七年级数学整式的加减1
- 格式:ppt
- 大小:563.50 KB
- 文档页数:13
1.若8m x y 与36n x y 的和是单项式,则()3m n +的平方根为( ).A .4B .8C .±4D .±8D解析:D【分析】根据单项式的定义可得8m x y 和36n x y 是同类项,因此可得参数m 、n ,代入计算即可. 【详解】解:由8mx y 与36n x y 的和是单项式,得 3,1m n ==.()()333164m n +=+=,64的平方根为8±. 故选D .【点睛】本题主要考查单项式的定义,关键在于识别同类项,根据同类项计算参数.2.代数式x 2﹣1y的正确解释是( ) A .x 与y 的倒数的差的平方 B .x 的平方与y 的倒数的差C .x 的平方与y 的差的倒数D .x 与y 的差的平方的倒数B 解析:B【分析】根据代数式的意义,可得答案.【详解】解:代数式x 2﹣1y的正确解释是x 的平方与y 的倒数的差, 故选:B .【点睛】 本题考查了代数式,理解题意(代数式的意义)是解题关键.3.已知一个多项式与3x 2+9x 的和等于5x 2+4x ﹣1,则这个多项式是( )A .2x 2﹣5x ﹣1B .﹣2x 2+5x+1C .8x 2﹣5x+1D .8x 2+13x ﹣1A解析:A【分析】根据由题意可得被减式为5x 2+4x-1,减式为3x 2+9x ,求出差值即是答案.【详解】由题意得:5x 2+4x−1−(3x 2+9x),=5x 2+4x−1−3x 2−9x ,=2x 2−5x−1.故答案选A.【点睛】本题考查了整式的加减,解题的关键是熟练的掌握整式的加减运算.4.已知-25a 2m b 和7b 3-n a 4是同类项,则m +n 的值是( )A .2B .3C .4D .6C解析:C【分析】本题根据同类项的性质求解出m 和n 的值,代入求解即可.【详解】 由已知得:2431m n =⎧⎨-=⎩,求解得:22m n =⎧⎨=⎩, 故224m n +=+=;故选:C .【点睛】本题考查同类项的性质,按照对应字母指数相同原则列式求解即可,注意计算仔细. 5.若 3x m y 3 与﹣2x 2y n 是同类项,则( )A .m=1,n=1B .m=2,n=3C .m=﹣2,n=3D .m=3,n=2B解析:B【分析】根据同类项是字母相同且相同字母的指数也相,可得答案.【详解】 33m x y 和22n x y ﹣是同类项,得m=2,n=3,所以B 选项是正确的.【点睛】本题考查了同类项,利用了同类项的定义.6.已知322x y 和m 2x y -是同类项,则式子4m 24-的值是( )A .21-B .12-C .36D .12B解析:B【分析】根据同类项定义得出m 3=,代入求解即可.【详解】解:∵322x y 和m 2x y -是同类项, ∴m 3=,∴4m 24432412-=⨯-=-,故选B .【点睛】本题考查了对同类项定义的应用,注意:所含字母相同,并且相同字母的指数也分别相等的项,叫同类项,常数也是同类项.7.下列计算正确的是( )A .﹣1﹣1=0B .2(a ﹣3b )=2a ﹣3bC .a 3﹣a=a 2D .﹣32=﹣9D 解析:D【分析】 根据有理数的减法、去括号、同底数幂的乘方即可解答.【详解】解:A .﹣1﹣1=﹣2,故本选项错误;B .2(a ﹣3b )=2a ﹣6b ,故本选项错误;C .a 3÷a =a 2,故本选项错误;D .﹣32=﹣9,正确;故选:D .【点睛】本题考查了去括号和简单的提取公因式,掌握去括号时符号改变规律是解决此题的关键. 8.已知整数1234,,,a a a a ……满足下列条件:12132430,1,2,3a a a a a a a ==-+=-+=-+……,依次类推,则2019a 的值为( ) A .2018B .2018-C .1009-D .1009C 解析:C【分析】根据条件求出前几个数的值,再分n 是奇数时,结果等于-12(n-1),n 是偶数时,结果等于-2n ,然后把n 的值代入进行计算即可得解. 【详解】解: 123450|01|1|12|1|13|2|24|2a a a a a ==-+=-=--+=-=--+=-=--+=-678|25|3|36|3|37|4a a a =--+=-=-+=-=--+=-⋯⋯∴201920181009a a ==-,故选择C【点睛】本题考查了数字变化规律,根据所求出的数,观察出n 为奇数与偶数时的结果的变化规律是解题的关键.9.如下图所示:用火柴棍摆“金鱼”按照上面的规律,摆n 个“金鱼”需用火柴棒的根数为( )A .2+6nB .8+6nC .4+4nD .8n A 解析:A【分析】根据前3个“金鱼”需用火柴棒的根数找到规律:每增加一个金鱼就增加6根火柴棒,然后根据规律作答.【详解】解:由图形可得:第一个“金鱼”需用火柴棒的根数为6+2=8;第二个“金鱼”需用火柴棒的根数为6×2+2=14;第三个“金鱼”需用火柴棒的根数为6×3+2=20;……;第n 个“金鱼”需用火柴棒的根数为6n +2.故选:A .【点睛】本题考查了用代数式表示规律,属于常考题型,找到规律并能用代数式表示是解题关键. 10.下列去括号运算正确的是( )A .()x y z x y z --+=---B .()x y z x y z --=--C .()222x x y x x y -+=-+D .()()a b c d a b c d -----=-+++ D 解析:D【分析】根据去括号法则对四个选项逐一进行分析,要注意括号前面的符号,以选用合适的法则.【详解】A. ()x y z x y z --+=-+-,故错误;B. ()x y z x y z --=-+,故错误;C. ()222x x y x x y -+=--,故错误;D. ()()a b c d a b c d -----=-+++,正确.故选:D【点睛】本题考查去括号的方法:去括号时,运用乘法的分配律,先把括号前的数字与括号里各项相乘,再运用括号前是“+”,去括号后,括号里的各项都不改变符号;括号前是“-”,去括号后,括号里的各项都改变符号.运用这一法则去掉括号.11.下列式子中,是整式的是( )A .1x +B .11x +C .1÷xD .1x x+ A解析:A【分析】根据整式的定义即单项式和多项式统称为整式,找出其中的单项式和多项式即可.【详解】解:A. 1x +是整式,故正确; B. 11x +是分式,故错误; C. 1÷x 是分式,故错误; D.1x x+是分式,故错误. 故选A.【点睛】 本题主要考查了整式,关键是掌握整式的概念.12.若252A x x =-+,256B x x =--,则A 与B 的大小关系是( )A .AB >B .A B =C .A B <D .无法确定A 解析:A【分析】作差进行比较即可.【详解】解:因为A -B =(x 2-5x +2)-( x 2-5x -6)=x 2-5x +2- x 2+5x +6=8>0,所以A >B .故选A .【点睛】本题考查了整式的加减和作差比较法,若A -B >0,则A >B ,若A -B <0,则A <B ,若A -B =0,则A =B .13.若23,33M N x M x +=-=-,则N =( )A .236x x +-B .23x x -+C .236x x --D .23x x - D解析:D【分析】根据N=M+N-M 列式即可解决此题.【详解】依题意得,N=M+N-M=222(3)(33)3333x x x x x x ---=--+=-; 故选D.【点睛】此题考查的是整式的加减,列式是关键,注意括号的运用.14.﹣(a ﹣b +c )变形后的结果是( )A .﹣a +b +cB .﹣a +b ﹣cC .﹣a ﹣b +cD .﹣a ﹣b ﹣c B解析:B【分析】 根据去括号法则解题即可.【详解】解:﹣(a ﹣b +c )=﹣a +b ﹣c故选B .【点睛】本题考查去括号法则:括号前是“+”,去括号后,括号里的各项都不改变符号,括号前是“-”,去括号后,括号里的各项都改变符号.运用这一法则去掉括号.15.如果m ,n 都是正整数,那么多项式x m +y n +3m+n 的次数是( )A .2m +2nB .mC .m +nD .m ,n 中的较大数D解析:D【解析】【分析】多项式的次数是“多项式中次数最高的项的次数”,因此多项式x m +y n +3m+n 的次数是m ,n 中的较大数是该多项式的次数.【详解】根据多项式次数的定义求解,由于多项式的次数是“多项式中次数最高的项的次数”,因此多项式x m +y n +3m+n 中次数最高的多项式的次数,即m ,n 中的较大数是该多项式的次数.故选D.【点睛】此题考查多项式,解题关键在于掌握其定义.1.请观察下列等式的规律:111=11323⎛⎫- ⎪⨯⎝⎭,1111=-35235⎛⎫ ⎪⨯⎝⎭, 1111=-57257⎛⎫ ⎪⨯⎝⎭,1111=-79279⎛⎫ ⎪⨯⎝⎭, … 则1111...=133********++++⨯⨯⨯⨯______.【解析】试题 解析:50101 【解析】试题1111++++13355799101⨯⨯⨯⨯=111111111111)()()()23235257299101-+-+-++-(=111111111++)23355799101---++-( =111)2101-(=11002101⨯ =50101. 2.a -b ,b -c ,c -a 三个多项式的和是____________0【解析】(a-b )+(b-c )+(c-a )=a-b+b-c+c-a=a-a+b-b+c-c=0故答案为0解析:0【解析】(a-b )+(b-c )+(c-a )=a-b+b-c+c-a=a-a+b-b+c-c=0, 故答案为0.3.单项式2335x yz -的系数是___________,次数是___________.六【分析】根据单项式系数次数的定义来求解单项式中数字因数叫做单项式的系数所有字母的指数和叫做这个单项式的次数【详解】的系数是次数是6故答案为六【点睛】本题考查了单项式的次数和系数确定单项式的系数和次解析:35六 【分析】 根据单项式系数、次数的定义来求解.单项式中数字因数叫做单项式的系数,所有字母的指数和叫做这个单项式的次数.【详解】2335x yz -的系数是35-,次数是6, 故答案为35-,六.【点睛】本题考查了单项式的次数和系数,确定单项式的系数和次数时,把一个单项式分解成数字因数和字母因式的积,是找准单项式的系数和次数的关键.4.为庆祝“六一”儿童节,某幼儿园举行用火柴棒摆“金鱼”比赛.如图所示,按照这样的规律,摆第n 个图,需用火柴棒的根数为_______________.6n+2【解析】寻找规律:不难发现后一个图形比前一个图形多6根火柴棒即:第1个图形有8根火柴棒第2个图形有14=6×1+8根火柴棒第3个图形有20=6×2+8根火柴棒……第n个图形有6n+2根火柴棒解析:6n+2.【解析】寻找规律:不难发现,后一个图形比前一个图形多6根火柴棒,即:第1个图形有8根火柴棒,第2个图形有14=6×1+8根火柴棒,第3个图形有20=6×2+8根火柴棒,……,第n个图形有6n+2根火柴棒.5.将代数式4a2b+3ab2﹣2b3+a3按a的升幂排列的是_____.﹣2b3+3ab2+4a2b+a3【分析】找出a的次数的高低后由低到高排列即可得出答案【详解】可得出﹣2b3+3ab2+4a2b+a3【点睛】本题考查了代数式中的次数熟悉掌握次数的概念和细心是解决本解析:﹣2b3+3ab2+4a2b+a3.【分析】找出a的次数的高低后,由低到高排列即可得出答案.【详解】可得出﹣2b3+3ab2+4a2b+a3.【点睛】本题考查了代数式中的次数,熟悉掌握次数的概念和细心是解决本题的关键.y=,则输入的数x=________________.6.在如图所示的运算流程中,若输出的数3或【分析】由运算流程可以得出有两种情况当输入的x为偶数时就有y=x当输入的x为奇数就有y=(x+1)把y=3分别代入解析式就可以求出x的值而得出结论【详解】解:由题意得当输入的数x是偶数时则y=x当解析:5或6【分析】由运算流程可以得出有两种情况,当输入的x为偶数时就有y=12x,当输入的x为奇数就有y=12(x+1),把y=3分别代入解析式就可以求出x的值而得出结论.【详解】解:由题意,得当输入的数x是偶数时,则y=12x,当输入的x为奇数时,则y=12(x+1).当y=3时,∴3=12x或3=12(x+1).∴x=6或5故答案为:5或6【点睛】本题考查了有理数的混合运算,解答此题的关键是,根据流程图,列出方程,解方程即可得出答案.7.下面每个正方形中的五个数之间都有相同的规律,根据这种规律,则第4个正方形中间数字m为________,第n个正方形的中间数字为______.(用含n的代数式表示)…………【分析】由前三个正方形可知:右上和右下两个数的和等于中间的数根据这一个规律即可得出m的值;首先求得第n个的最小数为1+4(n-1)=4n-3其它三个分别为4n-24n-14n由以上规律即可求解【详解解析:83n【分析】由前三个正方形可知:右上和右下两个数的和等于中间的数,根据这一个规律即可得出m 的值;首先求得第n个的最小数为1+4(n-1)=4n-3,其它三个分别为4n-2,4n-1,4n,由以上规律即可求解.【详解】解:由题知:右上和右下两个数的和等于中间的数,∴第4个正方形中间的数字m=14+15=29;∵第n个的最小数为1+4(n-1)=4n-3,其它三个分别为4n-2,4n-1,4n,∴第n个正方形的中间数字:4n-2+4n-1=8n-3.故答案为:29;8n-3【点睛】本题主要考查的是图形的变化规律,通过观察、分析、归纳发现数字之间的运算规律是解题的关键.8.已知|a|=-a ,bb =-1,|c|=c ,化简 |a+b| + |a-c| - |b-c| = _________.-2a 【分析】由已知可以判断出ab 及c 的正负进而确定出a+ba-c 与b-c 的正负利用绝对值的代数意义化简即可得到结果【详解】解:∵|a|=-a=-1|c|=c ∴∴则|a+b|+|a-c|-|b-c| 解析:-2a【分析】由已知可以判断出a, b 及c 的正负,进而确定出a+b ,a-c 与b-c 的正负,利用绝对值的代数意义化简,即可得到结果.【详解】解:∵|a|=-a ,bb=-1,|c|=c∴00, 0,a b c ≤<≥, ∴000,a b a c b c +<-≤-<,,则|a+b| + |a-c| - |b-c| =-+2a b a c b c a --+-=- .故答案为: -2a.【点睛】此题考查了整式的加减, 涉及的知识有:去括号法则,以及合并同类项法则,熟练掌握法则是解本题的关键.9.若单项式322m x y -与3-x y 的差仍是单项式,则m 的值为__________.【分析】根据题意可知单项式与是同类项从而可求出m 的值【详解】解:∵若单项式与的差仍是单项式∴这两个单项式是同类项∴m-2=1解得:m=3故答案为:3【点睛】本题考查合并同类项和单项式解题关键是能根据解析:3【分析】根据题意可知单项式322m x y-与3-x y 是同类项,从而可求出m 的值. 【详解】解:∵若单项式322m x y -与3-x y 的差仍是单项式, ∴这两个单项式是同类项,∴m-2=1解得:m=3.故答案为:3.【点睛】本题考查合并同类项和单项式,解题关键是能根据题意得出m=3.10.如果13k x y 与213x y -是同类项,则k =______,21133k x y x y ⎛⎫+-= ⎪⎝⎭______.0【分析】根据同类项的定义先得到k 的值再代入代数式中计算即可【详解】解:与是同类项k=2∴故答案为:2;0【点睛】本题考查了同类项的定义和合并同类项比较基础解析:0【分析】根据同类项的定义先得到k 的值,再代入代数式中计算即可.【详解】 解:13k x y 与213x y -是同类项, ∴k=2,∴222111103333k x y x y x y x y ⎛⎫⎛⎫+-=+-= ⎪ ⎪⎝⎭⎝⎭故答案为:2;0【点睛】本题考查了同类项的定义和合并同类项,比较基础.11.已知22211m mn n ++=,26mn n +=,则22m n +的值为______.5【分析】观察多项式之间的关系可知将已知两式相减再化简即可得到结果【详解】∵∴∴的值为5【点睛】本题考查整式的加减观察得出整式之间的关系再进行去括号化简是解题的关键解析:5【分析】观察多项式之间的关系可知,将已知两式相减,再化简即可得到结果.【详解】∵22211m mn n ++=,26mn n +=,∴()22222222221165mn m mn n m n n mn nm mn n ---=+++=++=-=+, ∴22m n +的值为5.【点睛】本题考查整式的加减,观察得出整式之间的关系再进行去括号化简是解题的关键. 1.一个三位数M ,百位数字为a ,十位数字为b ,个位数字是c .(1)请用含,,a b c 的式子表示这个数M ;(2)现在交换百位数字和个位数字,得到一个新的三位数N ,请用含,,a b c 的式子表示N ;(3)请用含,,a b c 的式子表示N M -,并回答N M -能被11整除吗?解析:(1)10010M c b a =++;(2) 10010N c b a =++;(3) N-M ()99c a =-,能被11整除【分析】(1)根据百位数字为a ,十位数字为b ,个位数字是c 表示出M 即可;(2)根据百位数字为c ,十位数字为b ,个位数字是a 表示出N 即可;(3)列出整式相加减的式子,再合并同类项即可.【详解】解:()1 ∵百位数字为a ,十位数字为b ,个位数字是c ,∴10010M c b a =++;()2百位数字为c ,十位数字为b ,个位数字是a ,∴10010N c b a =++;()3()()1001010010N M c b a a b c -=++-++9999c a =-()99c a =-. 99是11的9倍,,c a 为整数,N M ∴-能被11整除.【点睛】本题考查的是整式加减的实际应用题,数字问题,掌握数字的表示方法及整式的加减法法则是解答此题的关键.2.数学老师给出这样一个题:2-⨯2 2x x =-+. (1)若“”与“”相等,求“ ”(用含x 的代数式表示); (2)若“”为2326x x -+,当1x =时,请你求出“”的值. 解析:(1)22x x --;(2)2223x x -+,3【分析】(1)用替换,得到-22x x =-+,进而得到答案; (2)把“”用2326x x -+替换,求出2223x x =-+,再把1x =代入求解即可得到答案;【详解】解:()1由题意得: 2-⨯22x x =-+∴-22x x =-+ ∴22x x =--()2把“”用2326x x -+替换,得到:2326x x -+2-⨯2 2x x =-+ 即:2()223262x x x x =-+--+22362x x x x =-++-2446x x =-+ ∴222 3.x x =-+当1x =时,原式221213=⨯-⨯+223=-+3=.【点睛】 本题主要考查了新定义下的二元一次方程的应用,能把作相应的替换是解题的关键.3.让我们规定一种运算a bad cb c d =-, 如232534245=⨯-⨯=-. 再如14224x x =-. 按照这种运算规定,请解答下列问题,(1)计算60.5142= ;-3-245= ;2-335x x =- (2)当x=-1时,求223212232x x x x -++-+---的值(要求写出计算过程). 解析:(1)1;-7;-x ;(2)-7【分析】(1)根据新运算的定义式,代入数据求出结果即可;(2)根据新运算的定义式将原式化简为-x-8,代入x=-1即可得出结论.【详解】解:(1)60.5160.543211242=⨯-⨯=-=; -3-23524158745=-⨯--⨯=---=-()();2-3253310935xx x x x x x =⨯---⨯=---=--()()().故答案为:1;-7;-x .(2)原式=(-3x 2+2x+1)×(-2)-(-2x 2+x-2)×(-3),=(6x 2-4x-2)-(6x 2-3x+6),=-x-8,当x=-1时,原式=-x-8=-(-1)-8=-7.∴当x=-1时,223212232x x x x -++-+---的值为-7. 【点睛】本题考查了整式的化简求值以及有理数的混合运算,读懂题意掌握新运算并能用其将整式进行化简是解题的关键.4.给定一列分式:3x y ,52x y -,73x y ,94x y-,…(其中0x ≠). (1)把任意一个分式除以前面一个分式,你发现了什么规律?(2)根据你发现的规律,试写出给定的那列分式中的第7个分式和第8个分式.解析:(1)任意一个分式除以前面一个分式,都得2x y -.(2)第7个分式为157x y,第8个分式为178x y-. 【分析】(1)分别算出第二个与第一个,第三个与第二个,第四个与第三个分式的除法结果,即可发现规律;(2)根据题中所给的式子找出分子、分母的指数变化规律、再找出符号的正负交替变化规律,根据规律写出所求的式子.【详解】解:(1)5352223x x x y x y y y x y, 757223235x x x y x y y y x y , 979324347x x x y x y y y x y , …… ∴任意一个分式除以前面一个分式,都得2x y-. (2)∵由式子3579234x x x x y y y y,-,,- …,发现分母上是y 1,y 2,y 3,y 4,……所以第7个式子分母上是y 7,第8个分母上是y 8;分子上是x 3,x 5,x 7,x 9,……所以第7个式子分子上是x15,第8个分子上是x17,再观察符号发现,第偶数个为负,第奇数个为正,∴第7个分式为157xy,第8个分式为178xy.【点睛】本题考查式子的规律,根据题意分别找出分子和分母及符号的变化规律是解答此题的关键.。
七年级上册数学整式的加减1整式是指由常数、变量和其系数的乘积所组成的代数式。
整式运算主要包括加法和减法,我们可以使用以下规则来进行运算:1.相同变量的项相加减时,系数相加减,变量保持不变。
例如:3x + 5x = 8x、2y - 4y = -2y。
2.不同变量的项不能相加减,它们保持原样。
例如:5x + 3y、2a - 4b。
3.常数项可以与变量项进行相加减。
例如:7 + 3x、5 - 2y。
4.当遇到括号时,先按照括号内的整式进行运算。
例如:(3x + 2) + (4x - 5) = 7x - 3。
5.如果有相同变量的整式相加减,我们可以将它们合并为一项。
例如:3x + 2x = 5x、4y - 3y = y。
6.减法可以通过加法来进行运算。
例如:5x - 3x = 5x + (-3x) = 2x。
通过这些规则,我们可以进行整式的加减运算。
下面我们来看一些具体的例子:例1:计算3x - (4x + 2) + 3的值。
首先按照括号内的整式进行运算得到:3x - 4x - 2 + 3。
再进行同类项相加得到:(3x - 4x) - 2 + 3 = -x - 2 + 3。
继续合并常数项得到:-x - 2 + 3 = -x + 1。
所以3x - (4x + 2) + 3 = -x + 1。
例2:计算(2y - 3x) + (4x + 2y)的值。
首先按照括号内的整式进行运算得到:2y - 3x + 4x + 2y。
再进行同类项相加得到:(2y + 2y) + (-3x + 4x) = 4y + x。
所以(2y - 3x) + (4x + 2y) = 4y + x。
例3:计算(3a + 2b) - (4a - b)的值。
首先按照括号内的整式进行运算得到:3a + 2b - 4a + b。
再进行同类项相加得到:(3a - 4a) + (2b + b) = -a + 3b。
所以(3a + 2b) - (4a - b) = -a + 3b。
整式的加减(一)——合并同类项(基础)【要点梳理】要点一、同类项定义:所含字母相同,并且相同字母的指数也分别相等的项叫做同类项.几个常数项也是同类项.要点诠释:(1)判断是否同类项的两个条件:①所含字母相同;②相同字母的指数分别相等,同时具备这两个条件的项是同类项,缺一不可.(2)同类项与系数无关,与字母的排列顺序无关.(3)一个项的同类项有无数个,其本身也是它的同类项.要点二、合并同类项1. 概念:把多项式中的同类项合并成一项,叫做合并同类项.2.法则:合并同类项后,所得项的系数是合并前各同类项的系数的和,且字母部分不变. 要点诠释:合并同类项的根据是乘法分配律的逆运用,运用时应注意:(1)不是同类项的不能合并,无同类项的项不能遗漏,在每步运算中都含有.(2) 合并同类项,只把系数相加减,字母、指数不作运算.【典型例题】类型一、同类项的概念1.指出下列各题中的两项是不是同类项,不是同类项的说明理由.(1)233x y 与32y x -; (2)22x yz 与22xyz ; (3)5x 与xy ; (4)5-与8举一反三:【变式】下列每组数中,是同类项的是( ) .①2x 2y 3与x 3y 2 ②-x 2yz 与-x 2y ③10mn 与23mn ④(-a )5与(-3)5 ⑤-3x 2y 与0.5yx 2 ⑥-125与12A .①②③B .①③④⑥C .③⑤⑥D .只有⑥2.(2014•咸阳模拟)已知﹣4xy n+1与是同类项,求2m+n 的值.类型二、合并同类项3.合并下列各式中的同类项:(1)-2x 2-8y 2+4y 2-5x 2-5x+5x -6xy(2)3x 2y -4xy 2-3+5x 2y+2xy 2+5举一反三:【变式】(2015•玉林)下列运算中,正确的是( )A. 3a+2b=5abB. 2a 3+3a 2=5a 5C. 3a 2b ﹣3ba 2=0D. 5a 2﹣4a 2=14.已知35414527m n ab pa b a b ++-=-,求m+n -p 的值.举一反三: 【变式】若223m a b 与40.5n a b -的和是单项式,则m = ,n = .类型三、化简求值5. 当2,1p q ==时,分别求出下列各式的值.(1)221()2()()3()3p q p q q p p q -+-----;(2)2283569p q q p -+--举一反三:【变式】先化简,再求值:(1)2323381231x x x x x -+--+,其中2x =;(2)222242923x xy y x xy y ++--+,其中2x =,1y =.类型四、“无关”与“不含”型问题6.李华老师给学生出了一道题:当x =0.16,y =-0.2时,求6x 3-2x 3y -4x 3+2x 3y -2x 3+15的值.题目出完后,小明说:“老师给的条件x =0.16,y =-0.2是多余的”.王光说:“不给这两个条件,就不能求出结果,所以不是多余的.”你认为他们谁说的有道理?为什么?【思路点拨】要判断谁说的有道理,可以先合并同类项,如果最后的结果是个常数,则小明说得有道理,否则,王光说得有道理.【巩固练习】一、选择题1.判断下列各组是同类项的有 ( ) .(1)0.2x 2y 和0.2xy 2;(2)4abc 和4ac ;(3)-130和15;(4)-5m 3n 2和4n 2m 3A .1组B .2组C .3组D .4组2.下列运算正确的是( ).A .2x 2+3x 2=5x 4B .2x 2-3x 2=-x 2C .6a 3+4a 4=10a 7D .8ab 2-8ba 2=03.(2015•柳州)在下列单项式中,与2xy 是同类项的是( )A .2x 2y 2B .3yC .xyD .4x4.在下列各组单项式中,不是同类项的是( ).A .212x y -和2yx - B .-3和100 C .2x yz -和2xy z - D .abc -和52abc 5.如果xy ≠0,22103xy axy +=,那么a 的值为( ). A .0 B .3 C .-3 D .13- 6. 买一个足球需要m 元,买一个篮球需要n 元,则买4个足球、7个篮球共需要( )元.A .47m n +B .28mnC .74m n +D .11mn 7.计算a 2+3a 2的结果是( ).A .3a 2B .4a 2C .3a 4D .4a 4 二、填空题8.写出325x y -的一个同类项 .9. 已知多项式ax bx +合并后的结果为零,则a b 与的关系为: .10.若3m n x y 与312xy -是同类项,则______,_______m n ==. 11. 合并同类项22381073x x x x ---++,得 .12.在22226345xy x x y yx x ---+中没有同类项的项是 .13.100252100(________)___t t t t t -+==;223(______)ab b a +=-.14(2015•遵义)如果单项式﹣xy b+1与x a ﹣2y 3是同类项,那么(a ﹣b )2015= .三、解答题15. (2014秋•嘉禾县校级期末)若单项式a 3b n+1和2a 2m ﹣1b 3是同类项,求3m+n 的值.16.化简下列各式:(1)22226547a b ab b a a b +--(2)22223232x y x y xy xy -++-(3)2222630.835m n mn mn n m mn n m --+--(4)33331()2()()0.5()3a b a b b a a b +-+-+-+17. 已知关于x ,y 的代数式2213383x kxy y xy ----中不含xy 项,求k 的值.。