当前位置:文档之家› 空气动力学基础知识

空气动力学基础知识

1第一章空气动力学基础知

识(总14页)

-CAL-FENGHAI.-(YICAI)-Company One1

-CAL-本页仅作为文档封面,使用请直接删除

第四单元飞机与飞机系统

第一章空气动力学基础知识

大气层和标准大气

地球大气层

地球表面被一层厚厚的大气层包围着。飞机在大气层内运动时要和周围的介质——空气——发生关系,为了弄清楚飞行时介质对飞机的作用,首先必须了解大气层的组成和空气的一些物理性质。

根据大气的某些物理性质,可以把大气层分为五层:即对流层(变温层)、平流层(同温层)、中间层、电离层(热层)和散逸层。

对流层的平均高度在地球中纬度地区约11公里,在赤道约17公里,在两极约8公里。对流层内的空气温度、密度和气压随着高度的增加而下降,并且由于地球对大气的引力作用,在对流层内几乎包含了全部大气质量的四分之三,因此该层的大气密度最大、大气压力也最高。大气中含有大量的水蒸气及其它微粒,所以云、雨、雪、雹及暴风等气象变化也仅仅产生在对流层中。另外,由于地形和地面温度的影响,对流层内不仅有空气的水平流动,还有垂直流动,形成水平方向和垂直方向的突风。对流层内空气的组成成分保持不变。

从对流层顶部到离地面约30公里之间称为平流层。在平流层中,空气只有水平方向的流动,没有雷雨等现象,故得名为平流层。同时该层的空气温度几乎不变,在同一纬度处可以近似看作常数,常年平均值为摄氏零下度,所以又称为同温层。同温层内集中了全部大气质量的四分之一不到一些,所以大气的绝大部分都集中在对流层和平流层这两层大气内,而且目前大部分的飞机也只在这两层内活动。

中间层从离地面30公里到80至100公里为止。中间层内含有大量的臭氧,大气质量只占全部大气总量的三千分之一。在这一层中,温度先随高度增加而上升,后来又下降。

中间层以上到离地面500公里左右就是电离层。这一层内含有大量的离子(主要是带负电的离子),它能发射无线电波。在这一层内空气温度从-90℃升高到1 000℃,所以又称为热层。高度在150公里以上时,由于空气非常稀薄,已听不到声音。

散逸层位于距地面500公里到1 600公里之间,这里的空气质量只占全部

大气质量的1011-,是大气的最外一层,因此也称之为“外层大气”。

大气的物理性质

大气的物理性质主要包括:温度、压强、密度、粘性和可压缩性等。

气体的压强p是指气体作用于容器内壁的单位面积上的正压力。大气的压强是指大气垂直地作用于物体表面单位面积上的力。

随着高度的增加,由于大气越来越稀薄,大气的压强逐渐降低。

气体的温度T表征气体的冷热程度,是与气体分子运动密切相关的。温度的度量单位常用摄氏温标t[℃]和绝对温标T[K]来表示。从微观来看,气体分子作不规则的热运动时,它的运动平均动能越大,则宏观表现为温度越高。气体分子运动的平均动能与绝对温度成正比。在绝对温标零点,理想气体的分子热运动就终止了。

单位体积物体所含有的质量称为密度。在国际单位制中,密度的单位是千克/米3。空气的密度与压力的变化成正比,与温度的变化成反比。随着高度的增加,大气的密度逐渐降低。

当气体层间发生相对运动或气体与物体间发生相对运动时,在气体内部两个流体层接触面上或者在气体与物体的两个接触面上,便产生相互牵扯和相互粘连的内摩擦力,流体的这种性质称为粘性。粘性是流体的固有属性之一。

流体粘性力的大小可以用流体的粘性系数μ来表示。不同流体的粘性系

数各不相同,同一流体的粘性系数也与温度有关。液体的粘性系数随温度的升高而降低,而气体的粘性系数则随温度的升高而增大。

流体在压强或温度改变时,能改变其原来体积及密度的特性,称为流体的可压缩性。

标准大气

飞行中作用在飞机上的空气动力和发动机推力,在其它条件相同的情况下,取决于介质(大气)的压强、温度及其它物理性质。大气的压强、密度和温度等参数在地球表面不同的几何高度上,在不同的纬度上,不同的季节,以及一天内不同的时间上是各不相同的。这样一来,同一飞机在不同的时间、不同地点所进行的同一种纲目飞行的结果也就各不相同了。

为了便于作性能计算,便于整理飞行试验数据,便于同一类飞机进行性能比较,国际航空界根据多年观测北半球中等纬度区域内,各高度上的大气压强、温度、密度等的年平均值的结果。将大气参数加以模型化,制定了国际标准大气表。

流体力学的基本概念

连续性假设

流体和一切物体都是由分子组成的,显然分子之间是有空间的。从微观的角度来看,流体的物理量在空间是不连续分布的,同时由于分子的随机运动,又导致任一空间点上的流体物理量对于时间的不连续性。由此可见,流体物理量的分布,从微观的角度来看,在空间和时间都是不连续的。

但是我们在流体力学中讨论的问题的特征尺寸(如飞机)往往远大于流体的分子距离。这样,我们有理由引进流体的连续介质模型:即将真正的流体看成是由稠密而无间隙的连续介质所组成的。

流体既被看成是连续介质,则反映宏观流体的各种物理量都是空间和时间的连续函数。因此,在以后的讨论中都可以引用连续函数的数学分析工具,来研究流体各种运动状态下的有关物理量之间的数量关系。

当然,流体连续介质模型是一个具有相对意义的概念。根据上述连续介质模型,把介质看成是连绵一片的流体,介质所占据的空间里到处都弥散着这种介质,而不再有空隙。低速空气动力学、高速空气动力学,甚至高超音速空气动力学都是在连续介质这样一个模型下进行研究的。只有到了外层大气,如在120—150公里的高度上,空气分子平均自由行程(一个分子在与另一个分子发生碰撞前所行经的平均路程)大约与飞机的尺寸处于同一数量级,在200公里的高度上,分子的平均自由行程有好几公里。这时空气再也不能认为是连续介质了。

运动转换原理

当飞机在原来静止的空气中作等速直线飞行时,将引起物体周围空气的运动,同时空气将给飞机以作用力。因此研究静止气流中飞机作等速直线运动所受的力问题可以转变为让飞机静止,以一股直匀的气流迎面吹来,两者所受的力是相等的。这就是所谓的运动转换原理。无论是实验还是理论计算,这个原理都是常用的。

低速流动特性

流体的连续性定理

在一个容器中充满液体,把进口和出口的开关同时打开,让液体从容器中经过剖面面积不等的管道流出,同时保持容器内液体表面的位置不变(如图1-1所示)。这时,流体的流动是不随时间而变化的,因而是稳定的流动。如果流体流动的速度不太高,把流体看作是不可压缩的,即在流动过程中流体的密度不发生变化。同时流体既没有流入也没有流出。那么,管道剖面面积小的地方流速大,而管道剖面面积大的地方流速小。

常量==222111ρρv s v s (1-1)

流体的伯努利定理

在上述流体的连续性实验装置中,如果在不同的剖面管道上装有液体压强计,则可以从压强计内液面的高低得出不同剖面的管道内流体静压的大小。实验表明:在管道剖面面积大的地方,流体的静压也大,在管道剖面面积小的地方,流体的静压也小。

1738年瑞士物理学家伯努利首先推导出不同剖面的管道内流体的流速和静压之间的关系为

v p v p v p 2333222221112

12121ρρρ+=+=+= 常量 (1-2) 或 p v p 022

1=+ρ (1-3)

上式称为流体的伯努利方程。式中p 称为静压,v 221ρ称为动压,而p 0称为总压。

这里需要指出的是,在推导流体的伯努利方程时,要求在管道中流动的流体能量既不增加也不减少,因此它只能用于理想流动,即不考虑流体在流动过程中的能量损失。

图1-1 管道中流体的流动

1—容器;2—管道;3—进口开关;4—出口开关;5—玻璃管

流动状态

流体的流动有两种状态:一种是流体微团分层地流动,各层之间不互相混淆,称为层流;另一种是流体微团作杂乱无章的运动,分不清层与层的界限,称为紊流。

流体微团运动时,每一微团都要受到粘性力(与分子的热运动有关)与惯性力(与微团加速度运动有关)的作用。粘性力起的作用占主导地位,流动将呈层流状态;惯性力起的作用占主导地位,流动则由层流状态转变为紊流状态。

附面层

当气流流经物体(如机翼)时,由于实际气体存在粘性,就在绕流物体的周围存在两个不同的流动区域,一是紧贴在物体表面的一个薄层(图1-2之a)及尾迹(图1-2之b),另一是外部流动区(图1-2之c)。紧贴在物体表面的这个薄层称为附面层,其厚度顺着气流是逐渐加厚的。在附面层内,必须考虑流体粘性的作用,而在外部流动区,粘性的影响可以忽略,即可将流体视为理想气体。

若沿物体表面某点处的法线把附面层放大来看,可得到附面层内流速分布的图象(如图1-3所示)。在物体的表面处,流速为零,沿法线向外,流速逐渐增大,直到等于外部流动的流速。通常把流速达到外部流速的99%这一点离表面的距离,称为该处附面层的厚度δ。

在绕流物体的前缘,δ值为零,至后缘附近,δ达到最大值。一般情况下,δ值约为绕流物体长度的1%左右。

图1-2 绕过机翼的粘性气流 a -附面层;b —尾迹;c —自由流 图1-3 附面层内的流速分布

按流体的流动状态,可以把附面层分成层流附面层和紊流附面层。经常遇到的是一种混合附面层状态:在物体前部是层流附面层,而在后部则是紊流附面层(如图1-4所示)。由层流附面层转为紊流附面层的那一点称为“转捩点”,如图1-4(c)中的T点所示。机身和机翼表面上的转捩点位置将随着流速的增大而前移。另外,物体表面越粗糙,转捩点越靠前。

上面说的是附面层没有从物体表面分离的情况。当气流流过流线型较差的物体时,由于流速下降,压强增大,逐渐使得后部的附面层加厚,以致使附面层中的气流发生倒流,如图1-5所示。图中A点即为气流分离点。附面层发生分离后,将在物体后部形成涡流区(如图1-6所示)。附面层分离区和物体后部涡流区内的压强要比物体前部的小,因此,物体前部受到的压力要比后部受到的压力大,于是就形成了所谓的“压差阻力”,也称为形状阻力。有关压差阻力的概念,我们将在下一章中作详细的介绍。

图1-4 附面层流动状态图

a-层流;b—紊流;c—混合附面层

图1-5 附面层的分离图1-6 涡流区

附面层发生气流分离后,压差阻力急剧上升,导致总阻力的迅猛增大。压差阻力除与物体的外形有关外,还与它的表面光洁度、来流速度的大小和来流初始紊流度有关。由此可见,飞机的流线型外形和光洁的表面对降低阻力具有极其重要的意义。

翼型

所谓翼型就是沿着飞机机身纵轴平行的方向剖一刀,所剖开来的剖面形状(通常也称为“翼剖面”),如图1-7所示。所谓机身纵轴就是从机头到机尾贯穿机身的那条轴线。一般翼剖面的前端圆钝、后端尖锐,上边较弯、下边较平,上下不对称,很象一条去掉尾巴的鱼的形状。翼剖面最前端的一点称为“前缘”,最后端的一点称为“后缘”。前缘与后缘之间的连线称为“翼弦”,也称为“弦线”。翼弦或弦线的长度称为弦长,通常用b来表示。

图1-7 翼型(翼剖面)

1—翼剖面;2—前缘;3—后缘;4—翼弦

影响翼型性能的最主要的参数是翼型的厚度和弯度。以翼弦为基础,作若干条垂直线,每一条垂线在翼型内的长度即代表该处的翼型厚度。最长的垂直线就是最大厚度c。各垂直线中点用曲线连接起来,就得到所谓的“中弧线”。相应的翼型的上表面称为“上弧线”,翼型的下表面称为“下弧

线”。中弧线离翼弦最远的距离称为最大弯度f(如图1-8所示)。为便于比

较不同翼型的厚度和弯度,通常采用相对厚度和相对弯度两个无量纲参数来表示。

图1-8 翼型的特征参数

飞机飞行时翼剖面与迎面气流的相对位置用攻角α来表示。所谓攻角就是指翼弦与迎面气流(相对气流)之间所夹的锐角(如图1-8所示)。攻角通常也称为迎角。

高速流动特性

气流在低速流动时,密度的变化甚微,而在高速流动时,密度的变化就非常显著,必须考虑空气可压缩性的影响。

弱扰动的传播和音速

说话时声带的振动,拉琴时琴弦的振动等都是对周围空气的一种微弱扰动。由此引起的空气密度等的微小变化将以一定的速度向四周传播,这个传播速度就是音速。弱扰动在气态介质中只能以纵波的形式向外传播,其形态为气体的压缩和膨胀。

音速的大小与介质的被压缩的难易程度有关,介质越难压缩,其音速越快。在大气的对流层内,空气的密度随着高度的增加而降低,因而也就越容易被压缩。所以,在对流层内音速随高度的增加而降低。

弱扰动在气流中的传播和马赫数

固定的弱扰动在静止介质中的传播,可以用图1-9来表示。图中的①、②、③等分别表示扰动源在观察瞬间的前1秒、前2秒、前3秒时激发形成的扰动波面。它们组成了以扰动源为圆心,na(n为正整数)为半径的一族同心圆。这里所说的扰动源,是指可以引起空气密度等微小变化的任何物体。例如,飞机表面任意一点都可以看作是扰动源。

按照相对运动原理,弱扰动在气流中的传播相当于介质静止而扰动源以速度V作运动。这时,根据扰动源运动速度V与当地介质音速的比例关系,又可分为三种不同的情况。

设以0、-1、-2分别表示扰动源在观察瞬间、前1秒、前2秒的位置,当V<时,扰动波面在扰动源前后不对称地向外传播,如图1-10所示。

a

当a V =时,即扰动源以音速运动,这时扰动波面只限于在扰动源后方的半个空间中传播,如图1-11所示。

图1-9 0=V 时的扰动波面 图1-10 a V <时的扰动波面 图1-11 a V =时的扰动波面

当a V >时,扰动源以超音速运动,它超过了自己激励的所有扰动波面,扰动波的传播仅限于以扰动源为顶点的一个锥面内,该锥面就是扰动区与未扰动区的分界面,称为扰动锥面,如图1-12所示。

我们把扰动源运动速度V 与当地音速a 的比值a V

M =称为马赫数。

按照M 数的不同,可以把飞行速度分为以下四类,各种情况都有各自非常明显的特点:

(1)亚音速——75.0

(2)跨音速——2.175.0<≤M

(3)超音速——0.52.1<≤M

(4)高超音速——0.5>M

V 时的扰动波面

图1-12 a

激波

一、激波的形成

一般地说,当飞机的飞行M数等于或大于1时,由于空气可压缩性的影响,飞机上就会有激波产生。

飞机并不是一个微小的质点,它是由无数质点组成的庞然大物。每一个质点都在飞机前方形成一道界面波,无数道界面波叠加在一起,形成一种与飞机形状有关的强扰动波,这种扰动波前后的空气压强、密度和温度都有突变。这样的边界波就称为激波。

因此,激波的物理本质是受到强烈压缩的一层薄薄的空气,即激波是由大气的可压缩性引起的。激波的厚度很小,只有千分之一到万分之一毫米。气流通过激波时,空气微团受到很强的阻滞,速度迅速下降,压强、温度、密度突然增高。空气在通过激波时,受到一薄层稠密空气的阻滞,使流速急剧下降,由阻滞而产生的热量来不及传走,于是加热了空气。

二、激波的分类

按相对于飞行速度(或气流速度)成垂直或成偏斜的状态,可以把激波分为正激波和斜激波。与气流速度成垂直的是正激波,而与气流速度成偏斜的则是斜激波。

激波的形状在飞行马赫数不变的情况下,主要取决于物体或飞机的形状,特别是头部的形状。关于这一点,我们将在以后作详细的介绍。

膨胀波

当超音速气流绕经凸角流动时,相当于流动截面逐渐扩大的情况。于是,气流就会发生膨胀,在气流的转折点处将形成一个扇形的膨胀区域,即所谓的膨胀波。气流在膨胀后的M数是增大的。图1-13表示菱形剖面机翼在超音速气流中,翼面上激波的情况。其中实线表示斜激波,虚线表示膨胀波。

图1-13 翼面上的激波与膨胀波

气流通过斜激波在机翼前半部相当于绕凹角的流动。这时,气流受到压缩,M数下降,压强升高。流过最大厚度以后相当于绕凸角的流动。这时,截面面积加大,气流膨胀,M数上升,压强下降。这样一来,在机翼的前半部是高压区而后半部是低压区,形成了所谓的“波阻”,它实质上也是一种压差阻力。

空气动力学基础 安德森 双语

空气动力学基础安德森双语 引言 空气动力学是研究空气对物体运动的影响的学科,它在航空航天工程、汽车工程、建筑设计等领域都有广泛的应用。本文将以安德森的《空气动力学基础》为基础,通过双语方式探讨空气动力学的基本概念、原理和应用。 空气动力学概述 什么是空气动力学 •空气动力学是研究空气对物体运动的影响的学科。 •它主要研究空气动力学力学、空气动力学热力学和空气动力学光学等方面的问题。 空气动力学的应用领域 •航空航天工程:研究飞机和火箭等飞行器的设计和性能。 •汽车工程:研究汽车的空气动力学性能,提高汽车的操控性和燃油经济性。•建筑设计:研究建筑物的空气流动,改善室内空气质量和降低能耗。 空气动力学基本原理 流体力学基础 1.流体的定义:流体是指能够流动的物质,包括液体和气体。 2.流体的运动描述:流体的运动可以通过速度场和压力场来描述。 3.流体的运动方程:流体的运动可以由连续性方程、动量方程和能量方程描述。 空气动力学力学 1.空气动力学力学的基本原理:空气动力学力学研究空气对物体的力学作用。 2.升力和阻力:升力是垂直于飞行器运动方向的力,阻力是与飞行器运动方向 相反的力。 3.升力和阻力的计算:升力和阻力可以通过气动力系数和流体动力学原理进行 计算。 空气动力学热力学 1.空气动力学热力学的基本原理:空气动力学热力学研究空气对物体的热力学 作用。 2.空气的物理性质:空气的物理性质包括密度、压力和温度等。 3.空气的热力学过程:空气的热力学过程可以通过气体状态方程和热力学原理 进行描述。

空气动力学光学 1.空气动力学光学的基本原理:空气动力学光学研究空气对光的传播和折射的 影响。 2.折射现象:当光线从一个介质传播到另一个介质时,会发生折射现象。 3.折射定律:折射定律描述了光线在折射过程中的角度关系。 空气动力学的应用 航空航天工程中的应用 1.飞行器设计:空气动力学原理用于飞行器的气动外形设计和性能评估。 2.飞行力学:空气动力学原理用于飞行器的姿态控制和飞行性能分析。 汽车工程中的应用 1.汽车空气动力学性能:空气动力学原理用于改善汽车的空气动力学性能,提 高操控性和燃油经济性。 2.汽车外形设计:空气动力学原理用于汽车外形的优化设计,减少空气阻力。 建筑设计中的应用 1.室内空气流动:空气动力学原理用于改善建筑物室内空气流动,提高室内空 气质量。 2.能源消耗:空气动力学原理用于减少建筑物的能源消耗,提高能源利用效率。总结 本文通过双语方式探讨了空气动力学基础,包括空气动力学的概述、基本原理和应用。空气动力学在航空航天工程、汽车工程和建筑设计等领域都有重要的应用价值。通过深入学习空气动力学的基础知识,我们可以更好地理解和应用空气动力学原理,推动相关领域的发展和进步。

空气动力学前六章知识要点

空气动力学基础前六章总结 第一章 空气动力学一些引述 1、 空气动力学涉及到的物理量的定义及相应的单位 ①压强:是作用在单位面积上的正压力,该力是由于气体分子在单位时间内对面发生冲击(或穿过该面)而发生的动量变化,具有点属性。 0,lim →?? ? ??=dA dA dF p 单位:Pa, kPa, MPa 一个标准大气压:101kPa ②密度:定义为单位体积内的质量,具有点属性。 0,lim →=dv dv dm ρ 单位:kg/㎡ 空气密度:1.225Kg/㎡ ③温度:反应平均分子动能,在高速空气动力学中有重要作用。单位:℃ ④流速:当一个非常小的流体微元通过空间某任意一点的速度。单位:m/s ⑤剪切应力:dy dv μ τ= μ:黏性系数 ⑥动压:212 q v ρ∞∞∞= 2、 空气动力及力矩的定义、来源及计算方法 空气动力及力矩的来源只有两个: ①物体表面的压力分布 ②物体表面的剪应力分布。 气动力的描述有两种坐标系:风轴系(L,D )和体轴系(A,N)。力矩与所选的点有关系,抬头为正,低头为负。 cos sin L N A αα=- , s i n c o s D N A αα=+ 3、 气动力系数的定义及其作用 气动力系数是比空气动力及力矩更基本且反映本质的无量纲系数,在三维中的力系数与二维中有差别,如:升力系数S q L C L ∞=(3D ),c q L c l ∞=' (2D )

L L C q S ∞≡,D D C q S ∞≡,N N C q S ∞≡,A A C q S ∞≡,M M C q Sl ∞≡,p p p C q ∞∞-≡,f C q τ∞≡ 二维:S=C(1)=C 4、 压力中心的定义 压力中心,作用翼剖面上的空气动力,可简化为作用于弦上某参考点的升力L,阻力D 或法向力N ,轴向力A 及绕该点的力矩M 。如果绕参考点的力矩为零,则该点称为压力中心,显然压力中心就是总空气动力的作用点,气动力矩为0。 5、 什么是量纲分析,为什么要进行量纲分析,其理论依据,具体方法 在等式中,等号左边和等号右边各项的的量纲应相同,某些物理变量可以用一些基本量(质量,长度,时间等)来表达,据此有了量纲分析法,量纲分析可以减少方程独立变量个数,其理论依据是白金汉π定理。白金汉π定理:一个含有N 个变量的等式,可以写成N-K 个π积的函数形式,K 表示用K 个基本量纲来化简,每个非独立变量只出现在一个π积中,最终每个π积中K 个量纲的幂指数分别等于0,方程得到化简。通过量纲分析法引出了雷诺数Re 和马赫数M ,这两个参数被称作相似参数。自由来流的马赫数Re=∞∞∞μρ/c V =惯性力/黏性力,马赫数M=∞∞a /V ,马赫数可以度量压缩性。 6、 流动相似 判断流动动力学相似的标准是: ①两流体的表面和所有固体边界是几何相似的 ②相似参数相同,即马赫数和雷诺数。 7、 流动问题的分类,判断标准,各有什么样的特点; (连续介质与自由分子;有粘无粘;可压不可压;根据马赫数的分类) 流动类型:当分子对物体表面的碰撞很频繁以致于物体不能分辨出单个分子碰撞(平均自由程很小),对物体表面而言流体是连续介质,这样的流动成为连续流动。如果流动中没有摩擦、热传导或者扩散,那么这样的流动被称为无黏流动。密度是常数的流动称作不可压缩流动(M<0.3)。 马赫数区域:如果流动中任意一点的马赫数都小于1,那么流动是亚音速的(M<0.8)。既有M<1的区域又有M>1的区域成为跨音速区域(0.8

空气动力学知识点总结

空气动力学知识点总结 一、概述 空气动力学是涉及空气对物体运动产生的力学现象的学科,是研究空气的流动和物体在空气中运动时所产生的力及其相互作用的学科。空气动力学在现代工程设计、航空航天、交通运输、建筑设计、气象学等领域都有广泛的应用。 二、基本概念 1.空气动力学基础学科:空气动力学是理论力学、气体力学、热力学、流体力学等多个领域交叉的学科。 2.气动力学:指空气运动对物体所产生的力学效应和物体所受的力学反作用。 3.机翼:是创造升力的部分,承受飞行器全部重量的部分。 4.升力:是指在流体中飞行的物体所受的上升力。

5.阻力:是指在流体中移动的物体所受的阻碍力。 三、空气动力学的应用 1.飞行器 在飞行器方面的应用,空气动力学的重要性相当突出。要使飞机的设计、制造、试验及飞行达到令人安全放心的水平,必须依靠空气动力学的理论和方法。 2.轮船 船的航行速度直接受到水流的阻力,而气体在飞行器上产生的阻力同样发生在船身上,空气动力学理论可用于轮船的设计和制造。 3.高速列车

在铁路运输领域,高速列车的瞬息万变的空气动力学作用是影响其行驶稳定性和运输安全的重要因素。 4.建筑设计 在建筑领域中,从设计建筑物的表面阻力与表面空气动力学特征,到楼宇的空气流体力学设计以及可持续建筑的改进,空气动力学在建筑设计上的作用愈发重要。 5.运动器材设计 在运动器材设计方面,空气动力学可用于设计高尔夫球头、拉力器、船桨、滑翔机等不同型号和用途的器材。 四、空气动力学知识点总结 1.空气动力学的研究对象,包括流体的流动状态、物体的运动状态以及流体和物体之间的相互作用。 2.气体的运动状态与流速、压力、温度和密度等相关。

空气动力学部分知识讲解

空气动力学及飞行原理课程 空气动力学部分知识要点 一、流体属性与静动力学基础 1、流体与固体在力学特性上最本质的区别在于:二者承受剪应力 和产生剪切变形能力上的不同。 2、静止流体在剪应力作用下(不论所加剪切应力τ多么小,只要 不等于零)将产生持续不断的变形运动(流动),换句话说,静 止流体不能承受剪切应力,将这种特性称为流体的易流性。3、流体受压时其体积发生改变的性质称为流体的压缩性,而抵抗 压缩变形的能力和特性称为弹性。 4、当马赫数小于0.3时,气体的压缩性影响可以忽略不计。 5、流层间阻碍流体相对错动(变形)趋势的能力称为流体的粘性, 相对错动流层间的一对摩擦力即粘性剪切力。 6、流体的剪切变形是指流体质点之间出现相对运动(例如流体层 间的相对运动)流体的粘性是指流体抵抗剪切变形或质点之间 的相对运动的能力。流体的粘性力是抵抗流体质点之间相对运 动(例如流体层间的相对运动)的剪应力或摩擦力。在静止状 态下流体不能承受剪力;但是在运动状态下,流体可以承受剪 力,剪切力大小与流体变形速度梯度有关,而且与流体种类有

关 7、按照作用力的性质和作用方式,可分为彻体力和表面力(面力) 两类。例如重力,惯性力和磁流体具有的电磁力等都属于彻体 力,彻体力也称为体积力或质量力。 8、表面力:相邻流体或物体作用于所研究流体团块外表面,大小 与流体团块表面积成正比的接触力。由于按面积分布,故用接 触应力表示,并可将其分解为法向应力和切向应力: 9、理想和静止流体中的法向应力称为压强,其指向沿着表面的内 法线方向,压强的量纲是[力]/[长度]2 10、标准大气规定在海平面上,大气温度为15℃或T0= 288.15K ,压强p0 = 760 毫米汞柱= 101325牛/米2,密度ρ0 = 1.225千克/米3 11、从基准面到11 km 的高空称为对流层,在对流层内大气密度和 温度随高度有明显变化,温度随高度增加而下降,高度每增加 1km,温度下降6.5 K。从11 km 到21km 的高空大气温度基 本不变,称为同温层或平流层,在同温层内温度保持为216.5 K。 普通飞机主要在对流层和平流层里活动。 12、散度、旋度、有旋流、无旋流。 13、描述流体运动的方程。低速不可压缩理想流体:连续方程+动量 方程(欧拉方程);低速不可压缩粘性流体:连续方程+动量方

1第一章空气动力学基础知识

第四单元飞机与飞机系统 第一章空气动力学基础知识 大气层和标准大气 地球大气层 地球表面被一层厚厚的大气层包围着。飞机在大气层内运动时要和周围的介质——空气——发生关系,为了弄清楚飞行时介质对飞机的作用,首先必须了解大气层的组成和空气的一些物理性质。 根据大气的某些物理性质,可以把大气层分为五层:即对流层(变温层)、平流层(同温层)、中间层、电离层(热层)和散逸层。 对流层的平均高度在地球中纬度地区约11公里,在赤道约17公里,在两极约8公里。对流层内的空气温度、密度和气压随着高度的增加而下降,并且由于地球对大气的引力作用,在对流层内几乎包含了全部大气质量的四分之三,因此该层的大气密度最大、大气压力也最高。大气中含有大量的水蒸气及其它微粒,所以云、雨、雪、雹及暴风等气象变化也仅仅产生在对流层中。另外,由于地形和地面温度的影响,对流层内不仅有空气的水平流动,还有垂直流动,形成水平方向和垂直方向的突风。对流层内空气的组成成分保持不变。 从对流层顶部到离地面约30公里之间称为平流层。在平流层中,空气只有水平方向的流动,没有雷雨等现象,故得名为平流层。同时该层的空气温度几乎不变,在同一纬度处可以近似看作常数,常年平均值为摄氏零下度,所以又称为同温层。同温层内集中了全部大气质量的四分之一不到一些,所以大气的绝大部分都集中在对流层和平流层这

两层大气内,而且目前大部分的飞机也只在这两层内活动。 中间层从离地面30公里到80至100公里为止。中间层内含有大量的臭氧,大气质量只占全部大气总量的三千分之一。在这一层中,温度先随高度增加而上升,后来又下降。 中间层以上到离地面500公里左右就是电离层。这一层内含有大量的离子(主要是带负电的离子),它能发射无线电波。在这一层内空气温度从-90℃升高到 1 000℃,所以又称为热层。高度在150公里以上时,由于空气非常稀薄,已听不到声音。 散逸层位于距地面500公里到1 600公里之间,这里的空气质量只占全部大气质量的1011 ,是大气的最外一层,因此也称之为“外层大气”。 大气的物理性质 大气的物理性质主要包括:温度、压强、密度、粘性和可压缩性等。 气体的压强p是指气体作用于容器内壁的单位面积上的正压力。大气的压强是指大气垂直地作用于物体表面单位面积上的力。 随着高度的增加,由于大气越来越稀薄,大气的压强逐渐降低。 气体的温度T表征气体的冷热程度,是与气体分子运动密切相关的。温度的度量单位常用摄氏温标t[℃]和绝对温标T[K]来表示。从微观来看,气体分子作不规则的热运动时,它的运动平均动能越大,则宏观表现为温度越高。气体分子运动的平均动能与绝对温度成正比。在绝对温标零点,理想气体的分子热运动就终止了。 单位体积物体所含有的质量称为密度。在国际单位制中,密度的单位是千克/米3。空气的密度与压力的变化成正比,与温度的变化成反比。随着高度的增加,大气的密度逐渐降低。 当气体层间发生相对运动或气体与物体间发生相对运动时,在气体内部两个流体层接触面上或者在气体与物体的两个接触面上,便产生相互牵扯和相互粘连的内摩擦力,

空气动力学的基础知识

空气动力学的基础知识 空气动力学是研究流体力学中与气体运动有关的力和运动的学科。空气动力学的研究对象是运动的气体,其中包括飞行器、汽车、建筑物、船舶、火箭等物体在气体中的运动、流动和受力等问题。本文将从空气动力学的基础知识入手,为读者介绍空气动力学的相关内容。 流场和速度场 空气动力学研究的第一个问题是流体的流动。流体的流动可以用流场和速度场来描述。流场是指各点流体运动状态(流速、流速方向、密度、温度等)的分布情况。速度场是指各点流体的流动速度。流体的运动状态决定了它受力的状态,因此分析流场和速度场是空气动力学研究的第一步。流场和速度场的计算方法以及它们之间的关系是空气动力学中的基础问题。 流体的连续性方程和动量守恒方程 空气动力学中研究流体的运动过程需要遵循连续性方程和动量守恒定律。连续性方程是描述流体运动过程的基本方程之一,它

表述了流体在单位时间内通过任何一定横截面积内的物质流量相等。动量守恒方程则描述了流体受力过程中的运动状态,这个方 程能够反映物体在流体中穿过一个受力区域时所受的阻力、压力、力矩等信息。 空气动力学中的雷诺数 在空气动力学中,雷诺数是一个非常重要的概念。它是空气动 力学中的无量纲参数,决定了流体的稳定性和不稳定性,可以用 于描述边界层和湍流状态。简而言之,当雷诺数越大时,流体会 越容易变得湍流,这会对空气动力学的研究和设计带来许多影响。 翼型和飞行器 翼型是空气动力学中的一个重要概念,它是描述飞行器机翼截 面形状的函数。翼形的设计对飞行器的性能有着至关重要的影响。它能够影响到飞机的升力、阻力、抗扭稳定性、滚转和俯仰稳定 性等方面。因此,研究翼型的设计和性能是空气动力学研究的重 要方向。

空气动力学基础知识

1第一章空气动力学基础知 识(总14页) -CAL-FENGHAI.-(YICAI)-Company One1 -CAL-本页仅作为文档封面,使用请直接删除

第四单元飞机与飞机系统 第一章空气动力学基础知识 大气层和标准大气 地球大气层 地球表面被一层厚厚的大气层包围着。飞机在大气层内运动时要和周围的介质——空气——发生关系,为了弄清楚飞行时介质对飞机的作用,首先必须了解大气层的组成和空气的一些物理性质。 根据大气的某些物理性质,可以把大气层分为五层:即对流层(变温层)、平流层(同温层)、中间层、电离层(热层)和散逸层。 对流层的平均高度在地球中纬度地区约11公里,在赤道约17公里,在两极约8公里。对流层内的空气温度、密度和气压随着高度的增加而下降,并且由于地球对大气的引力作用,在对流层内几乎包含了全部大气质量的四分之三,因此该层的大气密度最大、大气压力也最高。大气中含有大量的水蒸气及其它微粒,所以云、雨、雪、雹及暴风等气象变化也仅仅产生在对流层中。另外,由于地形和地面温度的影响,对流层内不仅有空气的水平流动,还有垂直流动,形成水平方向和垂直方向的突风。对流层内空气的组成成分保持不变。 从对流层顶部到离地面约30公里之间称为平流层。在平流层中,空气只有水平方向的流动,没有雷雨等现象,故得名为平流层。同时该层的空气温度几乎不变,在同一纬度处可以近似看作常数,常年平均值为摄氏零下度,所以又称为同温层。同温层内集中了全部大气质量的四分之一不到一些,所以大气的绝大部分都集中在对流层和平流层这两层大气内,而且目前大部分的飞机也只在这两层内活动。

中间层从离地面30公里到80至100公里为止。中间层内含有大量的臭氧,大气质量只占全部大气总量的三千分之一。在这一层中,温度先随高度增加而上升,后来又下降。 中间层以上到离地面500公里左右就是电离层。这一层内含有大量的离子(主要是带负电的离子),它能发射无线电波。在这一层内空气温度从-90℃升高到1 000℃,所以又称为热层。高度在150公里以上时,由于空气非常稀薄,已听不到声音。 散逸层位于距地面500公里到1 600公里之间,这里的空气质量只占全部 大气质量的1011-,是大气的最外一层,因此也称之为“外层大气”。 大气的物理性质 大气的物理性质主要包括:温度、压强、密度、粘性和可压缩性等。 气体的压强p是指气体作用于容器内壁的单位面积上的正压力。大气的压强是指大气垂直地作用于物体表面单位面积上的力。 随着高度的增加,由于大气越来越稀薄,大气的压强逐渐降低。 气体的温度T表征气体的冷热程度,是与气体分子运动密切相关的。温度的度量单位常用摄氏温标t[℃]和绝对温标T[K]来表示。从微观来看,气体分子作不规则的热运动时,它的运动平均动能越大,则宏观表现为温度越高。气体分子运动的平均动能与绝对温度成正比。在绝对温标零点,理想气体的分子热运动就终止了。 单位体积物体所含有的质量称为密度。在国际单位制中,密度的单位是千克/米3。空气的密度与压力的变化成正比,与温度的变化成反比。随着高度的增加,大气的密度逐渐降低。 当气体层间发生相对运动或气体与物体间发生相对运动时,在气体内部两个流体层接触面上或者在气体与物体的两个接触面上,便产生相互牵扯和相互粘连的内摩擦力,流体的这种性质称为粘性。粘性是流体的固有属性之一。 流体粘性力的大小可以用流体的粘性系数μ来表示。不同流体的粘性系 数各不相同,同一流体的粘性系数也与温度有关。液体的粘性系数随温度的升高而降低,而气体的粘性系数则随温度的升高而增大。

航模基础知识空气动力学-图文

航模基础知识空气动力学-图文 一章基础物理 本章介绍一些基本物理观念,在此只能点到为止,如果你在学校已上 过了或没兴趣学,请跳过这一章直接往下看。第一节速度与加速度速度即 物体移动的快慢及方向,我们常用的单位是每秒多少公尺﹝公尺/秒﹞加 速度即速度的改变率,我们常用的单位是﹝公尺/秒/秒﹞,如果加速度是 负数,则代表减速。第二节牛顿三大运动定律第一定律:除非受到外来的 作用力,否则物体的速度(v)会保持不变。没有受力即所有外力合力为零,当飞机在天上保持等速直线飞行时,这时飞机所受的合力为零,与一般人 想象不同的是,当飞机降落保持相同下沉率下降,这时升力与重力的合力 仍是零,升力并未减少,否则飞机会越掉越快。第二定律:某质量为m的 物体的动量(p=mv)变化率是正比于外加力F并且发生在力的方向上。此即 著名的F=ma公式,当物体受一个外力后,即在外力的方向产生一个加速度,飞机起飞滑行时引擎推力大于阻力,于是产生向前的加速度,速度越 来越快阻力也越来越大,迟早引擎推力会等于阻力,于是加速度为零,速 度不再增加,当然飞机此时早已飞在天空了。第三定律:作用力与反作用 力是数值相等且方向相反。你踢门一脚,你的脚也会痛,因为门也对你施 了一个相同大小的力第三节力的平衡作用于飞机的力要刚好平衡,如果不 平衡就是合力不为零,依牛顿第二定律就会产生加速度,为了分析方便我 们把力分为某、Y、Z三个轴力的平衡及绕某、Y、Z三个轴弯矩的平衡。 轴力不平衡则会在合力的方向产生加速度,飞行中的飞机受的力可分为升力、重力、阻力、推力﹝如图1-1﹞,升力由机翼提供,推力由引擎提供,重力由地心引力产生,阻力由空气产生,我们可以把力分解为两个方向的力,称某及y方向﹝当然还有一个z方向,但对飞机不是很重要,除非是 在转弯中﹞,飞机等速直线飞行时某方向阻力与推力大小相同方向相反,

低速空气动力学基础

低速空气动力学基础 空气动力学是研究空气和其他气体的运动规律以及 运动物体与空气相互作用的

科学,它是航空航天最重要的 科学技术基础之一。 中国雏鹰科研课题组专 用 第一章空气动力学与航空航天飞行器发展 1.1 空气动力学推动20世纪航空航天事业的发展 1903年莱特兄弟研制成功世界上第一架带动力飞机,实现了人类向往已久的飞行梦想。为了研制这架飞机,他们进行过多次滑翔试验,还为此建造了一座试验段为0.012m的小型风洞。正是这些努力,加上综合运用早期的空气动力学知识,最终获得了成功。 20世纪初,建立在理想流体基础上的环量和升力理论以及普朗特提出的边界层理论奠定了低速飞机设计基础,使重于空气的飞行器成为现实。40年代中期至50年代,可压缩气体动力学理论的迅速发展,以及对超声速流中激波性质的理论研究,特别是跨音速面积积律的发现和后掠翼新概念的提出,帮助人们突破“音障”,实现了跨音速和超音速飞行。50年代中期,美、苏等国研制成功性能优越的第一代喷气战斗机,如美国的F-86、F-100,苏联的米格-15、米格-19等。50年代以后,进入超音速空气动力学发展的新时期,第二代性能更为先进的战斗机陆续投入使用,如美国的的F-4、F-104,苏联的米格-21、米格-23,法国的幻影-3等。 1957年苏联发射第一颗地球人造卫星和1961年第一艘载人飞船“东方号”升空,被认为是空间时代的开始。美、苏两国在战略导弹和航天器发展方面的激烈角逐,促使超音速和高超音速空气动力学得到迅速发展。两个超级大国都投入巨大力量,致力于发展地面模拟设备,开邻近高超出音

速空气动力学和空气热力学的研究。航天方面的研究重点放在如何克服由于高超音速飞行和再入大气层,严重气动加热所引起的“热障”问题上在钱学森先生倡导下诞生了一门新的学科,即物理力学,为航天器重返大气层奠定了科学基础。航空方面的研究重点则放在了发展高性能作战飞机、超音速客机、垂直短距起落飞机和变后掠翼飞机。这一时期,空气动力研究方面的另一项重要成就是“超临界机殿”新概念的提出,它可以显著提高机翼的临界马赫数。20世纪70年代后,脱体涡流型和非线性涡升力的发现和利用,是空气动力学的又一重要成果。它直接导致了第三代高机动性战斗机的产生,如美国的F-15、F-16,苏联苏-27、米格-29和法国的“幻影2000”。 20世纪80年代以后,由于军事需求的强力推动,美、苏两国都开始加紧研制第四代战斗机和高超音速飞行器以及跨大气层飞行器,其中最有代表性的是1981年美国发射的航天飞机。由此形成了现代空气动力学发展的新时期。 1.2 我国的空气动力学研究 1949年以前,我国空气动力学研究的基础非常薄弱。中华人民共和国成立后,党和国家高度重视航空航天事业,空气动力学因而获得蓬勃发展。1956年,北京空气动力研究所成立,这是我国第一个综合性的空气动力研究试验基地。1958年,为适应航空发展的需要,建立了沈阳空气动力研究院。1976年,在四川绵阳成立国家级的中国空气动力研究与发展中心,至今已建成各类中大型地面模拟实验设备,包括试验段尺寸为6m*8m的低速风洞、2m激波风洞、2.4m跨超音速风洞、200m弹道靶等共30余座。 经过50多年的努力,我国的空气动力学取得了很大进展,基本能满足现在型号选型和部分定型试验要求。在发展理论与数值计算、地面模拟试验和飞行试验以及在解决型号气动问题方面取得了大批研究成果,使得对飞行器气动特性的预测能力和设计水平有了很大的提高,为我国飞机、战

空气动力 Microsoft Word 文档

空气动力学是力学的一个分支,它主要研究物体在同气体作相对运动情况下的受力特性、气体流动规律和伴随发生的物理化学变化。空气动力学重点研究飞行器的飞行原理,是航空航天技术最重要的理论基础之一。气体流动在不同的速度范围呈现不同的特点。空气动力学的发展经历了低速、高速和新变革三个时期。它是在流体力学的基础上,随着航空工业和喷气推进技术的发展而成长起来的一个学科。 空气动力学 - 简介 相关书籍 空气动力学是研究空气和其他气体的运动以及它们与物体相对运动时相互作用的科学,简称为气动力学。空气动力学重点研究飞行器的飞行原理,是航空航天技术最重要的理论基础之一。在任何一种飞行器的设计中,必须解决两方面的气动问题:一是在确定新飞行器所要求的性能后,寻找满足要求的外形和气动措施;一是在确定飞行器外形和其他条件后,预测飞行器的气动特性,为飞行器性能计算和结构、控制系统的设计提供依据。这些在飞行速度接近到超过声速(又称音速)时更为重要。 20世纪以来,飞机和航天器的外形不断改进,性能不断提高,都是与空气动力学的发展分不开的。亚音速飞机为获得高升阻比采用大展弦比机翼;跨音速飞机为了减小波阻采用后掠机翼,机翼和机身的布置满足面积律;超音速飞机为了利用旋涡升力采用细长机翼(见机翼空气动力特性);高超音速再入飞行器为了减少气动加热采用钝的前缘形状,这些都是在航空航天技术中成功地应用空气动力学研究成果的典型例子。除此以外,空气动力学在气象、交通、建筑、能源、化工、环境保护、自动控制等领域都得到广泛的应用。 空气动力学 - 学科分支 空气动力学 空气动力学是流体力学的一个分支。气体流动在气体流动在不同的速度范围呈现不同的特点。飞行器的飞行马赫数大于0.3时,就必须考虑空气压缩性。当飞行速度接近音速时,在飞行器的绕流中会出现局部的超音速区,在其后形成激波,使迎面阻力剧增。当飞行速度超过音速几倍时,由于高速气流的温度升高,气体内部发生种种物理化学变化,这时必须同时考虑气体的热力现象和动力现象,研究这些现象的学科就是空气动力学的一个分支气动热力学。根据不同的马赫数(M),可将空气动力学分成亚音速空气动力学(M约小于0.8)、跨音速空气动力学(M在0.8~1.2之间)、超音速空气动力学(M在1.2~5.0之间)和高超音速空气动力学(M大于 5.0)。当雷诺数(Re)足够大时,仅在速度梯度和温度梯度较大的区域如边界层和尾迹内,气体的粘性对流动才有明显的影响。根据粘性是否可以忽略,空气动力学可分为无粘性(理想)空气动力学和粘性空气动力学。粘性空气动力学中最重要的是边界层理论。根据不同的克努曾数Kn(气体分子平均自由路程与流动的特征长度之比,Kn≈M/Re),气体流动又可分成连续流(Kn约小于0.01)、滑流(Kn在0.01~0.1之间)、过渡流(Kn在0.1~10之间)和自由分子流(Kn约大于10)。讨论后三种流动的空气动力学叫做稀薄空气动力学。对于自由分子流,描述连续介质运动的方程如纳维尔-斯托克斯方程已不再适用,可采用玻耳兹曼方程。按照流场是否具有外边界,空气动力学可分为研究飞行器外部绕流的外流空气动力学和研究发动机、风洞等管道内流动的内流空气动力学。按照流场是否与时间有关,可分为定常空气动力学和非定常空气动力学。按研究方法不同,又可分为理论空气动力学和实验空气动力学。随着计算机的发展,计算空气动力学已成为动力学一个独立的分支学科。空气动力学还同其他学科相互渗透,形成许多学科交叉的边缘学科,如气动弹性力学、磁流体力学等。 空气动力学 - 发展概况 空气动力学示意图 空气动力学的发展经历了低速、高速和新变革三个时期。

空气动力学在工程热力学系统中的应用研究

空气动力学在工程热力学系统中的应用研究在工程领域中,热力学系统是一个涉及能量转换和传递的重要领域。而空气动力学则主要研究气体流动和力学特性。本文将重点探讨空气 动力学在工程热力学系统中的应用研究。 一、空气动力学基础知识 空气动力学是研究气体与固体表面之间相互作用的学科。它主要研 究气体力学、气体动力学和气动力学。在应用研究中,空气动力学一 般包括流体动力学和气动力学的研究内容。流体动力学研究气体的流 动性质,气动力学研究在流动气体中运动的物体所受到的力及其规律。这些基础知识是理解和应用空气动力学在工程热力学系统中的关键。 二、空气动力学在风能利用中的应用 风能是一种常见的清洁能源,而空气动力学在风能利用中起到了重 要的作用。通过对风场的测量和分析,可以确定最佳的发电机布局, 提高发电效率。同时,空气动力学的研究也能够帮助改进风力发电机 的设计,减小风阻,提高转化效率,降低能源的消耗。因此,空气动 力学在风能利用中的应用研究对于可再生能源的发展具有重要意义。 三、空气动力学在空调系统中的应用 空调系统在现代工程中起着至关重要的作用,而空气动力学的研究 对于空调系统的设计和运行优化起到了至关重要的作用。通过对空气 流动的研究,可以确定最佳的送风位置和排风口设置,提高空调系统 的效能。同时,还可以通过优化管道布局和减小管道面积,降低空气

阻力,减少空调系统的能量消耗。因此,空气动力学在空调系统中的应用研究是促进节能减排的重要途径。 四、空气动力学在燃烧系统中的应用 燃烧系统是工程热力学系统中的重要部分。而空气动力学的研究对于燃烧系统的燃烧效率和污染物排放控制具有重要作用。通过对燃烧过程中的空气流动和热传递进行研究,可以优化燃烧系统的结构和参数设置,提高燃烧效率,减少污染物的产生。因此,空气动力学在燃烧系统中的应用研究是提高燃烧效率和环境保护的关键。 总结: 空气动力学在工程热力学系统中的应用研究对于能源利用的效率提升和环境保护具有重要意义。通过对空气动力学的研究,可以优化能源系统的设计和运行,提高能源转化效率,减少能源浪费和污染物排放。因此,在未来的工程热力学研究中,空气动力学的应用将是一个重要的发展方向。 以上是对题目“空气动力学在工程热力学系统中的应用研究”的简要论述。通过对空气动力学的基础知识及其在风能利用、空调系统和燃烧系统中的应用进行探讨,我们可以看出空气动力学在工程热力学中的重要性和广泛应用性。希望本文对读者对空气动力学在工程领域中的应用有所启示,促进相关研究的深入进行。

航空飞行理论知识点总结

航空飞行理论知识点总结 航空飞行理论知识点总结 导论 航空飞行理论是研究飞机飞行的基本原理和技术规律的学科,对于飞行员和航空工程师来说,掌握航空飞行理论知识十分重要。本文将对航空飞行理论的各个知识点进行总结,包括空气动力学、飞行力学、飞行控制以及飞行器设计等方面的内容。 一、空气动力学 1. 空气动力学基础知识 空气动力学是研究空气对物体运动的力学规律的学科。其中包括气动力、气动力矩的计算以及空气流动的特性等。 2. 静力学和动力学 静力学研究物体在不发生运动时的平衡和稳定性,而动力学研究物体在发生运动时的运动规律和机构。 3. 空气动力学参数 空气动力学参数包括气动力、气动力矩、气动力系数等,他们是描述物体在空气作用下所受力的重要指标。 4. 尺度效应 尺度效应是指在不同尺寸的模型和实际飞机之间存在的差异。了解尺度效应对于飞行器的设计和测试具有重要意义。 二、飞行力学 1. 飞行动力学 飞行动力学研究在不同飞行状态下飞机的力学行为,包括起飞、爬升、巡航、下降和着陆等各个阶段。 2. 稳定性与操纵性

稳定性是指飞机在受到扰动后自动返回原始状态的能力,而操纵性是指飞机在操纵员操作下的灵活性和可控性能。 3. 飞行方程 飞行方程是描述飞机在不同飞行状态下运动规律的方程,包括运动方程、气动力平衡方程和质量平衡方程等。 4. 外部干扰与驾驶负荷 外部干扰包括风、气流和重力等对飞机造成的扰动,而驾驶负荷则是指操纵员在不同飞行状态下所需要的操作负荷。 三、飞行控制 1. 飞行控制概述 飞行控制是指通过操纵飞机各个控制面来改变飞机的运动状态,使其按照飞行员的意图实现飞行任务。 2. 飞行稳定性辅助系统 飞行稳定性辅助系统是指通过计算机和传感器等设备来监测和控制飞机的姿态和稳定性的系统,如自动驾驶仪和导航系统等。 3. 飞行操纵系统 飞行操纵系统由飞机上的各种操作机构和操纵面组成,通过操纵杆、脚蹬和配平机构等来操纵飞机的姿态和运动。 4. 飞行控制律设计 飞行控制律设计是根据飞机的动力学和控制要求,设计出适用于不同飞行阶段的控制系统来保证飞行的安全和稳定性。 四、飞行器设计 1. 飞行器设计原理 飞行器设计原理是指根据飞行任务和性能需求,通过选取合适的气动型号、发动机和结构设计等要素,构建出符合设计要求的飞行器的过程。

汽车空气动力学知识点

第一章绪论 引言:利用视频、图片介绍什么是空气动力学?空气动力学的在航空、航天、火车、汽车、建筑、体育运动方面的应用 1.1 汽车空气动力学的重要性 1.1.1 汽车空气动力学的作用及重要性 汽车空气动力学是研究空气与汽车相对运动时的现象和作用规律的一门科学。汽车空气动力学特性对汽车的动力性、经济性、操纵稳定性、安全性和舒适性都有重要的影响。 1.1.2汽车空气动力学的研究方法 实验研究:理论分析和数值计算的基础,并用来检验理论结果的正确性和可靠性; 理论分析:能指导实验和数值计算,它在大量实验基础上,归纳和总结出相应的规律,同时通过理论自身的发展反过来指导实验,并为数值计算提供理论模型; 数值计算:可以弥补实验研究和理论分析的不足。 1.1.3 汽车空气动力学的研究内容 1.气动力及其对汽车性能的影响 2.流场与表面压强 3.发动机和制动器的冷却特性 4.通风、采暖和制冷 5.汽车空气动力学专题研究(例如改善雨水流径、减少表面尘土污染、降低 气动噪声、侧向风稳定性以及刮水器上浮等专题研究) 1.2 汽车空气动力学的发展 人们在对汽车陆地速度的追求中,无论汽车外形怎么变化,它的发展始终贯穿着汽车空气动力学这根脉络。 1.2.1汽车空气动力学的四个发展阶段 (1)基本形造型阶段 基本形是人们直接将水流和气流中的合理外形应用到汽车上。这个阶段的主要特点是已经开始从完整的车身来考虑空气动力学问题,并且较明确的将航空空气动力学的研究成果运用于汽车车身。相对于马车来说,这个阶段汽车的气动阻力系数明显改善。但是仍然没有认识到地面效应的影响,而且造型实用型不强,没有获得广泛应用。 (2)流线形造型阶段 特点:地面效应已被人们所认识。人们用空气动力学观点指导汽车造型,试图降低气动阻力,并获得了可观的进展。同时,开始对内流阻力及操纵稳定性有了认识。 (3)细部最优化阶段 汽车设计应首先服从汽车工程的需要,即首先要充分保证总布置、安全、舒适性和制造工艺的要求,并在保证造型风格的前提下,进行外形设计,然后对形体细部(如圆角半径、曲面弧度、斜度及扰流器等)逐步或同时进行修改,控制以及防止气流分离现象的发生,以降低阻力,称为“细部优化法” (4)整体最优化阶段 首先确定一个符合总布置要求的理想的低阻形体,在其发展成实用化汽车的

风力机空气动力学基础知识

风力机空气动力学基础知识 风力机空气动力学基础知识 Wind Turbine Basics [本节为“水平轴风力发电机”与“升力型垂直轴风力机” 与“阻力型垂直轴风力机”栏目共用] 2013年4月(翼型升力动画增加片断) 风能曾是蒸汽机发明之前最重要的动力,数千年前就有了帆船用于交通运输,后来有了风车用来磨面与抽水等。近年来,由于传统能源逐渐枯竭、对环境污染严重,风能作为清洁的新能源得到人们的重视。为方便风力机技术知识的学习,下面介绍一些风力机空气动力学的基础知识。 升力与阻力 风就是流动的空气,一块薄平板放在流动的空气中会受到气流对它的作用力,我们把这个力分解为阻力与升力。图1中F是平板受到的作用力,FD为阻力,FL为升力。阻力与气流方向平行,升力与气流方向垂直。

图1-升力与阻力示意图 我们先分析一下平板与气流方向垂直时的情况,见图2,此时平板受到的阻力最大,升力为零。当平板静止时,阻力虽大但并未对平板做功;当平板在阻力作用下运动,气流才对平板做功;如果平板运动速度方向与气流相同,气流相对平板速度为零,则阻力为零,气流也没有对平板做功。一般说来受阻力运动的平板当速度是气流速度的20%至50%时能获得较大的功率,阻力型风力机就是利用叶片受的阻力工作的。 图2-阻力的形成 当平板与气流方向平行时,平板受到的作用力为零(阻力与升力都为零)。当平板与气流方向有夹角时(见图3),气流遇到平板的向风面会转向斜下方,从而给平板一个压力,气流绕过平板上方时在平板的下风面会形成低压区,平板两面的压差就产生了侧向作用力F,该力可分解为阻力FD与升力FL。

图3-升力与阻力的形成 下面是平板受气流作用产生升力与阻力的动画 平板受来流产生升力与阻力的动画 平板与气流方向的夹角称为攻角,当攻角较小时,平板受到的阻力FD较小;此时平板受到的作用力主要是升力FL,见图4。 图4-小攻角时升力大阻力小

空气动力学基础

我把Introductiontoflight的第四章Basicaerodynamics略读了一遍,提炼了其中的重点要点,将其总结在一起分享给同学们,希望对大家空气动力学的学习有所帮助。这个文档内容涉及的气流都是无黏的(书134—228页),没有包含黏性研究的部分。因为领域导论书对黏性没怎么研究,基本都是只给结论,所以就不 1、注意公式的限定条件,避免错误地加以应用。 2、大物书上的理想气体方程是Pv=RT,其中的R是普适气 体常量(universalgasconstant),领域导论书上的P=ρRT是经过变换的等价形式,其中的R是个别气体常量

(specificgasconstant),等于普适气体常量R普适/M,大家变一下马上就懂了。 2、谈谈我的一个理解:本书中的研究好像不太强调质量和体积,可能是因为空气动力学研究没必要也不方便强调。在一、基本方程——7、能量方程的推导中,v=1/ρ,这里的1应理 1,不 ,同 Pv=R1,并利用普适气体常量和个别气体常量的关系,即可 3 和和c p, ( ( (molarheatcapacityatconstantpressure)。对比起来有(下式中R个指个别气体常量,R普指普适气体常量,i指分子自由度,γ指热容比): 比热摩尔热容

c v=R个,c p=R个c v=R普,c p=R普 c p-c v=R个c p-c v=R普 γ==γ== 4、小写v代表体积,大写V代表速度,注意区分,其他字母 1、 则 即 2、 忽略重力和黏性,朝向x正方向的力为 Pdydz 压强的变化率为

则朝向x负方向的力为 (P+dx)dydz 则合力 F=Pdydz-(P+dx)dydz=-(dxdydz) 又 a===V 由 3、 ++ 即P+ρ在一条流线上是常量,其中 用表示,对于不可压缩流,等于总压,我们在方程的应用中会再提及。 4、关于热力学第一定律 系统的内能增量=外界传热+外界做功,即 de=δq+δw 其中

空气动力学基础

我把Introduction to flight 的第四章Basic aerodynamics 略读了一遍,提炼了其中的重点要点,将其总结在一起分享给同学们,希望对大家空气动力学的学习有所帮助。这个文档内容涉及的气流都是无黏的(书134—228 页),没有包含黏性研究的部分。因为领域导论书对黏性没怎 么研究,基本都是只给结论,所以就不总结了。本文档包括两 部分,一是一些基本方程,二是这些方程的一些应用 我读书只是蜻蜓点水,对一些公式的理解可能有错误;写的只是大致的推导过程,难免有不细致严谨之处;对一些英文 的翻译可能不标准,同时可能输入有误。希望大家批评指正、 私下交流。真心希望我们共同为之润色添彩,使其更加准确无误。同时,大家有什么学习资料都记得共享啊,让我们共同进步! 大家可以再看看领域导论书,看了这个总结,再看书就比较简单了。看书最好也看看例题,例题不仅是对公式的简单应用,而且有些还包含新的知识,能增进我们对公式的理解。 这些内容只能算是一些变来变去的简单代数问题,大家不要有压力。不过有几条注意事项: 1、注意公式的限定条件,避免错误地加以应用。 2、大物书上的理想气体方程是Pv韦RT其中的 R是普适气体常量(universal gas constant ), 领域导论书上的P=p RT是经过变换的等价形式,

其中的R是个别气体常量(specific gas constant),等于普适气体常量R普适/M, 大家变下马上就懂了。 2、谈谈我的一个理解:本书中的研究好像不太强调质量和体积,可能是因为空气动力学研究没必要也不方便强调。在一、基本方程——7、能量方程 的推导中,v=1/ P,这里的1应理解为单位质量,后面的能量方程中的也包含单位质量1,不然与 h的量纲就不统一了;在二、公式应用-------- 3、空 速测定一一C高速亚声速流中,我们可以看出在本书中,Pv=RT同样把大物书上的状态方程Pv齧R 普适T中的m当成单位质量1,并利用普适气体常量和个别气体常量的关系R个别=R普适/M,即可推出 P v=RT 3、本书中涉及到比热(specific heat ),用6 (对于等体过程)和C p (对于等压过程)在表示。我们在大物中也学有C v和C p,不过它们不一样,

相关主题
文本预览
相关文档 最新文档