d =和P Q PQ x -,可得22111222222121214OPQP Q m m m S PQ d m x x m k k k =⋅=-=⋅+=-+-△. ② 将式①代入式②得,222241281441OPQk m S k k +==--△. 当214k >时,2224128814141OPQ k S k k ⎛⎫+⎛⎫==+ ⎪ ⎪--⎝⎭⎝⎭△;当2104k <时,2224128811414OPQ k S k k ⎛⎫+⎛⎫==-+ ⎪ ⎪--⎝⎭⎝⎭△. 若214k <,则20141k <-,22214k -,所以2281814OPQ S k ⎛⎫=-+ ⎪-⎝⎭△,当且仅当0k =时取等号.所以当0k =时,OPQ S △的最小值为8.综合(ⅰ)(ⅱ)可知,当直线l 与椭圆C 在四个顶点处相切时,OPQ △的面积取得最小值8.。
2015年湖北省高考数学试卷(文科)参考答案与试题解析一、选择题:本大题10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的。
6072.(3分)(2015•湖北)我国古代数学名著《九章算术》有“米谷粒分”题:粮仓开仓收粮,有人送来米1534石,验得米内夹谷,抽样取米一把,数得254粒内夹谷28粒,则这批米内×4.(3分)(2015•湖北)已知变量x和y满足关系y=﹣0.1x+1,变量y与z正相关,下列结5.(3分)(2015•湖北)l1,l2表示空间中的两条直线,若p:l1,l2是异面直线,q:l1,l26.(3分)(2015•湖北)函数f(x)=的定义域为(),7.(3分)(2015•湖北)设x∈R,定义符号函数sgnx=,则(),而左边,而左边,而左边=xsgnx=,显然正确;8.(3分)(2015•湖北)在区间[0,1]上随机取两个数x,y,记p1为事件“x+y≤”的概率,P2为事件“xy≤”的概率,则()”==;;9.(3分)(2015•湖北)将离心率为e1的双曲线C1的实半轴长a和虚半轴长b(a≠b)同时=∴﹣,10.(3分)(2015•湖北)已知集合A={(x,y)|x2+y2≤1,x,y∈Z},B={(x,y)||x|≤2,|y|≤2,x,y∈Z},定义集合A⊕B={(x1+x2,y1+y2)|(x1,y1)∈A,(x2,y2)∈B},则A⊕B中元二、填空题11.(3分)(2015•湖北)已知向量,||=3,则=9.,所以=0﹣,即212.(3分)(2015•湖北)设变量x,y满足约束条件,则3x+y的最大值为10.得13.(3分)(2015•湖北)函数的零点个数为2.14.(3分)(2015•湖北)某电子商务公司对10000名网络购物者2014年度的消费情况进行统计,发现消费金额(单位:万元)都在区间[0.3,0.9]内,其频率分布直方图如图所示.(1)直方图中的a=3.(2)在这些购物者中,消费金额在区间[0.5,0.9]内的购物者的人数为6000.15.(3分)(2015•湖北)如图,一辆汽车在一条水平的公路上向正西行驶,到A处时测得公路北侧一山顶D在西偏北30°的方向上,行驶600m后到达B处,测得此山顶在西偏北75°的方向上,仰角为30°,则此山的高度CD=100m.h=,h=100.16.(3分)(2015•湖北)如图,已知圆C与x轴相切于点T(1,0),与y轴正半轴交于两点A,B(B在A的上方),且|AB|=2.(1)圆C的标准方程为(x﹣1)2+(y﹣)2=2.(2)圆C在点B处切线在x轴上的截距为﹣1﹣.)由题意,圆的半径为=))1+)﹣﹣).17.(3分)(2015•湖北)a为实数,函数f(x)=|x2﹣ax|在区间[0,1]上的最大值记为g(a).当a=2﹣2时,g(a)的值最小.2﹣2时,=∵=﹣,[);,故答案为:三、解答题18.(12分)(2015•湖北)某同学将“五点法”画函数f(x)=Asin(wx+φ)(w>0,|φ|<)π(1)请将上述数据补充完整,填写在答题卡上相应位置,并直接写出函数f(x)的解析式;(2)将y=f(x)图象上所有点向左平移个单位长度,得到y=g(x)图象,求y=g(x)的图象离原点O最近的对称中心.2))图象上所有点向左平移()﹣]2x+)=k﹣,.(﹣19.(12分)(2015•湖北)设等差数列{a n}的公差为d,前n项和为S n,等比数列{b n}的公比为q,已知b1=a1,b2=2,q=d,S10=100.(1)求数列{a n},{b n}的通项公式(2)当d>1时,记c n=,求数列{c n}的前n项和T n.,写出、,由题意可得,或;=•••∴+3+5+7+•∴+++﹣﹣20.(13分)(2015•湖北)《九章算术》中,将底面为长方形且有一条侧棱与底面垂直的四棱锥称之为阳马,将四个面都为直角三角形的四面体称之为鳖臑.在如图所示的阳马P﹣ABCD中,侧棱PD⊥底面ABCD,且PD=CD,点E是PC的中点,连接DE、BD、BE.(Ⅰ)证明:DE⊥平面PBC.试判断四面体EBCD是否为鳖臑.若是,写出其每个面的直角(只需写出结论);若不是,请说明理由;(Ⅱ)记阳马P﹣ABCD的体积为V1,四面体EBCD的体积为V2,求的值.====.CD==21.(14分)(2015•湖北)设函数f(x),g(x)的定义域均为R,且f(x)是奇函数,g (x)是偶函数,f(x)+g(x)=e x,其中e为自然对数的底数.(1)求f(x),g(x)的解析式,并证明:当x>0时,f(x)>0,g(x)>1;(2)设a≤0,b≥1,证明:当x>0时,ag(x)+(1﹣a)<<bg(x)+(1﹣b).时,>,(=)>×==时,>,故,故<22.(14分)(2015•湖北)一种画椭圆的工具如图1所示.O是滑槽AB的中点,短杆ON 可绕O转动,长杆MN通过N处铰链与ON连接,MN上的栓子D可沿滑槽AB滑动,且DN=ON=1,MN=3,当栓子D在滑槽AB内作往复运动时,带动N绕O转动,M处的笔尖画出的椭圆记为C,以O为原点,AB所在的直线为x轴建立如图2所示的平面直角坐标系.(1)求椭圆C的方程;(2)设动直线l与两定直线l1:x﹣2y=0和l2:x+2y=0分别交于P,Q两点.若直线l总与椭圆C有且只有一个公共点,试探究:△OPQ的面积是否存在最小值?若存在,求出该最小值;若不存在,说明理由.其方程为.=k(,,)|PQ|==|PQ|d=|m||x|m|||=| =||=8|时,<(时,∴1+。
湖北省教育考试院 保留版权 数学(文史类) 第1页(共14页)绝密★启用前2015年全国各地高考数学试题(湖北卷)数 学(文史类)本试题卷共5页,22题。
全卷满分150分。
考试用时120分钟。
一、选择题:本大题共10小题,每小题5分,共50分. 在每小题给出的四个选项中,只有一项是符合题目要求的. 1.i 为虚数单位,607i = A.i - B.i C.1- D.1答案:A 解析:1.6074151+33ii i i ⨯===-.故选(A ).2.我国古代数学名著《数书九章》有“米谷粒分”题:粮仓开仓收粮,有人送来米1534 石,验得米内夹谷,抽样取米一把,数得254粒内夹谷28粒,则这批米内夹谷约为A.134石B.169石C.338石D.1365石答案:B解析:这批米内夹谷约为281534169254⨯≈石.故选(B). 3.命题“0(0,)x ∃∈+∞,00ln 1x x =-”的否定是 A.0(0,)x ∃∈+∞,00ln 1x x ≠- B.0(0,)x ∃∉+∞,00ln 1x x =- C.(0,)x ∀∈+∞,ln 1x x ≠- D.(0,)x ∀∉+∞,ln 1x x =-答案:C解析:特称性命题的否定是全称性命题,且注意否定结论,故原命题的否定是:“()0,,ln 1x x x ∀∈+∞≠-”.故选(C ).4.已知变量x 和y 满足关系0.11y x =-+,变量y 与z 正相关. 下列结论中正确的是 A.x 与y 负相关,x 与z 负相关 B.x 与y 正相关,x 与z 正相关 C.x 与y 正相关,x 与z 负相关 D.x 与y 负相关,x 与z 正相关答案:A解析:显然x 与y 负相关.又y 与z 正相关,所以根据“正负得负”的传递性,得x 与z 负相关.故选(A )5.12,l l 表示空间中的两条直线,若p :12,l l 是异面直线;q :12,l l 不相交,则A.p 是q 的充分条件,但不是q 的必要条件B.p 是q 的必要条件,但不是q 的充分条件C.p 是q 的充分必要条件D.p 既不是q 的充分条件,也不是q 的必要条件 答案:A解析:由12,l l 是异面直线,可得12,l l 不相交,所以p q ⇒;由12,l l 不相交,可得12,l l 是异面直线或12//l l ,所以q p ⇒.所以p 是q 的充分条件,但不是q 的必要条件.故选(A ).6.函数256()lg 3x x f x x -+=-的定义域为A.(2,3)B.(2,4]C.(2,3)(3,4]D.(1,3)(3,6]-答案:C解析:依题意,有40x -≥,解得44≤≤-x ①;且03652>-+-x x x ,解得2x >且3x ≠②;由①②求交集得,函数的定义域为()(]2,33,4.故选(C).7.设x ∈R ,定义符号函数1,0,sgn 0,0,1,0.x x x x >⎧⎪==⎨⎪-<⎩则 A.|||sgn |x x x = B.||sgn ||x x x =C.||||sgn x x x =D.||sgn x x x =答案:D解析:当0>x 时,sgn x x x x ==; 当0=x 时,sgn 0x x x ==;当0<x 时,sgn x x x x =-=. 综上,sgn x x x =.故选(D).8. 在区间[0,1]上随机取两个数,x y ,记1p 为事件“12x y +≤”的概率,2p 为事件“12xy ≤” 的概率,则A.1212p p << B.1212p p <<C.2112p p <<D.2112p p << 答案:B解析:在直角坐标系中,依次作出不等式01,01,x y ≤≤⎧⎨≤≤⎩11,22x y xy +≤≤的可行域如下图所示:依题意,OCDEABO S S p 四边形∆=1,OCDEOEGFC S S p 四边形曲边多边形=2,而OCDEOEC S S 四边形∆=21,所以1212p p <<. 故选(B).9.将离心率为1e 的双曲线1C 的实半轴长a 和虚半轴长()b a b ≠同时增加(0)m m >个单位 长度,得到离心率为2e 的双曲线2C ,则 A.对任意的,a b ,12e e > B.当a b >时,12e e >;当a b <时,12e e < C.对任意的,a b ,12e e < D.当a b >时,12e e <;当a b <时,12e e >答案:D解析:2211a b e +=,2e =.不妨令21e e <,化简得()0b b m m a a m +<>+,得am bm <,得b a <.所以当a b >时,有m a m b a b ++>,即21e e >;当a b <时,有ma mb a b ++<,即21e e <.故选(D ).10.已知集合22{(,)1,,}A x y x y x y =+≤∈Z ,{(,)||2,||2,,}B x y x y x y =≤≤∈Z ,定义集合 12121122{(,)(,),(,)}A B x x y y x y A x y B ⊕=++∈∈,则A B ⊕中元素的个数为A.77B.49C.45D.30答案:C解析:如图,集合A 表示如下图所示的所有红心圆点,集合B 表示如下图所示的所有红心圆点+所有绿心圆点,集合A B ⊕显然是集合(){},|3,3,,x y x y x y ≤≤∈Z 中除去四个点()()()(){}3,3,3,3,3,3,3,3----之外的所有整点(即横坐标与纵坐标都为整数的点),即集合A B ⊕表示如下图所示的所有红心圆点+所有绿心圆点+所有黄心圆点,共45个.故AB ⊕中元素的个数为45 . 故选(C ).二、填空题:本大题共7小题,每小题5分,共35分.请将答案填在答题卡对应题号.......的位 置上. 答错位置,书写不清,模棱两可均不得分. 11.已知向量OA AB ⊥,||3OA =,则OA OB ⋅=_________. 答案:9 解析:由OA AB⊥,得OA AB =.所以()2O A OB OA O A AB O A O A A=+=+22039OA =+==. 12.若变量,x y 满足约束条件4,2,30,x y x y x y +≤⎧⎪-≤⎨⎪-≥⎩则3x y +的最大值是_________.答案:10解析:作出约束条件表示的可行域如下图所示:易知可行域边界三角形的三个顶点坐标分别是()()()3,1,1,3,1,3--,平行移动直线3y x =-,求可知当直线过点()3,1时3x y +取最大值10.13.函数2π()2sin sin()2f x x x x =+-的零点个数为_________.答案:2解析:()2222sin sin 2sin cos sin 22f x x x x x x x x x π⎛⎫=+-=-=- ⎪⎝⎭.令()0f x =,则2sin 2x x =,则函数()f x 的零点个数即为函数sin 2y x =与函数2y x =图像的交点个数.作出函数图像知,两函数图像的交点有2个,即函数()f x 的零点个数为2.14.某电子商务公司对10000名网络购物者2014年度的消费情况进行统计,发现消费金额 (单位:万元)都在区间[0.3,0.9]内,其频率分布直方图如图所示. (Ⅰ)直方图中的a =_________;(Ⅱ)在这些购物者中,消费金额在区间[0.5,0.9]内的购物者的人数为_________.答案:(Ⅰ)3;(Ⅱ)6000.解析:(Ⅰ)由频率分布直方图知,()1.5 2.5 2.00.80.20.11a +++++⨯=,解得3a =; (Ⅱ)消费金额在区间[]0.5,0.9内的购物者的人数为()100003 2.00.80.20.1⨯+++⨯=6000.15.如图,一辆汽车在一条水平的公路上向正西行驶,到A 处时测得公路北侧一山顶D 在西偏北30的方向上,行驶600m 后到达B 处,测得此山顶在西偏北75的方向上,仰角为30,则此山的高度CD =_________m.答案:解析:依题意,在ABC ∆中,600AB =,30BAC ∠=︒,753045ACB ∠=︒-︒=︒,由正弦定理得s i n s i n B CA B B A C A C B =∠∠,即600sin 30sin 45BC =︒︒,所以32BC =.在BCD∆中,30CBD ∠=︒,tan tan30CD BC CBD =∠=︒=16.如图,已知圆C 与x 轴相切于点(1,0)T ,与y 轴正半 轴交于两点A ,B (B 在A 的上方),且2AB =. (Ⅰ)圆C 的标准..方程为_________; (Ⅱ)圆C 在点B 处的切线在x 轴上的截距为_________.AB答案:(Ⅰ)22(1)(2x y -+=;(Ⅱ)①②③解析:(Ⅰ)由题意设圆心()1,C r (r 为圆C 的半径),则222122AB r ⎛⎫=+= ⎪⎝⎭,解得r =所以圆C 的方程为()(2212x y -+=.(Ⅱ)令0x =,得1y =,所以点()1B .又点(C ,所以直线BC 的斜率为1BCk =-,所以圆C 在点B 处的切线方程为)10y x -=-,即)1y x =+.令0y =,得切线在x 轴上的截距为1.17. a 为实数,函数2()||f x x ax =-在区间[0,1]上的最大值记为()g a . 当a =_________时,()g a 的值最小.解析:17.①当0a ≤时,()2f x x ax =-在[]0,1上是增函数,所以()()11g a f a ==-,此时()min 1g a =;②当02a <<时,作出函数()2f x x ax =-的大致图像如下:由图易知,()2f x x ax =-在0,2a ⎡⎤⎢⎥⎣⎦上是增函数,在,2aa ⎡⎤⎢⎥⎣⎦上是减函数,在[],1a 上是增函数,此时,只需比较2a f ⎛⎫⎪⎝⎭与()1f 的大小即可.由()12a f f ⎛⎫= ⎪⎝⎭,得2122a a a a ⎛⎫-=- ⎪⎝⎭,得214a a =-,解得2a =或2a =(舍去). 且当02a <<时,()12a f f ⎛⎫<⎪⎝⎭;当22a <<时,()12a f f ⎛⎫> ⎪⎝⎭.(i )当02a <<时,()12a f f ⎛⎫< ⎪⎝⎭,所以()()11g a f a ==-,此时()321g a -<<;(ii )当2a =时,()12a f f ⎛⎫=⎪⎝⎭,所以()()132a g a f f ⎛⎫===- ⎪⎝⎭(iii )当22a <<时,()12a f f ⎛⎫> ⎪⎝⎭,所以()224a ag a f ⎛⎫==⎪⎝⎭,此时()34g a -<<;③当2a ≥时,()2f x x ax =-在[]0,1上是增函数,所以()()11g a f a ==-,此时()m i n 1g a =.综上,当2a =时,()min 3g a =-三、解答题:本大题共5小题,共65分.解答应写出文字说明、证明过程或演算步骤. 18.(本小题满分12分)某同学用“五点法”画函数π()sin()(0,||)2f x A x ωϕωϕ=+><在某一个周期内的图象时,列表并填入了部分数据,如下表:(Ⅰ)请将上表数据补充完整,填写在答题卡上相应位置...........,并直接写出函数()f x 的解 析式;(Ⅱ)将()y f x =图象上所有点向左平行移动π6个单位长度,得到()y g x =图象,求 ()y g x =的图象离原点O 最近的对称中心. 解:18.(1)根据表中已知数据,解得π5,2,6A ωϕ===-. 数据补全如下表:且函数表达式为π()5sin(2)6f x x =-.(2)由(1)知π()5sin(2)6f x x =-,因此 πππ()5sin[2()]5sin(2)666g x x x =+-=+.因为曲线sin y x =的对称中心为(π,0)k ,k ∈Z . 令π2π6x k +=,解得ππ212k x =-,k ∈Z .即()y g x =图像的对称中心为ππ0212k -(,),k ∈Z ,其中离原点O 最近的对称中心为π(,0)12-. 19.(本小题满分12分)设等差数列{}n a 的公差为d ,前n 项和为n S ,等比数列{}n b 的公比为q .已知11b a =,22b =,q d =,10100S =.(Ⅰ)求数列{}n a ,{}n b 的通项公式; (Ⅱ)当1d >时,记nn na cb =,求数列{}n c 的前n 项和n T . 解:(1)由题意有,111045100,2,a d a d +=⎧⎨=⎩ 即112920,2,a d a d +=⎧⎨=⎩解得11,2,a d =⎧⎨=⎩ 或19,2.9a d =⎧⎪⎨=⎪⎩ 故121,2.n n n a n b -=-⎧⎪⎨=⎪⎩或11(279),929().9nn n a n b -⎧=+⎪⎪⎨⎪=⋅⎪⎩(2)由1d >,知21n a n =-,12n n b -=,故1212n n n c --=,于是2341357921122222n n n T --=++++++, ① 2345113579212222222n nn T -=++++++. ② ①-②可得221111212323222222n n nn n n T --+=++++-=-, 故n T 12362n n -+=-. 20.(本小题满分13分)《九章算术》中,将底面为长方形且有一条侧棱与底面垂直的四棱锥称之为阳马,将四个面都为直角三角形的四面体称之为鳖臑.在如图所示的阳马P ABCD -中,侧棱PD ⊥底面ABCD ,且PD CD =,点E 是PC 的 中点,连接,,DE BD BE .(Ⅰ)证明:DE ⊥平面PBC . 试判断四面体EBCD 是否为鳖臑,若是,写出其每个面的直角(只需 写出结论);若不是,请说明理由;(Ⅱ)记阳马P ABCD -的体积为1V ,四面体EBCD 的体积为2V ,求12V V 的值.解:(1)因为PD ⊥底面ABCD ,所以PD BC ⊥.由底面ABCD 为长方形,有BC CD ⊥,而PDCD D =,所以BC ⊥平面PCD . DE ⊂平面PCD ,所以BC DE ⊥.又因为PD CD =,点E 是PC 的中点,所以DE PC ⊥. 而PCBC C =,所以DE ⊥平面PBC .由BC ⊥平面PCD ,DE ⊥平面PBC ,可知四面体EBCD 的四个面都是直角三角形,即四面体EBCD 是一个鳖臑,其四个面的直角分别是,,,.BCD BCE DEC DEB ∠∠∠∠(2)由已知,PD 是阳马P ABCD -的高,所以11133ABCD V S PD BC CD PD =⋅=⋅⋅;由(1)知,DE 是鳖臑D BCE -的高, BC CE ⊥,所以21136BCE V S DE BC CE DE ∆=⋅=⋅⋅.在Rt △PDC 中,因为PD CD =,点E 是PC 的中点,所以DE CE ==, 于是 12123 4.16BC CD PD V CD PD V CE DEBC CE DE ⋅⋅⋅===⋅⋅⋅21.(本小题满分14分)设函数()f x ,()g x 的定义域均为R ,且()f x 是奇函数,()g x 是偶函数, ()()e x f x g x +=,其中e 为自然对数的底数.(1)求()f x ,()g x 的解析式,并证明:当0x >时,()0f x >,()1g x >; (2)设0a ≤,1b ≥,证明:当0x >时,()()(1)()(1)f x ag x a bg x b x+-<<+-. 解:(1)由()f x , ()g x 的奇偶性及()()e x f x g x +=, ①得 ()()e .x f x g x --+= ②联立①②解得1()(e e )2x x f x -=-,1()(e e )2x x g x -=+.当0x >时,e 1x >,0e 1x -<<,故()0.f x > ③又由基本不等式,有1()(e e )12x x g x -=+,即() 1.g x > ④(2)由(1)得 2111e 1()(e )(e )(e e )()2e 2e 2x x x x x x x f x g x -''=-=+=+=, ⑤2111e 1()(e )(e )(e e )()2e 2e 2x x x x x x x g x f x -''=+=-=-=, ⑥当0x >时,()()(1)f x ag x a x>+-等价于()()(1)f x axg x a x >+-, ⑦()()(1)f x bg x b x<+-等价于()()(1).f x bxg x b x <+- ⑧ 设函数 ()()()(1)h x f x cxg x c x =---,由⑤⑥,有()()()()(1)h x g x cg x cxf x c '=----(1)[()1]().c g x cxf x =--- 当0x >时,(1)若0c ≤,由③④,得()0h x '>,故()h x 在[0,)+∞上为增函数,从而()(0)0h x h >=,即()()(1)f x cxg x c x >+-,故⑦成立.(2)若1c ≥,由③④,得()0h x '<,故()h x 在[0,)+∞上为减函数,从而()(0)0h x h <=,即()()(1)f x cxg x c x <+-,故⑧成立.综合⑦⑧,得 ()()(1)()(1)f x ag x a bg x b x+-<<+-. 22.(本小题满分14分)一种画椭圆的工具如图1所示.O 是滑槽AB 的中点,短杆ON 可绕O 转动,长杆MN 通过N 处铰链与ON 连接,MN 上的栓子D 可沿滑槽AB 滑动,且1DN ON ==,3MN =.当栓子D 在滑槽AB 内作往复运动时,带动..N 绕O 转动,M 处的笔尖画出的椭圆记为C .以O 为原点,AB 所在的直线为x 轴建立如图2所示的平面直角坐标系. (Ⅰ)求椭圆C 的方程;(Ⅱ)设动直线l 与两定直线1:20l x y -=和2:20l x y +=分别交于,P Q 两点.若直线l总与椭圆C 有且只有一个公共点,试探究:△OPQ 的面积是否存在最小值?若存 在,求出该最小值;若不存在,说明理由.解:(1)因为||||||314OM MN NO ≤+=+=,当,M N 在x 轴上时,等号成立;同理||||||312OM MN NO ≥-=-=,当,D O 重合,即MN x ⊥轴时,等号成立.所以椭圆C 的中心为原点O ,长半轴长为4,短半轴长为2,其方程为221.164x y +=图1图2(2)1)当直线l 的斜率不存在时,直线l 为4x =或4x =-,都有14482OPQ S ∆=⨯⨯=.2)当直线l 的斜率存在时,设直线1:()2l y kx m k =+≠±,由22,416,y kx m x y =+⎧⎨+=⎩ 消去y ,可得222(14)84160k x kmx m +++-=. 因为直线l 总与椭圆C 有且只有一个公共点,所以2222644(14)(416)0k m k m ∆=-+-=,即22164m k =+. ① 又由,20,y kx m x y =+⎧⎨-=⎩可得2(,)1212m m P k k --;同理可得2(,)1212m m Q k k -++.由原点O 到直线PQ的距离为d =和|||P Q PQ x x =-,可得22111222||||||||222121214OPQP Q m m m S PQ d m x x m k k k ∆=⋅=-=⋅+=-+-.②将①代入②得,222241281441OPQk m S k k ∆+==--. 当214k >时,2224128()8(1)84141OPQ k S k k ∆+==+>--;当2104k ≤<时,2224128()8(1)1414OPQ k S k k ∆+==-+--.因2104k ≤<,则20141k <-≤,22214k ≥-,所以228(1)814OPQ S k ∆=-+≥-, 当且仅当0k =时取等号.所以当0k =时,OPQ S ∆的最小值为8.综合1)2)可知,当直线l 与椭圆C 在四个顶点处相切时,△OPQ 的面积取得最小值8.。
2015年湖北省高考数学试卷(文科)一、选择题:本大题10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1.(3分)i为虚数单位,i607=()A.﹣i B.i C.1 D.﹣12.(3分)我国古代数学名著《九章算术》有“米谷粒分”题:粮仓开仓收粮,有人送来米1534石,验得米内夹谷,抽样取米一把,数得254粒内夹谷28粒,则这批米内夹谷约为()A.134石B.169石C.338石D.1365石3.(3分)命题“∃x0∈(0,+∞),lnx0=x0﹣1”的否定是()A.∃x0∈(0,+∞),lnx0≠x0﹣1 B.∃x0∉(0,+∞),lnx0=x0﹣1C.∀x∈(0,+∞),lnx≠x﹣1 D.∀x∉(0,+∞),lnx=x﹣14.(3分)已知变量x和y满足关系y=﹣0.1x+1,变量y与z正相关,下列结论中正确的是()A.x与y负相关,x与z负相关 B.x与y正相关,x与z正相关C.x与y正相关,x与z负相关 D.x与y负相关,x与z正相关5.(3分)l1,l2表示空间中的两条直线,若p:l1,l2是异面直线,q:l1,l2不相交,则()A.p是q的充分条件,但不是q的必要条件B.p是q的必要条件,但不是q的充分条件C.p是q的充分必要条件D.p既不是q的充分条件,也不是q的必要条件6.(3分)函数f(x)=+lg的定义域为()A.(2,3) B.(2,4]C.(2,3)∪(3,4]D.(﹣1,3)∪(3,6] 7.(3分)设x∈R,定义符号函数sgnx=,则()A.|x|=x|sgnx| B.|x|=xsgn|x| C.|x|=|x|sgnx D.|x|=xsgnx8.(3分)在区间[0,1]上随机取两个数x,y,记p1为事件“x+y≤”的概率,P2为事件“xy≤”的概率,则()A.p1<p2<B.C.p2<D.9.(3分)将离心率为e1的双曲线C1的实半轴长a和虚半轴长b(a≠b)同时增加m(m>0)个单位长度,得到离心率为e2的双曲线C2,则()A.对任意的a,b,e1>e2B.当a>b时,e1>e2;当a<b时,e1<e2C.对任意的a,b,e1<e2D.当a>b时,e1<e2;当a<b时,e1>e210.(3分)已知集合A={(x,y)|x2+y2≤1,x,y∈Z},B={(x,y)||x|≤2,|y|≤2,x,y∈Z},定义集合A⊕B={(x1+x2,y1+y2)|(x1,y1)∈A,(x2,y2)∈B},则A⊕B中元素的个数为()A.77 B.49 C.45 D.30二、填空题11.(3分)已知向量⊥,||=3,则•=.12.(3分)设变量x,y满足约束条件,则3x+y的最大值为.13.(3分)f(x)=2sin xsin(x+)﹣x2的零点个数为.14.(3分)某电子商务公司对10000名网络购物者2014年度的消费情况进行统计,发现消费金额(单位:万元)都在区间[0.3,0.9]内,其频率分布直方图如图所示.(1)直方图中的a=.(2)在这些购物者中,消费金额在区间[0.5,0.9]内的购物者的人数为.15.(3分)如图,一辆汽车在一条水平的公路上向正西行驶,到A处时测得公路北侧一山顶D在西偏北30°的方向上,行驶600m后到达B处,测得此山顶在西偏北75°的方向上,仰角为30°,则此山的高度CD=m.16.(3分)如图,已知圆C与x轴相切于点T(1,0),与y轴正半轴交于两点A,B(B在A的上方),且|AB|=2.(1)圆C的标准方程为.(2)圆C在点B处切线在x轴上的截距为.17.(3分)a为实数,函数f(x)=|x2﹣ax|在区间[0,1]上的最大值记为g(a).当a=时,g(a)的值最小.三、解答题18.(12分)某同学将“五点法”画函数f(x)=Asin(wx+φ)(w>0,|φ|<)在某一个时期内的图象时,列表并填入部分数据,如下表:π2πwx+φxAsin(wx+φ)05﹣50(1)请将上述数据补充完整,填写在答题卡上相应位置,并直接写出函数f(x)的解析式;(2)将y=f(x )图象上所有点向左平移个单位长度,得到y=g(x)图象,求y=g(x)的图象离原点O最近的对称中心.19.(12分)设等差数列{a n}的公差为d,前n项和为S n,等比数列{b n}的公比为q,已知b1=a1,b2=2,q=d,S10=100.(1)求数列{a n},{b n}的通项公式(2)当d>1时,记c n =,求数列{c n}的前n项和T n.20.(13分)《九章算术》中,将底面为长方形且有一条侧棱与底面垂直的四棱锥称之为阳马,将四个面都为直角三角形的四面体称之为鳖臑.在如图所示的阳马P﹣ABCD中,侧棱PD⊥底面ABCD,且PD=CD,点E是PC的中点,连接DE、BD、BE.(Ⅰ)证明:DE⊥平面PBC.试判断四面体EBCD是否为鳖臑.若是,写出其每个面的直角(只需写出结论);若不是,请说明理由;(Ⅱ)记阳马P﹣ABCD的体积为V1,四面体EBCD的体积为V2,求的值.21.(14分)设函数f(x),g(x)的定义域均为R,且f(x)是奇函数,g(x)是偶函数,f(x)+g(x)=e x,其中e为自然对数的底数.(1)求f(x),g(x)的解析式,并证明:当x>0时,f(x)>0,g(x)>1;(2)设a≤0,b≥1,证明:当x>0时,ag(x)+(1﹣a)<<bg(x)+(1﹣b).22.(14分)一种画椭圆的工具如图1所示.O是滑槽AB的中点,短杆ON可绕O转动,长杆MN通过N处铰链与ON连接,MN上的栓子D可沿滑槽AB滑动,且DN=ON=1,MN=3,当栓子D在滑槽AB内作往复运动时,带动N绕O转动,M处的笔尖画出的椭圆记为C,以O为原点,AB所在的直线为x轴建立如图2所示的平面直角坐标系.(1)求椭圆C的方程;(2)设动直线l与两定直线l1:x﹣2y=0和l2:x+2y=0分别交于P,Q两点.若直线l总与椭圆C有且只有一个公共点,试探究:△OPQ的面积是否存在最小值?若存在,求出该最小值;若不存在,说明理由.2015年湖北省高考数学试卷(文科)参考答案与试题解析一、选择题:本大题10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的。
2015年湖北省高考数学试卷(文科)一、选择题:本大题10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1.(3分)i为虚数单位,i607=()A.﹣i B.i C.1 D.﹣12.(3分)我国古代数学名著《九章算术》有“米谷粒分”题:粮仓开仓收粮,有人送来米1534石,验得米内夹谷,抽样取米一把,数得254粒内夹谷28粒,则这批米内夹谷约为()A.134石B.169石C.338石D.1365石3.(3分)命题“∃x0∈(0,+∞),lnx0=x0﹣1”的否定是()A.∃x0∈(0,+∞),lnx0≠x0﹣1 B.∃x0∉(0,+∞),lnx0=x0﹣1C.∀x∈(0,+∞),lnx≠x﹣1 D.∀x∉(0,+∞),lnx=x﹣14.(3分)已知变量x和y满足关系y=﹣0.1x+1,变量y与z正相关,下列结论中正确的是()A.x与y负相关,x与z负相关 B.x与y正相关,x与z正相关C.x与y正相关,x与z负相关 D.x与y负相关,x与z正相关5.(3分)l1,l2表示空间中的两条直线,若p:l1,l2是异面直线,q:l1,l2不相交,则()A.p是q的充分条件,但不是q的必要条件B.p是q的必要条件,但不是q的充分条件C.p是q的充分必要条件D.p既不是q的充分条件,也不是q的必要条件6.(3分)函数f(x)=+lg的定义域为()A.(2,3) B.(2,4]C.(2,3)∪(3,4]D.(﹣1,3)∪(3,6] 7.(3分)设x∈R,定义符号函数sgnx=,则()A.|x|=x|sgnx| B.|x|=xsgn|x| C.|x|=|x|sgnx D.|x|=xsgnx8.(3分)在区间[0,1]上随机取两个数x,y,记p1为事件“x+y≤”的概率,P2为事件“xy≤”的概率,则()A.p1<p2<B.C.p2<D.9.(3分)将离心率为e1的双曲线C1的实半轴长a和虚半轴长b(a≠b)同时增加m(m>0)个单位长度,得到离心率为e2的双曲线C2,则()A.对任意的a,b,e1>e2B.当a>b时,e1>e2;当a<b时,e1<e2C.对任意的a,b,e1<e2D.当a>b时,e1<e2;当a<b时,e1>e210.(3分)已知集合A={(x,y)|x2+y2≤1,x,y∈Z},B={(x,y)||x|≤2,|y|≤2,x,y∈Z},定义集合A⊕B={(x1+x2,y1+y2)|(x1,y1)∈A,(x2,y2)∈B},则A⊕B中元素的个数为()A.77 B.49 C.45 D.30二、填空题11.(3分)已知向量⊥,||=3,则•=.12.(3分)设变量x,y满足约束条件,则3x+y的最大值为.13.(3分)f(x)=2sin xsin(x+)﹣x2的零点个数为.14.(3分)某电子商务公司对10000名网络购物者2014年度的消费情况进行统计,发现消费金额(单位:万元)都在区间[0.3,0.9]内,其频率分布直方图如图所示.(1)直方图中的a=.(2)在这些购物者中,消费金额在区间[0.5,0.9]内的购物者的人数为.15.(3分)如图,一辆汽车在一条水平的公路上向正西行驶,到A处时测得公路北侧一山顶D在西偏北30°的方向上,行驶600m后到达B处,测得此山顶在西偏北75°的方向上,仰角为30°,则此山的高度CD=m.16.(3分)如图,已知圆C与x轴相切于点T(1,0),与y轴正半轴交于两点A,B(B在A的上方),且|AB|=2.(1)圆C的标准方程为.(2)圆C在点B处切线在x轴上的截距为.17.(3分)a为实数,函数f(x)=|x2﹣ax|在区间[0,1]上的最大值记为g(a).当a=时,g(a)的值最小.三、解答题18.(12分)某同学将“五点法”画函数f(x)=Asin(wx+φ)(w>0,|φ|<)在某一个时期内的图象时,列表并填入部分数据,如下表:π2πwx+φxAsin(wx+φ)05﹣50(1)请将上述数据补充完整,填写在答题卡上相应位置,并直接写出函数f(x)的解析式;(2)将y=f(x )图象上所有点向左平移个单位长度,得到y=g(x)图象,求y=g(x)的图象离原点O最近的对称中心.19.(12分)设等差数列{a n}的公差为d,前n项和为S n,等比数列{b n}的公比为q,已知b1=a1,b2=2,q=d,S10=100.(1)求数列{a n},{b n}的通项公式(2)当d>1时,记c n =,求数列{c n}的前n项和T n.20.(13分)《九章算术》中,将底面为长方形且有一条侧棱与底面垂直的四棱锥称之为阳马,将四个面都为直角三角形的四面体称之为鳖臑.在如图所示的阳马P﹣ABCD中,侧棱PD⊥底面ABCD,且PD=CD,点E是PC的中点,连接DE、BD、BE.(Ⅰ)证明:DE⊥平面PBC.试判断四面体EBCD是否为鳖臑.若是,写出其每个面的直角(只需写出结论);若不是,请说明理由;(Ⅱ)记阳马P﹣ABCD的体积为V1,四面体EBCD的体积为V2,求的值.21.(14分)设函数f(x),g(x)的定义域均为R,且f(x)是奇函数,g(x)是偶函数,f(x)+g(x)=e x,其中e为自然对数的底数.(1)求f(x),g(x)的解析式,并证明:当x>0时,f(x)>0,g(x)>1;(2)设a≤0,b≥1,证明:当x>0时,ag(x)+(1﹣a)<<bg(x)+(1﹣b).22.(14分)一种画椭圆的工具如图1所示.O是滑槽AB的中点,短杆ON可绕O转动,长杆MN通过N处铰链与ON连接,MN上的栓子D可沿滑槽AB滑动,且DN=ON=1,MN=3,当栓子D在滑槽AB内作往复运动时,带动N绕O转动,M处的笔尖画出的椭圆记为C,以O为原点,AB所在的直线为x轴建立如图2所示的平面直角坐标系.(1)求椭圆C的方程;(2)设动直线l与两定直线l1:x﹣2y=0和l2:x+2y=0分别交于P,Q两点.若直线l总与椭圆C有且只有一个公共点,试探究:△OPQ的面积是否存在最小值?若存在,求出该最小值;若不存在,说明理由.2015年湖北省高考数学试卷(文科)参考答案与试题解析一、选择题:本大题10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的。
数学试卷 第1页(共36页)数学试卷 第2页(共36页)数学试卷 第3页(共36页)绝密★启用前2015年普通高等学校招生全国统一考试(湖北卷)数学(文科)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.满分150分,考试时间120分钟. 注意事项:1.答卷前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置.2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.写在试题卷、草稿纸和答题卡上的非答题区域均无效.3.填空题和解答题的作答:用签字笔直接答在答题卡上对应的答题区域内.写在试题卷、草稿纸和答题卡上的非答题区域均无效.4.选考题的作答:先把所选题目的题号在答题卡上指定的位置用2B 铅笔涂黑,再在答题卡上对应的答题区域内答题.写在试题卷、草稿纸和答题卡上的非答题区域均无效.5.考试结束后,请将本试题卷和答题卡一并上交.第Ⅰ卷(选择题 共50分)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.i 为虚数单位,607i = ( )A .i -B .iC .1-D .12.我国古代数学名著《数书九章》有“米谷粒分”题:粮仓开仓收粮,有人送来米1 534石,验得米内夹谷,抽样取米一把,数得254粒内夹谷28粒,则这批米内夹谷约为( )A .134石B .169石C .338石D .1 365石 3.命题“0(0,)x ∃∈+∞,00ln 1x x =-”的否定是( ) A .0(0,)x ∃∈+∞,00ln 1x x ≠- B .0(0,)x ∃∉+∞,00ln 1x x =- C .(0,)x ∀∈+∞,ln 1x x ≠-D .(0,)x ∀∉+∞,ln 1x x =-4.已知变量x 和y 满足关系0.11y x =-+,变量y 与z 正相关.下列结论中正确的是 ( ) A .x 与y 负相关,x 与z 负相关 B .x 与y 正相关,x 与z 正相关 C .x 与y 正相关,x 与z 负相关D .x 与y 负相关,x 与z 正相关5.1l ,2l 表示空间中的两条直线,若p :1l ,2l 是异面直线;q :1l ,2l 不相交,则( )A .p 是q 的充分条件,但不是q 的必要条件B .p 是q 的必要条件,但不是q 的充分条件C .p 是q 的充分必要条件D .p 既不是q 的充分条件,也不是q 的必要条件6.函数256()lg 3x x f x x -+=-的定义域为( )A .(2,3)B .(2,4]C .(2,3)(3,4] D .(1,3)(3,6]-7.设x ∈R ,定义符号函数1,0,sgn 0,0,1,0,x x x x >⎧⎪==⎨⎪-<⎩则( )A .|||sgn |x x x =B .||sgn ||x x x =C .||||sgn x x x =D .||sgn x x x =8.在区间[0,1]上随机取两个数x ,y ,记1p 为事件“12x y +≤”的概率,2p 为事件“12xy ≤”的概率,则( )A .1212p p << B .1212p p << C .2112p p <<D .2112p p << 9.将离心率为1e 的双曲线1C 的实半轴长a 和虚半轴长()b a b ≠同时增加(0)m m >个单位长度,得到离心率为2e 的双曲线2C ,则 ( )A .对任意的a ,b ,12e e >B .当a b >时,12e e >;当a b <时,12e e <C .对任意的a ,b ,12e e <D .当a b >时,12e e <;当a b <时,12e e >10.已知集合22{(,)1,,}A x y x y x y =+∈Z ≤,{(,)||2,||2,,}B x y x y x y =∈Z ≤≤,定义集合12121122{(,)(,),(,)}A B x x y y x y A x y B ⊕=++∈∈,则A B ⊕中元素的个数为( )A .77B .49C .45D .30 第Ⅱ卷(非选择题 共100分)二、填空题:本大题共7小题,每小题5分,共35分.把答案填在题中的横线上. 11.已知向量OA AB ⊥,||3OA =,则 OA OB =___________.12.若变量,x y 满足约束条件4,2,30,x y x y x y +⎧⎪-⎨⎪-⎩≤≤≥则3x y +的最大值是___________.13.函数2π()2sin sin()2f x x x x =+-的零点个数为___________.14.某电子商务公司对10 000名网络购物者2014年度的消费情况进行统计,发现消费金额(单位:万元)都在区间[0.3,0.9]内,其频率分布直方图如图所示.(Ⅰ)直方图中的a =_________;(Ⅱ)在这些购物者中,消费金额在区间[0.5,0.9]内的购物者的人数为_________.15.如图,一辆汽车在一条水平的公路上向正西行驶,到A 处时测得公路北侧一山顶D 在西偏北30的方向上,行驶600m 后到达B 处,测得此山顶在西偏北75的方向上,仰角为30,则此山的高度CD =_________m.16.如图,已知圆C 与x 轴相切于点(1,0)T ,与y 轴正半轴交于两点A ,B (B 在A 的上方),且2AB =.(Ⅰ)圆C 的标准方程为_________;(Ⅱ)圆C 在点B 处的切线在x 轴上的截距为_________.17. a 为实数,函数2()||f x x ax =-在区间[0,1]上的最大值记为()g a .当a =_________时,()g a 的值最小. --------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------姓名________________ 准考证号_____________数学试卷 第4页(共36页)数学试卷 第5页(共36页)数学试卷 第6页(共36页)三、 解答题:本大题共5小题,共65分.解答应写出必要的文字说明、证明过程或演算步骤. 18.(本小题满分12分)某同学用“五点法”画函数π()sin()(0,||)2f x A x ωϕωϕ=+><在某一个周期内的图(Ⅰ)请将上表数据补充完整,并直接写出函数()f x 的解析式; (Ⅱ)将()y f x =图象上所有点向左平行移动π6个单位长度,得到()y g x =的图象,求()y g x =的图象离原点O 最近的对称中心.19.(本小题满分12分)设等差数列{}n a 的公差为d ,前n 项和为n S ,等比数列{}n b 的公比为q ,已知11b a =,22b =,q d =,10100S =.(Ⅰ)求数列{}n a ,{}n b 的通项公式;(Ⅱ)当1d >时,记n n nac b =,求数列{}n c 的前n 项和n T .20.(本小题满分13分)《九章算术》中,将底面为长方形且有一条侧棱与底面垂直的四棱锥称之为阳马,将四个面都为直角三角形的四面体称之为鳖臑.在如图所示的阳马P ABCD -中,侧棱PD ⊥底面ABCD ,且PD CD =,点E 是PC 的中点,连接DE ,BD ,BE .(Ⅰ)证明:DE PBC ⊥平面.试判断四面体EBCD 是否为鳖臑.若是,写出其每个面的直角(只需写出结论);若不是,说明理由;(Ⅱ)记阳马P ABCD -的体积为1V ,四面体EBCD 的体积为2V ,求12V V 的值.21.(本小题满分14分)设函数()f x ,()g x 的定义域均为R ,且()f x 是奇函数,()g x 是偶函数,()f x +()g x e x =,其中e 为自然对数的底数.(Ⅰ)求()f x ,()g x 的解析式,并证明:当0x >时,()0f x >,()1g x >; (Ⅱ)设0a ≤,1b ≥,证明:当0x >时,()()(1)()(1)f x ag x a bg x b x+-+-<<. 22.(本小题满分14分)一种画椭圆的工具如图1所示,O 是滑槽AB 的中点,短杆ON 可绕O 转动,长杆MN 通过N 处铰链与ON 连接,MN 上的栓子D 可沿滑槽AB 滑动,且DN ON =1=,3MN =.当栓子D 在滑槽AB 内作往复运动时,带动N 绕O 转动,M 处的笔尖画出的椭圆记为C ,以O 为原点,AB 所在的直线为x 轴建立如图2所示的平面直角坐标系. (Ⅰ)求椭圆C 的方程;(Ⅱ)设动直线l 与两定直线1:20l x y -=和2:20l x y +=分别交于,P Q 两点.若直线l总与椭圆C 有且只有一个公共点,试探究:△OPQ 的面积是否存在最小值?若存在,求出该最小值;若不存在,说明理由.2015年普通高等学校招生全国统一考试(湖北卷)数学(文科)答案解析第Ⅰ卷)(]3,4,故选【提示】根据函数成立的条件进行求解即可3 / 124心圆点所有黄心圆点,共45个,故A B⊕中元素的个数为45故选C.第Ⅱ卷5 / 126【解析】作出约束条件表示的可行域如下图所示:易知可行域边界三角形的三个顶点坐标分别是3,11,31,3--(),(),(),平行移动直线3y x =-,求可知当2tan30100︒=7 / 12812a aa =-)1;当29 / 121011 / 1212。
绝密★启用前2015年普通高等学校招生全国统一考试(湖北卷)数 学(文史类)本试题卷共5页,22题。
全卷满分150分。
考试用时120分钟。
★祝考试顺利★注意事项:1.答卷前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。
用2B 铅笔将答题卡上试卷类型A 后的方框涂黑。
2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
3.填空题和解答题的作答:用签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
4.考试结束后,请将本试题卷和答题卡一并上交。
一、选择题:本大题共10小题,每小题5分,共50分. 在每小题给出的四个选项中,只有一项是符合题目要求的. 1.i 为虚数单位,607i =A .i -B .iC .1-D .12.我国古代数学名著《数书九章》有“米谷粒分”题:粮仓开仓收粮,有人送来米1534 石,验得米内夹谷,抽样取米一把,数得254粒内夹谷28粒,则这批米内夹谷约为 A .134石 B .169石 C .338石 D .1365石3.命题“0(0,)x ∃∈+∞,00ln 1x x =-”的否定是 A .0(0,)x ∃∈+∞,00ln 1x x ≠- B .0(0,)x ∃∉+∞,00ln 1x x =- C .(0,)x ∀∈+∞,ln 1x x ≠-D .(0,)x ∀∉+∞,ln 1x x =-4.已知变量x 和y 满足关系0.11y x =-+,变量y 与z 正相关. 下列结论中正确的是 A .x 与y 负相关,x 与z 负相关 B .x 与y 正相关,x 与z 正相关 C .x 与y 正相关,x 与z 负相关 D .x 与y 负相关,x 与z 正相关5.12,l l 表示空间中的两条直线,若p :12,l l 是异面直线;q :12,l l 不相交,则 A .p 是q 的充分条件,但不是q 的必要条件 B .p 是q 的必要条件,但不是q 的充分条件C .p 是q 的充分必要条件D .p 既不是q 的充分条件,也不是q 的必要条件6.函数256()lg 3x x f x x -+=-的定义域为A .(2,3)B .(2,4]C .(2,3)(3,4]D .(1,3)(3,6]-7.设x ∈R ,定义符号函数1,0,sgn 0,0,1,0.x x x x >⎧⎪==⎨⎪-<⎩则 A .|||sgn |x x x = B .||sgn ||x x x = C .||||sgn x x x =D .||sgn x x x =8. 在区间[0,1]上随机取两个数,x y ,记1p 为事件“12x y +≤”的概率,2p 为事件“12xy ≤” 的概率,则A .1212p p << B .1212p p << C .2112p p <<D .2112p p << 9.将离心率为1e 的双曲线1C 的实半轴长a 和虚半轴长()b a b ≠同时增加(0)m m >个单位 长度,得到离心率为2e 的双曲线2C ,则 A .对任意的,a b ,12e e > B .当a b >时,12e e >;当a b <时,12e e < C .对任意的,a b ,12e e <D .当a b >时,12e e <;当a b <时,12e e > 10.已知集合22{(,)1,,}A x y x y x y =+≤∈Z ,{(,)||2,||2,,}B x y x y x y =≤≤∈Z ,定义集合 12121122{(,)(,),(,)}A B x x y y x y A x y B ⊕=++∈∈,则A B ⊕中元素的个数为 A .77 B .49 C .45 D .30二、填空题:本大题共7小题,每小题5分,共35分.请将答案填在答题卡对应题号.......的位 置上. 答错位置,书写不清,模棱两可均不得分. 11.已知向量OA AB ⊥,||3OA =,则OA OB ⋅=_________.12.若变量,x y 满足约束条件4,2,30,x y x y x y +≤⎧⎪-≤⎨⎪-≥⎩则3x y +的最大值是_________.13.函数2π()2sin sin()2f x x x x =+-的零点个数为_________.14.某电子商务公司对10000名网络购物者2014年度的消费情况进行统计,发现消费金额 (单位:万元)都在区间[0.3,0.9]内,其频率分布直方图如图所示. (Ⅰ)直方图中的a =_________;(Ⅱ)在这些购物者中,消费金额在区间[0.5,0.9]内的购物者的人数为_________.15.如图,一辆汽车在一条水平的公路上向正西行驶,到A 处时测得公路北侧一山顶D 在西偏北30的方向上,行驶600m 后到达B 处,测得此山顶在西偏北75的方向上,仰角为30,则此山的高度CD =_________m.16.如图,已知圆C 与x 轴相切于点(1,0)T ,与y 轴正半 轴交于两点A ,B (B 在A 的上方),且2AB =. (Ⅰ)圆C 的标准..方程为_________; (Ⅱ)圆C 在点B 处的切线在x 轴上的截距为_________.17. a 为实数,函数2()||f x x ax =-在区间[0,1]上的最大值记为()g a . 当a =_________时,()g a 的值最小.第16题图第14题图 第15题图AB三、解答题:本大题共5小题,共65分.解答应写出文字说明、证明过程或演算步骤. 18.(本小题满分12分)某同学用“五点法”画函数π()sin()(0,||)2f x A x ωϕωϕ=+><在某一个周期内的图象时,列表并填入了部分数据,如下表:(Ⅰ)请将上表数据补充完整,填写在答题卡上相应位置...........,并直接写出函数()f x 的解 析式;(Ⅱ)将()y f x =图象上所有点向左平行移动π6个单位长度,得到()y g x =图象,求 ()y g x =的图象离原点O 最近的对称中心. 19.(本小题满分12分)设等差数列{}n a 的公差为d ,前n 项和为n S ,等比数列{}n b 的公比为q .已知11b a =,22b =,q d =,10100S =.(Ⅰ)求数列{}n a ,{}n b 的通项公式; (Ⅱ)当1d >时,记nn na cb =,求数列{}nc 的前n 项和n T . 20.(本小题满分13分)《九章算术》中,将底面为长方形且有一条侧棱与底面垂直的四棱锥称之为阳马,将四个面都为直角三角形的四面体称之为鳖臑.在如图所示的阳马P ABCD -中,侧棱PD ⊥底面ABCD ,且PD CD =,点E 是PC 的 中点,连接,,DE BD BE .(Ⅰ)证明:DE ⊥平面PBC . 试判断四面体EBCD 是否为鳖臑,若是,写出其每个面的直角(只需 写出结论);若不是,请说明理由;(Ⅱ)记阳马P ABCD -的体积为1V ,四面体EBCD 的体积为2V ,求12V V 的值. 第20题图21.(本小题满分14分)设函数()f x ,()g x 的定义域均为R ,且()f x 是奇函数,()g x 是偶函数, ()()e x f x g x +=,其中e 为自然对数的底数.(Ⅰ)求()f x ,()g x 的解析式,并证明:当0x >时,()0f x >,()1g x >; (Ⅱ)设0a ≤,1b ≥,证明:当0x >时,()()(1)()(1)f x ag x a bg x b x+-<<+-. 22.(本小题满分14分)一种画椭圆的工具如图1所示.O 是滑槽AB 的中点,短杆ON 可绕O 转动,长杆MN 通过N 处铰链与ON 连接,MN 上的栓子D 可沿滑槽AB 滑动,且1DN ON ==,3MN =.当栓子D 在滑槽AB 内作往复运动时,带动..N 绕O 转动,M 处的笔尖画出的椭圆记为C .以O 为原点,AB 所在的直线为x 轴建立如图2所示的平面直角坐标系. (Ⅰ)求椭圆C 的方程;(Ⅱ)设动直线l 与两定直线1:20l x y -=和2:20l x y +=分别交于,P Q 两点.若直线l总与椭圆C 有且只有一个公共点,试探究:△OPQ 的面积是否存在最小值?若存在,求出该最小值;若不存在,说明理由.第22题图1第22题图2绝密★启用前2015年普通高等学校招生全国统一考试(湖北卷)数学(文史类)试题参考答案一、选择题(本大题共10小题,每小题5分,共50分)1.A 2.B 3.C 4.A 5.A 6.C 7.D 8.B 9.D 10.C 二、填空题(本大题共7小题,每小题5分,共35分)11.9 12.10 13.2 14.(Ⅰ)3;(Ⅱ)600015. 16.(Ⅰ)22(1)(2x y -+=;(Ⅱ)1-- 17.2三、解答题(本大题共5小题,共65分) 18.(12分)(Ⅰ)根据表中已知数据,解得π5,2,6A ωϕ===-. 数据补全如下表:且函数表达式为π()5sin(2)6f x x =-.(Ⅱ)由(Ⅰ)知π()5sin(2)6f x x =-,因此 πππ()5sin[2()]5sin(2)666g x x x =+-=+.因为sin y x =的对称中心为(π,0)k ,k ∈Z . 令π2π6x k +=,解得ππ212k x =-,k ∈Z .即()y g x =图象的对称中心为ππ0212k -(,),k ∈Z ,其中离原点O 最近的对称中心为π(,0)12-. 19.(12分)(Ⅰ)由题意有,111045100,2,a d a d +=⎧⎨=⎩ 即112920,2,a d a d +=⎧⎨=⎩解得11,2,a d =⎧⎨=⎩ 或19,2.9a d =⎧⎪⎨=⎪⎩ 故121,2.n n n a n b -=-⎧⎪⎨=⎪⎩或11(279),929().9nn n a n b -⎧=+⎪⎪⎨⎪=⋅⎪⎩(Ⅱ)由1d >,知21n a n =-,12n n b -=,故1212n n n c --=,于是 2341357921122222n n n T --=++++++, ① 2345113579212222222n n n T -=++++++. ② ①-②可得 221111212323222222n n n n n n T --+=++++-=-, 故n T 12362n n -+=-.20.(13分)(Ⅰ)因为PD ⊥底面ABCD ,所以PD BC ⊥.由底面ABCD 为长方形,有BC CD ⊥,而PDCD D =,所以BC ⊥平面PCD . DE ⊂平面PCD ,所以BC DE ⊥.又因为PD CD =,点E 是PC 的中点,所以DE PC ⊥. 而PC BC C =,所以DE ⊥平面PBC .由BC ⊥平面PCD ,DE ⊥平面PBC ,可知四面体EBCD 的四个面都是直角三角形,即四面体EBCD 是一个鳖臑,其四个面的直角分别是,,,.BCD BCE DEC DEB ∠∠∠∠ (Ⅱ)由已知,PD 是阳马P ABCD -的高,所以11133ABCD V S PD BC CD PD =⋅=⋅⋅;由(Ⅰ)知,DE 是鳖臑D BCE -的高, BC CE ⊥,所以21136BCE V S DE BC CE DE ∆=⋅=⋅⋅.在Rt △PDC 中,因为PD CD =,点E 是PC 的中点,所以DE CE ==, 于是 12123 4.16BC CD PD V CD PD V CE DEBC CE DE ⋅⋅⋅===⋅⋅⋅21.(14分) (Ⅰ)由()f x , ()g x 的奇偶性及()()e x f x g x +=, ①得 ()()e .x f x g x --+= ②联立①②解得1()(e e )2x x f x -=-,1()(e e )2x x g x -=+.当0x >时,e 1x >,0e 1x -<<,故()0.f x > ③又由基本不等式,有1()(e e )12x x g x -=+=,即() 1.g x > ④(Ⅱ)由(Ⅰ)得 2111e 1()(e )(e )(e e )()2e 2e 2x x x x x x x f x g x -''=-=+=+=, ⑤2111e 1()(e )(e )(e e )()2e 2e 2x x x x x x x g x f x -''=+=-=-=, ⑥当0x >时,()()(1)f x ag x a x>+-等价于()()(1)f x axg x a x >+-, ⑦()()(1)f x bg x b x<+-等价于()()(1).f x bxg x b x <+- ⑧设函数 ()()()(1)h x f x cxg x c x =---,由⑤⑥,有()()()()(1)h x g x cg x cxf x c '=----(1)[()1]().c g x cxf x =--- 当0x >时,(1)若0c ≤,由③④,得()0h x '>,故()h x 在[0,)+∞上为增函数,从而()(0)0h x h >=,即()()(1)f x cxg x c x >+-,故⑦成立.(2)若1c ≥,由③④,得()0h x '<,故()h x 在[0,)+∞上为减函数,从而()(0)0h x h <=,即()()(1)f x cxg x c x <+-,故⑧成立. 综合⑦⑧,得 ()()(1)()(1)f x ag x a bg x b x+-<<+-. 22.(14分)(Ⅰ)因为||||||314OM MN NO ≤+=+=,当,M N 在x 轴上时,等号成立;同理||||||312OM MN NO ≥-=-=,当,D O 重合,即MN x ⊥轴时,等号成立.所以椭圆C 的中心为原点O ,长半轴长为,短半轴长为,其方程为221.164x y +=(Ⅱ)(1)当直线l 的斜率不存在时,直线l 为4x =或4x =-,都有14482OPQ S ∆=⨯⨯=.第22题解答图(2)当直线l 的斜率存在时,设直线1:()2l y kx m k =+≠±,由22,416,y kx m x y =+⎧⎨+=⎩消去y ,可得222(14)84160k x kmx m +++-=. 因为直线l 总与椭圆C 有且只有一个公共点,所以2222644(14)(416)0k m k m ∆=-+-=,即22164m k =+. ① 又由,20,y kx m x y =+⎧⎨-=⎩ 可得2(,)1212m m P k k --;同理可得2(,)1212m m Q k k -++.由原点O 到直线PQ 的距离为d =|||P Q PQ x x =-,可得22111222||||||||222121214OPQP Q m m m S PQ d m x x m k k k ∆=⋅=-=⋅+=-+-. ② 将①代入②得,222241281441OPQk m S k k ∆+==--. 当214k >时,2224128()8(1)84141OPQ k S k k ∆+==+>--;当2104k ≤<时,2224128()8(1)1414OPQ k S k k∆+==-+--. 因2104k ≤<,则20141k <-≤,22214k ≥-,所以228(1)814OPQ S k∆=-+≥-, 当且仅当0k =时取等号.所以当0k =时,OPQ S ∆的最小值为8.综合(1)(2)可知,当直线l 与椭圆C 在四个顶点处相切时,△OPQ 的面积取得最小值8.。
2015年湖北省高考数学试卷(文科)一、选择题:本大题10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1.(3分)(2015•湖北)i为虚数单位,i607=()A.﹣i B.i C.1 D.﹣12.(3分)(2015•湖北)我国古代数学名著《九章算术》有“米谷粒分”题:粮仓开仓收粮,有人送来米1534石,验得米内夹谷,抽样取米一把,数得254粒内夹谷28粒,则这批米内夹谷约为()A.134石B.169石C.338石D.1365石3.(3分)(2015•湖北)命题“∃x0∈(0,+∞),lnx0=x0﹣1”的否定是()A.∃x0∈(0,+∞),lnx0≠x0﹣1 B.∃x0∉(0,+∞),lnx0=x0﹣1C.∀x∈(0,+∞),lnx≠x﹣1 D.∀x∉(0,+∞),lnx=x﹣14.(3分)(2015•湖北)已知变量x和y满足关系y=﹣0.1x+1,变量y与z正相关,下列结论中正确的是()A.x与y负相关,x与z负相关B.x与y正相关,x与z正相关C.x与y正相关,x与z负相关D.x与y负相关,x与z正相关5.(3分)(2015•湖北)l1,l2表示空间中的两条直线,若p:l1,l2是异面直线,q:l1,l2不相交,则()A.p是q的充分条件,但不是q的必要条件B.p是q的必要条件,但不是q的充分条件C.p是q的充分必要条件D.p既不是q的充分条件,也不是q的必要条件6.(3分)(2015•湖北)函数f(x)=的定义域为()A.(2,3)B.(2,4]C.(2,3)∪(3,4] D.(﹣1,3)∪(3,6]7.(3分)(2015•湖北)设x∈R,定义符号函数sgnx=,则()A.|x|=x|sgnx|B.|x|=xsgn|x|C.|x|=|x|sgnx D.|x|=xsgnx8.(3分)(2015•湖北)在区间[0,1]上随机取两个数x,y,记p1为事件“x+y≤”的概率,P2为事件“xy≤”的概率,则()A.p1<p2<B. C.p2<D.9.(3分)(2015•湖北)将离心率为e1的双曲线C1的实半轴长a和虚半轴长b(a≠b)同时增加m(m>0)个单位长度,得到离心率为e2的双曲线C2,则()A.对任意的a,b,e1>e2B.当a>b时,e1>e2;当a<b时,e1<e2C.对任意的a,b,e1<e2D.当a>b时,e1<e2;当a<b时,e1>e210.(3分)(2015•湖北)已知集合A={(x,y)|x2+y2≤1,x,y∈Z},B={(x,y)||x|≤2,|y|≤2,x,y∈Z},定义集合A⊕B={(x1+x2,y1+y2)|(x1,y1)∈A,(x2,y2)∈B},则A⊕B中元素的个数为()A.77 B.49 C.45 D.30二、填空题11.(3分)(2015•湖北)已知向量⊥,||=3,则•=.12.(3分)(2015•湖北)设变量x,y满足约束条件,则3x+y的最大值为.13.(3分)(2015•湖北)函数的零点个数为.14.(3分)(2015•湖北)某电子商务公司对10000名网络购物者2014年度的消费情况进行统计,发现消费金额(单位:万元)都在区间[0.3,0.9]内,其频率分布直方图如图所示.(1)直方图中的a=.(2)在这些购物者中,消费金额在区间[0.5,0.9]内的购物者的人数为.15.(3分)(2015•湖北)如图,一辆汽车在一条水平的公路上向正西行驶,到A处时测得公路北侧一山顶D在西偏北30°的方向上,行驶600m后到达B处,测得此山顶在西偏北75°的方向上,仰角为30°,则此山的高度CD=m.16.(3分)(2015•湖北)如图,已知圆C与x轴相切于点T(1,0),与y轴正半轴交于两点A,B(B在A的上方),且|AB|=2.(1)圆C的标准方程为.(2)圆C在点B处切线在x轴上的截距为.17.(3分)(2015•湖北)a为实数,函数f(x)=|x2﹣ax|在区间[0,1]上的最大值记为g (a).当a=时,g(a)的值最小.三、解答题18.(12分)(2015•湖北)某同学将“五点法”画函数f(x)=Asin(wx+φ)(w>0,|φ|<)在某一个时期内的图象时,列表并填入部分数据,如下表:π2πwx+φxAsin(wx+φ)0 5 ﹣5 0(1)请将上述数据补充完整,填写在答题卡上相应位置,并直接写出函数f(x)的解析式;(2)将y=f(x)图象上所有点向左平移个单位长度,得到y=g(x)图象,求y=g(x)的图象离原点O最近的对称中心.19.(12分)(2015•湖北)设等差数列{a n}的公差为d,前n项和为S n,等比数列{b n}的公比为q,已知b1=a1,b2=2,q=d,S10=100.(1)求数列{a n},{b n}的通项公式(2)当d>1时,记c n=,求数列{c n}的前n项和T n.20.(13分)(2015•湖北)《九章算术》中,将底面为长方形且有一条侧棱与底面垂直的四棱锥称之为阳马,将四个面都为直角三角形的四面体称之为鳖臑.在如图所示的阳马P﹣ABCD中,侧棱PD⊥底面ABCD,且PD=CD,点E是PC的中点,连接DE、BD、BE.(Ⅰ)证明:DE⊥平面PBC.试判断四面体EBCD是否为鳖臑.若是,写出其每个面的直角(只需写出结论);若不是,请说明理由;(Ⅱ)记阳马P﹣ABCD的体积为V1,四面体EBCD的体积为V2,求的值.21.(14分)(2015•湖北)设函数f(x),g(x)的定义域均为R,且f(x)是奇函数,g (x)是偶函数,f(x)+g(x)=e x,其中e为自然对数的底数.(1)求f(x),g(x)的解析式,并证明:当x>0时,f(x)>0,g(x)>1;(2)设a≤0,b≥1,证明:当x>0时,ag(x)+(1﹣a)<<bg(x)+(1﹣b).22.(14分)(2015•湖北)一种画椭圆的工具如图1所示.O是滑槽AB的中点,短杆ON 可绕O转动,长杆MN通过N处铰链与ON连接,MN上的栓子D可沿滑槽AB滑动,且DN=ON=1,MN=3,当栓子D在滑槽AB内作往复运动时,带动N绕O转动,M处的笔尖画出的椭圆记为C,以O为原点,AB所在的直线为x轴建立如图2所示的平面直角坐标系.(1)求椭圆C的方程;(2)设动直线l与两定直线l1:x﹣2y=0和l2:x+2y=0分别交于P,Q两点.若直线l总与椭圆C有且只有一个公共点,试探究:△OPQ的面积是否存在最小值?若存在,求出该最小值;若不存在,说明理由.2015年湖北省高考数学试卷(文科)参考答案与试题解析一、选择题:本大题10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的。
2015年湖北文一、选择题(共10小题;共50分)1. i为虚数单位,i607= A. iB. −iC. 1D. −12. 我国古代数学名著《数书九章》有“米谷粒分”题:粮仓开仓收粮,有人送来米1534石,验得米内夹谷,抽样取米一把,数得254粒内夹谷28粒,则这批米内夹谷约为 A. 134石B. 169石C. 338石D. 1365石3. 命题“ ∃x0∈0,+∞,ln x0=x0−1”的否定是 A. ∀x∈0,+∞,ln x≠x−1B. ∀x∉0,+∞,ln x=x−1C. ∃x0∈0,+∞,ln x0≠x0−1D. ∃x0∉0,+∞,ln x0=x0−14. 已知变量x和y满足关系y=−0.1x+1,变量y与z正相关.下列结论中正确的是 A. x与y正相关,x与z负相关B. x与y正相关,x与z正相关C. x与y负相关,x与z负相关D. x与y负相关,x与z正相关5. l1,l2表示空间中的两条直线,若p:l1,l2是异面直线,q:l1,l2不相交,则 A. p是q的充分条件,但不是q的必要条件B. p是q的必要条件,但不是q的充分条件C. p是q的充分必要条件D. p既不是q的充分条件,也不是q的必要条件6. 函数f x=4− x +lg x2−5x+6x−3的定义域为 A. 2,3B. 2,4C. 2,3∪3,4D. −1,3∪3,67. 设x∈R,定义符号函数sgn x=1,x>0,0,x=0,−1,x<0,则 A. x =x sgn xB. x =x sgn xC. x = x sgn xD. x =x sgn x8. 在区间0,1上随机取两个数x,y,记p1为事件“ x+y≤12”的概率,p2为事件“ xy≤12”的概率,则 A. p1<p2<12B. p2<12<p1 C. 12<p2<p1 D. p1<12<p29. 将离心率为e1的双曲线C1的实半轴长a和虚半轴长b a≠b同时增加m m>0个单位长度,得到离心率为e2的双曲线C2,则 A. 对任意的a,b,e1>e2B. 当a>b时,e1>e2;当a<b时,e1<e2C. 对任意的a,b,e1<e2D. 当a>b时,e1<e2;当a<b时,e1>e210. 已知集合A=x,y x2+y2≤1,x,y∈Z,B=x,y x ≤2,y≤2,x,y∈Z,定义集合A⊕B=x1+x2,y1+y2x1,y1∈A,x2,y2∈B,则A⊕B中元素的个数为 A. 77B. 49C. 45D. 30二、填空题(共7小题;共35分)11. 已知向量OA⊥AB,OA=3,则OA⋅OB=.12. 若变量x,y满足约束条件x+y≤4,x−y≤2,3x−y≥0,则3x+y的最大值是.13. 函数f x=2sin x sin x+π2−x2的零点个数为.14. 某电子商务公司对10000名网络购物者2014年度的消费情况进行统计,发现消费金额(单位;万元)都在区间0.3,0.9内,其频率分布直方图如图所示.(1)直方图中的a=;(2)在这些购物者中,消费金额在区间0.5,0.9内的购物者的人数为.15. 如图,一辆汽车在一条水平的公路上向正西行驶,到A处时测得公路北侧一山顶D在西偏北30∘的方向上,行驶600 m后到达B处,测得此山顶在西偏北75∘的方向上,仰角为30∘,则此山的高度CD=m.16. 如图,已知圆C与x轴相切于点T1,0,与y轴正半轴交于两点A,B(B在A的上方),且AB =2.(1)圆C的标准方程为;(2)圆C在点B处的切线在x轴上的截距为.17. a 为实数,函数f x = x 2−ax 在区间 0,1 上的最大值记为g a .当a = 时,g a 的值最小.三、解答题(共5小题;共65分)18. 某同学用“五点法”画函数f x =A sin ωx +φ ω>0, φ <π2 在某一个周期内的图象时,列表并填入了部分数据,如下表:ωx +φ0π2π3π22πx π5πA sin ωx +φ5−50(1)请将上表数据补充完整,填写在答题卡上相应位置,并直接写出函数f x 的解析式; (2)将y =f x 图象上所有点向左平行移动π6个单位长度,得到y =g x 的图象.求y =g x 的图象离原点O 最近的对称中心.19. 设等差数列 a n 的公差为d ,前n 项和为S n ,等比数列 b n 的公比为q .已知b 1=a 1,b 2=2,q =d ,S 10=100.(1)求数列 a n , b n 的通项公式; (2)当d >1时,记c n =an b n,求数列 c n 的前n 项和为T n .20. 《九章算术》中,将底面为长方形且有一条侧棱与底面垂直的四棱锥称之为阳马,将四个面都为直角三角形的四面体称之为鳖臑.在如图所示的阳马P −ABCD 中,侧棱PD ⊥底面ABCD ,且PD =CD ,点E 是PC 的中点,连接DE ,BD ,BE .(1)证明:DE ⊥平面PBC .试判断四面体EBCD 是否为鳖臑,若是,写出其每个面的直角(只需写出结论);若不是,请说明理由.(2)记阳马P −ABCD 的体积为V 1,四面体EBCD 的体积为V 2,求V1V 2的值.21. 设函数f x ,g x 的定义域均为R ,且f x 是奇函数,g x 是偶函数,f x +g x =e x ,其中e为自然对数的底数.(1)求f x,g x的解析式,并证明:当x>0时,f x>0,g x>1;<bg x+1−b.(2)设a≤0,b≥1,证明:当x>0时,ag x+1−a<f xx22. 一种画椭圆的工具如图(1)所示.O是滑槽AB的中点,短杆ON可绕O转动,长杆MN通过N处的铰链与ON连接,MN上的栓子D可沿滑槽AB滑动,且DN=ON=1,MN=3.当栓子D在滑槽AB内作往复运动时,带动N绕O转动,M处的笔尖画出的椭圆记为C.以O为原点,AB所在的直线为x轴建立如图(2)所示的平面直角坐标系.(1)求椭圆C的方程;(2)设动直线l与两定直线l1:x−2y=0和l2:x+2y=0分别交于P,Q两点.若直线l总与椭圆C有且只有一个公共点,试探究:△OPQ的面积是否存在最小值?若存在,求出该最小值;若不存在,说明理由.答案第一部分1. B2. B3. A4. C5. A6. C7. D8. D9. D 【解析】由题可得e1=1+ba 2,e2=1+b+ma+m2.∵b+ma+m −ba=m a−ba a+m,a>0,b>0,m>0,且a≠b,∴当a>b时,b+ma+m >ba>0,∴b+ma+m 2>ba2,e2>e1;同理可得当a<b时,e1>e2.10. C【解析】A=x,y x2+y2≤1,x,y∈Z=x,y x=±1,y=0;或x=0,y=±1;或x=y=0,共5个点;B=x,y x ≤2,y≤2,x,y∈Z=x,y x=−2,−1,0,1,2;y=−2,−1,0,1,2,共25个点.由x1=−1,0,1,x2=−2,−1,0,1,2知x1+x2=−3,−2,−1,0,1,2,3;同理由y1=−1,0,1,y2=−2,−1,0,1,2知y1+y2=−3,−2,−1,0,1,2,3.当x1+x2=−3或3时,y1+y2可取−2,−1,0,1,2;当x1+x2=−2,−1,0,1,2时,y1+y2可取−3,−2,−1,0,1,2,3.故A⊕B中共有元素2×5+5×7=45个.第二部分11. 912. 1013. 214. (1)3;(2)600015. 100616. x−12+ y−22=2,−2−117. 2−2【解析】提示:当a≤0时,f x在0,1上单调递增,故g a=f1=1−a;当0<a<1时,f x在0,a2上单调递增,在a2,a 上单调递减,在a,1上单调递增,f a2=a24,f1=1−a.∵f a2−f1=a+22−84,∴当0<a<22−2时,f a2<f1,∴g a=f1=1−a;当2−2≤a<1时,f a2≥f1,∴g a=f a2=a24;当1≤a<2时,f x在0,a2上单调递增,在a2,1上单调递减,故g a=f a2=a24;当a≥2时,f x在0,1上单调递增,故g a=f1=a−1.综上,g a=1−a,a<22−2,a24,22−2≤a<2, a−1,a≥2.第三部分18. (1)根据表中已知数据,解得A=5,ω=2,φ=−π6,数据补全如下表:ωx+φ0π2π3π22πx ππ7π5π13πA sinωx+φ050−50且函数解析式为f x=5sin2x−π6.(2)由(1)知f x=5sin2x−π6,因此g x=5sin2 x+π−π=5sin2x+π.因为y=sin x图象的对称中心为kπ,0,k∈Z.令2x+π6=kπ,k∈Z,解得x=kπ2−π12,k∈Z,即y=g x图象的对称中心为kπ2−π12,0,k∈Z,其中离原点O最近的对称中心为 −π12,0.19. (1)由题意有10a1+45d=100,a1d=2,即2a1+9d=20,a1d=2,解得a1=1, d=2 或 a1=9,d=29.故a n=2n−1,b n=2n−1 或 a n=12n+79,b n=9⋅2n−1.(2)由d>1,知a n=2n−1,b n=2n−1,故c n=2n−12n−1,于是T n=1+3+52+73+94+⋯+2n−1n−1, ⋯⋯①1 2T n=12+322+523+724+⋯+2n−32n−1+2n−12n. ⋯⋯②①−②可得1T n=2+1+12+⋯+1n−2−2n−1n=3−2n+3n,故T n=6−2n+32n−1.20. (1)因为PD⊥底面ABCD,所以PD⊥BC.由底面ABCD为长方形,有BC⊥CD,而PD∩CD=D,所以BC⊥平面PCD.因为DE⊂平面PCD,所以BC⊥DE.又因为PD=CD,点E是PC的中点,所以DE⊥PC.而PC∩BC=C,所以DE⊥平面PBC.由BC⊥平面PCD,DE⊥平面PBC,可知四面体EBCD的四个面都是直角三角形,即四面体EBCD是一个鳖臑,其四个面的直角分别为∠BCD,∠BCE,∠DEC,∠DEB.(2)由已知,PD是阳马P−ABCD的高,所以V1=1S长方形ABCD⋅PD=1BC⋅CD⋅PD.由(1)知,DE是鳖臑D−BCE的高,BC⊥CE,所以V2=13S△BCE⋅DE=16BC⋅CE⋅DE.在Rt△PDC中,因为PD=CD,点E是PC的中点,所以DE=CE=22CD,于是V1 V2=13BC⋅CD⋅PD16BC⋅CE⋅DE=2CD⋅PDCE⋅DE=4.21. (1)由f x,g x的奇偶性及f x+g x=e x, ⋯⋯①得−f x+g x=e−x. ⋯⋯②联立①②解得f x=12e x−e−x,g x=12e x+e−x.当x>0时,e x>1,0<e−x<1,故f x>0. ⋯⋯③又由基本不等式,有g x=12e x+e−x>e x⋅e−x=1,即g x>1. ⋯⋯④(2)由(1)得fʹx=12e x−1e xʹ=12e x+e xe2x=12e x+e−x=g x, ⋯⋯⑤gʹx=1e x+1xʹ=1e x−e x2x=1e x−e−x=f x, ⋯⋯⑥当x>0时,f xx>ag x+1−a等价于f x>axg x+1−a x, ⋯⋯⑦f xx<bg x+1−b等价于f x<bxg x+1−b x. ⋯⋯⑧设函数 x=f x−cxg x−1−c x,由⑤⑥,有ʹx=g x−cg x−cxf x−1−c=1−c g x−1−cxf x.当x>0时,i)若c≤0,由③④,得 ʹx>0,故 x在0,+∞上为增函数,从而 x> 0=0,即f x>cxg x+1−c x,故⑦成立.ii)若c≥1,由③④,得 ʹx<0,故 x在0,+∞上为减函数,从而 x< 0=0,即f x<cxg x+1−c x,故⑧成立.综上,知ag x+1−a<f xx<bg x+1−b.22. (1)因为 OM ≤ MN + NO =3+1=4,当M,N在x轴上时,等号成立;同理, OM ≥ MN − NO =3−1=2,当D,O重合,即MN⊥x轴时,等号成立,所以椭圆C的中心为原点O,长半轴长为4,短半轴长为2,其方程为x 216+y24=1.(2)(i)当直线l的斜率不存在时,直线l为x=4或x=−4,都有S△OPQ=12×4×4=8.(ii)当直线l的斜率存在时,设直线l:y=kx+m k≠±12,由y=kx+m,x2+4y2=16,消去y,可得1+4k2x2+8kmx+4m2−16=0.因为直线l总与椭圆C有且只有一个公共点,所以Δ=64k2m2−41+4k24m2−16=0,即m2=16k2+4. ⋯⋯①又由y=kx+m,x−2y=0,可得P2m1−2k,m1−2k;同理可得Q−2m1+2k,m1+2k.由原点O到直线PQ的距离为d=2和PQ =1+k2x P−x Q,可得S△OPQ=1PQ ⋅d=1m x P−x Q=1⋅ m ⋅2m+2m=2m22. ⋯⋯②将①代入②,得S△OPQ=2m21−4k =84k2+14k−1.当k2>14时,S△OPQ=84k2+14k2−1=81+24k2−1>8;当0≤k2<14时,S△OPQ=84k2+11−4k=8 −1+21−4k.因为0≤k2<14时,则0<1−4k2≤1,21−4k2≥2,所以S△OPQ=8 −1+21−4k2≥8,当且仅当k=0时取等号.所以当k=0时,S△OPQ取最小值为8.综合(i)(ii)可知,当直线l与椭圆C在四个顶点处相切时,△OPQ的面积取得最小值8.。
页眉内容一、选择题(本大题共8个小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.i 为虚数单位,607i =A .i -B .iC .1-D .1 【答案】A . 【解析】试题分析:因为6072303()i i i i =⋅=-,所以应选A . 考点:1、复数的四则运算;2.我国古代数学名著《九章算术》有“米谷粒分”题:粮仓开仓收粮,有人送来米1534石,验得米内夹谷,抽样取米一把,数得254粒内夹谷28粒,则这批米内夹谷约为( ) A . 134石 B .169石 C .338石 D .1365石 【答案】B .考点:1、简单的随机抽样;3.命题“0(0,)x ∃∈+∞, 00ln 1x x =-”的否定是 A .0(0,)x ∃∈+∞,00ln 1x x ≠- B .0(0,)x ∃∉+∞,00ln 1x x =- C .(0,)x ∀∈+∞,ln 1x x ≠- D .(0,)x ∀∉+∞,ln 1x x =-【答案】C . 【解析】试题分析:由特称命题的否定为全称命题可知,所求命题的否定为(0,)x ∀∈+∞,ln 1x x ≠-,故应选C .考点:1、特称命题;2、全称命题;4.已知变量x 和y 满足关系0.11y x =-+,变量y 与z 正相关. 下列结论中正确的是 A .x 与y 负相关,x 与z 负相关 B .x 与y 正相关,x 与z 正相关 C .x 与y 正相关,x 与z 负相关 D .x 与y 负相关,x 与z 正相关【答案】A .考点:1、线性回归方程;5.12,l l 表示空间中的两条直线,若p :12,l l 是异面直线;q :12,l l 不相交,则 A .p 是q 的充分条件,但不是q 的必要条件 B .p 是q 的必要条件,但不是q 的充分条件C .p 是q 的充分必要条件D .p 既不是q 的充分条件,也不是q 的必要条件 【答案】A .考点:1、充分条件;2、必要条件;6.函数256()lg 3x x f x x -+=-的定义域为A .(2,3)B .(2,4]C .(2,3)(3,4]D .(1,3)(3,6]-【答案】C . 【解析】试题分析:由函数()y f x =的表达式可知,函数()f x 的定义域应满足条件:2564||0,03x x x x -+-≥>-,解之得22,2,3x x x -≤≤>≠,即函数()f x 的定义域为(2,3)(3,4],故应选C .考点:1、函数的定义域求法; 7.设x ∈R ,定义符号函数1,0,sgn 0,0,1,0.x x x x >⎧⎪==⎨⎪-<⎩则 A .|||sgn |x x x = B .||sgn ||x x x =C .||||sgn x x x =D .||sgn x x x =【答案】D.考点:1、新定义;2、函数及其函数表示;8.在区间[0,1]上随机取两个数,x y ,记1p 为事件“12x y +≤”的概率,2p 为事件“12xy ≤” 的概率,则A .1212p p << B .1212p p << C .2112p p <<D .2112p p << 【答案】B . 【解析】试题分析:由题意知,事件“12x y +≤”的概率为11111222118p ⨯⨯==⨯,事件“12xy ≤”的概率02S p S=,其中11021111(1ln 2)222S dx x=⨯+=+⎰,111S =⨯=,所以021(1ln 2)112(1ln 2)1122S p S +===+>⨯,故应选B .考点:1、几何概型;2、微积分基本定理;9.将离心率为1e 的双曲线1C 的实半轴长a 和虚半轴长()b a b ≠同时增加(0)m m >个单位 长度,得到离心率为2e 的双曲线2C ,则 A .对任意的,a b ,12e e > B .当a b >时,12e e >;当a b <时,12e e < C .对任意的,a b ,12e e < D .当a b >时,12e e <;当a b <时,12e e >【答案】D.考点:1、双曲线的定义;2、双曲线的简单几何性质;10.已知集合22{(,)1,,}A x y x y x y =+≤∈Z ,{(,)||2,||2,,}B x y x y x y =≤≤∈Z ,定义集合 12121122{(,)(,),(,)}A B x x y y x y A x y B ⊕=++∈∈,则A B ⊕中元素的个数为A .77B .49C .45D .30【答案】C . 【解析】考点:1、分类计数原理;2、新定义;第Ⅱ卷(共110分)(非选择题共110分)二、填空题(每题7分,满分36分,将答案填在答题纸上)11.已知向量OA AB ⊥,||3OA =,则OA OB ⋅=_________. 【答案】9.考点:1、平面向量的数量积的应用;12.若变量,x y 满足约束条件4,2,30,x y x y x y +≤⎧⎪-≤⎨⎪-≥⎩则3x y +的最大值是_________.【答案】10. 【解析】试题分析:首先根据题意所给的约束条件画出其表示的平面区域如下图所示,然后根据图像可得: 目标函数3z x y =+过点(3,1)B 取得最大值,即max 33110z =⨯+=,故应填10.考点:1、简单的线性规划问题;13.函数2π()2sin sin()2f x x x x =+-的零点个数为_________.【答案】2.考点:1、函数与方程;2、函数图像;14.某电子商务公司对10000名网络购物者2014年度的消费情况进行统计,发现消费金额 (单位:万元)都在区间[0.3,0.9]内,其频率分布直方图如图所示. (Ⅰ)直方图中的a =_________;(Ⅱ)在这些购物者中,消费金额在区间[0.5,0.9]内的购物者的人数为_________.【答案】(Ⅰ)3;(Ⅱ)6000.【解析】试题分析:由频率分布直方图及频率和等于1可得0.20.10.80.1 1.50.120.1 2.50.10.11a ⨯+⨯+⨯+⨯+⨯+⨯=,解之得3a =.于是消费金额在区间[0.5,0.9]内频率为0.20.10.80.120.130.10.6⨯+⨯+⨯+⨯=,所以消费金额在区间[0.5,0.9]内的购物者的人数为:0.6100006000⨯=,故应填3;6000. 考点:1、频率分布直方图;15.如图,一辆汽车在一条水平的公路上向正西行驶,到A 处时测得公路北侧一山顶D 在西偏北30的方向上,行驶600m 后到达B 处,测得此山顶在西偏北75的方向上,仰角为30,则此山的高度 CD =_________m.【答案】考点:1、正弦定理;2、解三角形的实际应用举例;16.如图,已知圆C 与x 轴相切于点(1,0)T ,与y 轴正半轴交于两点A ,B (B 在A 的上方),且2AB =.(Ⅰ)圆C 的标准..方程为_________; AB(Ⅱ)圆C在点B处的切线在x轴上的截距为_________.【答案】(Ⅰ)22-+=;(Ⅱ)1--x y(1)(2【解析】考点:1、直线与圆的位置关系;2、直线的方程;17.a为实数,函数2g a. 当a=_________时,=-在区间[0,1]上的最大值记为()f x x ax()||g a的值最小.()【答案】2.考点:1、分段函数的最值问题;2、函数在区间上的最值问题;。
2015年高考湖北卷文数试题解析(精编版)(解析版)一、选择题(本大题共8个小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.i 为虚数单位,607i =( )A .i -B .iC .1-D .1 【答案】A .【考点定位】本题考查复数的概念及其运算,涉及分数指数幂的运算性质.【名师点睛】将复数的幂次运算和分数指数幂运算结合在一起,不仅考查了复数的概念,也考查了分数指数幂的运算性质,充分体现了学科内知识之间的联系性,能够较好的反应学生基础知识的识记能力和计算能力.2.我国古代数学名著《九章算术》有“米谷粒分”题:粮仓开仓收粮,有人送来米1534石,验得米内夹谷,抽样取米一把,数得254粒内夹谷28粒,则这批米内夹谷约为( )A .134石B .169石C .338石D .1365石【答案】B .【考点定位】本题考查简单的随机抽样,涉及近似计算.【名师点睛】本题以数学史为背景,重点考查简单的随机抽样及其特点,通过样本频率估算总体频率,虽然简单,但仍能体现方程的数学思想在解题中的应用,能较好考查学生基础知识的识记能力和估算能力、实际应用能力.3.命题“0(0,)x ∃∈+∞,00ln 1x x =-”的否定是( )A .0(0,)x ∃∈+∞,00ln 1x x ≠-B .0(0,)x ∃∉+∞,00ln 1x x =-C .(0,)x ∀∈+∞,ln 1x x ≠-D .(0,)x ∀∉+∞,ln 1x x =-【答案】C .【考点定位】本题考查特称命题和全称命题的否定形式,,属识记基础题.【名师点睛】本题主要考查特称命题的否定,其解题的关键是正确理解并识记其否定的形式特征.扎根基础知识,强调教材的重要性,充分体现了教材在高考中的地位和重要性,考查了基本概念、基本规律和基本操作的识记能力.4.已知变量x 和y 满足关系0.11y x =-+,变量y 与z 正相关. 下列结论中正确的是( ) A .x 与y 负相关,x 与z 负相关 B .x 与y 正相关,x 与z 正相关 C .x 与y 正相关,x 与z 负相关 D .x 与y 负相关,x 与z 正相关 【答案】A .【考点定位】本题考查正相关、负相关,涉及线性回归方程的内容.【名师点睛】将正相关、负相关、线性回归方程等联系起来,充分体现了方程思想在线性回归方程中的应用,能较好的考查学生运用基础知识的能力.其易错点有二:其一,未能准确理解正相关与负相关的定义;其二,不能准确的将正相关与负相关问题进行转化为直线斜率大于和小于0的问题.5.12,l l表示空间中的两条直线,若p:12,l l是异面直线;q:12,l l不相交,则()A.p是q的充分条件,但不是q的必要条件 B.p是q的必要条件,但不是q的充分条件C.p是q的充分必要条件 D.p既不是q的充分条件,也不是q的必要条件【答案】A.【考点定位】本题考查充分条件与必要条件、异面直线,属基础题.【名师点睛】以命题与命题间的充分条件与必要条件为契机,重点考查空间中直线的位置关系,其解题的关键是弄清谁是谁的充分条件谁是谁的必要条件,正确理解异面直线的定义,注意考虑问题的全面性、准确性.6.函数256()4||lg3x xf x xx-+=-+-的定义域为()A.(2,3) B.(2,4]C.(2,3)(3,4] D.(1,3)(3,6]-【答案】C.【考点定位】本题考查函数的定义域,涉及根式、绝对值、对数和分式、交集等内容.【名师点睛】本题看似是求函数的定义域,实质上是将根式、绝对值、对数和分式、交集等知识联系在一起,重点考查学生思维能力的全面性和缜密性,凸显了知识之间的联系性、综合性,能较好的考查学生的计算能力和思维的全面性.7.设x∈R,定义符号函数1,0,sgn0,0,1,0.xx xx>⎧⎪==⎨⎪-<⎩则()A.|||sgn|x x x=B.||sgn||x x x=C.||||sgnx x x=D.||sgnx x x=【答案】D.【考点定位】本题考查分段函数及其表示法,涉及新定义,属能力题.【名师点睛】以新定义为背景,重点考查分段函数及其表示,其解题的关键是准确理解题意所给的新定义,并结合分段函数的表示准确表达所给的函数.不仅新颖别致,而且能综合考察学生信息获取能力以及知识运用能力.8.在区间[0,1]上随机取两个数,x y ,记1p 为事件“12x y +≤”的概率,2p 为事件“12xy ≤”的概率,则( )A .1212p p <<B .1212p p <<C .2112p p <<D .2112p p <<【答案】B .【考点定位】本题考查几何概型和微积分基本定理,涉及二元一次不等式所表示的区域和反比例函数所表示的区域.【名师点睛】以几何概型为依托,融合定积分的几何意义、二元一次不等式所表示的区域和反比例函数所表示的区域等内容,充分体现了转化的数学思想在实际问题中的应用,能较好的考查学生灵活运用基础知识解决实际问题的能力.9.将离心率为1e 的双曲线1C 的实半轴长a 和虚半轴长()b a b ≠同时增加(0)m m >个单位 长度,得到离心率为2e 的双曲线2C ,则( ) A .对任意的,a b ,12e e > B .当a b >时,12e e >;当a b <时,12e e < C .对任意的,a b ,12e e < D .当a b >时,12e e <;当a b <时,12e e >【答案】D .【考点定位】本题考查双曲线的定义及其简单的几何性质,考察双曲线的离心率的基本计算,涉及不等式及不等关系.【名师点睛】将双曲线的离心率的计算与初中学习的溶液浓度问题联系在一起,突显了数学在实际问题中实用性和重要性,充分体现了分类讨论的数学思想方法在解题中的应用,能较好的考查学生思维的严密性和缜密性.10.已知集合22{(,)1,,}A x y x y x y =+≤∈Z ,{(,)||2,||2,,}B x y x y x y =≤≤∈Z ,定义集合 12121122{(,)(,),(,)}A B x x y y x y A x y B ⊕=++∈∈,则A B ⊕中元素的个数为( ) A .77 B .49 C .45 D .30 【答案】C.【考点定位】本题考查用不等式表示平面区域和新定义问题,属高档题.【名师点睛】用集合、不等式的形式表示平面区域,以新定义为背景,涉及分类计数原理,体现了分类讨论的思想方法的重要性以及准确计数的科学性,能较好的考查学生知识间的综合能力、知识迁移能力和科学计算能力.第Ⅱ卷(共110分)(非选择题共110分)二、填空题(每题7分,满分36分,将答案填在答题纸上)11.已知向量OA AB ⊥,||3OA =,则OA OB ⋅=_________. 【答案】9.【考点定位】本题考查向量的数量积的基本运算,属基础题.【名师点睛】将向量的加法运算法则(平行四边形法则和三角形法则)和向量的数量积的定义运算联系在一起,体现数学学科知识间的内在联系,渗透方程思想在解题中的应用,能较好的考查学生基础知识的识记能力和灵活运用能力.12.若变量,x y 满足约束条件4,2,30,x y x y x y +≤⎧⎪-≤⎨⎪-≥⎩则3x y +的最大值是_________.【答案】10.【考点定位】本题考查线性规划的最值问题,属基础题.【名师点睛】这是一道典型的线性规划问题,重点考查线性规划问题的基本解决方法,体现了数形结合的思想在数学解题中重要性和实用性,能较好的考查学生准确作图能力和灵活运用基础知识解决实际问题的能力.13.函数2π()2sin sin()2f x x x x =+-的零点个数为_________.【答案】2.【考点定位】本题考查函数与方程,涉及常见函数图像绘画问题,属中档题.【名师点睛】将函数的零点问题和方程根的问题、函数的交点问题联系在一起,凸显了数学学科内知识间的内在联系,充分体现了转化化归的数学思想在实际问题中的应用,能较好的考查学生准确绘制函数图像的能力和灵活运用基础知识解决实际问题的能力.14.某电子商务公司对10000名网络购物者2014年度的消费情况进行统计,发现消费金额 (单位:万元)都在区间[0.3,0.9]内,其频率分布直方图如图所示. (Ⅰ)直方图中的a =_________;(Ⅱ)在这些购物者中,消费金额在区间[0.5,0.9]内的购物者的人数为_________.【答案】(Ⅰ)3;(Ⅱ)6000.【考点定位】本题考查频率分布直方图,属基础题.【名师点睛】以实际问题为背景,重点考查频率分布直方图,灵活运用频率直方图的规律解决实际问题,能较好的考查学生基本知识的识记能力和灵活运用能力.15.如图,一辆汽车在一条水平的公路上向正西行驶,到A处时测得公路北侧一山顶D在西偏北30的方向上,行驶600m后到达B处,测得此山顶在西偏北75的方向上,仰角为30,则此山的高度CD=_________m.【答案】1006.【考点定位】本题考查解三角形的实际应用举例,属中档题.【名师点睛】以实际问题为背景,将抽象的数学知识回归生活实际,凸显了数学的实用性和重要性,体现了“数学源自生活,生活中处处有数学”的数学学科特点,能较好的考查学生识记和理解数学基本概念的能力和基础知识在实际问题中的运用能力.16.如图,已知圆C与x轴相切于点(1,0)AB=.T,与y轴正半轴交于两点A,B(B在A的上方),且2(Ⅰ)圆C的标准..方程为_________;(Ⅱ)圆C在点B处的切线在x轴上的截距为_________.【答案】(Ⅰ)22(1)(2)2x y-+-=;(Ⅱ)12--.【考点定位】本题考查圆的标准方程和圆的切线问题, 属中高档题.【名师点睛】将圆的标准方程、圆的切线方程与弦长问题联系起来,注重实际问题的特殊性,合理的挖掘问题的实质,充分体现了数学学科特点和知识间的内在联系,渗透着方程的数学思想,能较好的考查学生的综合知识运用能力.其解题突破口是观察出点C的横坐标.17.a为实数,函数2()||f x x ax=-在区间[0,1]上的最大值记为()g a. 当a=_________时,()g a的值最小. 【答案】222-.【考点定位】本题考查分段函数的最值问题和函数在区间上的最值问题,属高档题.【名师点睛】将含绝对值的二次函数在区间上的最值问题和分段函数的最值问题融合在一起,运用分类讨论的思想将含绝对值问题转化为分段函数的问题,充分体现了分类讨论和化归转化的数学思想,能较好的考查知识综合能力.其解题的关键是运用分类讨论求出()g a的表达式和分段函数在区间上的最值求法.三、解答题(本大题共5小题,共65分.解答应写出文字说明、证明过程或演算步骤.)18.(本小题满分12分)某同学用“五点法”画函数π()sin()(0,||)2f x A xωϕωϕ=+><在某一个周期内的图象时,列表并填入了部分数据,如下表:x ωϕ+0 π2 π3π2 2πxπ3 5π6 sin()A x ωϕ+55-(Ⅰ)请将上表数据补充完整,填写在答题卡上相应位置...........,并直接写出函数()f x 的解 析式;(Ⅱ)将()y f x =图象上所有点向左平行移动π6个单位长度,得到()y g x =图象,求 ()y g x =的图象离原点O 最近的对称中心.【答案】(Ⅰ)根据表中已知数据,解得π5,2,6A ωϕ===-.数据补全如下表:x ωϕ+ 0 π2 π 3π22π x π12 π3 7π12 5π6 13π12sin()A x ωϕ+55-且函数表达式为π()5sin(2)6f x x =-;(Ⅱ)离原点O 最近的对称中心为π(,0)12-.【考点定位】本题考查五点作图法和三角函数图像的平移与三角函数的图像及其性质,属基础题.【名师点睛】将五点作图法、三角函数图像的平移与三角函数的图像及其性质联系在一起,正确运用方程组的思想,合理的解三角函数值,准确使用三角函数图像的平移和三角函数的图像及其性质是解题的关键,能较好的考查学生基础知识的实际应用能力、准确计算能力和规范解答能力.19.(本小题满分12分)设等差数列{}n a 的公差为d ,前n 项和为n S ,等比数列{}n b 的公比为q .已知11b a =,22b =,q d =,10100S =.(Ⅰ)求数列{}n a ,{}n b 的通项公式;(Ⅱ)当1d >时,记n n nac b =,求数列{}n c 的前n 项和n T .【答案】(Ⅰ)121,2.n n na nb -=-⎧⎪⎨=⎪⎩或11(279),929().9n n n a n b -⎧=+⎪⎪⎨⎪=⋅⎪⎩;(Ⅱ)12362n n n T -+=-.【考点定位】本题综合考查等差数列、等比数列和错位相减法求和,属中档题.【名师点睛】这是一道简单综合试题,其解题思路:第一问直接借助等差、等比数列的通项公式列出方程进行求解,第二问运用错位相减法直接对其进行求和.体现高考坚持以基础为主,以教材为蓝本,注重计算能力培养的基本方向.20.(本小题满分13分)《九章算术》中,将底面为长方形且有一条侧棱与底面垂直的四棱锥称之为阳马,将四个面都为直角三角形的四面体称之为鳖臑. 在如图所示的阳马P ABCD -中,侧棱PD ⊥底面ABCD ,且PD CD =,点E 是PC 的中点,连接,,DE BD BE.(Ⅰ)证明:DE ⊥平面PBC . 试判断四面体EBCD 是否为鳖臑,若是,写出其每个面的直角(只需写出结论);若不是,请说明理由;(Ⅱ)记阳马P ABCD -的体积为1V ,四面体EBCD 的体积为2V ,求12V V 的值. 【答案】(Ⅰ)因为PD ⊥底面A B C D ,所以P D B C ⊥. 由底面A B C D 为长方形,有B C C D ⊥,而P D C D D =,所以BC ⊥平面PCD . DE ⊂平面PCD ,所以BC DE ⊥. 又因为PD CD =,点E 是PC 的中点,所以DE PC ⊥. 而PC BC C =,所以DE ⊥平面PBC .四面体EBCD 是一个鳖臑;(Ⅱ)124.VV =【考点定位】本题考查直线与平面垂直的判定定理、直线与平面垂直的性质定理和简单几何体的体积,属中高档题.【名师点睛】以《九章算术》为背景,给予新定义,增添了试题的新颖性,但其实质仍然是考查线面垂直与简单几何体的体积计算,其解题思路:第一问通过线线、线面垂直相互之间的转化进行证明,第二问关键注意底面积和高之比,运用锥体的体积计算公式进行求解. 结合数学史料的给予新定义,不仅考查学生解题能力,也增强对数学的兴趣培养,为空间立体几何注入了新的活力.21.(本小题满分14分)设函数()f x ,()g x 的定义域均为R ,且()f x 是奇函数,()g x 是偶函数, ()()e x f x g x +=,其中e 为自然对数的底数.(Ⅰ)求()f x ,()g x 的解析式,并证明:当0x >时,()0f x >,()1g x >;(Ⅱ)设0a ≤,1b ≥,证明:当0x >时,()()(1)()(1)f x ag x a bg x b x+-<<+-.【答案】(Ⅰ)1()(e e )2x x f x -=-,1()(e e )2x x g x -=+.证明:当0x >时,e 1x >,0e 1x -<<,故()0.f x >又由基本不等式,有1()(e e )e e 12x x x x g x --=+>=,即() 1.g x > (Ⅱ)由(Ⅰ)得2111e 1()(e )(e )(e e )()2e 2e 2x x x x x x x f x g x -''=-=+=+=⑤2111e 1()(e )(e )(e e )()2e 2e 2x x x x x x x g x f x -''=+=-=-=⑥当0x >时,()()(1)f x ag x a x >+-等价于()()(1)f x axg x a x >+- ⑦ ()()(1)f x bg x b x<+-等价于()()(1).f x bxg x b x <+- ⑧于是设函数 ()()()(1)h x f x cxg x c x =---,由⑤⑥,有()()()()(1)h x g x cg x cxf x c '=----(1)[()1]().c g x cxf x =--- 当0x >时,(1)若0c ≤,由③④,得()0h x '>,故()h x 在[0,)+∞上为增函数,从而()(0)0h x h >=,即()()(1)f x cxg x c x >+-,故⑦成立.(2)若1c ≥,由③④,得()0h x '<,故()h x 在[0,)+∞上为减函数,从而()(0)0h x h <=,即()()(1)f x cxg x c x <+-,故⑧成立.综合⑦⑧,得 ()()(1)()(1)f x ag x a bg x b x+-<<+-【考点定位】本题考查函数的奇偶性和导数在研究函数的单调性与极值中的应用,属高档题.【名师点睛】将函数的奇偶性和导数在研究函数的单调性与极值中的应用联系在一起,重点考查函数的综合性,体现了函数在高中数学的重要地位,其解题的关键是第一问需运用奇函数与偶函数的定义及性质建立方程组进行求解;第二问属于函数的恒成立问题,需借助导数求解函数最值来解决.22.(本小题满分14分)一种画椭圆的工具如图1所示.O 是滑槽AB 的中点,短杆ON 可绕O 转动,长杆MN 通过N 处铰链与ON 连接,MN 上的栓子D 可沿滑槽AB 滑动,且1DN ON ==,3MN =.当栓子D 在滑槽AB 内作往复运动时,带动..N 绕O 转动,M 处的笔尖画出的椭圆记为C .以O 为原点,AB 所在的直线为x 轴建立如图2所示的平面直角坐标系.(Ⅰ)求椭圆C 的方程;(Ⅱ)设动直线l 与两定直线1:20l x y -=和2:20l x y +=分别交于,P Q 两点.若直线l 总与椭圆C 有且只有一个公共点,试探究:OPQ ∆的面积是否存在最小值?若存在,求出该最小值;若不存在,说明理由.【答案】(Ⅰ)221.164x y+=(Ⅱ)当直线l与椭圆C在四个顶点处相切时,OPQ∆的面积取得最小值8.【考点定位】本题考查椭圆的标准方程与直线与椭圆相交综合问题,属高档题.【名师点睛】作为压轴大题,其第一问将椭圆的方程与课堂实际教学联系在一起,重点考查学生信息获取与运用能力和实际操作能力,同时为椭圆的实际教学提供教学素材;第二问考查直线与椭圆相交的综合问题,借助函数思想进行求解.其解题的关键是注重基本概念的深层次理解,灵活运用所学知识.。
绝密★启用前2015年普通高等学校招生全国统一考试(湖北卷)数学(文科)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.满分150分,考试时间120分钟. 注意事项:1.答卷前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置.2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.写在试题卷、草稿纸和答题卡上的非答题区域均无效.3.填空题和解答题的作答:用签字笔直接答在答题卡上对应的答题区域内.写在试题卷、草稿纸和答题卡上的非答题区域均无效.4.选考题的作答:先把所选题目的题号在答题卡上指定的位置用2B 铅笔涂黑,再在答题卡上对应的答题区域内答题.写在试题卷、草稿纸和答题卡上的非答题区域均无效.5.考试结束后,请将本试题卷和答题卡一并上交.第Ⅰ卷(选择题 共50分)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.i 为虚数单位,607i= ( )A .i -B .iC .1-D .12.我国古代数学名著《数书九章》有“米谷粒分”题:粮仓开仓收粮,有人送来米1 534石,验得米内夹谷,抽样取米一把,数得254粒内夹谷28粒,则这批米内夹谷约为( )A .134石B .169石C .338石D .1 365石 3.命题“0(0,)x ∃∈+∞,00ln 1x x =-”的否定是( ) A .0(0,)x ∃∈+∞,00ln 1x x ≠- B .0(0,)x ∃∉+∞,00ln 1x x =- C .(0,)x ∀∈+∞,ln 1x x ≠-D .(0,)x ∀∉+∞,ln 1x x =-4.已知变量x 和y 满足关系0.11y x =-+,变量y 与z 正相关.下列结论中正确的是 ( )A .x 与y 负相关,x 与z 负相关B .x 与y 正相关,x 与z 正相关C .x 与y 正相关,x 与z 负相关D .x 与y 负相关,x 与z 正相关5.1l ,2l 表示空间中的两条直线,若p :1l ,2l 是异面直线;q :1l ,2l 不相交,则( )A .p 是q 的充分条件,但不是q 的必要条件B .p 是q 的必要条件,但不是q 的充分条件C .p 是q 的充分必要条件D .p 既不是q 的充分条件,也不是q 的必要条件6.函数256()4||lg 3x x f x x x -+=-+-的定义域为( )A .(2,3)B .(2,4]C .(2,3)(3,4] D .(1,3)(3,6]-7.设x ∈R ,定义符号函数1,0,sgn 0,0,1,0,x x x x >⎧⎪==⎨⎪-<⎩则( )A .|||sgn |x x x =B .||sgn ||x x x =C .||||sgn x x x =D .||sgn x x x =8.在区间[0,1]上随机取两个数x ,y ,记1p 为事件“12x y +≤”的概率,2p 为事件“12xy ≤”的概率,则 ( )A .1212p p << B .1212p p << C .2112p p <<D .2112p p << 9.将离心率为1e 的双曲线1C 的实半轴长a 和虚半轴长()b a b ≠同时增加(0)m m >个单位长度,得到离心率为2e 的双曲线2C ,则 ( )A .对任意的a ,b ,12e e >B .当a b >时,12e e >;当a b <时,12e e <C .对任意的a ,b ,12e e <D .当a b >时,12e e <;当a b <时,12e e >10.已知集合22{(,)1,,}A x y x y x y =+∈Z ≤,{(,)||2,||2,,}B x y x y x y =∈Z ≤≤,定义集合12121122{(,)(,),(,)}A B x x y y x y A x y B ⊕=++∈∈,则A B ⊕中元素的个数为( ) A .77B .49C .45D .30第Ⅱ卷(非选择题 共100分)二、填空题:本大题共7小题,每小题5分,共35分.把答案填在题中的横线上. 11.已知向量OA AB ⊥,||3OA =,则 OA OB =___________.12.若变量,x y 满足约束条件4,2,30,x y x y x y +⎧⎪-⎨⎪-⎩≤≤≥则3x y +的最大值是___________.13.函数2π()2sin sin()2f x x x x =+-的零点个数为___________.14.某电子商务公司对10 000名网络购物者2014年度的消费情况进行统计,发现消费金额(单位:万元)都在区间[0.3,0.9]内,其频率分布直方图如图所示.(Ⅰ)直方图中的a =_________;(Ⅱ)在这些购物者中,消费金额在区间[0.5,0.9]内的购物者的人数为_________.15.如图,一辆汽车在一条水平的公路上向正西行驶,到A 处时测得公路北侧一山顶D 在西偏北30的方向上,行驶600m 后到达B 处,测得此山顶在西偏北75的方向上,仰角为30,则此山的高度CD =_________m .16.如图,已知圆C 与x 轴相切于点(1,0)T ,与y 轴正半轴交于两点A ,B (B 在A 的上方),且2AB =.(Ⅰ)圆C 的标准方程为_________;(Ⅰ)圆C 在点B 处的切线在x 轴上的截距为_________.17. a 为实数,函数2()||f x x ax =-在区间[0,1]上的最大值记为()g a .当a =_________时,()g a 的值最小.--------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------姓名________________ 准考证号_____________三、 解答题:本大题共5小题,共65分.解答应写出必要的文字说明、证明过程或演算步骤. 18.(本小题满分12分)某同学用“五点法”画函数π()sin()(0,||)2f x A x ωϕωϕ=+><在某一个周期内的图象时,列表并填入了部分数据,如下表:x ωϕ+0 π2 π3π2 2πxπ35π6sin()A x ωϕ+55-(Ⅰ)请将上表数据补充完整,并直接写出函数()f x 的解析式; (Ⅱ)将()y f x =图象上所有点向左平行移动π6个单位长度,得到()y g x =的图象,求()y g x =的图象离原点O 最近的对称中心.19.(本小题满分12分)设等差数列{}n a 的公差为d ,前n 项和为n S ,等比数列{}n b 的公比为q ,已知11b a =,22b =,q d =,10100S =.(Ⅰ)求数列{}n a ,{}n b 的通项公式;(Ⅱ)当1d >时,记n n nac b =,求数列{}n c 的前n 项和n T .20.(本小题满分13分)《九章算术》中,将底面为长方形且有一条侧棱与底面垂直的四棱锥称之为阳马,将四个面都为直角三角形的四面体称之为鳖臑.在如图所示的阳马P ABCD -中,侧棱PD ⊥底面ABCD ,且PD CD =,点E 是PC 的中点,连接DE ,BD ,BE .(Ⅰ)证明:DE PBC ⊥平面.试判断四面体EBCD 是否为鳖臑.若是,写出其每个面的直角(只需写出结论);若不是,说明理由;(Ⅱ)记阳马P ABCD -的体积为1V ,四面体EBCD 的体积为2V ,求12V V 的值.21.(本小题满分14分)设函数()f x ,()g x 的定义域均为R ,且()f x 是奇函数,()g x 是偶函数,()f x +()g x e x =,其中e 为自然对数的底数.(Ⅰ)求()f x ,()g x 的解析式,并证明:当0x >时,()0f x >,()1g x >; (Ⅱ)设0a ≤,1b ≥,证明:当0x >时,()()(1)()(1)f x ag x a bg x b x+-+-<<. 22.(本小题满分14分)一种画椭圆的工具如图1所示,O 是滑槽AB 的中点,短杆ON 可绕O 转动,长杆MN 通过N 处铰链与ON 连接,MN 上的栓子D 可沿滑槽AB 滑动,且DN ON =1=,3MN =.当栓子D 在滑槽AB 内作往复运动时,带动N 绕O 转动,M 处的笔尖画出的椭圆记为C ,以O 为原点,AB 所在的直线为x 轴建立如图2所示的平面直角坐标系. (Ⅰ)求椭圆C 的方程;(Ⅱ)设动直线l 与两定直线1:20l x y -=和2:20l x y +=分别交于,P Q 两点.若直线l总与椭圆C 有且只有一个公共点,试探究:△OPQ 的面积是否存在最小值?若存在,求出该最小值;若不存在,说明理由.2015年普通高等学校招生全国统一考试(湖北卷)数学(文科)答案解析第Ⅰ卷)(]3,4,故选所示:S S1S【提示】由题意可得:()()()()(){}0001011,01,0A -=-,,,,,,,()()()()()()()(){()()0,00,10,201021,11,21112,B =----,,,,,,,1,0,,,,,,()()()()()()()()()()2,02,12,22122-1-21,11,01112-------,,,,,,,,,,,,,,()()()()}22212,02,1------,,,,,根据定义可求【考点】集合的基本定义及运算.第Ⅱ卷二、填空题 11.【答案】9【解析】由OA AB ⊥,得0OA AB = .所以()2OA OB OA OA AB OA OA AB=+=+22039OA =+==.【提示】由已知结合平面向量是数量积运算求得答案. 【考点】平面向量的数量积运算,向量模的求法. 12.【答案】10【解析】作出约束条件表示的可行域如下图所示:易知可行域边界三角形的三个顶点坐标分别是3,11,31,3--(),(),(),平行移动直线3y x =-,求可知当直线过点(3,1)时3x y +取最大值10.【提示】作出不等式对应的平面区域,利用线性规划的知识,通过平移即可求z 的最大值.【考点】简单线性规划.13.【答案】2【解析】()2222sin sin 2sin cos sin 22f x x x x x x x x x π⎛⎫=+-=-=- ⎪⎝⎭,令()0f x =,则2sin2x x =,则函数()f x 的零点个数即为函数sin 2y x =与函数2y x =图像的交点个数,作出函数图像知,两函数图像的交点有2个,即函数()f x 的零点个数为2.【提示】将函数进行化简,由()0f x =,转化为两个函数的交点个数进行求解即可. 【考点】函数和方程之间的关系. 14.【答案】(Ⅰ)3 (Ⅱ)6000【解析】(Ⅰ)由频率分布直方图知,()1.5 2.5 2.00.80.20.11a +++++⨯=,解得3a =. (Ⅱ)消费金额在区间[]0.5,0.9内的购物者的人数为()100003 2.00.80.20.16000⨯+++⨯=.【提示】(Ⅰ)频率分布直方图中每一个矩形的面积表示频率,先算出频率,在根据频率和为1,算出a 的值.(Ⅱ)先求出消费金额在区间[]0.5,0.9内的购物者的频率,再求频数.【考点】频率分布直方图 15.【答案】1006【解析】依题意,在ABC ∆中,600AB =,30BAC ∠=︒,753045ACB ∠=︒-︒=︒,由正弦定理得sin sin BC AB BAC ACB =∠∠,即600sin30sin 45BC =︒︒,所以3002BC =.在BCD △中,30CBD ∠=︒,tan 3002tan301006CD BC CBD =∠=︒=.【提示】设此山高h m (),在BCD △中,利用仰角的正切表示出BC ,进而在ABC △中利用正弦定理求得h .【考点】正弦、余弦定理.16.【答案】(Ⅰ)22(1)(2)2x y -+-= (Ⅱ)①②③【解析】(Ⅰ)由题意设圆心()1,C r (r 为圆C 的半径),则222122AB r ⎛⎫=+= ⎪⎝⎭,解得2r =,所以圆C 的方程为()()22122x y -+-=.(Ⅱ)令0x =,得21y =±,所以点()0,21B +,又点()1,2C ,所以直线BC 的斜率为1BCk =-,所以圆C 在点B 处的切线方程为()210y x -+=-,即()21y x =++,令0y =,得切线在x 轴上的截距为21--.【提示】(Ⅰ)确定圆心与半径,即可求出圆C 的标准方程.a ⎡⎤a ⎡⎤12a a a =-()12a f ⎫<⎪⎭;当(12a f ⎛⎫< ⎪⎝⎭ ()1a f ⎛⎫= ⎪129()9n - 1299n -⎛⎫ ⎪⎝⎭ 112n n --,于是PD BC ⊥,PD CD D =,所以,又因为PD CD =PC 的中点,PC BC C =,故平面PBC .DE ⊥平面PBC ,可知四面体EBCD 是一个鳖臑,其四个面的直角分别是BCD ∠是阳马P ABCD -的高,所以11133ABCD V S PD BC CD PD ==; 是鳖臑D BCE -1136BCE S DE BC CE DE ∆=. 22DE CE CD ==,2 4.BC CD PD CD PDCE DE BC CE DE == 证明BC ⊥平面PCD DE ,角三角形,即可得出结论.由已知,是棱锥P ABCD ﹣的高,所以13ABCD PD BC CD PD =,由(Ⅰ)16BCE DE BC CE DE =,即可求)x -,证明见解析.1122|||||||221212P Q m m d m x x m k k =-=+-+将①代入②得,222241281441OPQk m S k k +==--△, 2224128()8(1)84141OPQ k S k k +==+>--△;2412k +【提示】(Ⅰ)根据条件求出a b ,即可求椭圆C 的方程.(Ⅱ)联立直线方程和椭圆方程,求出原点到直线的距离,结合三角形的面积公式进行求解即可.【考点】椭圆方程的求解,直线和圆锥曲线的位置关系.。
矿产资源开发利用方案编写内容要求及审查大纲
矿产资源开发利用方案编写内容要求及《矿产资源开发利用方案》审查大纲一、概述
㈠矿区位置、隶属关系和企业性质。
如为改扩建矿山, 应说明矿山现状、
特点及存在的主要问题。
㈡编制依据
(1简述项目前期工作进展情况及与有关方面对项目的意向性协议情况。
(2 列出开发利用方案编制所依据的主要基础性资料的名称。
如经储量管理部门认定的矿区地质勘探报告、选矿试验报告、加工利用试验报告、工程地质初评资料、矿区水文资料和供水资料等。
对改、扩建矿山应有生产实际资料, 如矿山总平面现状图、矿床开拓系统图、采场现状图和主要采选设备清单等。
二、矿产品需求现状和预测
㈠该矿产在国内需求情况和市场供应情况
1、矿产品现状及加工利用趋向。
2、国内近、远期的需求量及主要销向预测。
㈡产品价格分析
1、国内矿产品价格现状。
2、矿产品价格稳定性及变化趋势。
三、矿产资源概况
㈠矿区总体概况
1、矿区总体规划情况。
2、矿区矿产资源概况。
3、该设计与矿区总体开发的关系。
㈡该设计项目的资源概况
1、矿床地质及构造特征。
2、矿床开采技术条件及水文地质条件。