当前位置:文档之家› 浅述二氧化锆陶瓷材料生物相容性

浅述二氧化锆陶瓷材料生物相容性

浅述二氧化锆陶瓷材料生物相容性
浅述二氧化锆陶瓷材料生物相容性

氧化锆陶瓷

112 40 氧化锆陶瓷 编辑 白色,含杂质时呈黄色或灰色,一般含有HfO2,不易分离。在常压下纯ZrO2共有三种晶态。氧化锆陶瓷的生产要求制备高纯、分散性能好、粒子超细、粒度分布窄的粉体,氧化锆超细粉末的制备方法很多,氧化锆的提纯主要有氯化和热分解法、碱金属氧化分解法、石灰熔融法、等离子弧法、沉淀法、胶体法、水解法、喷雾热解法等。 目录 1简介 2种类特点 3粉体制备 4生产工艺 5应用 6增韧方法 1简介

氧化锆陶瓷,ZrO2陶瓷,Zirconia Ceramic 2种类特点 纯ZrO2为白色,含杂质时呈黄色或灰色,一般含有HfO2,不易分离。世界上已探明的锆资源约为1900万吨,氧化锆通常是由锆矿石提纯制得。在常压下纯ZrO2共有三种晶态:单斜(Monoclinic)氧化锆(m-ZrO2)、四方(Tetragonal)氧化锆 (t-ZrO2)和立方(Cubic)氧化锆(c-ZrO2),上述三种晶型存在于不同的温度范围,并可以相互转化: 温度密度 单斜(Monoclinic)氧化锆(m-ZrO2) <950℃ 5.65g/cc 四方(Tetragonal)氧化锆(t-ZrO2) 1200-2370℃ 6.10g/cc 立方(Cubic)氧化锆(c-ZrO2) >2370℃ 6.27g/cc 上述三种晶态具有不同的理化特性,在实际应用为获得所需要的晶形和使用性能,通常加入不同类型的稳定剂制成不同类型的氧化锆陶瓷,如部分稳定氧化锆(partially stabilized zirconia,PSZ),当稳定剂为CaO、 MgO、Y2O3时,分别表示为Ca-PSZ、 Mg-PSZ、 Y-PSZ等。由亚稳的t- ZrO2组成的四方氧化锆称之为四方氧化锆多晶体陶瓷(tetragonal zirconia polycrysta,TZP)。当加入的稳定剂是Y2O3 、CeO2,则分别表示为Y-TZP、Ce-TZP等。 3粉体制备 氧化锆陶瓷的生产要求制备高纯、分散性能好、粒子超细、粒度分布窄的粉体,氧化锆超细粉末的制备方法很多,氧化锆的提纯主要有氯化和热分解法、碱金属氧化分解法、石灰熔融法、等离子弧法、沉淀法、胶体法、水解法、喷雾热解法等。粉体加工方法有共沉淀法、溶胶一凝胶法、蒸发法、超临界合成法、微乳液法、水热合成法网及气相沉积法等。 4生产工艺

二氧化锆陶瓷的加工技术

二 氧 化 锆 材 料 的 加 工 技 术姓名:罗乔 学号:510011593

摘要 陶瓷材料种类很多,它具有熔点高、硬度高,化学稳定性高、耐高温、耐磨损、耐氧化、耐腐蚀,以及弹性模量大、强度高等优良性质。也正是由于陶瓷材料的这些性质能决定了它的加工也是和普通的材料有着截然不同的加工方式。随着现代工业的发展,对于新型材料的需求也越来越多,陶瓷材料在近十几年来得到飞速的发展。随着它的应用领域越来越广,人们对它的研究也越来越深入。本文将介绍二氧化锆这种比较典型的特种陶瓷材料(人工合成材料)并对其加工技术进行叙述和探讨在国内陶瓷材料的加工技术水平和发展程度。 关键词:陶瓷材料二氧化锆激光加工磨料水射流铣削加工金刚石套料钻

ABSTRACT There is so many kinds of Ceramic material.They have the excellent properties.Such as the High melting point,High hardness,High Chemical stability, Heat-resistant,Resistant to wear,Resistance to oxidation,Corrosion resisting,High Elastic modulus,High strength and so on.Because of these properties , its processing is also with ordinary materials a totally different processing methods.With the development of modern industry,The demand for new materials will be more and more.Ceramic materials get rapid development in recent decade.Along with its application field more and more widely, people have studied it also more and more deeply.This paper will introduce alumina and zro2 which is Synthetic material and its processing technology description and explore the domestic ceramic materials processing techniques and development degree. KEY WORD : Ceramic materials zirconium dioxide Laser processing Abrasive Water technology milling Diamond set of material drill

生物相容性概念

一、生物相容性概念 1、生物相容性是生物医用材料与人体之间相互作用产生各种复杂的生物、物 理、化学反应的一种概念。 2、生物相容性是生物材料研究中始终贯穿的主题。按ISO会议的解释: 生物 相容性是指生命体组织对非活性材料产生反应的一种性能。一般是指材料与宿主之 间的相容性, 包括组织相容性和血液相容性。 二、生物相容性两大原则 1、生物安全性原则 2、生物功能性原则 三、生物安全性原则 1、生物安全性原则 目的在于消除生物材料对人体器官的破坏性,比如细胞毒性和致癌性 2、生物材料对于宿主是异物.在体内必定会产生某种应答或出现排异现象。生物 材料如果要成功.至少要使发生的反应被宿主接受,不产生有害作用。因此要对生物材料进行生物安全性评价,即生物学评价。 四、生物功能性准则 1、是指其在特殊应用中“能够激发宿主恰当地应答”的能力。 2、随着对生物材料生物相容性的深入研究,人们发现不仅要对生物材料的毒副作 用要进行评价,还要进一步评价生物材料对生物功能的影响。 五、生物学反应;血液反应、免疫反应、组织反应 1、血液反应 血小板血栓 凝血系统激活 纤溶系统激活 溶血反应 白细胞反应 细胞因子反应 蛋白黏附 2、免疫反应 补体系统激活 体液免疫反应 细胞免疫反应 3、组织反应 炎症反应 细胞黏附 细胞增值 形成囊膜

细胞质的转变 六、材料反应:物理性质变化、化学性质变化 1、引起生物医用材料变化的因素 生理活动中骨骼、关节、肌肉的力学性动态运动; 细胞生物电、磁场和电解、氧化作用; 新陈代谢过程中生物化学和酶催化反应; 细胞黏附吞噬作用; 体液中各种酶、细胞因子、蛋白质、氨基酸、多肽、自由基对材料的生物降解作用。 2、引起生物体反应的因素 材料中残留有毒性的低分子物质; 材料聚合过程残留有毒性、刺激性的单体; 材料及制品在灭菌过程中吸附了化学毒剂和高温引发的裂解产物; 材料和制品的形状、大小、表面光滑程度; 材料的酸碱度 七、生物相容性分类:血液相容性、组织相容性(一般生物相容性) 1、血液相容性: 材料用于心血管系统与血液直接接触,主要考察与血液的相互作用; 2、组织相容性: 材料与心血管系统外的组织和器官接触,主要考察与组织的相互作用。 3、血液相容性要求: 抗血小板血栓形成; 抗凝血性; 抗溶血性; 抗白细胞减少性; 抗补体系统抗进性; 抗血浆蛋白吸附性; 抗细胞因子吸附性. 4、组织相容性要求 细胞黏附性; 无抑制细胞生长性; 细胞激活性; 抗细胞原生质变化性; 抗炎症性; 无抗原性; 无诱变性; 无致癌性; 无致畸性。 八、1、组织相容性的两个问题:生物医用材料与炎症;生物医用材料与肿瘤。 2、血液相容性的两个问题:生物医用材料与血小板;生物医用材料与补体系统。 九、造成细菌性感染的原因有以下几点:

细胞培养法评价生物材料生物相容性研究进展_梁卫东

生物医学工程学杂志  1999∶16(1)∶86~90 J Biomed Eng 细胞培养法评价生物材料生物相容性研究进展 梁卫东1 综述 石应康 审校 (华西医科大学附属第一医院胸外科,成都 610041) 内容摘要 细胞培养法检测材料生物相容性是一种快速、简便、重复性好又价廉的方法,在材料生物相容性评价中起着越来越重要的作用。由于新材料不断涌现、材料植入体内的部位及使用目的日趋繁杂、材料毒性作用的强弱以及材料与机体反应的复杂性等因素决定了细胞毒性试验中实验方法及实验细胞的多样性。根据生物材料本身的理化特性、植入体内的部位及使用目的选择适当的实验方法和实验细胞至关重要。以往对材料生物相容性的评价往往着眼于细胞的形态与数量的变化,近几年来研究材料对细胞生长、附着、增殖及代谢方面影响的报道日趋增多,并提出了以有活力的细胞数和细胞生长作为材料生物相容性评价标准的观点。通过结合免疫、化学、放射及影像学等多学科的技术发展,使人们进一步深入了解细胞结构和功能的变化关系,进而阐明材料对细胞的作用机制,是今后细胞培养法评价材料生物相容性的发展方向。 关键词 生物材料 细胞培养 相容性 毒性实验 The Research of Evaluation the Compatibility of Biotic Material in Cell-cultureing Method Liang W eidong Shi Yingkang (Department of Thoracocard iac Surgery,The First University Hospital,West Ch ina University of Med ical Science,Cheng du 610041) Abstract It is quick co nv ienent g o od-r epea ting and cheap tha t ex amining th e bio tic ma teria l's co m-pa tibility thro ug h cell-culturing me tho d,a nd it is mo re and mor e impo r ta nt in ev alua ting the co mpa tibil-ity of bio tic material.The new ma teria l appea ring co ntinously complica ting o f th e par t and aim ma teria l be planted in the intensity of mate rial's toxic effec t the r eactio n's complica tio n o f ma terial and bio tic body,all o f these decide the va riety of ex periment method a nd cells in cell to xicity ex periment.It is ve ry impo r tant that choices the righ t ex periment method and cells a cco rding to the ma terial's charac ter the pa rt and aim the ma terial be pla nted in.The eva luatio n o f biotic ma teria l's co mpa tibility stressed o n the changing o f cell's fo rm a nd qua ntity befo r e.In recent y ears,mo re a nd mo r e repo rts a ppear about mate rial influences the g r ow th.adhesio n pro liferation and metabolizing o f cell,a nd pr esents the point that the eva luation standar d o f bio tic mate rial's co mpa tibility sho uld be set acco rding to the activ e cell's quantity a nd their g r ow https://www.doczj.com/doc/b13682083.html, bining many subject's technological dev elo pment,such a s immuno lo gy, ch emistr y,radia tio n and shado wg raphy,th or oughly inquires the changing relatio n o f cell's structure and funtio n,further ly clarifes the material's effect on cell.It is th e dev eloping dir ec tion in the future that e-v aluates the bio tic material's co mpa tibility in cell-culturing m eth od. Key words B io tic mate rial Cell-culturing Compatibility T oxicity ex pe riment 1现在攀钢职工总医院胸外科,攀枝花 617023

氧化锆陶瓷

氧化锆陶瓷 一.简介 1.氧化锆的性质: (1)含锆的矿石:斜锆石(ZrO2),锆英石(ZrO2 ·SiO2); (2)颜色:白色(高纯ZrO2);黄色或灰色(含少量杂质的ZrO2),常含二氧化铪杂质;(3)密度:5.65~6.27g/cm3; (4)熔点:2715℃。 (5)氧化锆具有熔点和沸点高、硬度大、常温下为绝缘体、而高温下则具有导电性等优良性质。 2.氧化锆晶型转化和稳定化处理: 在常压下纯ZrO2共有三种晶态:单斜(Monoclinic)氧化锆(m-ZrO2)、四方(Tetragonal)氧化锆(t-ZrO2)和立方(Cubic)氧化锆(c-ZrO2),上述三种晶型存在于不同的温度范围,并可以相互转化,如表1。ZrO2四方相与单斜相之间的转变是马氏体相变,由于四方相转变为单斜相时有3~5%的体积膨胀和7~8%的切应变。因此,纯ZrO2制品往往在生产过程(从高温到室温的冷却过程)中会发生t-ZrO2 转变为m-ZrO2的相变并伴随着体积变化而产生裂纹,甚至碎裂,因此无多大的工程价值。但是,当加入适当的稳定剂(如Y2O3,MgO2,CaO,CeO2等)后,可以降低c-ZrO2 t-ZrO2→m-ZrO2的相变温度,使高温稳定的c-ZrO2 和t-ZrO2相也能在室温下稳定或亚稳定存在。当加入的稳定剂足够多时,高温稳定的c-ZrO2可以一直保持到室温不发生相变。进一步研究发现氧化锆发生马氏体相变时伴随着体积和形状的变化,能吸收能量,减缓裂纹尖端应力集中,阻止裂纹的扩展,提高陶瓷韧性。因此氧化锆相变增韧陶瓷的研究和应用得到迅速发展,氧化锆相变增韧陶瓷有三种类型,分别为部分稳定氧化锆陶瓷;四方氧化锆多晶体陶瓷及氧化锆增韧陶瓷。 晶态温度密度 <950℃ 5.65g/cc 单斜(Monoclinic)氧化锆 (m-ZrO2) 四方(Tetragonal)氧化锆 1200-2370℃ 6.10g/cc (t-ZrO2) 立方(Cubic)氧化锆(c-ZrO2) >2370℃ 6.27g/cc 表1 在常压下纯ZrO2三种晶态 (1)当ZrO2中稳定剂加入量在某一范围时,高温稳定的c-ZrO2通过适当温度下时效处理使c-ZrO2大晶粒(c相)中析出许多细小纺锤状的t-ZrO2(t相)晶粒,形成c相和t 相组成的双相组织结构。其中c相是稳定的而t相是亚稳定的并一直保存到室温。在外力诱导下有可能诱发t相到m相的马氏体相变并伴随体积膨胀,耗散部分能量、抵消了部分外力从而起到增韧作用,称为应力诱导相变增韧。这种陶瓷称之为部分稳定氧化锆,当稳定剂为CaO、MgO、Y2O3时,分别表示为Ca-PSZ、Mg-PSZ、Y-PSZ等。 (2)当ZrO2中稳定剂加入量控制在适当量时可以使t-ZrO2以亚稳状态稳定保存到室温,那么块体氧化锆陶瓷的组织结构是亚稳的t- ZrO2细晶组成的四方氧化锆多晶体称之为四方氧化锆多晶体陶瓷(。在外力作用下可相变t-ZrO2发生相变,增韧不可相变的ZrO2基

医疗器械注册研究资料生物相容性评价实例培训资料

医疗器械注册研究资料生物相容性评价实 例

5.2生物学评价研究 1、评价的依据和方法 生物相容性是指生命体组织对非活性材料产生的一种性能。一般是指材料与宿主之间的相容性,包括组织相容性和血液相容性。生物相容性既不引起生物体组织、血液等的不良反应。生物相容性评价最基本内容之一是生物安全性,生物安全性是指材料与人体之间相互作用下必须对人体无毒性、无致敏性、无刺激性、无遗传毒性、无致癌性,对人体组织、血液、免疫系统无不良反应。 产品1栓塞剂属于6877介入器材,与人体接触,能够在人体内进行降解,对其生物相容性评价依据《GB/T 16886.1-2011 医疗器械生物学评价_第1部分:风险管理评价与试验》中的内容。产品1栓塞剂生物学评价方法流程如下: 该器械与人体直接接触或间接接触获得材料的识别信息并考虑化学表征材料与市场上器械所用材料相同该材料与市售器械具有相同化学组成制造、灭菌相同、加工助剂不同没有足够的风险评定所需充分的论证和/或临床相关数据根据材料化学性质和接触类别和时间对器械进一步评价进行的生物学评价试验的选择 试验和/或豁免试验的论证进行毒理学风险评定最终评价。2、产品所用材料的描述 产品1栓塞剂是采用明胶与甲醛交联而成,其生产工艺与现在市售的产品2颗粒栓塞剂生产工艺基本一致,经合成(交联)、固化、洗涤、冻干、灭菌而成,产品2颗粒栓塞剂在中国已经有使用数年

的历史,并具有良好的生物相容性,已经广泛应用了医疗器械行业。 经相关文献报道,产品1无全身毒性、无亚急性和亚慢性毒性、无慢性毒性[1],植入符合规定[2]、无细胞毒性[3],无刺激性和致敏性[4],组织相容性好等特点。 3、材料表征 3.1医疗器械材料的定性与定量的说明或分析 3.1.1 主要材料名称:明胶:由猪皮中含有的胶原蛋白不完全酸水解、碱水解或酶降解后纯化得到的一种制品。购自温州罗赛洛明胶有限公司,属于药品辅料,执行《中华人民共和国药典》2010版标准。 3.1.2 加工助剂:甲醛、氢氧化纳、液体石蜡、吐温80。 3.2医疗器械/材料与市售产品的等同性比较 3.2.1产品1栓塞剂与市售产品产品2颗粒栓塞剂比较

氧化锆陶瓷材料的抗热震性能分析

氧化锆陶瓷材料的抗热震性能分析 摘要:文章通过对氧化锆陶瓷材料的热膨胀性以及相变的特征进行分析,着重探讨有效利用氧化锆的相变提高氧化锆材料实际抗热震性能的具体方法,以及如何提高材料抗热震性的可行性办法。 关键词:氧化锆陶瓷材料抗热震性能 材料具有的热学性能以及力学性能决定了陶瓷材料当中热应力的大小,另外构件的几何形状以及环境的介质等也会影响陶瓷材料的热应力的大小。因此,抗热震性代表着陶瓷材料抵抗温度变化能力的大小,也肯定是它热学性能以及力学性能相对应各种受热条件时一个全面的反映。关于陶瓷材料在抗热震能力方面的研究开始于上个世纪五十年代,到目前形成了很多关于抗震性的相关评价理论,不过都在一定程度上有着片面性和局限性。 一、陶瓷材料的抗热震性具体理论分析 陶瓷材料热震破坏包括:在热冲击的循环直接作用下发生的开裂和剥落;在热冲击的作用下瞬间的断裂。基于此,有关脆性的陶瓷材料具体的抗热震性相关的评价理论也涵盖了两个观点。首先是基于热弹性的理论。其说的是材料原本的强度无法抵抗热震温差导致的热应力的时候,就造成了材料的“热震断裂”。通过这个理论,陶瓷材料需要同时具备热导率、高强度和低热膨胀系数、泊松比、杨氏弹性模量、黏度以及热辐射的系数,这样方能够具备较高的抗热震断裂能力。另外,想要提高陶瓷材料实际的抗热震能力,还可以通过对材料的热容以及密度进行适当的降低。 另一理论基于断裂力学的具体概念,也就是材料当中热弹性的应变能完全能够裂纹成核以及扩展而新生的表面需要的能量的时候,裂纹形成并且开始扩展,进而造成了材料热震的损伤。按照该理论,在抗热震损伤性能方面比较好的材料应当符合越高越好的弹性模量以及越低越好的强度。以此能够发现,以上要求和高抗热震断裂的能力具体的要求完全对立。另外,将陶瓷材料实际的断裂能提高以及对材料的实际断裂韧性进行改善,很明显有助于提高材料的抗热震的损伤能力。另外,存在一定量的微裂纹也对提高抗热震的损伤性能有很大的帮助,比如:在气孔率是10%到20%之间的非致密的陶瓷当中,热扩展裂纹的形成通常会遭受来自气孔的抵制,存在的气孔能够帮助钝化裂纹以及减小应力的集中。 作为氧化锆陶瓷材料,有着极为鲜明的常温力学的性能,熔点比较高、在化学稳定性以及热稳定性上都比较好。所以,其的使用经常处于高温的条件之下,因而其抗热震性的性能也是判断其性能的关键指标。氧化锆的许多性质都非常的特殊,比如:氧化锆能够以单料以及四方、立方这三种具体晶型共同存在,还有它特殊的相变特性,这么多特性都可以被我们所利用,用来提高其热膨胀的行为,加强其的抗热震方面的性能。

zro2增韧Al2O3陶瓷

zro2增韧Al2O3陶瓷的制备(ZTA) 摘要: ZrO2/Al2O3复相陶瓷是高温结构陶瓷中最有前途的材料之一,由于其优越的性能和丰富的原料来源,已受到广泛的关注,成为陶瓷材料领域研究的一大热点.本文对氧化锆/氧化铝复相陶瓷的复合机理、最近几年粉体制备常用和最新工艺和ZTA陶瓷应用方面的研究进展进行了综述,并对ZTA复相材料今后的发展进行了展望. 关键词:ZTA;增韧机理;复合粉体制备;研究进展;发展趋势 Abstrac t:Zirconia toughened aluminum (ZTA) hasbeenwidely studied as a new type of toughened ceramic.The aim of this investigation is to review the recent literatures on its synthesismechanisms, new preparation.methods of composite powders and applications. The problems in preparation techniques and developmental trend are discussed aswel.l Key words:ZTA; strengthening and tougheningmechanisms; preparation technology of composite powders;current research situation; development trend Al2O3陶瓷被广泛应用于一些耐高温、强腐蚀环境中,而Al2O3陶瓷断裂韧性较低的致命弱点,限制了它更大范围的使用.采用ZrO2相变增韧、颗粒弥散强化或纤维及晶须补强等方法,可使陶瓷材料的力学性能大大提高,是先进复相结构陶瓷材料的重要发展方向.从ZrO2/Al2O3系统相图[1]可知,即使在很高的温度下ZrO2与Al2O3之间都不会生成固溶体,这就为研究ZrO2/Al2O3复相陶瓷提供了理论依据.由于,ZTA陶瓷是zro2增韧陶瓷中效果最佳者,近年来,不少学者对该系统复相陶瓷进行了大量研究,随着复相陶瓷技术的发展, ZTA 复相陶瓷的研究成为陶瓷材料领域研究的一大热点.本文就近年来国内外文献对ZTA陶瓷的复合机理、制备方法、发展趋势等研究进展做如下综述. 一、ZTA陶瓷的增韧机理 ZTA陶瓷的增韧机理是晶须及纤维增韧,第二相弥散强化增韧, ZrO2相变增韧,以及与金属复合形成金属基复相陶瓷,残余应力增韧等等。以下简单介绍几种研究较热的增韧途径的机理。 1、应力诱导相变增韧 对于ZrO2/Al2O3体系,主要的增韧方式是由ZrO2产生的相变增韧.李世普等人将其解释为[2]:zro2颗粒弥散在Al2O3陶瓷基体中,由于两者具有不同的热膨胀系数,烧结完成后,在冷却过程中,zro2颗粒周围则有不同的受力情况,当它受到基体的抑制,zro2的相转变也将受到抑制。此外,zro2还有另一个特性,是相变温度随着颗粒尺寸的降低而下降,一直可降到室温或室温以下。党基体对zro2有足够的压应力,而zro2的颗粒度有足够小,则其相变温度可降至室温以下,这样在室温时zro2仍可以保持四方相。当材料受到外应力时,基体对zro2的抑制作用得以松弛,zro2颗粒即发生四方相到单斜相的转变,并在基体中引起裂纹,从而吸收了主裂纹扩展的能量,达到增加断裂韧性的效果,这就是zro2的应力诱导相变增韧。 2、微裂纹增韧[3] 毫无疑问,在大多数情况下,陶瓷体内存在有裂纹,包括表面裂纹,工艺缺陷,环境条件下诱发的缺陷,当受外力或存在应力集中时,裂纹会迅速扩展导致陶瓷体破坏。因此,应防止裂纹扩展,消除应力集中,是解决增韧问题的关键。 部分稳定的zro2在发生t-zro2到m-zro2马氏体相变时,相变出现了体积膨胀而导致产

生物材料和生物相容性

Biomaterials and Biocompatibility (3 Credits) 生物材料和生物相容性 Objectives To be familiar with the general types of materials used in biomedical applications. To understand the basic principles behind tissue response to artificial device implantation. To understand techniques utilized to control the physiologic response to implants. To be familiar with the design strategies and clinical applications of biomaterials. Topics 1.Introduction of different materials (polymers, metals, ceramics, glasses, and nature derived materials) 2.Surface analysis and surface modification 3.Protein adsorption and cell adhesion 4.Inflammatory host tissue response, foreign body reaction and wound healing 5.Immune response 6.Blood-biomaterial interaction 7.Calcification, tumorgenesis and Infection 8.In vitro and in vivo biocompatibility evaluation 9.Biomaterial design strategies in clinical applications (cardiovascular, neurological, drug delivery, etc.) Text/ Reference Temenoff and Mikos, Biomaterials: The intersection of Biology and Materials Science (2008). Buddy Ratner, Biomaterials Science: An Introduction to Materials in Medicine (2004). Grading Homework30% Quizzes 20% Final Exam 40% Participation10% Total100%

二氧化锆陶瓷的制备及性能分析

特种陶瓷综合论文 院(部、中心)材料科学与工程学院 姓名 x x x 学号 xxx 专业材料科学与工程班级 xx 课程名称特种陶瓷材料综合论文 设计题目名称氧化锆陶瓷的制备及性能分析 起止时间 成绩 指导教师 xxx大学教务处制

目录 一、氧化锆的基本性质及应用 (1) 1.1氧化锆的基本性质 (1) 1.2氧化锆的应用 (1) 二、氧化锆粉料的制备 (1) 2.1常用微粉 (2) 2.2 超细粉制备 (2) 三、氧化锆陶瓷的成型 (4) 3.1 热压铸成型 (4) 3.2 干压成型 (4) 3.3 等静压成型 (6) 3.4注浆成型 (6) 3.5流延成型 (6) 3.6凝胶注模成型 (7) 四、氧化锆陶瓷的烧结 (7) 4.1 真空烧结炉 (8) 4.2实验室烧结炉 (10) 五、氧化锆陶瓷的性能测试 (11) 5.1体积密度、吸水率和气孔率的测定 (11) 5.2 抗压强度的测定 (12) 5.3 三点抗弯强度 (12) 5.4 SEM 测试分析 (12)

一、氧化锆的基本性质及应用 1.1氧化锆的基本性质 氧化锆是自然界中以斜锆石存在的一种矿物,是一种耐高温、耐磨损、耐腐蚀的无机非金属材料。它的熔点高达2700摄氏度。白色重质无定形粉末,无臭、无味。溶于2份硫酸和1份水的混合液中,微溶于盐酸和硝酸,慢溶于氢氟酸,几乎不溶于水。有刺激性。相对密度5.85。熔点 2680℃。沸点4300℃。硬度次于金刚石[1]。能带间隙大约为5-7eV 。一般常含有少量的氧化铪。化学性质不活泼,且高熔点、高电阻率、高折射率和低热膨胀系数的性质,使它成为重要的耐高温材料、陶瓷绝缘材料和陶瓷遮光剂。纯的ZrO 2在常压下共有三种晶型:从低温到高温一次为单斜相、四方相、和立方相。氧化锆晶型转变如下:[2] 221170℃2370℃t 2 950℃m ZrO ZrO c ZrO --- 1.2氧化锆的应用 主要用于压电陶瓷制品、日用陶瓷、耐火材料及贵重金属熔炼用的锆砖、锆管、坩埚等。也用于生产钢及有色金属、光学玻璃和氧化锆纤维。还用于陶瓷颜料、静电涂料及烤漆[3]。 氧化锆还是一种很优秀的高科技生物材料。生物相容性好,优于各种金属合金,包括黄金。氧化锆全瓷牙具有极高的密合性,且对牙龈无刺激、无过敏反应,很适合应用于口腔。导热性能极低,仅为黄金的十七分之一,更有利于牙髓的保护。质量轻,密度仅为黄金的四分之一,患者佩戴更舒适。 二、氧化锆粉料的制备 氧化锆陶瓷的生产要求制备高纯、分散性能好、粒子超细、粒度分布窄的粉体,氧化锆超细粉末的制备方法很多。氧化锆的提纯主要有氯化和热分解法、碱

氧化锆陶瓷的制备工艺

氧化锆陶瓷的制备工艺 一氧化锆陶瓷的原料 氧化锆工业原料是由含锆矿石提炼出来的。 斜锆石(ZQ)— 自然界锆矿石V 锆英石(ZrO2? SiO X 二氧化锆陶瓷的提炼方法 氯化和热分解— 碱金属氧化物分解法 石灰溶解法 等离子弧法 提炼氧化锆的主要方法V 沉淀法 胶体法 水解法 喷雾热分解法J ㈠氯化和热分解法 ZrQ z SiQ+4C+4Q→ZrC4+SiC4+4CO 其中ZrC4和SiC4以分馏法加以分离,在150-18O C下冷凝出ZrC4 然后加水水解形成氧氯化锆,冷却后结晶出氧氯化锆晶体,经焙烧就得到氧化锆。 ㈡碱金属氧化物分解法 ZrQ z SiQ+NaOH→ Na2ZrO3 +Nε2SiQ+H2O

ZrO2?SiQ+Na2CQ →Na2ZrSiQ+CQ ZrQ^Q+Na2C03→ Na2ZrQ+Na2SiC3+CQ 氨①反应后用水溶解,滤去Na2SiQ3; 水 用水水解调②Na2ZrO3 →水合氢氧化物→用硫酸进行钝化→Zr5θ8(SQ)2 ?xH2O→ 氧化锆粉焙烧PH 值 ㈢石灰熔融法 CaO+ZrO ? Siθ2→ZrO2+CaSiO焙烧后用盐酸浸出除去CaSiQ3 ㈣等离子弧法锆英石砂(ZrQ?SiQ2) ZrQ2和硅酸铀 洗涤 氧化锆 ㈤沉淀法 沉淀法是在羧基氯化锆等水溶性锆盐与稳定剂盐的混合水溶液中加入氨水等碱性类物质,以获得氢氧化物共沉淀的方法。将共沉淀物干

燥后一般得到的是胶态非晶体,经500—700C左右焙烧而制成ZrQ 粉末。 ㈥胶体法 胶体法是合成粉体中各种前驱体在溶胶状态下混合均匀,而后固体从溶胶中析出的方法。 溶胶法 ①溶胶一凝胶技术②溶胶一沉淀法 金属氧化物或氢氧化物的溶胶胶体沉淀剂(在锆盐溶液中加有机化合物) 转化 在碱中共沉淀 ψ 凝胶" 由有机化合物构成的凝胶中干燥分散金属氢氧化物复合体 " 焙烧 I ψ 焙烧清除添加剂 ΨI 氧化物 Zrθ2粉末 ㈦水解法 ①醇盐水解法:将有机溶液中混合着锆和稳定剂的醇盐,进行加水分 解的方法。 ②水解法:高温、高压下,氢氧化锆在水中的溶解度大于常温、常压 ①溶胶一凝胶法②溶胶一沉淀法

生物材料生物相容性的评价方法和发展趋势

生物材料生物相容性的评价方法和发展趋势 摘要:生物相容性一直是生物材料能否大量运用与临床医疗的关键话题,随着 社会发展以及科技的进步,无论是民众还是医疗领域对生物材料的依赖以及期望 越来越高,而如何能够更大程度的推广生物材料的应用,生物材料生物相容性的 评价方法是至关重要的。材料生物相容性的评价是生物材料进入临床运用前的必 要环节,高效的评价方法也有更为大的需要,本文就生物材料生物相容性的评价 方法和发展趋势做出综合论述,旨在推进生物材料的评价方法的发展。 关键词:生物材料;生物相容性;评价方法;发展前景;趋势 一、生物相容性定义 生物材料是医用临床应用的重要材料之一,而其能否保证临床应用的安全性的关键就是 是否具有良好的生物相容性。根据国际标准化组织(International Standards Organization,ISO)的定义,生物材料的相容性是指材料在生物体内时,材料在处于动态或者静态变化时,生物 体与材料二者之间的反应情况,主要包括材料对生物体的反应和生物体对材料的作用。生物 材料不会导致生物体发生明显的临床反应,并且材料也能够耐受住宿主各系统的作用而保持 相对稳定、不被破坏和排斥的生物学性质,同时生物相容性也并不单纯是指材料本身的性质,而是体现了生物材料与生物体体内环境相互作用的结果,这个则被称为生物相容性良好。对 于生物材料而言,提前做好材料关于生物相容性的评价是生物材料是否能够顺利进入临床试 验运用前,必不可少的关键环节。而关于生物相容性的评价方法,国内外学者都对其进行了 十分多的相关研究,并且为了提高评价效率而做更为深入地研究,从而逐步倾向于结合现代 先进的科技手段结合现代分子生物学,从而实现对生物材料的生物相容性等安全性进行准确、高效、客观地评价测验,使评价方法从整体水平深入到分子水平。 生物相容性的概念在近几十年来发生了重大的变化,在经过长期的发展之后,现在普遍 认为生物材料的生物相容性主要包括两大原则:其一是“生物安全性”原则,其主要内容就是 确保生物材料有较低的毒性,不能对人体器官产生破坏,比如对生物体产生毒性、刺激性、 致畸性和局部炎症等;其二是“生物功能性”原则,是指要求生物材料在特定的应用中,能够 类似生物体内部的其他器官,可以恰当地激发机体相应的功能。生物相容性的评价主要包括 了一系列体内或者体外的实验来进行,随着科技进步,这个评价标准也逐渐强调了利用现代 细胞生物学和分子生物学手段来检测生物相容性的必要性。 二、生物材料生物相容性的评价方法和发展趋势 (一)生物材料生物相容性评价方法 现阶段生物材料生物相容性的生物学评价方式通常包括体外和体内两种实验途径。体内 实验则是将生物材料直接与动物体接触,植入动物生物体内,观察植入后生物材料的生物体 周围组织反应的情况,这类实验模拟了人体的生理环境,直接反映了动物体与材料的最终反 应结果状况。体外实验是将材料或其浸提液,在人为制造、培养的体外环境下与细胞或组织 接触,观察生物材料对细胞数量、细胞生长形态及细胞分化的过程反应影响。目前,生物体 体内植入实验仍是评价生物材料相容性关于材料植入生物体体内后所导致的安全性和有效性 最主要手段,但是这种实验方法只能对生物材料的相容性最后影响结果做出大体评价,而并 不能实现对反应结果的一些参数进行定量、定性的分析,对生物材料相容性的评价结果判断 有一定的限制作用。

氧化锆陶瓷行业现状

氧化锆陶瓷行业现状 氧化锆陶瓷作为陶瓷中应用最广的一种材料,其计算机技术和数字化控制技术的发展促进了先进陶瓷材料工业的技术进步和快速发展,诸如自动控制连续烧结窑炉、大功率大容量研磨设备、高性能制粉粒设备等净压成型设备等先进的成套设备有利地推动了行业整体水平的提高,同时在生产效率、产品质量等方面也都明显改善,其中山东金澳科技为其行业之最。 微晶氧化锆陶瓷制品作为其它行业或的基础材料,受着其它行业发展水平的影响和限制。从目前氧化锆陶瓷的应用情况看,应用范围越来越宽,用量越来越大,特别是在防磨工程和建筑陶瓷生产方面的用量增加将更为显著。 作为结构陶瓷用的氧化锆是一个非常复杂的体系,其应用不仅取决于化学性能(纯度和组成)、而且还取决于相结构和氧化锆粉末的物理特性。其中金澳科技在这方面体现的尤为突出,其化学组成容易控制,相结构也是较容易调节的。而氧化锆来控制。在低温下存在四方相可能是受多个因素的影响(包括化学反应的阴离子杂技的影响),在四方相和母体无定型相之间的结构是类似的。在晶体中晶格应变和缺陷中心存在,没有考虑t -m转变发生是低于一个给定的颗粒尺寸。这些晶格应变和缺陷中心可能由于化学杂质存在,引起ZrO从无定型状态变成四方相的结晶体。 目前制备亚微氧化锆粉体的方法很多,常见的有共沉淀法、醇盐水解法、氧氯化锆水解法、水热法(高温水解法)、溶胶-凝胶法等, 这些方法各有特点,但也存在很多不足。如共常常法制务粉末存在严重的团聚现象,制备粉末都不能达到很细,分散性能很差,粒度分布不均匀,即使方法恰当,工艺操作合理,也不能区得最理想的粉末。在制造陶瓷时,由于粉末的流动性差,所以压制坯块均匀性差,烧结密度不高。

二氧化锆的性质

二氧化锆的性质、用途及其发展方向 郑文裕,陈潮钿,陈仲丛 (广东宇田实业有限公司,广东澄海515821) 摘要:简要论述二氧化锆与新型陶瓷材料相关的物理化学性质,并对其在电子陶瓷、功能陶瓷和结构陶瓷等方面的应用作简要介绍,指出了二氧化锆产品必须朝高纯、超微细、复合和溶胶方向发展的趋势。关键词:二氧化锆;性质;用途;发展方向 中图分类号:TQ134.1+2 文献标识码:A 文章编号:1006-4990(2000)01-0018-03 二氧化锆(ZrO2)是一种耐高温、耐磨损、耐腐蚀的无机非金属材料。随着电子和新材料工业的发展,ZrO2除传统应用于耐火材料和陶瓷颜料外,其在电子陶瓷、功能陶瓷和结构陶瓷等高科技领域的 应用引起广大学者的重视,成为当今研究开发的热门课题之一。本文主要就其性质、用途及其发展趋势作简要论述。 1 二氧化锆的物理化学性质[1~4]1.1 物理性质 二氧化锆具有熔点和沸点高、硬度大、常温下为绝缘体、而高温下则具有导电性等优良性质。 二氧化锆有3种晶型,属多晶相转化的氧化物。稳定的低温相为单斜晶结构(m-ZrO2),高于1000℃时四方晶相(t-ZrO2)逐渐形成,直至2370℃只存在四方晶相,高于2370℃至熔点温度则为立方晶相(c-ZrO2)。ZrO2在加热升温过程中伴随着体积收缩,而在冷却过程中则体积膨胀。因此在使用时为使其不发生体积变化,必须进行晶型稳定化处理。常用的稳定剂有Y2O3、CaO、MgO、CeO2和其它稀土氧化物。这些氧化物的阳离子半径与Zr4+相近(相差在12%以内),它们在ZrO2中的溶解度很大,可以和ZrO2形成单斜、四方和立方等晶型的置换型固溶体。这种固溶体可以通过快冷避免共析分解,以亚稳态保持到室温。快冷得到的立方固溶体保持稳定,不再发生相变,没有体积变化,这种ZrO2称为全稳定ZrO2,写为FSZ(FullyStabilizedZirconia)。 基于ZrO2晶型转变的特征条件和不同类型稳 定剂的作用,通常稳定剂Y2O3、CaO、MgO、CeO2的 有效加入量(摩尔分数)分别为7%~14%,15%~29%,16%~26%,>13%。根据不同的应用条件,稳定剂可以单独使用,也可以混合使用,从而得到具有不同性能的ZrO2产品,这是当前ZrO2复合材料研究、开发和应用的热门课题之一。 1.2 ZrO2化学性质 氧化锆具有良好的化学性质。它是一种弱酸性氧化物,对碱溶液以及许多酸性溶液(热浓H2SO4、HF及H3PO4除外)都具有足够的稳定性。用ZrO2制成的坩埚可熔炼钾、钠、铝和铁等多种金属。它对硫化物、磷化物等也是稳定的。许多硅化物的熔融物及矿渣等对烧结ZrO2亦不起作用。 熔融碱式硅酸盐以及含有碱土金属的熔融硅酸盐,在高温下对烧结ZrO2有侵蚀作用。强碱与ZrO2在高温下反应生成相应的锆酸盐。在高温下(2220℃以上)的真空中,ZrO2和碳作用生成ZrC,和氢或氮气作用生成相应的氢化物或氮化物。2 ZrO2的用途[3~8] 由于ZrO2及其复合材料在不同条件下具有某些独特的性能(如半导体性、敏感功能性和增韧性),因此自80年代以来,随着电子和新材料工业的发展,ZrO2主要作为耐火材料应用已成过去,而在电子陶瓷、功能陶瓷和结构陶瓷等方面的应用迅速发展。这些特种陶瓷(或称新型陶瓷)材料是电子、航天、航空和核工业的基础材料,在高新技术领域中的应用异常活跃。例如某种火箭中用特种陶瓷材料制造的零部件占80%,一台彩电接收机用特种陶瓷材料制造

医用高分子材料的生物相容性

医用高分子材料的生物相容性研究进展 戴立亮(20090413310005) 材料与化工学院材料科学与工程0901班 摘要医用高分子材料作为医用生物材料中的一大类,在现代医疗中起着越来越重要的作用。医用高分子材料常常应用于制作人工脏器以及一些可控药物的载体直接进入人体。对人体来说,植入的材料不管其结构、性质如何,都是外来异物。出于本能的自我保护,一般都会出现排斥现象,这种排斥的严重程度,决定了材料的生物相容性【1】。高分子材料的生物相容性是其能否作为合格医用材料的关键因素。所以,目前研究医用高分子生物材料的生物相容性是个热点。本文从概念、进展、应用、发展趋势等方面评述医用高分子生物材料生物相容性研究进展。并在最后作出结论和个人观点。 关键词医用高分子材料;外来异物;排斥;生物相容性;合格医用材料 [前言] 古代人已经开始用天然高分子材料治病,古埃及人用棉线和马鬃等做伤口缝合线,中国人使用假牙假肢,印第安人用木片修补颅骨。1851年发明天然橡胶的硫化法后,用天然高分子硬胶制作人工牙托和颚骨。1936年邮寄玻璃用于临床。1943年赛璐珞薄膜用于血液透析。1950年后高分子材料大发展。1970年后高分子生物医学材料开始大量应用【2】。本世纪末以来,人类社会出现人口老龄化的现象且人们对生活质量追求越来越高,一些脏器和组织需求量加大,人体自身移植和其他个体移植远远不能满足需求,高分子医用材料制品应用越来越广,前景可观,是各国各地区研究的重点课题。 医用高分子生物材料具有大多数金属材料和无机材料难以满足的优势。合成高分子材料与生物体(天然高分子)有着极其相似的化学结构,而且来源丰富,能够长期保存、种类繁多、性能可变化、范围广,如从坚硬的牙齿和骨头、强韧类似筋腱和指甲,到柔软而富于弹性的肌肉组织、透明角膜和晶状体等,都可用高分子材料制作,而且可以加工成各种复杂形状。医用高分子生物材料在医用生物材料中占据绝对优势。 但是,高分子材料在医用中也需要考虑生物相容性。生物相容性是指合成材料与有机体制和血液之间的适应性。尽管高分子材料与金属和陶瓷相比,其结构与性能等方面更接近于天然高分子,但对于肌体来说,这毕竟是异物。生物体与高分子接触时,如果材料生物相容性欠佳,生物体就会显现出排斥异物的本能,会出现发炎、过敏或血凝固等不良现象甚至发生致癌或影响免疫系统等严重后果。为了避免这些不良反应的发生,在医用中要求高分子材料具有良好的生物相容性。

相关主题
文本预览
相关文档 最新文档