当前位置:文档之家› 集合在近代数学中的地位与作用

集合在近代数学中的地位与作用

集合在近代数学中的地位与作用
集合在近代数学中的地位与作用

集合在近代数学中的地位与作用

集合是数学的一个基本的分支学科,研究对象是一般集合。集合在数学中占有一个独特的地位,它的基本概念已渗透到数学的所有领域。集合论或集论是研究集合(由一堆抽象物件构成的整体)的数学理论,包含了集合、元素和成员关系等最基本的数学概念。在大多数现代数学的公式化中,集合论提供了要如何描述数学物件的语言。集合论和逻辑与一阶逻辑共同构成了数学的公理化基础,以未定义的“集合”与“集合成员”等术语来形式化地建构数学物件。

一、集合在近代数学的地位:

集合在数学领域具有无可比拟的特殊重要性。集合论的基础是由德国数学家康托尔在19世纪70年代奠定的,经过一大批卓越的科学家半个世纪的努力,到20世纪20年代已确立了其在现代数学理论体系中的基础地位,可以说,现代数学各个分支的几乎所有成果都构筑在严格的集合理论上。

二、集合在数学中的运用:

集合是数学中一个非常重要的概念,在高等数学中,如集合论,如群论,概率论,二元关系,函数,甚至解析几何都要用到集合,集合是一种数学方法,也是一种数学思想,他几乎

渗透到数学各个领域,数学中常用的整体思想与集合就有很大的相似之处在日常生活中我们会遇到许多群体的问题,集合就是研究群体及群体种元素的,只不过这些好事的数学家喜欢钻研,弄出了许多更本质更深层的东西,让我们觉得集合离现实有些远。

2.生活中的集合:

把一组对象放在一起,作为讨论的范围,这是人类早期就有的思想方法,继而把一定程度抽象了的思维对象放在一起作为研究对象,这种思想就是集合思想。集合思想在小学中就有体现,那些并不陌生的集合图也就是典型的例子。它在生活中是否有一定的用途呢?我们来寻找寻找吧。

一个关于数学的脑筋急转弯:2对父子4人一起到餐厅用餐,服务员却只给了他们三副餐具,为什么?可能有些人就想不明白了。其实,只有我、爸爸和爷爷三个人,重复了爸爸这个人,当然只需要三副餐具。这个脑筋急转弯已经体现出集合在生活中的应用。

在各种劳动生产中,各种产品都不可避免,或多或少的出现损坏的情况。例如在农产中,如此之多的合格农产品,数上三天三夜都可能数不过来。但我们照样能够利用集合思想来完成合格农产品的统计。例如:有10亩地,每亩可种上4000颗稻谷种子,每颗种子可收获10个谷子。不合格共有2000颗。请问合格的有多少颗?总共的稻谷=10*4000*10=400000(颗)合格的稻谷=总共的稻谷—不合格的稻谷=400000-2000=39800(颗),这对于产业的科学分析、改进、生产水平起着一定至关重要的作用。

其实,只要留心观察,还有许许多多的数学围绕着我们身边。我也深深地感受到生活中的数学的魅力。今后,我还会留心观察身边的数学,为自已的成绩更上一层楼。

知识讲解_集合及集合的表示_基础

集合及集合的表示 【学习目标】 1.了解集合的含义,会使用符号“∈”“?”表示元素与集合之间的关系. 2.能选择自然语言、集合语言(列举法或描述法)描述不同的具体问题,感受集合语言的意义和作用. 3.理解集合的特征性质,会用集合的特征性质描述一些集合,如常用数集、解集和一些基本图形的集合等. 【要点梳理】 集合概念及其基本理论,称为集合论,是近、现代数学的一个重要的基础,一方面,许多重要的数学分支,都建立在集合理论的基础上.另一方面,集合论及其所反映的数学思想,在越来越广泛的领域中得到应用. 要点一:集合的有关概念 1.集合理论创始人康托尔称集合为一些确定的、不同的东西的全体,人们能意识到这些东西,并且能判断一个给定的东西是否属于这个总体. 2.一般地,研究对象统称为元素(element),一些元素组成的总体叫集合(set),也简称集. 要点诠释: (1)对于集合一定要从整体的角度来看待它.例如由“我们班的同学”组成的一个集合A,则它是一个整体,也就是一个班集体. (2)要注意组成集合的“对象”的广泛性:一方面,任何一个确定的对象都可以组成一个集合,如人、动物、数、方程、不等式等都可以作为组成集合的对象;另一方面,就是集合本身也可以作为集合的对象,如上面所提到的集合A,可以作为以“我们高一年级各班”组成的集合B的元素. 3.关于集合的元素的特征 (1)确定性:设A是一个给定的集合,x是某一个具体对象,则x或者是A的元素,或者不是A的元素,两种情况必有一种且只有一种成立. (2)互异性:一个给定集合中的元素,指属于这个集合的互不相同的个体(对象),因此,同一集合中不应重复出现同一元素. (3)无序性:集合中的元素的次序无先后之分.如:由1,2,3组成的集合,也可以写成由1,3,2组成一个集合,它们都表示同一个集合. 要点诠释: 集合中的元素,必须具备确定性、互异性、无序性.反过来,一组对象若不具备这三性,则这组对象也就不能构成集合,集合中元素的这三大特性是我们判断一组对象是否能构成集合的依据.解决与集合有关的问题时,要充分利用集合元素的“三性”来分析解决,也就是,一方面,我们要利用集合元素的“三性”找到解题的“突破口”;另一方面,问题被解决之时,应注意检验元素是否满足它的“三性”. 4.元素与集合的关系: (1)如果a是集合A的元素,就说a属于(belong to)A,记作a∈A ? (2)如果a不是集合A的元素,就说a不属于(not belong to)A,记作a A 5.集合的分类 (1)空集:不含有任何元素的集合称为空集(empty set),记作:?. (2)有限集:含有有限个元素的集合叫做有限集. (3)无限集:含有无限个元素的集合叫做无限集. 6.常用数集及其表示 非负整数集(或自然数集),记作N 正整数集,记作N*或N + 整数集,记作Z 有理数集,记作Q 实数集,记作R 要点二:集合的表示方法 我们可以用自然语言来描述一个集合,但这将给我们带来很多不便,除此之外还常用列举法和描述法来表示集合. 1.自然语言法:用文字叙述的形式描述集合的方法.如:大于等于2且小于等于8的偶数构成的集合.

在小学数学教学中如何渗透集合思想的几点做法

在小学数学教学中如何渗透集合思想的几点做法 集合是近代数学中的一个重要概念。集合思想是现代数学思想向小学数学渗透的重要标志,在解决某些数学问题时,若是运用集合思想,可以使问题解决得更简单明了。集合论的创始人是德国的数学家康托(1845——1918),其主要思想方法可归结为三个原则,即概括原则、外延原则、一一对应原则。自集合论创立以来,它的概念、思想和方法已经渗透到现代数学的各个分支中,成为现代数学的基础。瑞士数学家欧拉(1707——1787)最早使用了表示两个非空集之间的关系的图,现称欧拉图。英国数学家维恩最早使用了另一种图即可以用于表示任意的几个集合(不论它们之间的关系如何,都可以画成同一样式),又称“维恩图”,用维恩图表示集合,有助于探索某些数学题的解决思路。 布鲁纳曾说,掌握基本的数学思想方法能使数学更易于理解和记忆,领会基本数学思想方法是通向迁移大道的“光明之路”。数学思想方法不但对学生学习具有普遍的指导意义,而且有利于学生形成科学的思维方式和思维习惯。 集合思想包括概念、子集思想、交集思想、并集思想、差集思想、空集思想、一一对应思想等,作为数学思想方法的一种,在教学中是具有很大的指导意义的。那么,在小学数学教学中我们应该如何应用集合思想进行教学活动呢? 一、集合概念在小学数学教学中的应用

集合思想的概念在教学中是不必向学生作解释的,教师主要指导学生看懂集合图的意思,会根据集合图来解题或者帮助解题。图形本身直观地应用了集合的表示方法——图示法,因此在小学低年级中运用这个方法对于教学是很有帮助的。 在认数教学中,教师要结合各种集合图,可以是选用书本上的,也可以是选用一些生活中常见的事物自己画。同时还可以反过来给学生一个数字,让学生画集合图,这样既可以让学生开动脑筋发挥自己的想象,也可以让学生更了解集合中的元素与基数概念的联系。 在日常教学中,教师还要让学生理解一些用来描述集合的常用术语,如“一些”、“一堆”、“一组”、“一群”等。比如说,在小学数学教材北师大版一年级(上册)的第四单元分类中,就出现了这么一张图,让学生观察,要求把玩具放一堆,文具放一堆,服装鞋帽放一堆,这种把具有同一种属性的东西放在一起,这就是集合的整体概念。 在认识0-10的十一个数字中,每个数字都有一张相应的集合图,也就是告诉学生,一个集合中有几个元素就用“几”来表示。如北师大版一年级(上册)第4页找一找的活动中“1”可以表示图里的一座房子;“2”可以表示图里的两个人。这就很形象的把集合中的元素与基数的概念有机的联系起来。 二、子集、交集、并集、差集、空集思想在小学数学教学中的应用 1、子集思想在小学数学教学中的应用 教学数的大小这一问题时,就可以应用子集思想。如北师大版二

初中数学思想方法主要有哪些

一、用字母表示数的思想,这是基本的数学思想之一 在代数第一册第一章“代数初步知识”中,主要体现了这种思想。例如: 设甲数为a,乙数为b,用代数式表示:(1)甲乙两数的和的2倍:2(a+b) (2)甲数的1/3与乙数的1/2差:1/3a-1/2b 二、数形结合的思想 “数形结合”是数学中最重要的,也是最基本的思想方法之一,是解决许多数学问题的有效思想。实中数学教材中下列内容体现了这种思想。 1、数轴上的点与实数的一一对应的关系。 2、平面上的点与有序实数对的一一对应的关系。 3、函数式与图像之间的关系。 4、线段(角)的和、差、倍、分等问题,充分利用数来反映形。 5、解三角形,求角度和边长,引入了三角函数,这是用代数方法解决何问题。 6、“圆”这一章中,贺的定义,点与圆、直线与圆、圆与圆的位置关系等都是化为数量关系来处理的。 7、统计初步中统计的第二种方法是绘制统计图表,用这些图表的反映数据的分情况,发展趋势等。实际上就是通过“形”来反映数据扮布情况,发展趋势等。实际上就是通过“形”来反映数的特征,这是数形结合思想在实际中的直接应用。 三、转化思想 在整个初中数学中,转化(化归)思想一直贯穿其中。转化思想是把一个未知(待解决)的问题化为已解决的或易于解决的问题来解决,它是数学基本思想方法之一。下列内容体现了这种思想: 1、分式方程的求解是分式方程转化为前面学过的一元二次方程求解,这里把待解决的新问题化为已解决的问题来求解,体现了转化思想。 2、解直角三角形;把非直角三形问题化为直角三角形问题;把实际问题转化为数学问题。 3、“圆”这一章中,证明圆周角定理进所做的分析:证明弦切角定理的思路:求两圆的切线长的问题。这些转化都是通过辅助线来完成的。 4、把三角形或多边形中的某种线段或面积问题化为相似比问题来解决。 四、分类思想 集合的分类,有理数的分类、整式的分类、实数的分类、角的分类,三角形的分类、四边形的分类、点与圆的位置关系、直线与圆的位置关系,圆与圆的位置关生活经验等都是通过分类讨论的。 五、特殊与一般化思想

常用数学符号大全(注音及注解)

数学符号及读法大全 常用数学输入符号:≈≡≠=≤≥<>≦≧∷±+-× ÷/∫?∝∞??∑∏∪∩∈∮?//?‖∟?≌∽√()【】{}ⅠⅡ⊕?∠αβγδεδεζΓ

i -1的平方根 f(x) 函数f在自变量x处的值 sin(x) 在自变量x处的正弦函数值 exp(x) 在自变量x处的指数函数值,常被写作e x a^x a的x次方;有理数x由反函数定义 ln x exp x 的反函数 a x同 a^x log b a 以b为底a的对数; b log b a = a cos x 在自变量x处余弦函数的值 tan x 其值等于 sin x/cos x cot x 余切函数的值或 cos x/sin x sec x 正割含数的值,其值等于 1/cos x csc x 余割函数的值,其值等于 1/sin x asin x y,正弦函数反函数在x处的值,即 x = sin y acos x y,余弦函数反函数在x处的值,即 x = cos y atan x y,正切函数反函数在x处的值,即 x = tan y acot x y,余切函数反函数在x处的值,即 x = cot y asec x y,正割函数反函数在x处的值,即 x = sec y acsc x y,余割函数反函数在x处的值,即 x = csc y ζ角度的一个标准符号,不注明均指弧度,尤其用于表示atan x/y,当x、y、z用于表示空间中的点时 i, j, k 分别表示x、y、z方向上的单位向量 (a, b, c) 以a、b、c为元素的向量 (a, b) 以a、b为元素的向量 (a, b) a、b向量的点积 a?b a、b向量的点积 (a?b) a、b向量的点积 |v| 向量v的模 |x| 数x的绝对值 Σ 表示求和,通常是某项指数。下边界值写在其下部,上边界值写在其上部。 如j从1到100 的和可以表示成:。这表示1 + 2 + … + n M 表示一个矩阵或数列或其它 |v> 列向量,即元素被写成列或可被看成k×1阶矩阵的向量

集合知识点归纳定稿版

集合知识点归纳精编 W O R D版 IBM system office room 【A0816H-A0912AAAHH-GX8Q8-GNTHHJ8】

集合的基础知识 一、重点知识归纳及讲解 1.集合的有关概念 一组对象的全体形成一个集合,集合里的各个对象叫做集合的元素 ⑴集合中的元素具有以下的特性 ①确定性:任给一元素可确定其归属.即给定一个集合,任何一个对象是不是这个集合的元素也就确定了. 例如,给出集合{1,2,3,4},它只有1、2、3、4四个元素,其他对象都不是它的元素; 而“所有的好人”、“视力比较差的全体学生”、“我国的所有小河流”就不能视为集合,因为组成它们的对象是不能确定的. ②互异性:集合中的任何两个元素都是不同的对象,也就是说,集合中的元素必须是互不相同的(即没有重复现象),相同的元素在集合中只能算作一个.例如,不能有{1,1,2},而必须写成{1,2}. ③无序性:集合中的元素间是无次序关系的.例如,{1,2,3}与{3,2,1}表示同一个集合. (2)集合的元素 某些指定的对象集在一起就成为一个集合,集合中的每个对象叫做这个集合的元素.若a是集合A的元素,就说a属于集合A,记作a∈A.不含任何元素的集合叫做空集,记作φ. (3)集合的分类:有限集与无限集. (4)集合的表示法:列举法、描述法和图示法.

列举法:将所给集合中的元素一一列举出来,写在大括号里,元素与元素之间用逗号分开,常用于表示有限集. 描述法:将所给集合中全部元素的共同特性和性质用文字或符号语言描述出来.常用于表示无限集. 使用描述法时,应注意六点: ①写清集合中元素的代号;②说明该集合中元素的性质; ③不能出现未被说明的字母;④多层描述时,应当准确使用“且”,“或”; ⑤所有描述的内容都要写在大括号内;⑥用于描述的语句力求简明、确切. 图示法:画一条封闭的曲线,用它的内部来表示一个集合,常用于表示又需给具体元 素的抽象集合,对已给出了具体元素的集合当然也可用图示法来表示. 如:A={1,2,3,4} 例1、设集合A={a,a+b, a+2b},B={a,ac,ac2} ,且A=B,求实数c值. 分析: 欲求c值,可列关于c的方程或方程组,根据两集合相等的意义及集合元素的互异性,有下面两种情况:(1)a+b=ac且a+2b= ac2,(2)a+b= ac2且a+2b=ac两种情况. 解析: (1)a+b=ac且a+2b= ac2,消去b得:a+ ac2-2ac=0.∵a=0时,集B中三元素均为零,根据集合元素互异性舍去a=0.∴c2-2c+1=0,即c=1,但 c=1时,B中的三个元素也相同,舍去c=1,此时无解.

初中数学中的主要数学思想方法

初中数学中的主要数学思想方法 初中数学中蕴含的数学思想很多,其中最主要的数学思想方法包括转化思想、数形结合思想、分类讨论思想、函数与方程思想等. (1) 转化思想.转化思想就是人们将需要解决的问题,通过演绎、归纳等转化手段,归结为另一种相对容 易解决或已经有解决方法的问题,从而使原来的问题得到解决.转化思想体现在数学解题过程中就是将未知的、 陌生的、复杂的问题通过演绎和归纳转化为已知的、熟悉的、简单的问题. 初中数学中诸如化繁为简、化难为易、化未知为已知等均是转化思想的具体体现.具体而言,代数式中加法与减法的转化,乘法与除法的转化,用换元法解方程,在几何中添加辅助线,将四边形的问题转化为三角形 的问题,将一些角转化为圆周角并利用圆的知识解决问题等等都体现了转化思想.在初中数学中,转化思想运用 的最为广泛.

(2) 数形结合思想.数学是研究现实世界空间形式和数量关系的科学,因而,在某种程度上可以说数学研究 是围绕着数与形展开的.初中数学中的“数”就是代数式、方程、函数、不等式等符号表达式,初中数学中的“形”就是图形、图象、曲线等形象表达式.数形结合思想的实质是将抽象的数学语言(“数” ) 与直观的图象(“形“ ) 结合起来,数形结合思想的关键就是抓住“数”与“形”之间本质上的联系,以“形”直观地表达“数”, 以“数”精确地研究“形”,实现代数与几何之间的相互转化.数形结合思想包括“以形助数”和“以数辅形” 两个方面,它可以使代数问题几何化,几何问题代数化.“数无形时不直观,形无数时难入微.”数形结合是研究数学、解决数学问题的重要思想,在初中数学中有着广泛应用. 譬如,在初中数学中,通过数轴将数与点对应,通过直角坐标系将函数与图象对应均体现了数形结合思想的 应用.再比如,用数形结合的思想学习相反数、绝对值等概念,学习有理数大小比较的法则,研究函数的性质等,从形象思维过渡到抽象思维,从而显著降低了学习难度. (3) 分类讨论思想.分类讨论思想就是根据数学对象本质属性的共同点和差异点,将数学对象区分为不同的 种类.分类是以比较为基础的,它有助于揭示数学对象之间的内在联系与规律,有助于学生总结归纳数学知识、

数学符号大全

目录 数学符号起源 (1) 数学符号种类 (2) 数学符号读法 (10) 数学符号起源 数学除了记数以外,还需要一套数学符号来表示数和数、数和形的相互关系。数学符号的发明和使用比数字晚,但是数量多得多。现在常用的有200多个,初中数学书里就不下20多种。它们都有一段有趣的经历。 例如加号曾经有好几种,现在通用"+"号。 "+"号是由拉丁文"et"("和"的意思)演变而来的。十六世纪,意大利科学家塔塔里亚用意大利文"più"(加的意思)的第一个字母表示加,草为"δ"最后都变成了"+"号。 "-"号是从拉丁文"minus"("减"的意思)演变来的,简写m,再省略掉字母,就成了"-"了。 到了十五世纪,德国数学家魏德美正式确定:"+"用作加号,"-"用作减号。 乘号曾经用过十几种,现在通用两种。一个是"3",最早是英国数学家奥屈特1631年提出的;一个是"2",最早是英国数学家赫锐奥特首创的。德国数学家莱布尼茨认为:"3"号象拉丁字母"X",加以反对,而赞成用"2"号。他自己还提出用"п"表示相乘。可是这个符号现在应用到集合论中去了。 到了十八世纪,美国数学家欧德莱确定,把"3"作为乘号。他认为"3"是"+"斜起来写,是另一种表示增加的符号。 平方根号曾经用拉丁文“Radix”(根)的首尾两个字母合并起来表示,十七世纪初叶,法国数学家笛卡儿在他的《几何学》中,第一次用“ⅳ”表示根号。“ⅳ”是由拉丁字线“r”变,“——”是括线。 "÷"最初作为减号,在欧洲大陆长期流行。直到1631年英国数学家奥屈特用":"表示除或比,另外有人用"-"(除线)表示除。后来瑞士数学家拉哈在他所著的《代数学》里,才根据群众创造,正式将"÷"作为除号。

初中数学思想方法大全

一、宏观型思想方法 数学思想是数学基础知识、基本技能的本质体现,是形成数学能力、数学意识的桥梁,是灵活应用数学知识、技能的灵魂。 (一)、转化(化归)思想 解决数学问题就是一个不断转化的过程,把问题进行变换,使之化繁为简、化难为易、化生疏为熟悉,变未知为已知,从而使问题得以解决。 不是对原来的问题直接解答,而是想方设法对它进行变形,直到把它转化成某个(某几个)已经解决了的问题为止。通过转化可使原条件中隐含的因素显露出来,从而缩短已知条件和结论之间的距离,找出它们之间内在的联系,以便应用有关方法将问题解决。 “转化”的思想是一种最基本的数学思想。数学解题过程的实质就是转化过程,具体的说,就是把“新知识”转化为“旧知识”,把“未知”转化为“已知”,把“抽象”转化为“具体”,把“复杂问题”转化为“简单问题”,把“高次”转化为“低次”,在不断的相互转化中使问题得到解决。 可运用联想类比实现转化、利用“换元”、“添线”、消元法,配方法,进行构造变形实现转化、数形结合,实现转化。一般转化为特殊,有些代数问题,通过构造图形,化抽象为具体,借助直观启发思维,转化为易解的几何问题。有些不易解决的几何题通过辅助线转化为代数三角的知识来证明,有些结构比较复杂的问题,可以简化题中某一条件,甚至暂时撇开不顾,先考虑一个简化的问题,这种简化题对于证明原题常常能起到引路的作用。把实际问题转化为数学问题。结合解题进行化归思想方法的训练的做法:a、化繁为简;b、化高维为低维;c、化抽象为具体;d、化非规范性问题为规范性问题;e、化数为形;f、化实际问题为数学问题; g、化综合为单一;h、化一般为特殊。 有加减法的转化,乘除法的转化,乘方与开方的转化,添辅助线,设辅助元等等都是实现转化的具体手段。因此,首先要认识到常用的很多数学方法实质就是转化的方法 应用:A将未知向已知转化;B将陌生向熟知转化;C方程之间的转化;D平面图形间的转化;E空间图形与平面图形的转化;F统计图之间的相互转化。 例子:减法转化成加法(减去一个数等于加上这个数的相反数);除法转化成乘法(除以一个不等于零的数等于乘以这个数的倒数);多项式的先化简再代入求值;单项式乘单项式可化归为有理数乘法和同底数幂的乘法运算;单项式乘多项式和多项式乘多项式都可以化归为单项式乘单项式的运算;将求负数的立方根转化为求正数的立方根的相反数;实数近似运算中据问题需要取近似值,从而转化为有理数计算;将异分母分式的加减转化为同分母分式的加减;将分式的除法转化成分式的乘法;将分式方程转化为整式方程求解;将分子的次数不低于分母次数的分式用带余除法转化为整式部分和分式部分的和;将方程的复杂形式化为最简形式;通过立方程把实际问题转化为数学问题;通过解方程把未知转化为已知;把一元二次方程转化为一元一次方程求解;把二元二次方程组转化为二元一次方程组,再转化为一元一次方程从而求解;通过转化为解方程实现实数范围内二次三项式的分解、方程中字母系数的确定;角度关系的证明和计算;平行线的性质和判定;把几何问题向平行线等简单的熟悉的基本图形转化;特殊化(特殊值法、特殊位置、设项、几何中添辅助线等);图形的变换(轴对称、平移、旋转、相似变换);解斜三角形(多边形)时将其转化为解直角三角形; (二)、数形结合思想 数学的研究对象是现实世界中的数量关系(“数”)和空间形式(“形”),而“数”和“形”是相互联系、相互渗透的,一定条件下也是可以互相转化的,因此,在解决问题时,常需把同一问题的数量关系与空间形式结合起来考查,利用数的抽象严谨和形的直观表意,把抽象思维和形象思维结合起来,把数量关系问题通过图形性质进行研究,或者把图形性质问题通过数量关

常用数学符号大全

常用数学符号大全 1 几何符号 ?ⅷⅶ????△ 2 代数符号 ⅴⅸⅹ~∫ ≠ ≤ ≥ ≈ ∞ ? 3运算符号 ×÷√ ± 4集合符号 ??ⅰ 5特殊符号 ∑ π(圆周率) 6推理符号 |a| ??△ⅶ??≠ ? ±≥ ≤ ⅰ????↖↗↘↙ⅷⅸⅹ &; § ??←↑→↓??↖↗ Γ Δ Θ Λ Ξ Ο Π Σ Φ Χ Ψ Ω α β γ δε δ ε ζ η θ ι κ λ μ ν π ξ ζ η υ θ χ ψ ω 1 几何符号 ?ⅷⅶ????△ 2 代数符号 ⅴⅸⅹ~?????ⅵ? 3运算符号 ×÷ⅳa 4集合符号 ??ⅰ 5特殊符号 ⅲπ(圆周率) 6推理符号

|a| ??△ⅶ????a??ⅰ ? ???↖↗↘↙ⅷⅸⅹ &; § ??←↑→↓??↖↗ ΓΓΘΛΞΟΠ?ΦΥΦΧ αβγδεδεζηθικλ μνπξζηυθχψω Ⅰ Ⅱ Ⅲ Ⅳ Ⅴ Ⅵ Ⅶ Ⅷ Ⅸ Ⅹ Ⅺ Ⅻ ﹪ ﹫ ? ? ? ? ? ? ? ? ⅰⅱⅲ?ⅳⅴⅵ? ⅶ?ⅷⅸⅹ???? ??????????????????? ??? 指数0123:o123 上述符号所表示的意义和读法(中英文参照) + plus 加号;正号 - minus 减号;负号 a plus or minus 正负号 × is multiplied by 乘号 ÷ is divided by 除号 = is equal to 等于号

? is not equal to 不等于号 ? is equivalent to 全等于号 ? is approximately equal to 约等于 ? is approximately equal to 约等于号< is less than 小于号 > is more than 大于号 ? is less than or equal to 小于或等于? is more than or equal to 大于或等于% per cent 百分之… ⅵ infinity 无限大号 ⅳ (square) root 平方根 X squared X的平方 X cubed X的立方 ? since; because 因为 ? hence 所以 ⅶ angle 角 ? semicircle 半圆 ? circle 圆 ? circumference 圆周 △ triangle 三角形 ? perpendicular to 垂直于 ? intersection of 并,合集 ? union of 交,通集

集合运算中蕴涵的数学思想方法

集合运算中蕴涵的数学思想方法 江苏省姜堰中学 张圣官 (225500) 2003年教育部颁布的《普通高中数学课程标准》中,特别提到“强调本质,注意适度形式化”,其中写道“要使学生理解数学概念、结论逐步形成的过程,体会蕴涵在其中的数学思想方法”。在数学教育的各个环节中渗透数学思想方法,不仅具有提高教学效果的近期功效,而且具有优化学生的认知结构、进而全面提高学生数学素质的远期功效,这已经成了大家的共识。然而,对数学材料本身所蕴涵的数学思想方法进行挖掘和提炼,并在数学解题中加以运用和完善,这一方面还需要我们进行探索与研究。本文拟就集合的交、并、补集运算中所蕴涵的数学思想方法作一点说明。 1.交集思想方法 假设有两个集合A 和B ,A={x|x 具有性质P 1},B={x|x 具有性质P 2},则A ∩ B ={x|x 具有性质P 1和P 2}。在研究同时具有性质P 1和P 2的对象时可以考虑运用交集思想方法。从哲学意义上讲,A 和B 反映的是个性,A ∩ B 反映的是共性,而A ∩ B ?A 和A ∩ B ?B 则表明共性存在于个性之中这一基本原理。 例1设A={(x ,y )|x=m,y=3m+1,m ∈N + },B={(x ,y )|x=n,y=a(n 2-n+1),n ∈N + },问 是否存在非零整数a 使得A ∩ B ≠Φ?证明你的结论。 分析:集合A 、B 可化简为A={(x ,y )|y=3x+1,x ∈N +},B={(x ,y )|y=a(x 2-x+1),x ∈N + }。 本题是探索性问题,先假设a 存在,然后开始研究。 简解:要使A ∩ B ≠Φ,即A 、B 有共同的元素,只要方程组?? ?+-=+=)1(132x x a y x y 至少有一组正整数解,也即是方程ax 2-(a+3)x+a-1=0至少有一个正整数解。 ∵a ≠0且a ∈Z , 由⊿≥0,得3a 2-10a-9≦0,∴313253132 5+-≤≤a , ∴a=1,2,3,4 。 经检验,a=1,4符合题意;a=2,3不符合。 ∴存在a=1或4 ,使得A ∩ B ≠Φ 。 评注:本题如果将A 、B 视为点集,那么问题就化归为求直线与抛物线的交点中是否存在整点的问题令人望而生畏。以上解法利用交集思想方法,从共性入手,从而由A 、B 的共性使问题获得了优解。 例2已知n 是同时满足以下两个条件的最小正整数:①是15的倍数;②各个数位上的数字都是0或8 。试求n 。 解:设A={15的倍数},B={各个数位上数字都是0或8的正整数},则所求的n 即为 A ∩B 中的最小元素。 ∵A={3的倍数}∩{5的倍数}={数字和是3的倍数的整数}∩{个位数是0或5的整数}, ∴A ∩B={个位数字是0,其余各个数位上是0或8,且8的个数是3的倍数的正整数}。 由n 是A ∩B 中最小的数即知,n=8880 。 2.并集思想方法 有些数学问题牵涉若干个体,如果用孤立静止的观点来考虑问题,则或过于繁冗或难以奏效。如果在挖掘各个个体间隐含的某种关系的基础上将各个个体合并(取并集)为一个有机整体进行处理,则往往会出奇制胜,这就是并集思想方法。从哲学意义上讲,这种合并可

初中数学思想方法汇总

初中数学思想方法的概念、种类 及渗透策略分析 分类讨论思想 一、分类讨论思想的意义 当我们在解决数学问题时,有时由于被研究对象的属性不同,影响了研究问题的结果,因而需对不同属性的对象进行分类研究;或者由于在研究问题过程中出现了不同情况,因而需对不同情况进行分类研究.通过分类讨论,常能化繁为简,更清楚地暴露事物的本质,并增加条件,“分类讨论”,简言就是先分类,后讨论。阅读大纲和教材会发现,初中数学对分类讨论本着先易后难、循渐进的原则,把“分类讨论思想”分两个层次,即“分类思想”和“讨论思想”。分类思想在初中数学占有相当要的地位,通过教学应使学生确立类思想,学会分类方法,而“讨论思则要求通过有关知识的传授起到潜默化的作用。 分类讨论是一种逻辑方法,也是一种数学思想。有关分类讨论思想的数学问题具有明显的逻辑性、综合性、探索性,能训练人的思维条理性和概括性,所以在试题中占有重要的位置。 二、分类讨论的一般步骤是:明确讨论对象,确定对象的全体→确定分类标准,正确进行分类→逐步进行讨论,获取阶段性结果→归纳小结,综合得出结论。 三、分类讨论思想的分类原则 : 分类讨论必须遵循原则进行,在初中阶段,我们经常用到的有以下4大原则: (1)同一性原则 (2)互斥性原则 (3)相称性原则 (4)多层次性原则 四、七年级数学中体现分类讨论思想的知识点 上册:1、含字母式子的绝对值的化简2、过平面的点画直线的条数3、线段、角的计算4、立体图形异面点之间的最短距离5、数轴上两点间的距离6、分段计费问题。下册:1、两边分别平行的两角的关系2、正数的平方根3、实数的分类4、坐标平面点的坐标5、P 112第10题6、解字母系数的不等式7、借助不等式(组)的正整数解讨论方案设计问题。 五、典型例题 例1.(2011中考 )解关于x 的不等式组: a(2-x )>3-x )9x a +( >9a+8 例2已知直线AB 上一点C ,且有CA=3AB ,则线段CA 与线段CB 之比为__ 或____ 。 练习:已知A 、B 、C 三点在同一条直线上,且线段AB=7cm ,点M 为线段AB 的中点,线段BC=3cm ,点N 为线段BC 的中点,求线段MN 的长.

数学符号大全

1、几何符号 ⊥(垂直)∥(平行)∠(角)⌒(弧)⊙(圆) ≡;≌(全等)△(三角形) 2、代数符号 ∝∧∨~∫≠≤≥≈∞∶ 3、运算符号 如加号(+),减号(-),乘号(×或·),除号(÷或/),两个集合的并集(∪),交集(∩),根号(√),对数(log,lg,ln),比(:),微分(dx),积分(∫),曲线积分(∮)等。 4、集合符号 ∪∩∈ 5、特殊符号 ∑π(圆周率) 6、推理符号 |a| ⊥∽△∠∩∪≠≡±≥≤∈← ↑→↓↖↗↘↙∥∧∨ &; § ①②③④⑤⑥⑦⑧⑨⑩ ΓΔΘΛΞΟΠΣΦΧΨΩ αβγδεδεζηθικλ μνπξζηυθχψω ⅠⅡⅢⅣⅤⅥⅦⅧⅨⅩⅪⅫ ⅰⅱⅲⅳⅴⅵⅶⅷⅸⅹ ∈∏∑∕√∝∞∟∠∣∥∧∨∩∪∫∮ ∴∵∶∷∽≈≌≒≠≡≤≥≦≧≮≯⊕⊙⊥

⊿⌒℃ 指数0123:o123 7、数量符号 如:i,2+i,a,x,自然对数底e,圆周率π。 8、关系符号 如“=”是等号,“≈”是近似符号,“≠”是不等号,“>”是大于符号,“<”是小于符号,“≥”是大于或等于符号(也可写作“≮”),“≤”是小于或等于符号(也可写作“≯”),。“→”表示变量变化的趋势,“∽”是相似符号,“≌”是全等号,“∥”是平行符号,“⊥”是垂直符号,“∝”是成正比符号,(没有成反比符号,但可以用成正比符号配倒数当作成反比)“∈”是属于符号,“??”是“包含”符号等。 9、结合符号 如小括号“()”中括号“[]”,大括号“{}”横线“—” 10、性质符号 如正号“+”,负号“-”,绝对值符号“| |”正负号“±” 11、省略符号 如三角形(△),直角三角形(Rt△),正弦(sin),余弦(cos),x的函数(f(x)),极限(lim),角(∠), ∵因为,(一个脚站着的,站不住) ∴所以,(两个脚站着的,能站住)总和(∑),连乘(∏),从n个元素中每次取出r个元素所有不同的组合数(C(r)(n) ),幂(A,Ac,Aq,x^n)等。 12、排列组合符号 C-组合数 A-排列数 N-元素的总个数 R-参与选择的元素个数 !-阶乘,如5!=5×4×3×2×1=120

小学数学思想方法的梳理集合思想

小学数学思想方法的梳理(集合思想) 课程教材研究所王永春 十二、集合思想 1. 集合的概念。 把指定的具有某种性质的事物看作一个整体,就是一个集合(简称集),其中每个事物叫做该集合的元素(简称元)。给定的集合,它的元素必须是确定的,即任何一个事物是否属于这个集合,是明确的。如“学习成绩好的同学”不能构成一个集合,因为构成它的元素是不确定的;而“语文和数学的平均成绩在90分及以上的同学”就是一个集合。一个给定集合中的元素是互不相同的,即集合中的元素不重复出现。只要两个集合的元素完全相同,就说这两个集合相等。 集合的表示法一般用列举法和描述法。列举法就是把集合的元素一一列举出来,并用花括号“{}”括起来表示集合的方法。描述法就是在花括号内写出规定这个集合元素的特定性质来表示集合的方法。列举法的局限性在于当集合的元素过多或者有无限多个时,很难把所有的元素一一列举出来,这时描述法便体现出了优越性。此外,有时也可以用封闭的曲线(文恩图)来直观地表示集合及集合间的关系,曲线的内部表示集合的所有元素。 一一对应是两个集合之间元素(这种元素不一定是数)的一对一的对应,也就是说集合A中的任一元素a,在集合B中都有唯一的元素b与之对应;并且在集合B中的任一元素b,在集合A中也有唯一的元素a与之对应。数集之间可以建立一一对应,如正奇数集合和正偶数集合之间的元素可以建立一一对应。其他集合之间也可以建立一一对应,如五(1)班有25个男生,25个女生,如果把男生和女生各自看成一个集合,那么这两个集合之间可以建立一一对应;再如,中国、美国、俄罗斯、英国、法国、德国作为一个集合,北京、华盛顿、莫斯科、伦敦、巴黎、柏林作为一个集合,这两个集合之间也可以建立一一对应。 2. 集合思想的重要意义。 集合理论是数学的理论基础,从集合论的角度研究数学,便于从整体和部分及二者的关系上研究数学各个领域的知识。如数系的扩展,从小学的自然数到整数,再到中学的有理数、无理数和实数,都可以从集合的角度来描述。有时用集合语言来表述有关概念更为简洁,如全体偶数的集合可表示为{x|x=2k,k∈Z}。集合沟通了代数(数)和几何之间的关系,如y = kx ,既是正比例函数,又可以表示一条直线;也就是说在平面直角坐标系上,这条直线是由满足y = kx 的有序实数对所组成的点的集合。用集合图描述概念的分类及概念之间的关系,往往层次分明、直观清晰,如四边形的分类可以用文恩图表示。 3.集合思想的具体应用。 集合思想在小学数学的很多内容中进行了渗透。在数的概念方面,如自然数可以从对等集合基数(元素的个数)的角度来理解,再如在一年级通过两组数量相等的实物建立一一对应,让学生理解“同样多”的概念,实际上就是两个对等集合的元素之间建立一一对应;数的运算也可以从集合的角度来理解,如加法可以理解为两个交集为空集的集合的并集,再如求两数相差多少,通过把代表两数的实物图或直观图一对一地比较,来帮助学生理解用减法计算的道理;实际上就是把代表两数的实物分别看作集合A、B,通过把A的所有元素与B的部分元素建立一一对应,然后转化为求B与其子集(与A等基)的差集的基数。此外,在小学数学中还经常用集合图表示概念之间的关系,如把所有三角形作为一个整体,看作一个集合,记为A;把锐角三角形、直角三角形和钝角三角形各自看作一个集合,分别记为B、C、D,这三个集合就是集合A的三个互不相交的子集,B、C、D的并集就是A。再如在学习公因数和公倍数时,都是通过把两个数各自的因数和倍数分别用集合图表示,再求两个集合的交集,直观地表示了公因数和公倍数的概念。4.集合思想的教学。 集合思想在小学数学中广泛渗透,在教学中应注意以下几个问题。 第一,应正确理解有关概念。我们知道,两个数之间可以比较大小,但是两个集合之间无法直接比较大小,也就是说一般不说两个集合谁大谁小。如有两个集合A、B,当且仅当它们有完全相同的元素时,称A、B

关于初中数学思想方法的思考

关于初中数学思想方法的思考 数学思想方法的渗透应根据教学计划有步骤地进行。一般在知识的概念形成阶段导入概念型数学思想,如方程思想、相似思想、已知与未知互相转化的思想、特殊与一般互相转化的思想等等。在知识的结论、公式、法则等规律的推导阶段,要强调和注重思维方法,如解方程的如何消元降次、函数的数与形的转化、判定两个三角形相似有哪些常用思路等。在知识的总结阶段或新旧知识结合部分,要选配结构型的数学思想,如函数与方程思想体现了函数、方程、不等式间的

相互转化,分数讨论思想体现了局部与整体的相互转化。在所有数学建构及问题的处理方面,注意体现其根本思想,如运用同解原理解一元一次方程,应注意为简便而采取的移项法则。 3、重视课堂教学实践,在知识的引进、消化和应用过程中促使学生领悟和提炼数学思想方法。 数学知识发生的过程也是其思想方法产生的过程。在此过程中,要向学生提供丰富的、典型的以及正确的直观背景材料,创设使认知主体与客体之间激发作用的环境和条件,通过对知识发生过程

的展示,使学生的思维和经验全部投人到接受问题、分析问题和感悟思想方法的挑战之中,从而主动构建科学的认知结构,将数学思想方法与数学知识融汇成一体,最终形成独立探索分析、解决问题的能力。 概念既是思维的基础,又是思维的结果。恰当地展示其形成的过程,拉长被压缩了的“知识链”,是对数学抽象与数学模型方法进行点悟的极好素材和契机。在概念的引进过程中,应注意:①解释概念产生的背景,让学生了解定义的合理性和必要性;②揭示概念的形成

过程,让学生综合概念定义的本质属性;③巩固和加深概念理解,让学生在变式和比较中活化思维。 在规律(定理、公式、法则等)的揭示过程中,教师应注重数学思想方法,培养学生的探索性思维能力,并引导学生通过感性的直观背景材料或已有的知识发现规律,不过早地给结论,讲清抽象、概括或证明的过程,充分地向学生展现自己是如何思考的,使学生领悟蕴含其中的思想方法。 数学问题的化解是数学教学的核心,其最终目的要学会运用数学知识和思想方法分析和解决实

特殊数学符号大全和使用word经验

1 几何符号 ?ⅷⅶ????△ 2 代数符号 ⅴⅸⅹ~?????ⅵ? 3运算符号 ×÷ⅳ± 4集合符号 ??ⅰ 5特殊符号 ⅲι(圆周率) 6推理符号 |a| ??△ⅶ????±?? ⅰ? ???↖↗↘↙ⅷⅸⅹ &; § ??←↑→↓??↖↗ ΓΔΘΛΞΟΠΣΦΧΨΩ ???????αβγδε ζ ηθικλμνξοπρ ⅠⅡⅢⅣⅤⅥⅦⅧⅨⅩⅪⅫ ⅰⅱⅲⅳⅴⅵⅶⅷⅸⅹ

ⅰⅱⅲ?ⅳⅴⅵ? ⅶ?ⅷⅸⅹ???? ????????????????⊕?? ??℃ 指数0123:o123 上述符号所表示的意义和读法(中英文参照) + plus 加号;正号 - minus 减号;负号 ± plus or minus 正负号 × is multiplied by 乘号 ÷ is divided by 除号 = is equal to 等于号 ? is not equal to 不等于号 ? is equivalent to 全等于号 ? is approximately equal to 约等于 ? is approximately equal to 约等于号 < is less than 小于号 > is more than 大于号 ? is less than or equal to 小于或等于 ? is more than or equal to 大于或等于 % per cent 百分之… ⅵ infinity 无限大号 ⅳ (square) root 平方根

X squared X的平方 X cubed X的立方 ? since; because 因为 ? hence 所以 ⅶ angle 角 ? semicircle 半圆 ? circle 圆 ○ circumference 圆周 △ triangle 三角形 ? perpendicular to 垂直于 ? intersection of 并,合集 ? union of 交,通集 ? the integral of …的积分 ⅲ (sigma) summation of 总和 ° degree 度 ′ minute 分 〃 second 秒 # number …号 @ at 单价 *标点符号:

集合与符号

第一章 准备知识 §1.1 集合与符号 一、集合 1.定义:由确定的一些对象汇集的总体称为集合; 组成集合的这些对象被称为集合的元素. 2.表示:用大写字母A 、B 、C …表示集合; 用小写字母a 、b 、c …表示集合的元素. x 是集合E 的元素,记为E x ∈(读作:x 属于E ); y 不是集合E 的元素,记为E y ?(读作:y 不属于E ). 不含任何元素的集合称为空集合,记作Φ 3.集合间的关系 (1)子集合:如果集合E 的任何元素都是集合F 的元素,那末我们就说E 是F 的子集合,简称为子集,记为 (F E ?读作E 包含于F ), 或者 E F ?(读作F 包含E ). (2)相等:如果集合E 的任何元素都是集合F 的元素,并且集合F 的任何元素也都是集合E 的元素(即F E ?并且E F ?),那末我们说集合E 与集合F 相等,记为 F E =. 我们约定:空集合Φ是任何集合E 的子集,即 Φ?E . 二、数集 1. N 自然数集; Z 整数集; Q ——有理数集; R ——实数集; C 把非负整数、非负有理数和非负实数的集合分别记为Z +,Q +和R +,显然有 N ?Z ?Q ?R ?C . 和 N ?Z +?Q +?R +. 2.区间 ——数轴上的一段所有点组成的集合

3.邻域 设∈a R ,.0>δ 数集 {} δ<-a x x 称为a 的δ邻域,记为 ),(δa U ={} δ<-a x x =()δδ+-a a ,, a 称为邻域的中心;δ称为邻域的半径。 当不需要注明邻域的半径δ时,常把它表为)(a U ,简称a 的邻域. 数集 {} δ<-

小学数学中常见的数学思想方法有哪些.

小学数学中常见的数学思想方法有哪些? 1、对应思想方法 对应是人们对两个集合因素之间的联系的一种思想方法,小学数学一般是一一对应的直观图表,并以此孕伏函数思想。如直线上的点(数轴)与表示具体的数是一一对应。 2、假设思想方法 假设是先对题目中的已知条件或问题作出某种假设,然后按照题中的已知条件进行推算,根据数量出现的矛盾,加以适当调整,最后找到正确答案的一种思想方法。假设思想是一种有意义的想象思维,掌握之后可以使要解决的问题更形象、具体,从而丰富解题思路。 3、比较思想方法 比较思想是数学中常见的思想方法之一,也是促进学生思维发展的手段。在教学分数应用题中,教师善于引导学生比较题中已知和未知数量变化前后的情况,可以帮助学生较快地找到解题途径。 4、符号化思想方法 用符号化的语言(包括字母、数字、图形和各种特定的符号)来描述数学内容,这就是符号思想。如数学中各种数量关系,量的变化

及量与量之间进行推导和演算,都是用小小的字母表示数,以符号的浓缩形式表达大量的信息。如定律、公式、等。 5、类比思想方法 类比思想是指依据两类数学对象的相似性,有可能将已知的一类数学对象的性质迁移到另一类数学对象上去的思想。如加法交换律和乘法交换律、长方形的面积公式、平行四边形面积公式和三角形面积公式。类比思想不仅使数学知识容易理解,而且使公式的记忆变得顺水推舟的自然和简洁。 6、转化思想方法 转化思想是由一种形式变换成另一种形式的思想方法,而其本身的大小是不变的。如几何的等积变换、解方程的同解变换、公式的变形等,在计算中也常用到甲÷乙=甲×1/乙。 7、分类思想方法 分类思想方法不是数学独有的方法,数学的分类思想方法体现对数学对象的分类及其分类的标准。如自然数的分类,若按能否被2整除分奇数和偶数;按约数的个数分质数和合数。又如三角形可以按边分,也可以按角分。不同的分类标准就会有不同的分类结果,从而产生新的概念。对数学对象的正确、合理分类取决于分类标准的正确、合理性,数学知识的分类有助于学生对知识的梳理和建构。

相关主题
文本预览
相关文档 最新文档