第二章 酶学基础
- 格式:ppt
- 大小:17.42 MB
- 文档页数:126
酶学与酶⼯程重点总结第⼆章酶学基础⼀、酶的活性中⼼(active center,active site)(⼀)活性中⼼和必需基团1、与酶活性显⽰有关的,具有结合和催化底物形成产物的空间区域,叫酶的活性中⼼,⼜叫活性部位。
2、活性中⼼可分为结合部位和催化部位。
3、结合部位决定酶的专⼀性,催化部位决定酶所催化反应的性质。
4、酶结构概述(1)活性中⼼是⼀个三维实体。
(2)是有⼀些⼀级结构上可能相距较远的氨基酸侧链基团组成,有的还包含辅酶或辅基的某⼀部分基团。
(3)在酶分⼦表⾯呈裂缝状。
(4)酶活性中⼼的催化位点和结合位点可以不⽌⼀个。
(5)酶活性中⼼的基团都是必需基团,但必需基团还包括活性中⼼以外的基团。
5、酶分⼦中的氨基酸残基或其侧链基团可以分为四类1.接触残基2.辅助残基3.结构残基4.⾮贡献残基(⼆)酶活性中⼼中的化学基团的鉴别1.⾮特异性共价修饰:某些化学试剂能使蛋⽩质中氨基酸残基的侧链基团反应引起共价结合、氧化或还原修饰反应,使基团结构和性质发⽣变化。
如果某基团修饰后不引起酶活⼒的变化,就可初步认为此基团可能是⾮必需基团;反之,如修饰后引起酶活⼒的降低或丧失,则此基团可能是酶的必需基团。
2.亲和标记共价修饰剂是底物的类似物,可专⼀性地引⼊酶的活性中⼼,并具有活泼的化学基团(如卤素),可与活性中⼼的基团形成稳定的共价键。
因其作⽤机制是利⽤酶对底物类似物的亲和性⽽将酶共价标记的,故称为亲和标记。
3.差别标记在过量底物或可逆抑制剂遮蔽活性中⼼的情况下,加⼊共价修饰剂,使后者只修饰活性中⼼以外的有关基团;然后去除底物或可逆抑制剂,暴露活性中⼼,再⽤同位素标记的向⼀修饰剂作⽤于活性中⼼的同类基团;将酶⽔解后分离带有同位素的氯基酸,即可确定该氨基酸参与活性中⼼。
4.蛋⽩质⼯程这是研究酶必需基闭和活性中⼼的最先进⽅法,即将酶蛋⽩相应的互补DNA(cDNA)定点突变,此突变的cDNA表达出只有⼀个或⼏个氨基酸被置换的酶蛋⽩,再测定其活性,可以知道被置换的氨基酸是否为活⼒所必需。
第一章绪论酶是生物细胞产生的、具有催化能力的生物催化剂。
定义:酶是生物体内进行新陈代谢不可缺少的受多种因素调节控制的具有催化能力的生物催化剂。
酶的重要两大类:主要由蛋白质组成——蛋白类酶(P酶)主要由核糖核酸组成——核酸类酶(R酶)酶与其他化学催化剂的区别、特点:(1)酶的催化高效性通常要高出非生物催化剂催化活性的106~1013倍(2)高度专一性(3)温和的作用条件常温常压和温和的酸碱度条件(4)容易控制酶的反应(5)酶的来源广泛第二章酶学基础酶的活性中心:是它结合底物和将底物转化为产物的区域,通常是整个酶分子相当小的部分,它是由在线性多肽中可能相隔很远的氨基酸残基形成的三维实体。
必需基团:活性中心的一些化学基团为酶发挥作用所必需活性中心外的必需基团--结构残基;非贡献残基(非必需残基):是除了酶的必须基团之外,酶蛋白的其余部分中的氨基酸残基。
8种频率最高的氨基酸残基:丝氨酸、组氨酸、胱氨酸、酪氨酸、色氨酸、天冬氨酸、谷氨酸和赖氨酸。
酶的结构;1、酶的一级结构:是催化基础,是把蛋白质肽链中氨基酸的排列顺序。
二硫键的断裂将使酶变性而丧失其催化能力。
2、酶的二级结构:是肽链主链不同肽段通过自身的相互作用,形成氢键,延一条主轴盘旋折叠而形成的局部空间结构。
3、酶的三级结构:是多肽在二级结构基础上,通过侧链基团的相互作用进一步卷曲折叠,形成的特定构象。
4、酶的四级结构:是指由不同或相同的亚基按照一定排布方式聚合而成的蛋白质结构。
具有四级结构的酶按其功能分,一类与催化作用有关,另一类与代谢调节关系密切。
(亚基虽然具有三级结构,但单独存在时通常没有生物学活性或活性低,只有缔合形成特定的四级结构时才具有生理功能。
)活性中心空间构象的维持则依赖于酶蛋白的二、三级结构的完整性。
酶分子的结构域:是指蛋白质肽链中一段独立的具有完整、致密的立体结构区域,一般由40—400个氨基酸残基组成。
酶的催化原理:(中间产物理论)在酶浓度固定的条件下,要达到最大初速率必须增加底物浓度,这是大多数酶的特征。