树与二叉树转换
- 格式:pptx
- 大小:204.66 KB
- 文档页数:20
树、森林与⼆叉树的转换
1.树转换为⼆叉树
1)在兄弟节点之间加⼀条连线
2)对每个节点,只保留它与第⼀个孩⼦的连线,与其他孩⼦的连线全部擦掉
3)以树根为轴⼼,顺时针旋转45度
2.森林转换为⼆叉树
1)将森林中的每棵树转换为相应的⼆叉树
2)每棵树的根也可以视为兄弟关系,在每棵树的根之间加⼀根连线
3)以第⼀棵树的根为轴⼼顺时针旋转45度
3
1)若某结点的左孩⼦结点存在,将左孩⼦结点的右孩⼦结点、右孩⼦结点的右孩⼦结点……都作为该结点的孩⼦结点, 将该结点与这些右孩⼦结点⽤线连接起来;
2)删除原⼆叉树中所有结点与其右孩⼦结点的连线;
3)整理(1)和(2)两步得到的树,使之结构层次分明
4.⼆叉树转换为森林
1)若⼆叉树⾮空,则⼆叉树的根及其左⼦树为第⼀棵树的⼆叉树形式,故将根的右链断开
2)⼆叉树根的右⼦树可视为⼀个由除第⼀棵树外的森林转换后的⼆叉树,应⽤1)同样的⽅法,直到只剩⼀颗没有右⼦树的⼆叉树为⽌,
最后再将每棵⼆叉树依次转换为树就得到了原始森林。
信息学奥赛培训之『树——二叉树』树——二叉树为何要重点研究二叉树? 引 : 为何要重点研究二叉树 ? (1)二叉树的结构最简单,规律性最强; (2)可以证明,所有树都能转为唯一对应的二叉树,不失一般性。
一、二叉树基础1. 二叉树的定义 二叉树是一类非常重要的树形结构,它可以递归地定义如下: 二叉树 T 是有限个结点的集合,它或者是空集,或者由一个根结点以及分别称为左 子树和右子树的两棵互不相交的二叉树。
因此,二叉树的根可以有空的左子树或空的右子树,或者左、右子树均为空。
二叉树有 5 种基本形态,如图 1 所示。
图1 二叉树的 5 种基本形态在二叉树中,每个结点至多有两个儿子,并且有左、右之分。
因此任一结点的儿子 不外 4 种情况:没有儿子;只有一个左儿子;只有一个右儿子;有一个左儿子并且有一 个右儿子。
注意:二叉树与树和有序树 的区别 二叉树与度数不超过 2 的树不同,与度数不超过 2 的有序树也不同。
在有序树中,11如果将树中结点的各子树看成从左至右是有次序的,则称该树为有序树,否则称为无序树。
-1-信息学奥赛培训之『树——二叉树』虽然一个结点的儿子之间是有左右次序的,但若该结点只有一个儿子时,就无须区分其 左右次序。
而在二叉树中,即使是一个儿子也有左右之分。
例如图 2-1 中(a)和(b)是两棵 不同的二叉树。
虽然它们与图 2-2 中的普通树(作为无序树或有序树)很相似,但它们却 不能等同于这棵普通的树。
若将这 3 棵树均看作是有序树,则它们就是相同的了。
图2-1 两棵不同的二叉树图2-2 一棵普通的树由此可见,尽管二叉树与树有许多相似之处,但二叉树不是树的特殊情形。
不是 ..2. 二叉树的性质图3 二叉树性质1: 在二叉树的第 i 层上至多有 2 i −1 结点(i>=1)。
性质2: 深度为 k 的二叉树至多有 2 k − 1 个结点(k>=1)。
性质3: 对任何一棵二叉树 T,如果其终端结点数为 n0,度为 2 的结点数为 n2,则 n0=n2+1。
树转化为二叉树的方法如下:
1、去除所有父结点也孩子结点连线。
2、把父结点与最左边的孩子相连,作为父结点的左孩子。
3、把同层结点的兄弟结点相连作为左边兄弟的右孩子,以此类推所有结点即得到二叉树。
二叉树
二叉树(Binary tree)是指计算机科学中每个结点最多有两个子树的树结构,其子树被称作“左子树”(left subtree)和“右子树”(right subtree),常被用于实现二叉查找树和二叉堆。
在二叉树中,一个元素也称作一个结点。
当集合为空时,称该二叉树为空二叉树。
二叉树的遍历,遍历是对树的一种最基本的运算,所谓遍历二叉树,就是按一定的规则和顺序走遍二叉树的所有结点,使每一个结点都被访问一次,而且只被访问一次。
由于二叉树是非线性结构,因此,树的遍历实质上是将二叉树的各个结点转换成为一个线性序列来表示。
设L、D、R分别表示遍历左子树、访问根结点和遍历右子树,则对一棵二叉树的遍历有三种情况:DLR(称为先根次序遍历),LDR(称为中根次序遍历),LRD(称为后根次序遍历)。
二叉树转换为树的规则摘要:一、二叉树与树的定义1.二叉树的定义2.树的定义二、二叉树转换为树的规则1.树的根节点2.树的层次结构3.树的节点关系三、转换方法与步骤1.遍历二叉树2.构建树结构3.确定节点关系四、转换过程中的注意事项1.避免重复遍历2.确保节点唯一性3.考虑节点顺序正文:二叉树与树是计算机科学中常用的数据结构,它们在数据存储与处理方面具有重要作用。
二叉树是一种特殊的树结构,每个节点最多只有两个子节点,分别称为左子节点和右子节点。
在实际应用中,有时需要将二叉树转换为树结构。
本文将详细介绍二叉树转换为树的规则及方法。
首先,我们需要了解二叉树与树的定义。
二叉树是一种特殊的树结构,它的每个节点最多有两个子节点,分别称为左子节点和右子节点。
树是一种非线性的数据结构,由若干个节点组成,这些节点通过边相互连接,具有唯一的根节点。
二叉树转换为树的规则主要包括以下几点:1.树的根节点:二叉树的根节点将成为树的根节点。
2.树的层次结构:二叉树的层次结构将转换为树的层次结构。
具体来说,二叉树的同一层节点将转换为树的同一行节点。
3.树的节点关系:二叉树中相邻的兄弟节点在树中将成为兄弟节点或子节点。
对于二叉树的每个节点,它的左子节点将成为树的子节点,右子节点将成为兄弟节点。
需要注意的是,在转换过程中要确保节点关系的正确性。
接下来,我们介绍二叉树转换为树的步骤:1.遍历二叉树:首先需要遍历二叉树,获取每个节点的信息,如节点值、左右子节点等。
2.构建树结构:根据遍历得到的节点信息,构建树的层次结构。
树的根节点即为二叉树的根节点,树的层次结构应与二叉树的层次结构保持一致。
3.确定节点关系:根据二叉树中节点之间的关系,确定树中节点之间的关系。
具体来说,二叉树的左子节点将成为树的子节点,右子节点将成为兄弟节点。
在二叉树转换为树的过程中,需要注意以下几点:1.避免重复遍历:在遍历二叉树时,应尽量避免重复遍历同一节点,以提高转换效率。
树与二叉树的转换逻辑设计思路
在树和二叉树之间进行转换时,需要设计一个逻辑思路,以确保正确地转换数据结构。
以下是一个简单的设计思路:
1. 从树到二叉树的转换:
- 创建一个指向树的根节点的指针,并将其作为二叉树的根节点。
- 对于树中的每个节点,将其作为二叉树的左子节点,并将其右子节点设置为null。
如果该节点有多个子节点,则将其后续子节点作为二叉树节点的兄弟节点。
- 对于树中的每个节点及其子节点,递归地执行上述步骤,直到将树完全转换为二叉树。
- 返回转换后的二叉树。
2. 从二叉树到树的转换:
- 创建一个指向二叉树的根节点的指针,并将其作为树的根节点。
- 对于二叉树中的每个节点,将其作为树中的节点,并将其所有兄弟节点设置为二叉树节点的右子节点。
- 对于二叉树中的每个节点及其子节点,递归地执行上述步骤,直到将二叉树完全转换为树。
- 返回转换后的树。
注意事项:
- 在转换过程中,需要考虑到树和二叉树的节点结构,并正确地设置节点之间的连接关系。
- 转换过程中可能需要使用递归算法来处理节点及其子节点。
- 转换后的树和二叉树应该具有相同的数据内容,只是数据结构不同。
- 在转换后,树和二叉树的遍历结果可能具有不同的顺序。
请根据具体的应用场景和要求,对以上的逻辑设计思路进行适当的修改和调整。
二叉树和树的转换算法二叉树和树之间的转换算法涉及将一个数据结构转换为另一个数据结构的过程。
在这里,我们将讨论将树转换为二叉树和将二叉树转换为树的算法。
首先,让我们来讨论将树转换为二叉树的算法。
树是一种非线性数据结构,它包含一个根节点以及零个或多个子树,每个子树也是一棵树。
而二叉树是一种特殊的树,每个节点最多有两个子节点。
因此,将树转换为二叉树的算法需要考虑如何安排节点的子节点,以便符合二叉树的定义。
一种常见的将树转换为二叉树的算法是使用前序遍历。
具体步骤如下:1. 从树的根节点开始,将其作为二叉树的根节点。
2. 对于树的每个子树,将其第一个子节点作为二叉树的左子节点,将其余的子节点作为左子节点的右子节点。
3. 递归地对每个子树执行上述步骤,直到整棵树都被转换为二叉树。
接下来,让我们来讨论将二叉树转换为树的算法。
二叉树是一种特殊的树,每个节点最多有两个子节点。
而树是一种非线性数据结构,每个节点可以有任意数量的子节点。
因此,将二叉树转换为树的算法需要考虑如何将二叉树的节点重新组织成树的节点。
一种常见的将二叉树转换为树的算法是使用后序遍历。
具体步骤如下:1. 从二叉树的根节点开始,将其作为树的根节点。
2. 对于二叉树的每个节点,如果该节点有右子节点,将其右子节点作为树节点的子节点。
3. 递归地对每个节点执行上述步骤,直到整棵二叉树都被转换为树。
需要注意的是,在进行树和二叉树的转换时,可能会涉及到节点的重新连接和指针的调整,需要仔细处理节点之间的关系,确保转换后的数据结构仍然保持原始树或二叉树的结构特点。
总之,树和二叉树之间的转换算法涉及到对节点的重新组织和连接,需要根据具体的数据结构特点来设计相应的算法。
希望这些信息能够帮助你理解树和二叉树之间的转换过程。
树和森林转换为二叉树的方法树和森林是在计算机科学中常见的数据结构,用于表示具有层级关系的信息。
而二叉树是一种特殊的树形结构,每个节点最多只能有两个子节点。
在一些情况下,我们可能需要将树和森林转换为二叉树,以便于进行一些操作或分析。
本文将介绍两种将树和森林转换为二叉树的常见方法:二叉树的遍历和线索二叉树。
1.二叉树的遍历:二叉树的遍历是一种常见且简单的树到二叉树转换方法。
树的遍历有三种基本方式:前序遍历、中序遍历和后序遍历。
我们可以通过对树的任意一种遍历方式进行调整,来将树转换为二叉树。
1.1.前序遍历:前序遍历是指首先访问根节点,然后按照左子树、右子树的顺序遍历。
在转换为二叉树时,我们可以将子节点作为二叉树的左子节点,兄弟节点作为同级节点的右子节点。
1.2.中序遍历:中序遍历是指首先按照左子树、根节点、右子树的顺序遍历。
在转换为二叉树时,我们可以将树的左子树作为二叉树的左子节点,根节点作为二叉树的根节点,然后将树的右子树作为二叉树的右子节点。
1.3.后序遍历:后序遍历是指首先按照左子树、右子树、根节点的顺序遍历。
在转换为二叉树时,我们可以将根节点作为二叉树的根节点,兄弟节点作为同级节点的右子节点,然后将子节点作为二叉树的左子节点。
2.线索二叉树:线索二叉树是一种特殊的二叉树,每个节点除了包含左、右子节点的指针之外,还包含指向前驱节点和后继节点的指针。
在树和森林转换为二叉树时,我们可以使用线索二叉树的概念来构建二叉树。
2.1.前序线索二叉树:在前序线索二叉树中,节点的left指针指向节点的前驱节点(通过前序遍历),节点的right指针指向节点的后继节点(同样通过前序遍历)。
对于没有前驱或后继节点的节点,可以用空指针表示。
2.2.中序线索二叉树:在中序线索二叉树中,节点的left指针指向节点的前驱节点(通过中序遍历),节点的right指针指向节点的后继节点(同样通过中序遍历)。
对于没有前驱或后继节点的节点,可以用空指针表示。
2.1 创建一颗二叉树创建一颗二叉树,可以创建先序二叉树,中序二叉树,后序二叉树。
我们在创建的时候为了方便,不妨用‘#’表示空节点,这时如果先序序列是:6 4 2 3 # # # # 5 1 # # 7 # #,那么创建的二叉树如下:下面是创建二叉树的完整代码:穿件一颗二叉树,返回二叉树的根2.2 二叉树的遍历二叉树的遍历分为:先序遍历,中序遍历和后序遍历,这三种遍历的写法是很相似的,利用递归程序完成也是灰常简单的:2.3 层次遍历层次遍历也是二叉树遍历的一种方式,二叉树的层次遍历更像是一种广度优先搜索(BFS)。
因此二叉树的层次遍历利用队列来完成是最好不过啦,当然不是说利用别的数据结构不能完成。
2.4 求二叉树中叶子节点的个数树中的叶子节点的个数= 左子树中叶子节点的个数+ 右子树中叶子节点的个数。
利用递归代码也是相当的简单,2.5 求二叉树的高度求二叉树的高度也是非常简单,不用多说:树的高度= max(左子树的高度,右子树的高度) + 12.6 交换二叉树的左右儿子交换二叉树的左右儿子,可以先交换根节点的左右儿子节点,然后递归以左右儿子节点为根节点继续进行交换。
树中的操作有先天的递归性。
2.7 判断一个节点是否在一颗子树中可以和当前根节点相等,也可以在左子树或者右子树中。
2.8 求两个节点的最近公共祖先求两个节点的公共祖先可以用到上面的:判断一个节点是否在一颗子树中。
(1)如果两个节点同时在根节点的右子树中,则最近公共祖先一定在根节点的右子树中。
(2)如果两个节点同时在根节点的左子树中,则最近公共祖先一定在根节点的左子树中。
(3)如果两个节点一个在根节点的右子树中,一个在根节点的左子树中,则最近公共祖先一定是根节点。
当然,要注意的是:可能一个节点pNode1在以另一个节点pNode2为根的子树中,这时pNode2就是这两个节点的最近公共祖先了。
显然这也是一个递归的过程啦:可以看到这种做法,进行了大量的重复搜素,其实有另外一种做法,那就是存储找到这两个节点的过程中经过的所有节点到两个容器中,然后遍历这两个容器,第一个不同的节点的父节点就是我们要找的节点啦。
树转换成二叉树的方法树转换成二叉树的方法树是一种非常常见的数据结构,但是在某些情况下,我们需要将树转换成二叉树。
这里,我们将详细介绍如何将一棵普通的树转换成二叉树。
1. 什么是二叉树?在介绍如何将树转换成二叉树之前,我们需要先了解什么是二叉树。
二叉树是一种特殊的树形结构,每个节点最多有两个子节点,分别称为左子节点和右子节点。
同时,左子节点的值必须小于等于父节点的值,右子节点的值必须大于等于父节点的值。
2. 树转换成二叉树的方法将一棵普通的树转换成二叉树可以分为以下几个步骤:2.1 将每个节点的第一个子节点作为其左子节点对于每个节点来说,它可能有多个子节点。
我们可以将第一个子节点作为它的左子节点,并且将其他子节点插入到它左侧相邻兄弟节点的右边。
这样就能够保证每个节点最多只有两个子节点。
2.2 将所有右侧相邻兄弟节点都作为其父亲或者祖先节点的右子节点对于每个节点的右侧相邻兄弟节点,我们需要将它们插入到它们的父亲或者祖先节点的右子树中。
如果当前节点没有父亲或者祖先节点,则需要创建一个虚拟的根节点,并将其作为新的父亲节点。
2.3 递归地将所有子树转换成二叉树对于每个子树来说,我们需要递归地进行转换操作,直到所有子树都被转换成了二叉树。
3. 代码实现下面是将一棵普通的树转换成二叉树的代码实现:```class TreeNode:def __init__(self, val=0, left=None, right=None):self.val = valself.left = leftself.right = rightdef treeToBinaryTree(root: ''Node'') -> TreeNode:if not root:return None# 将第一个子节点作为左子节点,其他兄弟节点插入到左侧相邻兄弟右边for child in root.children[1:]:child.left = root.leftroot.left.right = childroot.left = child# 将右侧相邻兄弟插入到父亲或者祖先节点的右子树中if root.children:node = treeToBinaryTree(root.children[0])for child in root.children[1:]:node.right = treeToBinaryTree(child)node = node.right# 递归地将所有子树转换成二叉树root.left = treeToBinaryTree(root.left)root.right = Nonereturn root```4. 总结将一棵普通的树转换成二叉树可以通过将每个节点的第一个子节点作为其左子节点,将所有右侧相邻兄弟节点都作为其父亲或者祖先节点的右子节点,以及递归地将所有子树转换成二叉树来实现。