微电子技术在生物医学中的应用
- 格式:doc
- 大小:25.50 KB
- 文档页数:3
微电子科学与工程在生物医学领域的应用微电子科学与工程作为一门交叉学科,涵盖了微电子器件、成像技术、传感技术等多个领域,并在生物医学领域展示了巨大的应用潜力。
本文将重点探讨微电子科学与工程在生物医学领域的应用,并介绍一些相关的最新进展。
一、生物传感器生物传感器是微电子科学与工程在生物医学领域应用的重要领域之一。
生物传感器通过将微电子器件与生物体相结合,能够实时监测和检测生物体内的生理指标。
例如,通过耳机式生物传感器可以实时监测人体心率、血氧饱和度等生理参数,为个人健康管理提供及时数据支持。
二、医学成像技术微电子科学与工程在医学成像技术领域的应用也非常广泛。
微电子器件的微小尺寸和高精度特性使得医学成像设备更加紧凑和精确。
例如,微型超声成像设备可以通过微电子传感器实现对人体内部器官的高清成像,为医生提供诊断和治疗的依据。
此外,微电子器件还广泛应用于核磁共振成像、放射性核素成像等多种医学成像技术中,提高了成像的精确度和效率。
三、生物芯片生物芯片是微电子科学与工程在生物医学领域的又一重要应用。
生物芯片通过在微米尺度上集成多种生物传感器和微流控技术,能够实现对生物体内样本的快速检测和分析。
例如,在临床诊断中,利用生物芯片可以快速检测病原体的存在,减少人工操作的误差,提高诊断的准确性。
四、生物模拟器件微电子科学与工程在生物医学领域的应用还涉及到生物模拟器件的研发和应用。
生物模拟器件可以模拟人体器官的功能和特性,用于疾病治疗和康复训练。
例如,通过微电子技术,可以研制出人工耳蜗和人工智能义肢等器件,帮助听力受损和肢体残疾的患者重获听力和运动能力。
总结:微电子科学与工程在生物医学领域的应用正在持续深入发展,为医疗保健和疾病治疗带来了革命性的变革。
通过生物传感器、医学成像技术、生物芯片和生物模拟器件的应用,微电子科学与工程为医学领域提供了更加精确、便捷和有效的技术手段。
我们对微电子科学与工程在生物医学领域的应用前景充满期待,相信随着科技的不断发展,它将继续发挥重要作用,推动医学的进步与发展。
微机电系统在生物医学领域的应用研究微机电系统(MEMS)是一种将微观尺度结构与微电子技术相结合的新兴技术,在生物医学领域中具有广泛的应用潜力。
本文将探讨微机电系统在生物医学领域的应用研究,并从传感器、生物芯片以及生物医学成像方面展开论述。
一、传感器应用微机电系统在生物医学领域最常见的应用之一是传感器。
传感器能够检测和测量生物体的特定参数,帮助医生进行精确的诊断和治疗。
例如,血糖传感器是一种常见的微机电系统传感器,可以监测糖尿病患者的血糖水平。
通过将传感器植入皮肤下,患者可以随时监测血糖变化,并采取相应的治疗措施。
此外,压力传感器、体温传感器等也广泛应用于生物医学领域,为医生提供重要的生理参数。
二、生物芯片应用生物芯片是另一个微机电系统在生物医学领域的重要应用。
生物芯片可以用于快速、精确地检测和分析生物样本中的生物分子。
例如,基因芯片可以检测人体中的基因表达谱,帮助科学家理解基因与疾病之间的关系。
此外,蛋白芯片可以检测蛋白质组成,并用于药物研发和肿瘤标志物的检测。
微机电系统的微小尺寸和高度集成的特点使得生物芯片能够在短时间内完成大量的实验,为生物医学研究提供了重要的工具。
三、生物医学成像应用微机电系统在生物医学成像方面的应用也日益重要。
微机电系统的高分辨率和高灵敏度使得它能够用于制造微型生物医学成像设备。
例如,光学显微镜、红外成像和超声波成像等技术都可以通过微机电系统实现微小化和集成化。
这些微型成像设备具有无创性、高分辨率和实时性等优势,可以被广泛用于疾病的早期诊断和治疗监测。
虽然微机电系统在生物医学领域的应用带来了许多好处,但也存在一些挑战和限制。
首先,微机电系统的制造过程相对复杂,需要高度的工艺技术和设备。
其次,由于其微小尺寸,微机电系统在稳定性和可靠性方面存在一定的困难。
此外,微机电系统的应用还面临着临床实际应用的挑战,如相关法规和规定的制定以及普及率等问题。
总结一下,微机电系统在生物医学领域的应用研究涵盖了传感器、生物芯片和生物医学成像等方面,具有广泛的应用前景。
MEMS技术在生物医学中的应用随着微电子技术的发展,MEMS ( Micro-Electro-Mechanical Systems ) 技术也逐渐被应用于生物医学领域。
MEMS技术以微米或纳米级别的线性、转动、弯曲和膨胀等机械位移效应,以及群体作用为基础,实现了集成化、微型化和高精度的运动控制、信号检测、流动控制等功能。
它在医疗诊断、生命科学、药物研发等方面具有广阔的前景。
MEMS技术在生物医学中的应用主要有以下几个方面:1. MEMS传感器在生命科学研究中的应用MEMS传感器可以用于生命科学研究中的动态监测和分析。
例如,MEMS压力传感器可以用于血压监测和动脉血流变化检测;MEMS加速传感器可以用于运动监测和肌肉疲劳分析;MEMS荧光探头可以用于药物筛选和生物分子检测;MEMS TEM探针可以用于高分辨率的细胞成像等。
这些传感器可以将许多生命科学指标转化为电信号,便于记录、分析和研究。
2. 全自动化实验芯片MEMS技术可以在微通道中引入一系列的功能模块,实现微流控,将需要进行的各个步骤缩小到微米级别的区域,通过微米级的通道网络将反应分子分离、混合、诱导、分析和检测,对生物分子进行精细处理和快速分析。
这种微流控全自动化实验芯片可以同时完成样品预处理、混合反应、产物分离、检测等成千上万的生物实验,有效提高了实验效率。
3. 生物芯片生物芯片采用类似半导体芯片的技术,将数以千计的微小的反应区域集成到一个晶片上,用于在生物样本中进行特定的反应。
MEMS技术可以制造出非常复杂的生物芯片,包括基于PCR技术的扩增芯片、DNA芯片、蛋白质芯片等一系列生命科学芯片。
生物芯片具有高精度、高通量、高灵敏度和快速分析等特点,已经成为许多生物医学领域研究的重要工具。
4. MEMS传输MEMS流控技术可以带来微型流体静电喷雾器、微流控传感器和微磁场操控装置等全新的生物医药应用。
例如,MEMS微型流体控制器被广泛用于微型诊断测试设备、实验室实验仿生应用、微型流体控制手术等领域。
微电子在医学中的应用随着微电子技术的不断发展,其在医学领域中的应用愈发广泛。
以下将从医学成像、生物传感、医疗器械等方面介绍微电子在医学中的应用。
医学成像是微电子在医学领域中的一个重要应用。
现代医学普遍使用各种成像技术,如X射线、核磁共振成像、超声波成像等技术。
这些技术的广泛应用使医学诊疗变得更加精准和高效。
其中,核磁共振成像(MRI)技术以其高强度磁场和无创性检查为特点而被广泛使用。
微电子制造技术在MRI中的应用将电子元件制造到医疗设备中,减少了设备的重量和功耗,同时实现了更快的成像速度。
生物传感领域是微电子在医学中的另一个应用方向。
基于微电子技术,已经开发出许多不同类型的生物传感器,例如用于检测血糖、血氧、心率和体温等生命体征的传感器。
其中,微电子生物传感器已被证明在治疗糖尿病、高血压和心脏病等疾病中具有非常有效的作用。
这些传感器可以通过无需采集血样或其他形式的小型化技术来进行监测,并可以使患者在自己家中或在医院外自行进行监测,减少了治疗成本和患者的不便之处。
微电子技术还广泛地应用于医疗器械中。
例如,微电子技术在人工器官、心脏起搏器、胰岛素泵等医疗器械中起着关键的作用。
作为一个示例,人工器官可以依靠微电子技术检测和管理患者内部的荷尔蒙水平,从而实现内分泌功能的替代。
因为这些设备是可移植的且需要长时间的稳定运行,因此微电子制造技术非常有利。
总的来说,微电子技术在医学领域中应用日益广泛,对医疗事业的发展起着重要的推动作用。
虽然还有一些技术难题需要攻克,但是微电子技术发展的趋势非常乐观,未来将会有更多的医疗设备和技术使用微电子技术来实现更加高效、安全、准确的医疗服务。
微电子设备在生物医学研究中的应用在现代科技日益发展的时代,微电子技术的应用越来越广泛,其中生物医学领域是一个应用非常广泛的领域。
微电子设备的应用为生物医学研究和医疗治疗提供了许多可能性,可以帮助医生更好地了解疾病发生的原因和治疗方式,也可以提高医疗领域的效率和精确度。
一、微电子技术在生物医学研究中的应用1.神经研究神经研究是微电子技术在生物医学研究中的一个应用,通过微小的电极可以监测到神经元的活动,对于研究神经系统的运作过程有非常重要的作用。
此外,微电子设备还可以用于病态神经元的抑制或刺激,从而帮助治疗神经疾病,例如帕金森病、抑郁症等。
2.纳米疫苗纳米疫苗是一种新型疫苗,由微小的粒子组成,可以针对不同种类的疾病进行疫苗开发。
微电子技术可以帮助制备纳米粒子,并对它们进行定位,从而提高疫苗的效果和精确度,进一步帮助人们预防疾病。
3.细胞治疗细胞治疗是一种非常新的疗法,可以通过先抽取细胞,然后进行修复和重新注入患者体内来治疗疾病。
微电子设备可以帮助检测和监测这一过程中的关键环节,例如细胞的培养、检测和分离等,从而提高治疗效果。
二、微电子技术在医疗治疗中的应用1.微型医疗设备微电子技术可以帮助制造出微型医疗设备,例如可植入式血糖仪、可植入式心脏起博器、可植入式聋人耳植入物等。
这些设备可以帮助医生更好地了解病情和治疗方案,也可以方便患者进行监测和治疗,提高治疗的效果和舒适度。
2.医疗成像微电子技术可以用于医疗成像设备,例如核磁共振仪、X射线机、超声波等。
这些设备可以协助医生对患者进行诊断,并指导治疗方案,提高了医生判断疾病的准确性和治疗方案的科学性。
三、微电子设备的未来应用微电子设备是生物医学领域的重要组成部分,其应用前景非常广阔。
未来,微电子设备将会广泛应用于快速诊断、治疗、机器人介入手术等领域,从而提高了生物医学领域的效率、准确性和可靠性,为人类健康事业带来更大的发展空间。
总之,微电子技术在生物医学领域的应用为医生和患者提供了更加有效和精确的治疗方案,促进了生物医学科技的发展。
生物医学工程中的微电子技术研究生物医学工程是研究生物与工程学科相结合的新学科,其核心目标是将工程科学技术应用于医学领域,提高医疗保健的水平与效率。
而微电子技术在生物医学工程中也发挥着重要的作用,这里我们就来了解一下微电子技术在生物医学工程中的研究进展和未来发展趋势。
一、微电子技术的应用微电子技术在生物医学工程中的应用十分广泛,主要包括:医学影像、生物监测、医疗器械和药物传递等方面。
其中,医学影像是目前应用较广泛的一方面,如医学成像材料、超声检测、X射线设备、计算机断层扫描等。
这些技术可以帮助医生准确、快速地诊断疾病,并进行治疗方案的设计;而生物监测则是对患者病情的监测和分析,包括心电图、脑电图等。
此外,还有医疗器械和药物传递等方面的应用,如人工器官、人工关节等,这些器械在手术中起到了至关重要的作用。
二、微电子技术的研究进展随着科技的发展,微电子技术在生物医学工程中的应用也在不断地推陈出新,研究进展如下:1. 智能医疗监测传统的生命体征监测是靠人工护理或专门的医疗器械完成的,但随着技术的发展,微电子技术被应用到这一领域中,智能医疗监测也因此得以实现。
通过传感器和移动设备等技术的结合,可以实现患者的测量、记录、远程监测等功能,及时预警患者的体征异常,帮助医生快速作出诊断和治疗计划。
2. 微型医疗器械微机电系统技术(MEMS)是一种使用微电子加工技术和微加工工艺制作微运动器件的技术。
随着技术的发展,微型医疗器械也成为了一种热门研究方向,如微型人工耳蜗、微型内窥镜、微型药物泵和微型传感器等。
3. 生物医学芯片生物医学芯片是一种可以诊断和治疗疾病的微型芯片,可以进行生物分析、药物发现、DNA检测、基因组学研究等。
这种芯片结合了微流体、生物工程、微机电系统和生物技术等多种技术,具有高精度、高灵敏度和高通量等优势,正成为生物医学工程中的研究热点。
三、微电子技术的未来发展目前,微电子技术在生物医学工程中已经取得了一定的进展,然而未来还有更多的潜力和发展空间。
微电子技术在医疗领域中的应用随着科技的不断发展,微电子技术越来越受到关注,并且已经在很多领域得到广泛的应用,其中医疗领域是一个非常重要的方向。
微电子技术作为一种新兴的技术,它在医疗领域中的应用进一步促进了医疗领域的发展。
本文将深入探讨微电子技术在医疗领域中的应用。
一、微电子技术在医疗设备中的应用随着医疗设备不断发展,微电子技术在医疗设备中的应用也越来越广泛。
微电子技术可以使医疗设备更加精准、高效、智能化,这对患者的治疗非常有帮助。
比如,微电子技术应用于磁共振成像系统(MRI),可以提供更加清晰的影像,能够让医生更加准确地进行病情诊断和治疗。
此外,微电子技术还可以应用于电子表皮设备,该设备用于监测皮肤的电活动和温度变化,可以帮助医生更早地发现皮肤疾病,及时进行治疗。
二、微电子技术在医疗器械中的应用微电子技术还可以应用于医疗器械中,比如内窥镜、手术钳等,使这些器械更加智能。
例如,微电子技术可以应用于胃镜,可以使胃镜更加精准地观察肠胃内部的情况,发现潜在的疾病。
此外,微电子技术可以应用于手术钳,可以提高手术的安全性和效率。
三、微电子技术在医学生物传感领域中的应用微电子技术在医学生物传感领域中的应用更加广泛。
生物传感器是一种将生物分析和现代微电子技术相结合的技术,可以检测人体内的一些基本指标,如心率、血糖浓度等,这对病人的治疗非常有帮助。
比如,在自闭症治疗中应用生物传感技术,通过监测病人的生理指标并进行数据分析,医生可以更好地了解病人的情况,从而更好地治疗病人。
四、微电子技术在智能健康检测领域中的应用微电子技术在智能健康检测领域中的应用较为成熟。
智能健康检测是指通过微电子技术,将传感器、传输设备、智能分析系统等一系列技术进行集成,达到实时监测患者病情的目的。
这种技术可以帮助人们更好地了解自己的健康状况,及时发现潜在的疾病,从而预防疾病的发生。
例如,通过智能手环可以实时监测心率、步数、睡眠质量等指标,帮助人们更好地保持身体健康。
生物微电子学的研究及应用生物微电子学是将微电子学技术应用于生物学领域的一门交叉学科,其研究内容主要涉及到生物分子传感、生物电子学和生物光电子学等方面。
生物微电子学不仅仅是科学技术领域的发展,还具有深远的应用前景和社会意义。
一、生物分子传感生物分子传感是生物微电子学的核心研究领域之一,其主要目标是通过微电子学系统对生物分子进行检测和分析。
生物分子传感技术的发展已经在医学、环境监测、食品安全等领域取得了重要进展。
在医学领域,生物分子传感技术可以广泛应用于多种疾病的诊断和治疗。
例如,通过生物分子传感器可以检测到人体内的很小的分子,如血糖、肌酸激酶等,为诊断和治疗糖尿病、心肌梗塞等疾病提供了有效的工具。
此外,生物分子传感器还可以检测到癌细胞标记种子,为早期癌症检测提供了有力的支持。
在环境监测领域,生物分子传感技术可以将生物分子作为生物指示器来监测和检测环境中的可污染物。
例如,通过检测大气中的空气质量指标、水域和土壤中的毒性等生物特征标志,可以判断环境是否安全,从而减少人类与环境之间的关系。
在食品安全领域,生物分子传感技术可以检测食品中的有害物质,如重金属、农药残留和细菌等,达到精准分析、快速检测的目的。
比如检测水产产品、畜禽肉类、草莓、葡萄、苹果等热门食品类别,检测餐后检测独立检测的目的。
二、生物电子学生物电子学是将生物体的电学特性与微电子学相结合的一种新型研究领域。
其目的是从电生理角度研究生物体的功能和疾病机理,进而开发出新的电子治疗方法、控制和修复生物体的生理功能。
在医学领域,生物电子学已经应用于神经科学、耳科学、心血管病学、精神病学和运动神经系统研究等领域。
例如,深度脑刺激(DBS)技术便是一种利用微电子学技术治疗帕金森病和其他神经系统疾病的方法。
另外,心律失常等心血管病的治疗也可以利用微电子学技术控制心脏的电信号,以达到对病情的调节和治疗。
生物电子学在生物机器人和仿生机器人领域也有主要应用。
比如肢体运动影响平衡与坐位的生理参数分析。
生物芯片技术在生物医学研究中的应用近年来,随着生物芯片技术的不断发展,其在生物医学研究中的应用越来越广泛。
生物芯片技术是一种以微电子技术为基础,在微米尺度下制备生物传感器、微流控芯片等,以实现生物分子的检测、定量和分析。
它不仅可以提供高通量、高灵敏度的实验手段,而且具有样品体积小、操作简便、自动化程度高等优点。
本文将介绍生物芯片技术在生物医学研究中的应用。
一、基因芯片基因芯片是一种高通量的生物芯片,它可以一次性检测成千上万个基因的表达水平。
基因芯片的应用范围很广,如癌症诊断、药物筛选、生物体表现型分析等。
例如,一些癌症研究团队利用基因芯片分析儿童肝癌的分子机制,最终发现了一种新型的分子标志物,有望帮助早期肝癌的诊断。
二、蛋白芯片蛋白质芯片是一种用于检测蛋白质相互作用、蛋白质结构和功能等的芯片,在蛋白质组学研究中非常重要。
蛋白质芯片可以用于发现新的生物标志物和药物靶点。
例如,一些研究团队利用蛋白芯片研究蛋白质的翻译后修饰,最终发现了一些与肥胖、糖尿病等代谢性疾病相关的新标志物。
三、微流控芯片微流控芯片是一种利用微米尺度通道和微泵等制备的芯片,可以实现微滴生成、混合、分离等操作,广泛应用于细胞分离、药物筛选、疾病诊断等研究领域。
例如,一些研究团队利用微流控芯片研究肿瘤细胞的脱落和扩散,最终发现了一些新的靶向转移抑制剂。
四、纳米芯片纳米芯片是一种用于检测细胞、分子等微小物质的芯片,其尺寸可达纳米级别。
纳米芯片的应用范围很广,如早期疾病诊断、个性化治疗等。
例如,一些研究团队利用纳米芯片研究癌细胞的生长和转移,最终发现了一种新型的靶向治疗方法。
总之,生物芯片技术在生物医学研究中的应用越来越广泛,它为生物医学研究提供了大量的新手段和新思路。
我们相信,在不久的将来,生物芯片技术将成为生物医学研究的重要工具之一,并为人类健康事业做出更大的贡献。
微电子技术在生物医学中的应用
摘要:微电子技术与生物学之间有着非常紧密的联系。
一方面微电子技术的发展,将大大地推动生物医学的发展,另一方面生物医学的研究成果同样也将对微电子技术的发展起着巨大的促进作用。
在这里我将主要从生物医学传感器、植入式电子系统、生物芯片这三个方面结合当前国际上最新进展来介绍两者之间的关系与发展。
关键字:微电子技术生物医学
一、引言
生物医学电子学是由微电子学、生物和医学等多学科交叉的边缘科学,为使得生物医学领域的研究方式更加精确和科学,所以将电子学用于生物医学领域。
在生物医学与电子学交叉作用部分中最活跃、最前沿、作用力最大的一项关键技术就是微电子技术。
特别是随着集成电路集成度的提高和超大规模集成电路的发展,元件尺寸达到分子级,进入了分子电子学时代,用有机化合物低分子、高分子和生物分子作芯片,它们具有识别、采集、记忆、放大、开关、传导等功能,更大大促进了医学电子学的发展。
下面将主要从生物医学传感器、植入式电子系统、生物芯片这三个方面结合当前国际上最新进展来介绍两者之间的关系与发展。
二、生物医学传感器
生物医学传感器的作用是把生物体和人体中包含的生命现象、状态、性质、变量和成分等生理信息(包括物理量、化学量、生物量等)转化为与之有确定函数关系的电信息。
生物医学传感器是生物医学电子学中最关键的技术,它是连接生物医学和电子学的桥梁。
主要可分为如下几类:电阻式传感器,电容式传感器,电感式传感器,压电式传感器,光电传感器,热电式传感器,光线传感器,电化学传感器以及生物传感器等。
它通过各种化学、物理信号转换器捕捉目标物与敏感膜之间的反应,然后将反应程度用连续的电信号表达出来,从而得出被检测样品的浓度。
生物医学传感器的微型化和集成化是其中最重要的发展方向之一,其主要原因:1)它是实现生物医学设备微型化、集成化的基础;2)将使得生物医学测量和控制更加精确——达到分子和原子水平。
是生物体成分(酶、抗原、抗体、激素、DNA) 或生物体本身(细胞、细胞器、组织),它们能特异地识别各种被测物质并与之反应;后者主要有电化学电极、离子敏场效应晶体管( ISFET ) 、热敏电阻器、光电管、光纤、压电晶体(PZ) 等,其功能为将敏感元件感知的生物化学信号转变为可测量的电信号。
因而它具有快速大量处理信息的能力,和诊断精确的特点。
常见的生物医学传感器主要可分为以下几种:电阻式传感器,电感式传感器,电容式传感器,压电式传感器,热电式传感器,光电传感器以及生物传感器等。
医学领域的生物传感器发挥着越来越大的作用。
在临床医学中,酶电极是最
早研制且应用最多的一种传感器。
利用具有不同生物特性的微生物代替酶,可制成微生物传感器,广泛应用于:药物分析、肿瘤监测、血糖分析等。
三、植入式电子系统
植入式电子系统是一种埋植在人体或生物体内的电子设备,它用来测量生命体内的生理、生化参数的变化,或用来诊断与治疗一些疾病,即实现在生命体自然状态下体内直接测量和控制功能或者代替功能残缺的器官。
随着高可靠性、低功率集成电路的发展,植入式电子系统的能源供给方式的多样化,无毒性生物相容性等性能优良的生物材料研究的深入,以及显微外科手术水平的不断提高,使得植入式电子系统得到飞速的发展,植入式电子学已成为生物医学电子学中一个极为重要的组成部分。
植入电子系统主要包括:植入式测量系统、植入式刺激器、植入式药疗(控制)装置、植入式人工器官及辅助装置等设备。
采用植入式电子测量与控制装置主要具有如下优点:1、可保证生物体在处于自然的生理状态条件下对各种生理、生化参数进行连续的实时测量与控制;2、采用植入式测量装置后可大大减少各种干扰因素,因此体内的各种信息不需经皮肤测量就可得到更加精确的数据;3、便于对器官和组织的直接调控,能获得理想的刺激和控制响应,有利于损伤功能的恢复和病情的控制;4、可以用来治疗某些疾病,比如癫痫、瘫痪等;5、用来代替某些器官的功能,比如肾脏、四肢、耳蜗等。
植入式电子系统在微电子方面研究的关键技术主要有:1、植入式天线的设计技术。
主要是解决效率与天线微型化之间的矛盾;2、RF射频电路的设计技术。
射频电路是植入体内部分与体外部分通信的关键电路;3、低功耗植入式集成电路设计技术,它一方面是要保证植入式系统在有限能源的前提下能在体内长期稳定工作,另一方面是电路产生过多热量会对生命体本身造成危害;4、植入式系统的能量供给技术。
由于经常把把植入体内设备拿出体外进行充电是不实际的,目前一般采用下述四种方式给体内供能:植入式电源、红外线偶合供能、射频供能或者是利用体内其他能量的转换,比如温差供电,利用血液中氢和氧进行燃料电池反应或利用生物体自身的机械能等;5、微弱信号的提取技术。
生物信号都是微弱信号,而且往往存在着背景噪音都很强大的情况;6、一些前沿的数字信号处理技术的应用。
比如利用人工神经网络技术与线性预测技术来通过脑电实时控制多自由度的假肢的研究,以及基于小波变换的语音信号处理技术应用于人工耳蜗等;7、植入式电子系统的制作与封装技术。
主要研究的是如何利用生物相容性优良的生物材料来对集成电路进行封装,这样既能保证植入到体内的系统不会对生命体造成危害,也能保证其能在人体环境中长期稳定地工作。
四、生物芯片
生物芯片是根据生物分子间特异相互作用的原理,将生化分析过程集成于芯片表面,从而实现对DNA、RNA、多肽、蛋白质以及其他生物成分的高通量快速检测。
狭义的生物芯片概念是指通过不同方法将生物分子固着于硅片、玻璃片(珠)、塑料片(珠)、凝胶、尼龙膜等固相递质上形成的生物分子点阵。
因此生
物芯片技术又称微陈列技术,含有大量生物信息的固相基质称为微阵列,又称生物芯片。
生物芯片在此类芯片的基础上又发展出微流体芯,亦称微电子芯,也就是缩微实验室芯片。
生物芯片的第一个应用领域是检测基因表达。
但是将生物分子有序地放在芯片上检测生化标本的策略是具有广泛的应用,对基因组DNA进行杂交分析可以检测DNA编码区和非编码区单个碱基改变、确失和插入,DNA杂交分析还可用于对DNA进行定量,这对检测基因拷贝数和染色体的倍性是很重要的。
因此生物芯片对于基因工程的发展具有重大意义。
五、结束语
现代和未来的信息社会中,信息处理系统要对自然和社会的各种变化做出反应,首先需要通过传感器将外界的各种信息提取出来并转换成信息系统中的信息处理单元(即计算机)能够接收和处理的信号。
微电子技术在这些领域中起的关键作用,生物医学的发展对微电子技术也起了巨大促进作用,这两者相互促进,,微电子技术的发展将为生物医学带来巨大的变革,同样生物医学也将会给微电子技术的创新提供崭新的思路。
参考文献:
谢翔;张春;王志华微电子技术在生物医学中的应用与发展[期刊论文] -电路与系统学报2003(2)
夏俊芳. 刘箐生物芯片应用概述[期刊论文]-生物技术通报2010(7)。