细菌纤维素基复合水凝胶的制备及其性能研究
- 格式:pdf
- 大小:6.46 MB
- 文档页数:63
乙酰化纳米纤维素纤维的制备及其凝胶机制
研究
纳米纤维素纤维(NFC) 具有优良的吸水性、流变性、抗氧化能力、保水型及高分子稳定性等优异性能。
由于其独特的机械性能和化学可控、可分子调控属性,纳米纤维素纤维已成为重要的复合材料,广泛
应用于日用品、食品包装及工业用品的制造中。
因此,研究纳米纤维
素纤维乙酰化制备方法及其凝胶机制,显得尤为重要。
乙酰化是一种通过一氧化氮脱水反应,以乙酰基羧酸为催化剂制
备纳米纤维素纤维衍生物的过程,是改变纳米纤维素纤维性质的重要
方法之一。
乙酰化有助于减弱纤维素表面疏水性,改变表面物理性质。
乙酰化过程可以改变纳米纤维素纤维的水溶性及增加其可溶性,从而
使其易于和其他材料结合。
此外,乙酰化还可以改变纳米纤维素纤维
的膨胀性,增强其可塑性、抗疲劳性和结焦性。
乙酰化纳米纤维素纤维凝胶的形成主要是由于纳米纤维素纤维体
系中水溶性和不溶性组分聚集所致。
当乙酰基凝胶剂与纳米纤维素纤
维结合时,二者的分子层会形成网状结构,形成乙酰化纳米纤维素纤
维凝胶体。
乙酰基凝胶剂之间的作用也会促使纳米纤维素纤维的水溶
性发生变化,因而使纳米纤维素纤维本身呈现出凝胶性质。
乙酰化纳米纤维素纤维制备及其凝胶机制研究仍处于发展早期,
需要对相关技术进行详细研究和分析。
未来,乙酰化纳米纤维素纤维
可用于生物制药、生物基材料及涂料等领域,可以实现更加高效、安全、可操控的用途。
水凝胶总结第1篇摘要本研究的目的是通过体外污染测试,调查在配戴 8小时后,睫毛膏是否会沉积在聚合硅氧烷水凝胶隐形眼镜(CL)上,并比较两种硅氧烷水凝胶对睫毛膏的亲和力。
硅氧烷水凝胶隐形眼镜是 Filcon V 月抛型 OPEN30 和Delefilcon A 日抛型 DAILIES TOTAL1。
所研究的化妆品是一种蓝色睫毛膏。
对新的CL、体外暴露于睫毛膏的 CL 和睫毛膏使用者佩戴 8 小时的 CL(在氯化钠溶液中冲洗CL 后)进行了扫描电子显微镜(SEM)和能量色散 X射线光谱(EDX)分析。
用光学显微镜采集并处理了新睫毛夹和体外处理睫毛夹的图像。
通过对睫毛膏进行电离辐射 X分析,可以确定其元素组成的特征,其中包括铝(Al),铝既不属于泪液成分,也不属于睫毛膏成分,因此是睫毛膏沉积在聚合硅氧烷水凝胶上的标志。
通过 SEM/EDX 在两种材料的所有磨损的 CL上都观察到了含铝的吸附沉积物,这些沉积物对睫毛膏成分有特殊的亲和力,比对泪液成分的亲和力更明显。
通过处理体外测试后光学显微镜拍摄的图像,发现 Delefilcon A 中睫毛膏沉积物的含量是 Filcon V CL 的两倍多。
摘要xxx光谱是一种成熟的样品分子表征技术,对于复杂的化妆品无需进行大量的分析前处理。
为了说明xxx光谱的潜力,本研究调查了xxx光谱与偏最xxx乘回归(PLSR)相结合的定量性能,用于分析掺入水凝胶中的藻酸盐纳米封装胡椒基酯类(ANC-PE)。
共制备和分析了 96 个 ANC-PE 样品,其 PE 浓度范围为 w/w/w。
尽管样品的配方很复杂,但仍能检测到聚乙烯的光谱特征,并利用其对浓度进行量化。
采用留空交叉验证方法,将样品分为训练集(n = 64)和测试集(PLSR模型之前未知的样品,n =32)。
经评估,交叉验证的均方根误差(RMSECV)和预测的均方根误差(RMSEP)分别为(w/w PE)和(w/wPE)。
细菌纤维素的制备和应用研究进展陈竞;冯蕾;杨新平【摘要】细菌纤维素(Bacterial cellulose,简称BC)又称微生物纤维素,具有独特超细网状纤维结构、不含木质素和其他细胞壁成份,吸水性强、高生物兼容性、可降解性等优良特点,日益成为人们关注的焦点.综述了近年来国内外在细菌纤维素的菌种筛选、碳源优化、发酵工艺方面的研究成果,以及细菌纤维素在肾透析膜、血管支架、皮肤代用品、化妆品膜、减肥代餐食品等方面的应用.【期刊名称】《纤维素科学与技术》【年(卷),期】2014(022)002【总页数】6页(P58-63)【关键词】细菌纤维素;醋酸杆菌;BC膜【作者】陈竞;冯蕾;杨新平【作者单位】新疆农业科学院微生物应用研究所,新疆乌鲁木齐830091;新疆农业科学院微生物应用研究所,新疆乌鲁木齐830091;新疆农业科学院微生物应用研究所,新疆乌鲁木齐830091【正文语种】中文【中图分类】Q815;TQ352细菌纤维素(Bacterial cellulose,简称BC)主要是由细菌在细胞外合成的一类高分子碳水化合物,与天然植物纤维素化学组成非常相似,都是由葡萄糖以β-1,4-糖苷键连接而成。
由于其独特的合成方式,使得细菌纤维素具有超细网状纤维结构,质地纯,结晶度高,有很强的吸水性,是一种天然的纳米材料的“海绵”,并具有良好的生物安全性和可降解性,合成过程温和同时具有强大的成膜特性,BC膜被形象的比喻成“是以无数的细菌为梭子织就的一块无纺布”。
以上优势预示着细菌纤维素在许多需要使用精细纤维素的领域有着不可替代的应用前景,因此细菌纤维素已成为近年来的一个研究热点。
本文综述了近年来国内外在细菌纤维素的菌种筛选、碳源优化、发酵工艺方面的研究成果,以及细菌纤维素在肾透析膜、血管支架、皮肤代用品、化妆品膜、减肥代餐食品等方面的应用,为我国在这一领域研究和应用做铺垫。
1 细菌纤维素的制备1.1 BC生产菌的分离筛选目前,已知能够生产纤维素的细菌有许多种,常见的有醋杆菌属(Acetobacter)、根瘤菌属(Rhizobium)、芽孢杆菌属(Bacillus)、八叠球菌属(Sarcina)、假单胞菌属(Pseudomonas)、土壤杆菌属(Agrobacterium)、气杆菌属(Aerobacter)、无色杆菌属(Achromobacter)、固氮菌属(Azotobacter)和产碱菌属(Alcaligenes)等。
622化学试剂2021年5月DOI:10.13822/ki.hxsj.2021007946综述与进展化学试剂,2021,43(5) ,622〜631抗菌水凝胶在生物医学领域的研究进展张浩然,王士凡'朱文友,庄文昌,董黎明,堵锡华(徐州工程学院材料与化学工程学院,江苏徐州221018)摘要:细菌感染是阻碍伤口愈合的重要因素之一,同时也是生物医学领域面临的一个重要问题。
目前的抗菌水凝胶有着高抗菌活性、生物相容性以及可注射性等性能,并且其物理化学性质与生物组织相似,使得越来越多新型的抗菌水凝胶材料被用于治疗细菌感染。
综述了近几年抗菌水凝胶的研究进展,归纳总结了几种不同类型的抗菌水凝胶的制备方法,抗菌活性和生物相容性等。
重点阐述了抗菌水凝胶在伤口敷料、药物负载和传递以及组织工程等生物医学领域中的应用前景。
关键词:水凝胶;抗菌活性;生物相容性;生物医学;抑菌活性中图分类号:0063 文献标识码:A 文章编号:0258-3283( 2021 ) 05-0622-10P ro g re ss of A n tib ac terial H yd ro gel in Field of B iom edicine ZHANG Hao-ran ,WANG Shi-fan* yZHU Wen-you ,ZHUANG Wen-change DONG L i-m in g, DU Xi-hua( School of Materials and Chemical Engineering, Xuzhou Institute of Technology, Xuzhou 221018,China) ,Huaxue Shiji,2021 ,43(5),622-631A b stra c t: Bacterial infection is one of the important factors hindering wound healing, and it is also an important problem in biomedical field.The current antibacterial hydrogels have high antibacterial activity, biocompatibility and inject ability, and their physical and chemical properties are similar to those of biological tissues, making more and more new antibacterial hydrogel materials used to treat bacterial infections.The research progress of antibacterial hydrogels in recent years was reviewed,and preparation methods,antibacterial activity and biocompatibility of several kinds of antibacterial hydrogels were summarized.Furthermore, the application prospect of antibacterial hydrogels in wound dressings, drug loading and delivery, tissue engineering and other biomedical fields were emphasized.Key w ords: hydrogel ; antibacterial activity ; biocompatibility ; biomedicine; antibacterial activity抗菌水凝胶具有一定的生物相容性、可降解 性以及抗菌性等特点,因此人们将水凝胶开发应用到生物医学领域,如药物递送、伤口 /烧伤敷料、组织工程用支架等[|]。
木质素复合水凝胶性能及应用的研究进展一、本文概述木质素复合水凝胶作为一种新型的生物材料,近年来在科研领域引起了广泛关注。
其独特的结构和性能,使其在生物医药、农业、环保等多个领域具有广阔的应用前景。
本文旨在综述木质素复合水凝胶的性能及其在各领域的应用研究进展,以期为推动该材料的进一步发展提供参考。
本文将首先介绍木质素复合水凝胶的基本概念和制备方法,阐述其独特的结构和性能特点。
随后,将重点综述木质素复合水凝胶在生物医药、农业、环保等领域的应用研究进展,包括药物载体、组织工程、农业保水、重金属离子吸附等方面的应用。
还将对木质素复合水凝胶的改性方法和性能优化进行探讨,以期提高其在实际应用中的性能表现。
本文将总结木质素复合水凝胶的性能特点和应用前景,展望其未来的发展方向和潜在应用价值。
通过本文的综述,希望能够为木质素复合水凝胶的研究和应用提供有益的参考和指导。
二、木质素复合水凝胶的制备木质素复合水凝胶的制备是其在各种应用中使用的前提。
木质素因其独特的化学和物理性质,如良好的生物相容性、可再生性、环境友好性以及在多种溶剂中的溶解性等,成为了制备复合水凝胶的理想选择。
复合水凝胶的制备过程涉及多个步骤,包括原料的选取、预处理、混合、交联反应以及后续的成型和干燥等。
原料的选取是关键。
木质素来源广泛,可以从不同的植物或工业废弃物中提取,如木材、农作物废弃物等。
这些原料经过破碎、研磨和提取等预处理后,得到纯度较高的木质素。
将木质素与其他高分子材料或纳米材料进行混合。
这些材料可以是天然高分子,如壳聚糖、海藻酸钠等,也可以是合成高分子,如聚丙烯酰胺、聚乙二醇等。
混合过程可以通过溶液共混、熔融共混等方法进行。
接下来,通过交联反应使木质素与其他高分子之间形成化学键合。
这可以通过引入交联剂,如甲醛、戊二醛等,或者使用光引发、热引发等方法进行。
交联反应可以使木质素复合水凝胶具有更好的稳定性、机械性能和吸水性能。
通过成型和干燥等步骤得到最终的木质素复合水凝胶。
第40卷第6期2020年12月惠州学院学报JOURNAL OF HUIZHOU UNIVERSITYVol.40.No.6Dec.2020基于GelMA复合水凝胶的制备及性能研究强娜,廖芳丽,解芳,冯颖,李佳佳,冯裕发(惠州学院化学与材料工程学院,广东惠州516007)摘要:水凝胶是一种非常重要的材料,可直接用于组织工程中.但由于其机械性能较差,该研究选择了左旋聚乳酸(PLLA)和功能化明胶作为复合材料.首先将明胶与甲基丙烯酸酐(Methacrylic Anhydride,MA)通过化学反应合成具有光敏性的甲基丙烯酰胺基明胶(Gelatin Methacrylate,GelMA),并将其与左旋聚乳酸(PLLA)按不同比例共混,通过紫外光照成形的方法制备复合型水凝胶.对复合水凝胶进行相关表征,如热重分析(TG)、差示扫描热分析(DSC)、X射线衍射(XRD)和扫描电镜(SEM)等,检测了解其热力学性质、结晶态、形貌等特征,根据结果选择最适合的配比方案.关键词:左旋聚乳酸(PLLA);甲基丙烯酰胺基明胶(GelMA);复合水凝胶中图分类号:G642文献标识码:A文章编号:1671-5934(2020)06-0050-06DOI:10.16778/ki.1671-5934.2020.06.009水凝胶是在组织工程和再生医学中应用的生物支架.水凝胶的高含水量,可调节的化学和物理性质,以及封装细胞、生物大分子(如肽/蛋白质、核苷酸和抗体)和治疗制剂的能力,开辟了各种潜在的应用[1-2].特别是,允许原位交联的生物聚合物可用于开发可注射材料.由于天然或合成聚合物制成的可注射水凝胶已被广泛报道,并显示出其各自的优缺点[3-4].例如,透明质酸、壳聚糖、藻酸盐、硫酸软骨素等天然水凝胶,因其良好的生物相容性和生物降解性而得到广泛应用,但由于其机械性能较低,且难以调节其降解速率和生物功能,其应用受到限制[5-7].另一方面,左旋聚乳酸(PLLA)、聚乙二醇(PEG)和聚乙烯醇(PVA)等合成聚合物水凝胶具有较高的机械强度和可调的微观结构,但经常缺乏一定的生物信号分子,因此,有必要开发集天然和合成聚合物的优点于一身的水凝胶[8-9].因此,为了同时获得具有良好生物相容性和机械性能的水凝胶,半天然和化学功能化水凝胶(如甲基丙烯酰化明胶(GelMA)出现了[10].近年来,有报道此水凝胶与纤维支架联合应用于软骨[11]、心脏瓣膜[12]、肌腱[13]、肌肉[14]等软组织的再生.早在2000年,Van Den Bulck等人开发了一种用甲基丙烯酸酐(MA)对明胶进行改性的方法,并获得了一种光交联明胶衍生物,称为甲基丙烯酰化明胶(GelMA)[15].此后,GelMA作为一种具有吸引力的生物材料被广泛研究.多项研究表明,GelMA水凝胶既适用于二维细胞播种,也适用于三维细胞封装,适用于不同的制造工艺,如微成型、自组装、微流体、生物打印、生物纺织品等.通过控制交联的程度,可以对明胶凝胶的机械强度进行有效调节.同时由于具有甲基丙烯酸酐基团,使得制备出来的水凝胶材料具有了光敏性.另外,在这个过程中,至多只有5%的明胶序列进行了反应,这样的结果是能够最大程度保留了明胶自身所携带的明胶功能氨基酸序列,例如RGD多肽序列、MMP降解序列,这些序列都可以与甲基丙烯酸不发生甲基丙烯酰化反应.所以,经过化学改性制备的GelMA可以拥有良好的生物活性,可以促进细胞粘附,而且这种水凝胶材料经体内的蛋白酶就可以进行降解.纯GelMA水凝胶是一种良好的生物降解材料,然而,当它作为某些应用时,如作为引导骨再生材料使用时:凝胶时间长、机械强度低、降解时间短、溶胀率高,限制了其应用.此类水凝胶要成为合适的组织工程支架材料,必须具有较短的凝胶化时间以减少操作时间,合适的机械强度和降解时间以保持组织重建的空间,较低的溶胀率以降低创伤压力、避免炎症.在所有合成的聚合物材料中,以聚乳酸(PLA)[16]、聚羟基乙酸(PGA)[17]及聚己内酯(PCL)[18]为代表的聚收稿日期:2020-09-18基金项目:惠州学院重点重大研究培育项目(hzux1201624);惠州学院大学生创新创业训练项目(CX2020068)作者简介:强娜(1980-),女,吉林舒兰人,副教授,博士,研究方向为高分子材料,E-mail:*****************第6期强娜等:基于GelMA复合水凝胶的制备及性能研究α-羟基酸和它们的聚合物是组织工程领域中研究最广泛的一类聚合物.此类高分子聚合物材料因生物相容性好、可降解且降解速度易于调控等优点,在生物材料领域占主导地位.因此,本研究设计将PLLA与GelMA进行共混,通过热量分析(TG)、差示扫描量热法(DSC)、扫描电子显微镜(SEM)、X射线衍射(XRD)来测试复合水凝胶的热分解温度、玻璃化转变温度、结晶度等.根据分析结果探究不同比例的PLLA与GelMA共混的性能,并找出较适合的比例加强特定性能,为进一步将其应用于组织工程提供科学依据.1实验部分1.1试剂与仪器左旋丙交酯(L-LA)购于广东惠州华阳医疗器械公司;明胶,甲基丙烯酸酐,Lrgacure2959购于Aladdin 公司;本实验所用试剂均购于广东惠州南源化玻有限公司,所有试剂均为市售分析纯.热重分析(TG):热重分析采用TGA209F1热重分析仪,升温区间为35-600℃,升温速率为10K/min,吹扫气为氮气,流量为20mL/min,保护气为氮气,流量为20mL/min.差示扫描量热分析(DSC):TA instruments MDSC 2910,氮气气氛(40mL/min),测定二次升温曲线.每个样品质量为3-5mg,升降温速率为10℃/min,样品扫描温度范围为0-250℃.X-射线衍射分析(XRD):日本RIGAKU公司Ul-timaⅣ型X射线衍射仪,广角测量,2θ角为3°-60°,速度5°/min.扫描电镜分析:室温下喷金.在5kV加速电压下FE-SEM(SU8010field emission scanning electron micro-scope,Hitachi LTD,Tokyo,Japan)观察导管横断面形貌.1.2实验过程1.2.1聚左旋丙交酯(PLLA)的制备采用封管本体聚合方式制备共聚物.安瓿瓶经洗液浸泡(加热至60-70℃)、洗净、烘干,干燥24h后备用.将一定量的经纯化后的L-LA单体加入到干燥的30mL聚合管中,用氩气置换3次,加入异丙醇为引发剂并控制聚合物的分子量([M]/[I]=600/1),再加入辛酸亚锡的甲苯溶液([M]/[Cat]=1000/1),混合均匀,在室温下抽真空2h以除去残留的溶剂,封管,置于130℃的油浴中反应20h.反应结束后聚合管冷却至室温,沿瓶颈切断后,加入5mL氯仿将反应物完全溶解后,用8-10倍氯仿量的冷甲醇沉淀,重复溶解-沉淀两次,真空干燥24h得产物.1.2.2甲基丙烯酰化明胶(GelMA)的制备称取定量的明胶,加入到锥形瓶中并加入配置好的适量PBS溶液.水浴加热到60℃,不停搅拌至明胶全部溶解.待明胶完全溶解后,继续加热并逐滴滴加甲基丙烯酸酐进入锥形瓶,持续滴加一个小时.滴加结束两小时后,将预热到50℃的定量PBS溶液加入到锥形瓶,再持续搅拌15分钟.搅拌完毕后将锥形瓶中的溶液倒入透析袋中,透析一周.透析结束后,将收集的液体加热到60℃,用孔径为0.22微米的微孔滤膜趁热过滤,然后将所得液体搁置到冰箱预冻过夜,然后放置到冷冻干燥机上进行冷冻干燥得到GelMA白色絮状材料.1.2.3PLLA与Gel-MA复合物的制备分别称量左旋聚乳酸(PLLA)与GelMA比例为1∶4、1∶1、4∶1的原料,编号为1、2、3.配置0.25%g/ml的Lrgacure2959光引发剂溶液.用玻璃培养皿装取适量光引发剂溶液溶解GelMA,完全溶解后再加入PLLA,并用分散机将粉末打匀,直至PLLA悬浮在溶液中,整个过程需要避光进行.将制备好的溶液放10mW/cm2紫外灯下进行反应10分钟,制成PLLA/GelMA交联的水凝胶.2结果与讨论2.1PLLA性能的测定10020030040050060020406080100Massloss(%)T(C)图1PLLA的TG曲线由图1可知,图像中只有一个阶梯,表示着只有一个分解过程,PLLA完全分解.图2可知,升温过程中,图像先有一个冷结晶峰,再有一个向上的尖锐峰(熔融峰),说明PLLA为半结晶状态.由图1和图2可分析得··512020年第40卷惠州学院学报出PLLA 的热分解温度为299℃,熔点为166.6℃,玻璃化转变温度为52℃.与所查的文献资料非常接近,说明合成的聚合物的热稳定性较好,有且只有一个分解过程,符合均聚物的特点,说明反应物没有太多副反应发生.50100150200250E n d oT(C)图2PLLA 的DSC 曲线图3是PLLA 的XRD 衍射图像,PLLA 的衍射峰位置在22.19°,结晶度在50%,峰面积占了整个图像面积的一半左右,图像有尖锐峰,且峰被隆拱起,说明PLLA 为试样中晶态与非晶态“两相”共存,PLLA 为半结晶物质.1020304050040008000120001600020000I n d e n s i t y2q/图3PLLA 的XRD 谱图2.2GelMA 性能的测定根据图4显示可知,TG 图像中曲线有两个分解过程,第一个分解过程先损失12%,第二个分解过程失重69.3%,还有18.7%未损失.GelMA 是甲基丙烯酸酐修饰过的明胶,其中明胶的熔点在350℃左右,甲基丙烯酸酐的沸点在87℃,可以看出前一段为甲基丙烯酸酐,后一段为明胶或GelMA,剩余的物质是明胶在高温下形成的透明坚硬非晶物质.根据图4分析测得较大的热分解温度为281.9℃,TG 图中有两个分解过程,符合明胶被甲基丙烯酸酐修饰的特点.10020030040050060070020406080100M a s s l o s s (%)T/C图4GelMA 的TG 曲线2.3PLLA 与GelMA 复合水凝胶性能的测定由前面的分析可知,纯的PLLA 是均聚物,PLLA 与GelMA 的混合物中有一个分解过程,呈现出类似无规共聚物的特点.从图5中可以看出,PLLA 与GelMA 的比例1∶4、1∶1、4∶1的共聚物分解温度分别为235.9℃、259.8℃、244.8℃,根据所得分解温度可知当PLLA 与GelMA 的比例为1∶1时分解温度最高.由此可知添加GelMA 对PLLA 的热稳定性有影响,PLLA 与GelMA 的比例为1∶1热稳定性最佳.M a s s l o s s (%)T/C图5PLLA 、GelMA 及复合水凝胶的TG 曲线图6可知PLLA 与GelMA 的比例1∶4、1∶1、4∶1的共聚物熔点分别为127.5℃、127.5℃、117.5℃,PLLA 与GelMA 的比例1∶4、1∶1比例的熔融温度相近,看不出较大的差别,但4∶1时温度会较低一点.PLLA 与GelMA 的比例1∶4、1∶1、4∶1的各种比例共聚物升温过程中,不同比例的PLLA 与GelMA 共聚物,在升温过程中,其DSC 曲线先呈现一个下降峰,再有一个向上的尖锐峰(熔融峰).说明各比例混合物为半结晶物质.PLLA 与GelMA 的比例1∶4、1∶1、4∶1的共聚物的玻璃化转变温度分别为25℃、25℃、20℃.常温下各混合物都可以达到玻璃化转变温度,其中聚PLLA 与GelMA 4∶1比例的玻璃化转变温度会更低一点.··52第6期强娜等:基于GelMA 复合水凝胶的制备及性能研究E n d oT/OC图6复合水凝胶的DSC 曲线根据XRD 测试的可知,由图7和图8测试结果显示,两个图均有隆峰,且都有尖锐峰,这表现出部分晶态,也就是说有部分为非晶态.根据各衍射峰的面积之和Sc、弥散隆峰面积Sa 和结晶度<Xc>,得出大致的结晶度<Xc>=Sc/(Sc+Sa ).图7在17.43°和23.82°有两个衍射峰,通过计算可得结晶度在18.7%;图8的衍射峰位于19.07°,通过计算可得结晶度在15%;它们的衍射峰又细又长,所占的面积很小.根据衍射峰的面积与整个峰面积之比可知,共混之后的结晶度不高,同样为部分结晶物质.1020304050040008000120001600020000I n d e n s i t y2q/图7PLLA 与GelMA1:1复合水凝胶的XRD 谱图10203040500100002000030000400005000060000I n d e n s i t y2q/图8PLLA 与GelMA4:1复合水凝胶的XRD 谱图由SEM 图像观察到三个比例共混后的材料,其中图9为PLLA 与GelMA 1∶4共混物SEM 图,图11为PLLA 与GelMA 4∶1共混物要SEM图,二者均呈现团聚集块状,物质凝聚成一团,呈现出无规排列的状态,图10为PLLA 与GelMA1∶1共混物SEM 图,呈现条块团聚状,条块明显,呈现出层叠状,结构变得更规整.由此可见,当PLLA 与GelMA 共混比例为1∶1时,物质结构更规整.图9PLLA 与GelMA 1∶4复合凝胶的SEM 图像图10PLLA 与Gel-MA 1∶1复合凝胶的SEM 图像··532020年第40卷惠州学院学报图11PLLA与GelMA4∶1复合凝胶的SEM图像3结论PLLA具有众多优良的性质,它在亲水性、生物相容性等还不能完全满足细胞组织工程和一些生物医用工程的实际运用.GelMA是当今常用的3D打印材料,但是其力学性能的不足也限制着它的发展.为了实现PLLA与GelMA更好的应用,通过共混方法对二者进行改性.结果表明PLLA与GelMA的共混物热力学性能较为稳定,在常温下基本没什么变化,PLLA结晶度下降,使得材料的耐冲击性增强,韧性变好,延展性变好.观察其中PLLA与GelMA含量为1∶1时为最佳比例.通过PLLA与GelMA共混物的基本性质可知此材料可用于生物医用材料中.随着研究的继续,将探究PLLA与GelMA共混物在医用方面和3D打印材料的价值.这将是一样非常有前景的研究方向,而且能带给人们更多的便利.参考文献:[1]ANNABI N,MITHIEUX S M,ZORLUTUNA P,et al.Engineered cell-laden human protein-based elastomer[J].Biomaterials,2013,34(22):5496-5505.[2]XIAO W Q,HE J K,NICHOL J W,et al.Synthesis and characterization of photocrosslinkable gelatin and silk fibroin interpenetrat-ing polymer network hydrogels[J].Acta.Biomater,2011,7(6):2384-2393.[3]ASIM M H,SILBERHUMER S,SHAHZADI I,et al.S-protected thiolated hyaluronic acid:In-situ crosslinking hydrogels for3D cell culture scaffolds[J].Carbohyd.Polym,2020(237):116092.[4]WEI S M,PEI M Y,PAN W L,et al.Gelatin hydrogels reinforced by absorbable nanoparticles and fibrils cured in situ by visible light for tissue adhesive applications[J].Polymers,2020(12):1113.[5]CURTIS M W,RUSSELL B.Cardiac tissue engineering[J].J Cardiovasc.Nurs,2009(24):87-92.[6]TAN H,MARRA K G.Injectable,biodegradable hydrogels for tissue engineering applications[J].Materials,2010(3):1746-1767.[7]LI Y L,RODRIGUES J,TOMAS H.Injectable and biodegradable hydrogels:gelatin,biodegradation and biomedical applications [J].Chem.Soc.Rev,2012(41):2193-2221.[8]GAO Y,YAN J,CUT X J,et al.Aligned fibrous scaffold induced aligned growth of corneal stroma cells in vitro culture[J].Chem.Res.Chin.Univ,2012,28(6):1022-1025.[9]GARAGORRI N,FERMANIAN S,THIBAULT R,et al.Keratocyte behavior in three-dimensional photopolymerizable poly(eth-ylene glycol)hydrogels[J].Acta.Biomater,2008,4(5):1139-1147.[10]DONG Z Q,YUAN Q J,HUANG K Q,et al.Gelatin methacryloyl(GelMA)-based biomaterials for bone regeneration[J].RSC.Adv,2019(9):17737-17744.[11]BAS O,LUCAROTTI S,ANGELLA D D,et al.Rational design and fabrication of multiphasic soft network composites for tissue engineering articular cartilage:a numerical model-based approach[J].Chem.Eng.J,2018(340):15-23.[12]WU S,DUAN B,QIN X H,et al.Living nano-micro fibrous woven fabric/hydrogel composite scaffolds for heart valve engineer-ing[J].Acta.Biomater,2017(51):89-100.[13]PATEL D,SHARMA S,R.C.SCREEN H,et al.Effects of cell adhesion motif,fiber stiffness,and cyclic strain on tenocyte gene expression in a tendon mimetic fiber composite hydrogel[J]mun,2018,499(3):642-647.[14]DING Y,XU X,SHARMA S,et al.Biomimetic soft fibrous hydrogels for contractile and pharmacologically responsive smooth muscle[J].Acta.Biomater,2018(74):121-130.[15]DEN BULCKE A I,BOGDANOV B,DE ROOZE N,et al.Structural and rheological properties of methacrylamide modified gela-tin hydrogels[J].Biomacromolecules,2000(1):31-38.··54第6期强娜等:基于GelMA 复合水凝胶的制备及性能研究[16]LI D W ,HE F L ,HE J ,et al.From 2D to 3D :The morphology ,proliferation and differentiation of MC3T3-E1on silk fibroin/chi-tosan matrices [J ].Carbohyd.Polym ,2017(178):69-77.[17]WANG F Y ,HU Y H ,HE D M ,et al.Scaffold -free cartilage cell sheet combined with bone -phase BMSCs -scaffold regener-ate osteochondral construct in mini -pig model [J ].Am.J.Transl Res ,2018(10):2997-3010.[18]GIRAO A F ,SEMITELA A ,RAMALHO G ,et al.Mimicking nature :fabrication of 3D anisotropic electrospun polycaprolactonescaffolds for cartilage tissue engineering applications [J ].Compos.Part B -Eng ,2018(154):99-107.【责任编辑:裴蓉蓉】Preparation and Properties of GelMA Composite HydrogelQIANG Na ,LIAO Fangli,XIE Fang ,FENG Ying ,LI Jiajia,FENG Yufa(School of Chemistry and Materials Engineering,Huizhou University,Huizhou 516007,Guangdong,China )Abstract:Hydrogel is a very important material and can be used directly in tissue engineering.However,due to its poor mechanical properties,poly (L-lactide )(PLLA )and functional gelatin were chosen as composite materials in this study.First,photosensitive gela-tine methacrylamide (GelMA )was synthesized by chemical reaction using gelatin and methacrylic anhydride (MA ).Then the composite hydrogel was prepared under UV light exposure at different ratio.The properties of thermodynamics,degree of crystallinity and morphol-ogy,were tested by Thermogravimetric Analysis (TG ),Differential Scanning Calorimetry(DSC ),X-ray Diffraction (XRD )and Scanning Electronic Microscopy.And(SEM )a scheme of material concentration ratio which is most suitable for composite hydrogel was selected.Key words:poly (L-lactide )(PLLA );gelatine methacrylamide (GelMA );composite hydrogel{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{(上接第49页)Electrospray Ionization Mass Spectrometry Study of Flavonoid Mixturesby Alkali Metal AdductionsZHANG Na 1,CUI Peng 2,LIU Wei 1(1.Faculty of Chemistry and Chemical Engineering;2.Modern Educational Technology Center,Huangshan University,Huangshan 245041,Anhui,China )Abstract:The mass spectrometry of 7flavonoid mixtures(matrix B )and alkali metal ions mixture M +(M=Li,Na and K )was studied by UPLC-QTOF-MS technology and electrospray ion source.The formation of alkali metal adduct ions of matrix B and M +under different collision energy,different concentration and different adding mode was discussed.The results show that under different experimental conditions,various kinds of adducts with different abundances can be formed between each compound and alkali metal ions,the adducts appear in groups,and the mass difference between the two peaks of each group is an integral multiple of 16.The presence of adducts is helpful to determine the exact mass number of unknown compounds in polyhydroxy mixtures.Key words:adduct ions;electrospray ionization mass spectrometry;flavonoids··55。
【doc】水凝胶医用敷料的研究概况水凝胶医用敷料的研究概况轻纺工业与技2011年第40卷第1期水凝胶医用敷料的研究概况陈向标(五邑大学纺织服装学院,广东江门529020) 【摘要】介绍水凝胶敷料在医疗卫生领域的应用,叙述了水凝胶医用敷料的制备原料,制备方法以及水凝胶医用敷料的诸多优点.【关键词】水凝胶;医用敷料;静电纺丝中图分类号:TQ342+.87,R318.08文献标识码:B文章编号:2095—0101(2011)0l 一0066—03水凝胶是功能高分子材料的一种,内部带有强烈的亲水基团,因而对水有特殊吸附作用,通过分子间交联,形成网状结构.吸水性凝胶材料吸水的特点不同于海绵,棉布等吸附材料,它可以吸收是自身质量成百上千倍的水,并与水牢固结合,然后膨胀形成水凝胶.这种凝胶中的水即使受到相当大的压力也很少被挤出.这一特殊功能使得吸水性高分子凝胶材料在被发现之后就得到了快速发展.水凝胶医用敷料是近年来发展起来的一种新型的创伤敷料.与传统的敷料相比,水凝胶能促进伤口更好地愈合,减轻患者的疼痛,它能改善创面的微环境,抑制细菌的生长.水凝胶特别适用于常见的体表创伤,如擦伤,划伤,褥疮等各种皮肤损伤.对于这些伤口,传统上医生一般用无菌纱布及外用抗生素处理.纱布易与皮肤伤口组织粘连,换药时常常破坏新生的上皮和肉芽组织,引起出血,这不但不利于伤口的愈合,而且使病人疼痛难忍.用水凝胶敷料敷贴在伤口上时,它不但不粘连伤口,不破坏新生组织,而且能杀死各种细菌,避免伤口感染f".1制备水凝胶的原料制备水凝胶一般采用高分子材料,包括天然高分子材料和合成高分子材料.天然高分子材料因其生物相容性较好而常被选用, 但是天然高分子也存在一些缺点:比如材料性能的重复性差,机械强度较差,而且结构与性能可调范围窄,致使收稿日期:2010—11-03作者简介:陈向标(1985.3一),男,广东省陆丰市人,在读研究生.研究方向:生物医用纺织品.其难以满足医学上的各种实际要求.合成高分子用来制备敷料用水凝胶具有诸多优点: 合成材料通过控制条件,其生产重复性好,可根据需要大量生产,通过简单的物理,化学改性,获得广泛的性能,以满足不同需要121.但合成高分子的生物相容性一般较差,可用来制备敷料用水凝胶的原料种类也有限. 因此研究利用天然高分子与合成高分子合成杂化高分子水凝胶引起人们更为广泛的重视,这种方法将两者的优点结合起来,以提高水凝胶的性能.既能保留人工合成高分子材料基质的力学强度,又能具有天然高分子材料的良好生物相容性.常用于制备敷料用水凝胶的聚合物原料如表1. 表1常用来制备敷料用水凝胶的聚合物材料类别聚合物天然高分子藉嚣概鼬'嗽衙艨,合成高分子詈篙卿峭.烷酮'聚天然一合成壳聚糖一聚乙二醇,壳聚糖一聚乙烯吡咯烷酮,胶原蛋复合高分子白一聚丙烯酸2水凝胶的制备方法水凝胶的合成主要分为物理方法和化学方法.物理方法主要有共混法,冻融法,纺丝法等.作用的机理主要是通过静电作用,氢键,链的缠结等物理交联作用形成凝胶.化学方法主要有:接枝共聚,高能辐射(如电子辐射,射线)交联等.作用的机理主要是由通过化学键交联形成三维网络聚合物.2.1冻融法主要是通过多次冷冻熔融循环使高分子在低温下 2011年第4O卷第1期轻纺工业与技67 结晶,这种结晶作用可促使聚合物内部形成微晶,其功能类似于物理凝胶网络交联点嘲.Park等人采用冻融法合成了PVA/PVP共聚物水凝胶以用于敷料,在合成过程中加入了芦荟成分,发现随着聚合物中芦荟含量的增加,凝胶的强度下降,但敷料中的芦荟成分可加快伤口的愈合[41.2.2静电纺丝法采用静电纺丝技术制备水凝胶纤维,可以得到直径可低至几十纳米超细纤维,因此具有很高的比表面积, 使其在水中溶胀快,吸液量大,同时得到的纳米纤维膜具有较好的孔隙结构,可以透湿透气.这样的结构和功能特点使其非常适合于制备医用敷料,所以近年来人们开始采用静电纺丝的方法制备纳米纤维敷料[51. 用静电纺丝的方法制备纳米纤维要求水凝胶的材料能溶于一定的溶剂,形成均匀的溶液,并可以进行静电纺丝,而且要制得的纳米纤维在水中应有一定的溶胀性.据目前的文献报道,能制成纳米纤维水凝胶的材料主要有:壳聚糖及其衍生物,纤维素,明胶,透明质酸等.MilenaIgnatova等人将壳聚糖和季胺化的壳聚糖分别与聚乳酸混合,然后静电纺丝,制得壳聚糖一聚乳酸和季胺化壳聚糖一聚乳酸纳米纤维,并用戊二醛蒸汽对纳米纤维组成的无纺毡进行交联,形成的水凝胶在水中溶胀度达170%,纤维毡对大肠杆菌,金黄色和葡萄球菌具有较强的抑菌作用,因此可以用来制备医用敷料嘲. Chong等人将PCL与明胶的共混,然后利用静电纺丝将共混物放到3M公司生产的Tegadem聚氨酯敷料上面,形成一层具有孔隙结构的三维支架层,这种敷料应用于创面上时可促进纤维原细胞的迁移和繁殖,加快伤口处真皮层的愈合同.2.3共混法共混法是比较简捷的方法,可以产生物理交联效果,在共混过程中产生相分离,制成的水凝胶可用作医用敷料,可促进生长因子的产生,加快伤口愈合. 将海藻酸钠与羧甲基壳聚糖共混后可以制成水凝胶膜,羧甲基壳聚糖中的一NH与海藻酸钠中的一COO一的强静电作用,使共混制得的水凝胶膜在湿的状态下具有较好的强度,优于单一的海藻酸水凝胶膜田. 2.4接枝共聚接技共聚指大分子链上通过化学键结合适当的支链或功能性侧基的反应.通过共聚,可将两种性质不同的聚合物接枝在一起,形成性能特殊的接枝物. Siriporn 等人研究了以丙烯酸接枝甲壳素制备水凝胶于敷料.以重量比chitin:PAA=I:4时制成的水凝胶膜的溶胀度达30,60%,且具有较好的机械强度和细胞相容性,可以用作水凝胶敷料I91.2.5高能辐射交联电子辐射交联和射线交联是合成医用水凝胶的最常用方法,具有反应条件温和,不使用有毒交联剂等优点【.Lugao等人用PVP,PEG与琼脂共混,采用电子辐射交联制成水凝胶,并用于制备水凝胶敷料,该水凝胶通过吸水和脱水实验,发现水通过扩散作用进入到凝胶基质中,松散地结合在PVP网络中,这有助于了解敷料吸水和脱水的过程.水凝胶敷料中,不仅要考虑水凝胶对伤口渗出液的吸收,还要考虑水凝胶脱水的速率,防止水分的快速蒸发而导致伤口变干燥Il1】. 3水凝胶医用敷料的优点水凝胶医用敷料具有很好的亲水性,能吸收伤口的渗出液,而且不与伤口粘连,因此换药时不会破坏新生的肉芽或上皮组织.敷用时,医生将水凝胶敷料粘贴在患者的皮肤表面上,然后再用胶布或聚氨酯薄膜固定在伤口上.更换的时候,只要将水凝胶轻轻地揭掉,或用生理盐水冲洗掉.更换过程对创面的影响很小,这是各种医用纱布所无法比拟的.与其他常用的敷料相比,水凝胶不会在伤口上脱落纤维等杂质.在伤口愈合时,可以很方便地把水凝胶从伤口上冲洗去.在一些有皮肤组织损失的伤口,例如植皮,擦伤,烧伤等,适合使用片状水凝胶.在这些伤口上, 水凝胶片保护了伤口,避免伤口的脱水干燥.这也是水凝胶的最大优点——它能在伤口上产生一个湿润的环境,促使伤口上的坏死组织被酶分解,因而为伤口的愈合创造了一个良好的环境n1.总的来讲,与其他种类的功能性医用敷料相比,水凝胶敷料有如下一些优点: 有利于维持创面的湿润环境,使伤口不易结痴.避免了使用纱布时,纱布常常与伤口粘在一起,更换时易引起伤口开裂,不利于伤口愈合,给患者造成痛苦的状况:由于水凝胶是透明的,有利于患者和医生透过凝胶随时观察伤口的变化情况;可根据需要,将不同药物包埋在水凝胶内,药物可缓缓持续地释放到病变区,可以促进伤口的愈合或减轻伤口的疼痛;水凝胶不与伤口作用,伤口渗出物可通过凝胶排出:水凝胶较柔软,弹性好,机械性能好,透水透气,并且无毒副作用;轻纺工业与技2011年第4O卷第1期原料来源广,水凝胶由90%左右的水组成,成本低, 制备水凝胶的亲水性高分子,如海藻酸钠,果胶等价格也相对较低;生产的流程短,工艺简单方便【ll.临床上,水凝胶医用敷料已经被证明具有很好的疗效.4结语水凝胶医用敷料具有传统敷料所无可比拟的诸多优点,因此我们要加强具有自主产权,性能优良,价格低廉的水凝胶医用敷料的研究和开发,减少对国外进口敷料的依赖,这对减轻病人的经济负担和痛苦,对我国敷料工业的发展,都具有重要意义.参考文献【1】秦益民.功能性医用敷料【M】.北京:中国纺织出版社.2007.[2】傅杰,李世普.生物可降解材料在生物医学领域的应用【JJ.武汉工业大学.1999,21(2):l一4.[3】MatsudaK,SuzukiS,IsshikiN.Re—frezzedriedbi—layerartifieialskin[J].Biomaterials,1993,14:1030—1035.【4】ParkKyoungRan,NhoYoungChang.Preparation andcharacterizationbyradiationofHydrogelsofPVPand PVPcontainingAloeveraIJI.JournalofAppliedPolymerScienee,2004,91(3):1612—1618.[5]SeemaAgarwal,JoaehimH.Wendofff,AndreaseofelectrosPinningteehniqueforbiomedicalapplications,Polymer,2008,49:5603—5621.【6】MilenaIgnatova,NevenaManolova,NadyaMarko—va,eta1.Electrospunnon—wovenNanofibroushyoridmatsbasedonchitosanandPLAforwound-dressingapplicationsfJ1.Macromolecular,Bioscienee,2009,9(1):102—111.【7】ChongEJ,PhanTT,LimIJ.Evaluationofelectro—spunPCL/gelatinnanofibrousscaffolds[J].Forwoundhealing andlayereddermalreconstitution,2007,3(3):321—330.[8】ZhangLina,Guoji.Blendmembranesfromear-boxymethylatedehitosan/alginateinaqueoussolution[J]. JournalofAppliedPolymerSeience,2000,77:610—616.【9】SiripornTanodekaew,SomruethaiChannasanon.Xylan/Polyvinylalcoholblendanditsperformanceashydro-gel[J].JournalofAppliedPolymerScience,2006,100: 1914-l918.【10】ChmielewskiAG,Haji—saeidM.Radiationtech—nologies:Past,Presentandfuture[J].Radiationphysicsandchemistry,2004,71:16-20.【11】LugaoAB,MachadoLDB.Studyofwounddressingstructureandhydration/dehydrationProperities【J].RadiaionPhysicsChemistry,1998.52:319—322.(上接第65页)源匮乏,污染越来越严重的今天,必然会得到越来越多的关注.参考文献【1】柯勤飞,靳向煜.非织造学【M].上海:东华大学出版社,2004.29.[2]刘晓华.大麻纤维毡汽车内饰基材阻燃性能的研究[D】.合肥:安徽农业大学,2008.[3】徐磊,王瑞.麻非织造复合材料的开发和应用IJ]. 非织造布,2005,13(4):24. 【4】兰红艳,靳向煜.天然纤维非织造物增强复合材料概述『J]冲国麻业科学,2007,29(1):45—46. 【5】曲丽君.麻纤维在汽车装饰材料中的应用『J1.产业用纺织品,2002,143(20):37. 【6]兰红艳,靳向煜,张彤彤.麻类纤维在非织造领域的应用[J].中国麻业,2006,28(1):26. 【7】P1asticreinforcedwithnaturalfibersfortrimcompo—nents[J].HighPerformanceTextiles,1998,(12):6-7.[8]马建伟,毕克鲁,郭秉臣等.非织造布实用教程 [M].北京:中国纺织出版社,1994.【9]李清华,李铁忠等.大麻纤维在非织造布领域的应用初探【J].非织造布,2009,17(3):31.。
第31卷㊀第5期2023年9月现代纺织技术AdvancedTextileTechnologyVol.31ꎬNo.5Sep.2023DOI:10.19398∕j.att.202303027细菌纤维素纳米纤维膜及纤维的制备与性能陈钦钦1ꎬ徐兆梅2ꎬ马廷方2ꎬ付飞亚1ꎬ刘向东1(1.浙江理工大学材料科学与工程学院ꎬ杭州㊀310018ꎻ2.杭州万事利丝绸数码印花有限公司ꎬ杭州㊀310020)㊀㊀摘㊀要:为改善细菌纤维素(BC)干燥薄膜(简称干膜)的力学性能ꎬ在保留BC原始结构的基础上ꎬ通过溶剂置换㊁热压工艺首先制得BC干膜ꎬ进而通过自上而下的机械剥离法制备高强度纳米纤维膜(NFM)ꎬ对所得NFM的结构㊁形貌和物化性能进行了表征ꎮ进一步利用加捻NFM的方法制得BC纤维ꎬ并且通过在加捻前复合碳纳米管(CNT)得到了应变传感纤维ꎮ结果表明:一次(1st)㊁二次(2nd)和三次(3rd)机械逐层剥离得到的NFM厚度逐渐降低ꎬ分别为8.0㊁6.5㊁5.0μmꎻ3种NFM的吸水率较BC干膜均显著增加ꎬ其中3rd ̄NFM的吸水率最高ꎬ为2284%ꎬ是BC干膜的2.4倍ꎻ3rd ̄NFM的拉伸强度最高ꎬ可达338.0MPaꎬ为BC干膜的11.7倍ꎻ通过对人体运动(包括手指㊁手腕的弯曲和吞咽动作)的监测表明ꎬCNT赋予了BC∕CNT纤维良好的电阻响应性ꎬ使其在0~2%的相对电阻变化范围内ꎬ具有较好应变传感性能ꎬ拓宽了该纤维在可穿戴传感器领域的发展前景ꎮ关键词:细菌纤维素ꎻ机械剥离ꎻ纳米纤维膜ꎻ加捻ꎻ应变传感中图分类号:TS151㊀㊀㊀文献标志码:A㊀㊀㊀文章编号:1009 ̄265X(2023)05 ̄0066 ̄10收稿日期:20230313㊀网络出版日期:20230403基金项目:浙江省自然科学基金项目(LGC22E030006)ꎻ浙江省清洁染整技术研究重点实验室开放基金项目(QJRZ2110)ꎻ浙江省重点研发计划(2121069 ̄J)ꎻ安徽省纺织结构复合材料国际合作研究中心项目(2021ACTC03)作者简介:陈钦钦(1997 )ꎬ女ꎬ杭州人ꎬ硕士研究生ꎬ主要从事细菌纤维素方面的研究ꎮ通信作者:付飞亚ꎬE ̄mail:fufar@163.com㊀㊀细菌纤维素(BacterialcelluloseꎬBC)作为一种天然纳米纤维聚合物ꎬBC具有热膨胀系数低㊁高含水量和强韧的拉伸能力㊁高纵横比㊁高孔隙率㊁高表面积(37m2∕g)ꎮ与植物纤维素相比ꎬBC纳米纤维编织的3D网络可以增加表面积与体积比ꎬ从而可以与周围组件进行更强的相互作用[3]ꎬ目前已经被广泛应用于食品工业㊁医疗抗菌㊁组织工程㊁纸张和纺织化工等领域中[4]ꎮ在对BC结构和性能进行深入探究的同时ꎬBC的某些缺点也随之暴露出来ꎬ例如:BC分子内和分子间氢键强烈的相互作用ꎬ使其具有高度结晶性ꎬ难溶于一般有机溶剂ꎬ对多功能材料的制备和应用起到一定的阻碍作用ꎻBC的存在形式较为单一ꎬ多为薄膜[5]ꎮ虽然BC具有优异的力学性能ꎬ但干燥后的BC薄膜力学性能远低于单根纳米纤维ꎬ需要对其进行改性以适应人类的需求ꎮ通过采用合适的溶剂对BC进行溶解ꎬ有利于破坏其分子内和分子间氢键ꎬ提高加工利用效果ꎮ目前已经被广泛使用的溶剂主要有N ̄甲基吗啉N ̄氧化物(NMMO)水合物[9]㊁NaOH∕尿素水溶液[10]和LiCl∕NꎬN ̄二甲基乙酰胺[11]ꎬ但这些方法制得的BC材料结晶度均较低ꎬ导致机械性能也较差ꎮ而N ̄甲基吡咯烷酮(NMP)是一种通过解离氢键来分散BC的良好溶剂ꎬ可以使BC纤维链易于滑动并对齐ꎬ从而获得具有强机械性能的BC材料[12]ꎮ自上而下的策略是制备高性能纤维素薄膜的一种简单㊁高效且环保的途径ꎮHuang等[13]将生物被膜纤维素进行逐层热压制得多层被膜纤维素薄膜ꎬ对其热压干燥得到单层被膜纤维素薄膜ꎬ其具有优异的力学性能(140.3MPa)ꎻZhu等[14]采用自上而下法从各向异性的木材中制得各向同性的透明纸ꎬ其透光率高达90%ꎮ同样地ꎬ该方法也可用于剥离制备石墨烯材料ꎬ如Novoselov等[15]采用自上而下法使用透明胶带反复剥离热解石墨ꎬ最终得到了单层石墨烯[16]ꎮ目前ꎬ系统研究自上而下法机械剥离BC制备纳米纤维膜(NanofibermembraneꎬNFM)的工作尚未有报道ꎮ本文首先采用简单的溶剂置换与热压干燥法制备了BC干燥薄膜(简称干膜)ꎬ结合自上而下的机械剥离法ꎬ实现了高强度BC ̄NFM的制备ꎮ通过进一步加捻BC ̄NFMꎬ制得BC纤维ꎻ在加捻前引入CNT制得BC∕CNT导电纤维ꎮ通过扫描电镜㊁X射线衍射仪和红外光谱仪等设备表征BC干膜㊁NFM和BC纤维的形态与结构ꎬ并通过万能材料试验机和热重分析仪等设备分析BC干膜与NFM的物化性能ꎮ该制备方法操作简单ꎬ所得的复合纤维材料可为智能可穿戴设备的研究提供参考ꎮ1㊀实㊀验1.1㊀实验材料BC水凝胶片(32cmˑ26cmˑ0.3cm)ꎬ桂林奇宏科技有限公司ꎻ氢氧化钠(NaOHꎬAR)㊁N ̄甲基吡咯烷酮(NMPꎬ98%)和十二烷基苯磺酸钠(C18H29NaO3Sꎬ95%)ꎬ上海阿拉丁试剂有限公司ꎻ多壁碳纳米管(MWCNTꎬ95%)ꎬ深圳市穗恒科技有限公司ꎻ透明胶带ꎬ得力集团有限公司ꎻ去离子水ꎬ实验室自制ꎮ1.2㊀实验方法1.2.1㊀BC水凝胶片的预处理首先将BC水凝胶片用0.1mol∕LNaOH水溶液煮沸1hꎬ再用去离子水洗至中性ꎬ然后将纯化的BC水凝胶片在NMP溶剂中浸泡24hꎬ取出一片浸泡后的BC水凝胶片放置于两块铁板之间ꎬ将铁板放置于热压机中ꎬ在60ħ㊁20MPa的条件下热压4h得到BC干膜ꎮ1.2.2㊀BC ̄NFMs的制备首先ꎬ将热压所得的BC干膜粘在胶带的一端ꎬ然后拉动干膜以获得NFMꎬ在同一张BC干膜上重复进行机械剥离ꎬ将易得到的NFM分别表示为1st ̄NFM㊁2nd ̄NFM和3rd ̄NFMꎬ以示区别ꎬ将未剥离的BC干膜表示为BCmembraneꎮ1.2.3㊀BC纤维的制备将得到的BC干膜和NFMs分别浸泡在去离子水中24hꎬ加捻所得湿膜ꎬ得到的BC纤维分别命名为BCmembrane ̄fiber㊁1st ̄NFM ̄fiber㊁2nd ̄NFM ̄fiber和3rd ̄NFM ̄fiberꎮBC干膜加捻纤维与纳米纤维膜加捻纤维的捻数分别为10t∕cm和25t∕cmꎬ方向为S捻ꎮ1.2.4㊀BC功能纤维的制备将1g十二烷基苯磺酸钠溶解于244g去离子水中ꎬ加入5g多壁碳纳米管(MWCNT)ꎬ搅拌使MWCNT充分润湿ꎮ以此为基础ꎬ开展超声ꎬ超声时分散液会发热㊁起泡ꎬ每超声10min后ꎬ取分散液静置于冰水中降温消泡ꎬ更换水浴后继续超声ꎬ整个过程持续1~2hꎬ直至观察到MWCNT在水中均匀分散开而无颗粒ꎮ然后将分散好的MWCNT水溶液在60ħ下加热并搅拌1hꎬ再将NFM(此处以1st ̄NFM为例)浸泡在质量分数为2%的MWCNT溶液中ꎬ超声处理10minꎬ然后加捻ꎮ捻数为25t∕cmꎬ加捻方向为S捻ꎮBC∕MWCNT纤维在45ħ干燥2h后得到ꎮ1.3㊀测试与表征在X射线衍射仪(丹东方圆仪器有限公司ꎬDX ̄2700ꎬ中国)上以反射模式对样品进行测试ꎮ2θ范围为5ʎ至40ʎꎬ速度为10(ʎ)∕minꎬ结晶度CI按式(1)计算:CI∕%=I200-IamI200ˑ100(1)式中:I200是结晶峰的最大强度(2θ=22.8ʎ)ꎬIam是非结晶峰的最大强度(2θ=17.8ʎ)ꎮ在双光束紫外 ̄可见分光光度计上测量样品的固态紫外 ̄可见漫反射光谱ꎬ波长范围为400~800nmꎬ分辨率为1nmꎮSEM图像由场发射扫描电子显微镜(FE ̄SEMꎬUltra55ꎬZeissꎬ德国)来拍摄ꎮ热重分析(TGA)在TGA∕DSC ̄2(Mettler ̄Toledoꎬ瑞士)上进行ꎬ加热速度为10ħ∕minꎬ温度范围从30~800ħꎬ氮气流量为40mL∕minꎮ样品的拉伸试验是在万能材料试验机(5943ꎬINSTRONꎬ美国)试验机进行的ꎮ使用FTIR光谱仪(NicoletiS50ꎬThermoElectronꎬ美国)对样品的化学结构进行了分析ꎬ扫描范围为500~4000cm-1ꎬ测试方法为ATR法ꎮ采用小角X射线散射仪(SAXSꎬXeuss3.0ꎬXenocsSASꎬ法国)对几组样品的内部结构特征进行了分析ꎬ其铜靶光管功率为30Wꎬ焦斑直径为30μmꎻ样品处最大光通量为4.5ˑ108phs∕sꎻ探测器Eiger2R1Mꎬ单个像素大小75μmꎻ获取的q范围(标准品理论值):2θminɤ0.013ʎꎬqminɤ0.012nm-1ꎬ2θmaxȡ75ʎꎬqmaxȡ49nm-1ꎮ吸水率是通过重量分析进行的ꎬ将制备好的BC干膜和NFMs在室温下浸泡于水中24hꎬ然后擦去表面的残留水ꎬ进行重量测量ꎬ每组样品重复3次取平均值ꎮ76第5期陈钦钦等:细菌纤维素纳米纤维膜及纤维的制备与性能1.4㊀BC∕CNT纤维作为监测人类运动的多功能传感器㊀㊀利用便携式精密电阻∕电容量测设备(挚盒01RCꎬ苏州瓜瓦科技有限公司)连接电脑ꎬ测试BC∕CNT纤维的弯曲应变传感性能ꎮ将BC∕CNT纤维分别附着在志愿者的手指和颈部ꎬBC∕CNT试样的测试长度为3.0cmꎬ监测手指与颈部的轻微运动变化(包括手指弯曲㊁手腕弯曲㊁手指接触和吞咽动作)ꎬ通过电脑实时记录纤维的相对电阻变化ꎮ2㊀结果与讨论2.1㊀BC ̄NFMs的制备及其形貌分析图1为NFM的制备示意图ꎬ首先通过将BC水凝胶片浸泡在NMP中24hꎬBC网络中的水分子被NMP取代ꎬ水和BC中的纳米纤维间的氢键被削弱ꎬ而在BC和NMP之间形成了新的氢键ꎮ进一步ꎬ经过热压干燥ꎬ得到BC干膜ꎬ将其粘在胶带上可实现机械逐层剥离ꎬ以同一片BC干膜上机械逐层剥离所得的三层NFM为例展开研究ꎮ图2为BC干膜与NFMs的表面与横截面SEM图ꎮ如图2(a1) (a4)所示ꎬBC干膜与NFMs都具有层次结构ꎬ有从宏观到微观的不同大小的孔隙ꎮ原始BC干膜具有随机分布的有着网络结构的纳米纤维ꎬ表现出均匀致密的形貌ꎬ因为热压过程中水分的缓慢蒸发导致BC纳米纤维的重新组装和致密结构的形成ꎮ随着机械剥离步骤的进行ꎬNFMs表面的纳米纤维结构逐渐变得分散ꎬ从1st ̄NFMꎬ2nd ̄NFM图1㊀机械逐层剥离制备NFM示意及机理Fig.1㊀SchematicdiagramandmechanismofNFMpreparationbymechanicallayer ̄by ̄layerpeeling图2㊀BC干膜与NFMs表面及横截面SEM图Fig.2㊀SEMimagesofsurfaceandcrosssectionofBCmembraneandNFM86 现代纺织技术第31卷到3rd ̄NFMꎬNFM的表面无序的纳米纤维数增多ꎬ表明利用NMP的溶剂置换反应影响BC的自身结构ꎬ同时由图2(b1) (b4)可以看出ꎬNFM的横截面从紧密变为了分层结构ꎬ且层数随着机械剥离次数(1st㊁2nd㊁3rd)的增加而增多ꎬ层与层之间距离变得越来越大ꎬ结构变得松散ꎬ证明了机械剥离可以实现对BC干膜分层结构的控制并且破坏了BC纳米纤维间的氢键ꎮ文献表明氢键网络是对纤维素的物理特性和链结构影响最大的因素[17]ꎮ本工作使用NMP削弱溶剂与BC纳米纤维之间氢键ꎬ氢键的明显减少使得纳米纤维更容易分离ꎬBC的分子间和分子内氢键的减弱ꎬ促进了BC的机械剥离ꎬ进而导致NFMs表面有微纤丝的出现ꎮ2.2㊀BC干膜与NFM结构分析图3为BC干膜与NFM的XRD谱图ꎮ样品在14.5ʎ㊁16.7ʎ和22.7ʎ附近有3个结晶峰ꎬ分别对应(110)㊁(110)和(200)晶面ꎮ与BC干膜相比ꎬ1st ̄NFM㊁2nd ̄NFM和3rd ̄NFM样品中的3个特征吸收峰均减弱ꎬ对应于(200)晶面的结晶峰减弱最明显ꎬ在所有BC样品中ꎬ22.7ʎ处的峰值占主导地位ꎬ而14.5ʎ和16.7ʎ处的峰值变弱ꎬ尤其是16.7ʎ处的峰几乎消失ꎬ机械剥离前后ꎬ特征峰2θ值没有明显变化ꎮ表1中列出了计算得到的BC干膜与NFMs的结晶度指数(CI)ꎬ4种样品的结晶度在67%~73%之间ꎮ与BC干膜(73%)相比ꎬ3种经过机械剥离的NFM的CI均降低ꎬ3种NFM的CI随着剥离次数的增加而降低ꎮ可能是因为NMP渗入非结晶区ꎬ破坏其氢键ꎬ但又由于空间位阻ꎬNMP分子太大而无法穿透BC的结晶区域ꎬ因此结晶度维持在纤维素正常水平ꎬ晶体结构几乎不受影响[21]ꎮ图4为BC干膜与NFMs的小角X射线散射(SAXS)图ꎮ所有样品的SAXS谱图均具有明显的环形衍射图案ꎬ表明针状空隙或纤维结构平行于纤维方向排列ꎬ结晶和非晶区存在周期性层状排列ꎮ大多数纤维素分子链在纳米纤维素膜内显示出首选的排列ꎬ这得到了X射线衍射(XRD)分析的支持ꎬ并以小角散射图案显示ꎬ它显示了散射强度的高度各向异性分布ꎮ随着机械剥离次数的增加ꎬ垂直极轴附近的弧线变得越来越亮ꎬ表明纤维素纳米纤维的排列量增加[24]ꎮ与此同时可以观察到ꎬ与图4(a)的BC干膜相比ꎬ图4(b) (d)中弧线半径变小ꎬ且3rd ̄NFM的SAXS谱图中经线方向峰值最小ꎬ可能是由于剥离过程中氢键的断裂ꎬ导致无序性上升ꎮ图3㊀BC干膜与NFMs的XRD谱图Fig.3㊀XRDspectraoftheBCmembraneandNFMs表1㊀BC干膜与NFMs的结晶度Tab.1㊀CrystallinityoftheBCmembraneandNFMs样品名称CI∕%BCmembrane731st ̄NFM712nd ̄NFM703rd ̄NFM67图4㊀BC干膜与NFMs的SAXS图Fig.4㊀SAXSdiagramoftheBCmembraneandNFMs96 第5期陈钦钦等:细菌纤维素纳米纤维膜及纤维的制备与性能㊀㊀图5为BC干膜与NFMs的FTIR谱图ꎮ4种BC样品的FTIR光谱显示在3200~3500cm-1的峰对应于NMP与BC之间形成的氢键ꎮ898cm-1处的吸收峰表明了糖苷键的存在[25]ꎮ1059cm-1的峰是由C O拉伸振动引起的ꎻ1640cm-1的吸收峰由细菌纤维素O H键的弯曲振动引起ꎻ2919cm-1的吸收峰由CH2 CH的拉伸振动产生[28]ꎮ在BC干膜中ꎬ谱图中1640cm-1处的吸收峰强度明显大于经过机械剥离的1st ̄NFM㊁2nd ̄NFM和3rd ̄NFMꎬ且随着剥离次数的增加ꎬ强度减弱更为明显ꎬ可能是由于NMP具有很强的亲水性ꎬ在水中的溶解度很大ꎬ可与水形成氢键ꎮ在溶剂置换过程中ꎬ随着含水率的下降ꎬ峰值降低ꎬ水的拉伸模式减弱[29]ꎮ分析原因可能是由于NMP能够断裂细菌纤维素分子间的氢键ꎬ并与纤维素分子中的羟基形成强的氢键ꎬ从而导致BC机械剥离过程中氢键的断裂[30]ꎮ图5㊀BC干膜与NFMs的FTIR谱图Fig.5㊀FTIRspectrumoftheBCmembraneandNFMs纤维素膜的透光率与物质的组成和结构有关ꎮ图6使用固态UV ̄Vis漫反射光谱对BC干膜与NFMs在可见光范围内的透明度进行了量化ꎮ从图6中能够看出ꎬBC干膜的透光率最低ꎬ在400~800nm范围内ꎬ透光率为16%ꎮ当其经过机械剥离后ꎬNFM的透光率增加ꎬ其中1st ̄NFM㊁2nd ̄NFM和3rd ̄NFM在400~800nm的透光率可分别达到19%㊁21%和23%ꎮNFM透光率均比BC干膜高ꎬ其主要原因前者纳米纤维间形成的孔径比后者大ꎮ透光率与样品厚度㊁密度也有一定的联系ꎬ随着厚度的下降ꎬ密度的降低ꎬ增加了单位面积光的透过率ꎬ透光率会逐渐上升[31]ꎮ同时ꎬ也证明了机械逐层剥离可以有效提升NFM的透光度ꎮ图6㊀BC干膜与NFMs的透光率Fig.6㊀TransmittanceoftheBCmembraneandNFMs液体吸收能力对于NFM性能评估十分重要ꎮ图7为BC干膜与NFM的吸水性能表征ꎬ由图7可得ꎬBC干膜的吸水率仅为939%ꎬ而1st ̄NFM㊁2nd ̄NFM㊁3rd ̄NFM的吸水率分别可达到1240%㊁1985%和2284%ꎬ这一现象与他们的SEM图像所描述的微观结构一致ꎬ结构越松散ꎬ吸水能力就越强ꎮ3rd ̄NFM具有优异的水结合能力ꎬ吸水率为BC干膜的2.4倍ꎬ其在24h内至少可以容纳其自身重量的22倍的水ꎮBC干膜的机械逐层剥离过程导致NFM吸水能力的增加ꎮNFM的高吸水能力对于伤口敷料在急性创伤时吸收血液和组织液具有重要意义ꎬ有助于BC在生物医学领域的应用ꎮ图7㊀BC干膜与NFMs的吸水率Fig.7㊀WaterabsorptionrateoftheBCmembraneandNFMs图8为BC干膜与NFMs的应力 ̄应变曲线ꎮBC干膜的拉伸强度和断裂伸长率分别为29.0MPa和2.9%ꎬNFM的力学性能明显提升ꎬ1st ̄NFM和2nd ̄ 07 现代纺织技术第31卷NFM的拉伸强度分别为152.5MPa㊁153.7MPaꎬ断裂伸长率分别为4.8%㊁3.7%ꎮ而3rd ̄NFM的拉伸强度为338.0MPaꎬ断裂伸长率为4.9%ꎬ其拉伸强度是BC干膜的11.7倍ꎮ3rd ̄NFM样品中的纳米纤维缺乏氢键ꎬ由于氢键的减弱ꎬ加上纳米纤维较少ꎬ导致纠缠点较少ꎬ使得BC纳米纤维更容易定向拉伸ꎬ从而产生高强度[32]ꎻ同时也使纳米纤维更容易沿应变方向相互滑过ꎬ导致更有弹性的行为ꎬ从而赋予了3rd ̄NFM高拉伸强度和高断裂伸长率ꎮ从上述结果可以观察到ꎬ随着机械剥离次数的增加ꎬNFM的拉伸强度呈现出逐层增加的趋势ꎬ该现象应归因于BC自身具有较高的强度ꎬ除此之外ꎬ经热压处理制成的BC干膜形成了更多氢键ꎬ使其机械强度大幅提高ꎮ基于上述现象ꎬ可以说明是溶剂NMP和剥离次数的协同作用对BC微纤维的机械性能造成了影响ꎮ图8㊀BC干膜与NFMs的应力 ̄应变曲线Fig.8㊀Stress ̄straincurvesoftheBCmembraneandNFMs图9(a)为BC干膜与NFMs的TGA曲线ꎬ所有膜的热降解可以根据重量损失分为3个阶段的分解:第一阶段(40~240ħ)是由水蒸发引起的ꎻ第二阶段(240~350ħ)涉及BC的分解ꎻ第三阶段(350~800ħ)是由残余链的分解引起的ꎮBC这种原材料的结构保持了其结构的完整性ꎬ使得BC干膜与NFM的热重曲线出现微小变化ꎮ图9(b)是BC干膜与NFM的DTG曲线ꎬ分析得到NFM最大分解温度出现在333.7~339.5ħ之间ꎬ而BC干膜的最大分解温度为359.7ħꎬ机械剥离明显降低了纳米纤维膜的主失重峰温度ꎮ主失重峰主要是由于纤维素的降解过程ꎬ如解聚㊁脱水和葡糖基单元的分解ꎬ然后形成炭化的残余物ꎮ样品重量的急剧下降可以归因于NMP的预处理破坏了BC的分子间和分子内氢键ꎮ图9㊀BC干膜与NFMs的TG和DTG曲线Fig.9㊀TGandDTGcurvesoftheBCmembraneandNFMs2.3㊀BC纤维形貌分析图10为BC纤维的表面SEM图ꎮ图10(a1)和(a2) (a4)分别为加捻BC干膜和NFM得到的纤维的表面低倍SEM图像ꎮ从图10中可得ꎬBCmembrane ̄fiber的直径远大于1st ̄NFM ̄fiber㊁2nd ̄NFM ̄fiber和3rd ̄NFM ̄fiberꎬ表明机械逐层剥离可以有效降低NFM ̄fiber的直径ꎮ在所有纤维中ꎬ3rd ̄NFM ̄fiber的纤维表面是最光滑的ꎬ结构也最紧密ꎮ而BC干膜加捻而成的纤维表面与NFM ̄fibers相比更为粗糙ꎬ归因于BC干膜厚度较大ꎬ其在加捻的过程中纤维素层与层之间过于堆积ꎬ从而使层与层之间界面作用变弱ꎬ导致纤维表面存在许多孔隙ꎮ图10(b1) (b4)为高倍率下4种纤维的表面SEM图ꎬ可以看出ꎬ加捻工艺增强了纤维素链之间的取向排列[35]ꎮ17 第5期陈钦钦等:细菌纤维素纳米纤维膜及纤维的制备与性能图10㊀BC纤维的表面低倍与高倍SEM图Fig.10㊀SEMimagesofthesurfacesoftheBCmembrane ̄fiberandNFM ̄fiberinlowmagnificationandhighmagnification2.4㊀BC∕CNT纤维导电性能研究通过在加捻前将CNT引入NFM中可制得BC∕CNT纤维ꎬ图11为BC∕CNT纤维作为监测人类运动的应变传感器ꎮ如图11(a)所示ꎬ长为3.0cm的一根BC∕CNT纤维附着在伸直的手指附近来充当现场传感器ꎬ从而检测手指弯曲又伸直的轻微运动变化ꎮ很明显ꎬBC∕CNT传感器的电阻响应在连续的弯曲运动和伸直运动中显示可重复的趋势ꎬ其中弯曲过程中电阻变化增加(0~1.5%)ꎬ随着手指伸直电阻变化降低(1.5%至0左右)ꎬ实现了对手指的小运动的有效监测ꎮ在图11(b)中ꎬ当志愿者将手势从悬空转为接触时ꎬ电阻变化增加(0~2.0%)ꎬ而由接触状态变为悬空时电阻变化降低(2.0%至0左右)ꎮ同样的ꎬ从图11(c)中可以看出BC∕CNT纤维还可用来监测手腕的微小运动变化ꎮ此外ꎬ该BC∕CNT传感器连接在志愿者的脖子上的喉咙处监测吞咽活动ꎬ如图11(d)所示ꎬ传感器依旧显示出连续可重复的趋势ꎮ传感器电信号随着运动状态的改变瞬时变化ꎬ瞬时电阻响应拓宽了BC∕CNT纤维在可穿戴设备领域的应用ꎮ㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀图11㊀BC∕CNT纤维作为监测人类运动的多功能传感器Fig.11㊀BC∕CNTfiberasamultifunctionalsensorformonitoringhumanmovement27 现代纺织技术第31卷3㊀结㊀论本文采用溶剂置换和热压干燥的方式对BC干膜进行处理ꎬ结合自上而下的机械剥离法成功制备了不同厚度的NFMꎻ进一步将BC干膜与NFM进行加捻ꎬ制得BC纤维ꎮ加捻前复合CNT可制得导电纤维ꎮ通过表征分析BC干膜㊁NFM和BC纤维的结构特征ꎬ并且进行了拉伸性能㊁热稳定性与吸水率等测试ꎬ主要结论如下:a)SEM图像显示原始BC干膜表面纳米纤维呈随机分布ꎬNFM表面的纳米纤维结构相较BC干膜变得分散且伴随有微纤丝的出现ꎬ从1st ̄NFMꎬ2st ̄NFM到3rd ̄NFMꎬBC ̄NFM的表面无序的纳米纤维数越来越多ꎬ证明机械剥离破坏了BC内部的氢键ꎮb)通过机械剥离BC干膜可以得到三层厚度为5.0~8.0μm的NFMꎬ其中3rd ̄NFM厚度为5.0μmꎬ厚度相对1st ̄NFM和2nd ̄NFM分别降低了3.0㊁1.5μmꎮc)3rd ̄NFM具有优异的力学性能ꎬ拉伸应力可达338.0MPaꎬ为BC干膜的11.7倍ꎻ3rd ̄NFM的吸水率高达2284%ꎬ为BC干膜的2.4倍ꎻ机械剥离所得NFM均具有良好的热稳定性ꎮd)经复合与加捻方式制备的BC∕CNT纤维ꎬ具有较好应变传感性能ꎬ可有效监测手指弯曲㊁手腕弯曲㊁手指接触和吞咽的微小运动变化ꎬ且相对电阻变化范围在0~2%之间ꎬ为未来应用于可穿戴设备提供了无限可能ꎮ参考文献:[1]汪丽粉ꎬ李政ꎬ贾士儒ꎬ等.细菌纤维素性质及应用的研究进展[J].微生物学通报ꎬ2014ꎬ41(8):1675 ̄1683.WANGLifenꎬLIZhengꎬJIAShiruꎬetal.Theresearchprogressincharacteristicsandapplicationsofbacterialcellulose[J].MicrobiologyChinaꎬ2014ꎬ41(8):1675 ̄1683.[2]BLANCOPARTEFGꎬSANTOSOSPꎬCHOUCCꎬetal.Currentprogressontheproductionꎬmodificationꎬandapplicationsofbacterialcellulose[J].CriticalReviewsinBiotechnologyꎬ2020ꎬ40(3):397 ̄414.[3]SRIPLAINꎬPINITSOONTORNS.Bacterialcellulose ̄basedmagneticnanocomposites:Areview[J].CarbohydratePolymersꎬ2021ꎬ254:117228.[4]袁微微ꎬ唐海哲.静电纺细菌纤维素基复合材料研究进展[J].轻纺工业与技术ꎬ2022ꎬ51(5):109 ̄111.YUANWeiweiꎬTANGHaizhe.Researchprogressonelectrostaticallyspunbacterialcellulose ̄basedcomposites[J].LightandTextileIndustryandTechnologyꎬ2022ꎬ51(5):109 ̄111.[5]白雪梦ꎬ王璐瑶ꎬ郑雅慧ꎬ等.纤维素∕无机复合材料:纤维素及其衍生物的矿化与应用[J].复合材料科学与工程ꎬ2022ꎬ339(4):120 ̄128.BAIXuemengꎬWANGLuyaoꎬZHENGYahuiꎬetal.Organic∕inorganiccompositematerials:Mineralizationandapplicationofcelluloseanditsderivatives[J].CompositesScienceandEngineeringꎬ2022ꎬ339(4):120 ̄128. [6]BINELLIMRꎬRVHSPAꎬPISATUROGꎬetal.Livingmaterialsmadeby3Dprintingcellulose ̄producingbacteriaingranulargels[J].BiomaterialsAdvancesꎬ2022ꎬ141:213095.[7]CAZONPꎬVAZQUEZM.Bacterialcelluloseasabiodegradablefoodpackagingmaterial:Areview[J].FoodHydrocolloidsꎬ2021ꎬ113:106530.[8]田萃钰ꎬ陆赵情ꎬ宁逗逗ꎬ等.多壁碳纳米管 ̄细菌纤维素复合薄膜的制备及其力学性能[J].复合材料学报ꎬ2023ꎬ40(2):1096 ̄1104.TIANCuiyuꎬLUZhaoqingꎬNINGDoudouꎬetal.Preparationandmechanicalpropertiesofmulti ̄walledcarbonnanotubes ̄bacterialcellulosecompositefilms[J].ActaMateriaeCompositaeSinicaꎬ2023ꎬ40(2):1096 ̄1104.[9]UL ̄ISLAMMꎬKHANSꎬULLAHMWꎬetal.Comparativestudyofplantandbacterialcellulosepelliclesregeneratedfromdissolvedstates[J].InternationalJournalofBiologicalMacromoleculesꎬ2019ꎬ137:247 ̄252. [10]PHISALAPHONGMꎬSUWANMAJOTꎬSANGTHERAP ̄ITIKULP.Novelnanoporousmembranesfromregeneratedbacterialcellulose[J].JournalofAppliedPolymerScienceꎬ2008ꎬ107(1):292 ̄299.[11]CHENPꎬKIMHSꎬKWONSMꎬetal.Regeneratedbacterialcellulose∕multi ̄walledcarbonnanotubescompositefiberspreparedbywet ̄spinning[J].CurrentAppliedPhysicsꎬ2009ꎬ9(2):e96 ̄e99.[12]FERGUSONAꎬKHANUꎬWALSHMꎬetal.Understandingthedispersionandassemblyofbacterialcelluloseinorganicsolvents[J].Biomacromoleculesꎬ2016ꎬ17(5):1845 ̄1853.[13]HUANGDꎬLIDꎬMOKWꎬetal.Top ̄downfabricationofbiodegradablemultilayertunicatecellulosefilmswithcontrolledmechanicalproperties[J].Celluloseꎬ2021ꎬ28(16):10415 ̄10424.[14]ZHUMWꎬJIACꎬWANGYLꎬetal.Isotropicpaperdirectlyfromanisotropicwood:Top ̄downgreentransparentsubstratetowardbiodegradableelectronics[J].ACSAppliedMaterials&Interfacesꎬ2018ꎬ10(34):28566 ̄28571.37第5期陈钦钦等:细菌纤维素纳米纤维膜及纤维的制备与性能[15]NOVOSELOVKSꎬGEIMAKꎬMOROZOVSVꎬetal.Electricfieldeffectinatomicallythincarbonfilms[J].Scienceꎬ2004ꎬ306(5696):666 ̄669.[16]张亚婷ꎬ严心娥ꎬ刘国阳ꎬ等.煤基石墨烯系列材料的可控制备及其在CO2还原过程中的应用进展[J].洁净煤技术ꎬ2022ꎬ28(8):1 ̄14.ZHANGYatingꎬYANXin'eꎬLIUGuoyangꎬetal.ResearchprogressoncontrolledpreparationofcoalbasedgrapheneseriesmaterialsanditsapplicationinCO2reductionprocess[J].CleanCoalTechnologyꎬ2022ꎬ28(8):1 ̄14.[17]崔静磊ꎬ桂晓光ꎬ王茜ꎬ等.纤维素改性材料对重金属吸附性能的研究进展[J].功能材料ꎬ2021ꎬ52(3):3050 ̄3059.CUIJingleiꎬGUIXiaoguangꎬWANGQianꎬetal.Researchprogressoftheadsorptionpropertiesofcellulosemodifiedmaterialsforheavymetals[J].JournalofFunctionalMaterialsꎬ2021ꎬ52(3):3050 ̄3059. [18]马光瑞ꎬ和铭ꎬ杨桂花ꎬ等.低共熔溶剂体系预处理制备纤维素纳米纤丝及其性能研究[J].林产化学与工业ꎬ2021ꎬ41(4):69 ̄76.MAGuangruiꎬHEMingꎬYANGGuihuaꎬetal.Preparationofcellulosenanofibrilbythepretreatmentwithdeepeutecticsolventsystem[J].ChemistryandIndustryofForestProductsꎬ2021ꎬ41(4):69 ̄76.[19]朱亚崇ꎬ吴朝军ꎬ于冬梅ꎬ等.纳米纤维素制备方法的研究现状[J].中国造纸ꎬ2020ꎬ39(9):74 ̄83.ZHUYachongꎬWUZhaojunꎬYUDongmeiꎬetal.Researchstatusofnanocellulosepreparationmethods[J].ChinaPulp&Paperꎬ2020ꎬ39(9):74 ̄83.[20]王佳溪ꎬ苏艳群ꎬ刘金刚.阳离子化纤维素纳米纤丝的制备技术及应用进展[J].中国造纸学报ꎬ2022ꎬ37(2):94 ̄101.WANGJiaxiꎬSUYanqunꎬLIUJingang.Advancesinpreparationandapplicationofcationiccellulosenanofibril[J].TransactionsofChinaPulpandPaperꎬ2022ꎬ37(2):94 ̄101.[21]WUZTꎬCHENSYꎬWURLꎬetal.Top ̄downpeelingbacterialcellulosetohighstrengthultrathinfilmsandmultifunctionalfibers[J].ChemicalEngineeringJournalꎬ2020ꎬ391:123527.[22]CAIJꎬZHANGLꎬZHOUJꎬetal.MultifilamentfibersbasedondissolutionofcelluloseinNaOH∕ureaaqueoussolution:Structureandproperties[J].AdvancedMaterialsꎬ2007ꎬ19(6):821 ̄825.[23]ZHUKKꎬWANGYꎬLUAꎬetal.Cellulose∕chitosancompositemultifilamentfiberswithtwo ̄switchshapememoryperformance[J].ACSSustainableChemistry&Engineeringꎬ2019ꎬ7(7):6981 ̄6990.[24]WANGSꎬLITꎬCHENCJꎬetal.Transparentꎬanisotropicbiofilmwithalignedbacterialcellulosenanofibers[J].AdvancedFunctionalMaterialsꎬ2018ꎬ28(24):1707491.[25]张晓颖ꎬ荣新山ꎬ徐吉成ꎬ等.玄武岩纤维表面改性对生物膜附着性能的影响[J].材料工程ꎬ2019ꎬ47(5):129 ̄136.ZHANGXiaoyingꎬRONGXinshanꎬXUJichengꎬetal.Effectofsurfacemodificationofbasaltfiberonbiofilmattachment[J].JournalofMaterialsEngineeringꎬ2019ꎬ47(5):129 ̄136.[26]ILLAMPꎬSHARMACSꎬKHANDELWALM.Tuningthephysiochemicalpropertiesofbacterialcellulose:Effectofdryingconditions[J].JournalofMaterialsScienceꎬ2019ꎬ54(18):12024 ̄12035.[27]ABRALHꎬCHAIRANIMKꎬRIZKIMDꎬetal.Characterizationofcompressedbacterialcellulosenanopaperfilmafterexposuretodryandhumidconditions[J].JournalofMaterialsResearchandTechnologyꎬ2021ꎬ11:896 ̄904.[28]USHARANIMꎬUDAYASANKARKꎬANUAPPAIAHKA.PropertiesofbacterialcelluloseproducedingrapemediumbynativeisolateGluconacetobactersp[J].JournalofAppliedPolymerScienceꎬ2011ꎬ120(5):2835 ̄2841.[29]VELAZQUEZGꎬHERRERA ̄GOMEZAꎬMARTIN ̄POLOMO.Identificationofboundwaterthroughinfraredspectroscopyinmethylcellulose[J].JournalofFoodEngineeringꎬ2003ꎬ59(1):79 ̄84.[30]付时雨.纤维素的研究进展[J].中国造纸ꎬ2019ꎬ38(6):54 ̄64.FUShiyu.Progressincelluloseresearch[J].ChinaPulp&Paperꎬ2019ꎬ38(6):54 ̄64.[31]朱杰君ꎬ孙海斌ꎬ吴耀政ꎬ等.石墨烯的制备㊁表征及其在透明导电膜中的应用[J].物理化学学报ꎬ2016ꎬ32(10):2399 ̄2410.ZHUJiejunꎬSUNHaibinꎬWUYaozhengꎬetal.Graphene:synthesisꎬcharacterizationandapplicationintransparentconductivefilms[J].ActaPhysico ̄ChimicaSinicaꎬ2016ꎬ32(10):2399 ̄2410.[32]ZHANGMHꎬCHENSYꎬSHENGNꎬetal.Anisotropicbacterialcellulosehydrogelswithtunablehighmechanicalperformancesꎬnon ̄swellingandbionicnanofluidiciontransmissionbehavior[J].Nanoscaleꎬ2021ꎬ13(17):8126 ̄8136.[33]ROMANMꎬWINTERWT.Effectofsulfategroupsfromsulfuricacidhydrolysisonthethermaldegradationbehaviorofbacterialcellulose[J].Biomacromoleculesꎬ2004ꎬ5(5):1671 ̄1677.[34]BARUDHSꎬRIBEIROCAꎬCRESPIMSꎬetal.Thermalcharacterizationofbacterialcellulose ̄phosphate47 现代纺织技术第31卷compositemembranes[J].JournalofThermalAnalysisandCalorimetryꎬ2007ꎬ87(3):815 ̄818.[35]薛元ꎬ曹艳.环锭纺加捻三角区纤维转移机理及其运动规律分析[J].纺织学报ꎬ2005ꎬ26(5):31 ̄33.XUEYuanꎬCAOYan.Migrationmechanismoffibersandtheirmovementanalysisinthetwistingtriangularspaceofringspinning[J].JournalofTextileResearchꎬ2005ꎬ26(5):31 ̄33.PreparationandpropertiesofbacterialcellulosenanofibermembranesandfibersCHENQinqin1ꎬXUZhaomei2ꎬMATingfang2ꎬFUFeiya1ꎬLIUXiangdong1(1.SchoolofMaterialsScience&EngineeringꎬZhejiangSci ̄TechUniversityꎬHangzhou310018ꎬChinaꎻ2.HangzhouWENSLISilkDigitalPrintingCo.ꎬLtdꎬHangzhou310020ꎬChina)Abstract:Bacterialcellulose BC asasuitablealternativetopetroleum ̄basedmaterials hasmanyinherentanduniquepropertiessuchasbiocompatibility biodegradability breathabilityandhigh ̄waterholdingcapacity.Butitisdifficulttodissolveincommonorganicsolventsbecauseofitstightintramolecularandintermolecularhydrogenbonds.BCusuallyexistsintheformofthinmembranes andthemechanicalpropertiesofBCdriedmembranesarepoor.ThecurrentmethodsforpreparingBCnanofibermembranes NFMs withBCfibersallinevitablydestroytheoriginalstructureofBC.Inthiswork thehydrogenbondingbetweenwaterandnanofibersinBChydrogelmembraneswasweakenedbythesolventreplacementmethod andthelayer ̄by ̄layerpeelingofBCdrymembraneswasachievedbyhot ̄pressingdryingcombinedwiththetop ̄downmechanicalpeelingmethodtoproducehigh ̄strengthBC ̄NFM andBCfiberscouldbeobtainedbyfurthertwistingofNFMs.Themorphology structureandphysicochemicalpropertiesoftheBCdrymembrane NFMsandBCfiberswereanalyzedandstudiedbycharacterizationmeanssuchasscanningelectronmicroscopy X ̄raydiffractometer thermogravimetricanalyzer infraredspectrometerandtensiletest.Inaddition thestrainsensingfiberBC∕CNTcanbeachievedbyembeddingfunctionalmaterialssuchasCNTintoNFMsbeforetwisting.TheresistancechangerateoftheBC∕CNTfiberobtainedbythismethodcanreach2%.ItisshownthattherandomlydistributednanofibersonthesurfaceoftheBCdrymembraneallhaveanetworkstructureandexhibitadensestructure.Asthemechanicalpeelingstepproceeds thenanofibersontheNFMsurfacebecomedispersedandthenumberofdisorderednanofibersonthesurfaceincreases whichprovesthatNMPweakensthehydrogenbondsbetweenthesolventandtheBCnanofibers thusfacilitatingthemechanicalpeelingofBC andinturnleadingtotheappearanceofmicrofibrilsontheNFMsurface.ThecrystallinityofallthreemechanicallyexfoliatedNFMsislowerthanthatofthedryBCmembrane andthecrystallinityof3rd ̄NFMisthesmallest demonstratingthattheNMPtreatmentdoesnotaffecttheBCcrystalstructure.Thesmall ̄anglescatteringpatternsshowthatthearcdiametergraduallybecomessmallerwiththeincreaseofthestrippingnumber andthe3rd ̄NFMisthesmallest whichprovesthatthestrippingprocessbreaksthehydrogenbondsinsideBCandincreasesthedisorder.TheintensityofthetensilevibrationalpeakofthecelluloseC Hbonddecreaseswiththeincreaseofthenumberofpeeling whichprovesthatNMPcanbreakthehydrogenbondsbetweenBCmoleculesandformnewhydrogenbondswiththehydroxylgroupsinBCmolecules.TheNFMswiththicknessintherangeof5.0to8.0μmshowamaximumtransmissionof23% waterabsorptionof2 284%andtensilestrengthof338.0MPa eachofwhichishigherthanthatoftheBCdrymembrane.ComparedwiththemaximumdecompositiontemperatureoftheBCdrymembrane 359.7ħ themainweightlosspeaktemperaturesofallthethreeNFMsarereducedintherangeof333.7to339.5ħ demonstratingthedisruptionofintermolecularandintramolecularhydrogenbondsofBCbyNMP.SurfaceSEMimagesofBCfibersshowthatthe3rd ̄NFM ̄fiberhasthesmallestdiameterandthetighteststructure provingthatmechanicalpeelingeffectivelyreducesthediameterofNFMs ̄fiberandenhancesthestructuraldensenessofthefiber.ThemonitoringoftinyhumanbodymovementsbyBC∕CNTconductivefibersfullydemonstratestheirpotentialapplicationinsmartwearabledevices.ThispaperprovidesscientificdataforthepreparationofBC ̄NFMsbytop ̄downmethodofmechanicalpeeling whichprovidesnewideasforthedevelopmentofhigh ̄strengthNFMs.Keywords:bacterialcellulose mechanicalpeeling nanofibermembrane twist strainsensing57 第5期陈钦钦等:细菌纤维素纳米纤维膜及纤维的制备与性能。
羧甲基纤维素水凝胶的制备及其在土壤中的降解行为羧甲基纤维素水凝胶是一种具有广泛应用潜力的多功能材料。
它的制备方法多种多样,可以通过化学合成或生物发酵等方式得到。
在土壤中的降解行为也备受关注。
本文将深入探讨羧甲基纤维素水凝胶的制备方法以及它在土壤中的降解行为,希望能提供对这一材料的全面理解。
一、羧甲基纤维素水凝胶的制备方法1. 化学合成法:羧甲基纤维素水凝胶可以通过将羧甲基纤维素与交联剂反应得到。
常用的交联剂包括季铵化合物、铝盐等。
这种方法具有反应条件温和、产率高等优点,但也存在一些问题,比如产生的副产物可能对环境有一定的影响。
2. 生物发酵法:羧甲基纤维素水凝胶还可以通过微生物发酵得到。
一些能够产生纤维素酶的微生物,如纤维素分解细菌,可以分解纤维素并合成羧甲基纤维素水凝胶。
这种方法对环境友好,但是制备过程相对较复杂。
二、羧甲基纤维素水凝胶在土壤中的降解行为1. 降解机制:羧甲基纤维素水凝胶主要通过水解和微生物分解两种途径在土壤中降解。
水解是指羧甲基纤维素水凝胶与土壤中的水反应,发生水解反应,使其逐渐分解为低聚物或单体。
微生物分解是指在土壤中存在的一些特定微生物通过分泌酶类来分解羧甲基纤维素水凝胶。
2. 影响因素:羧甲基纤维素水凝胶在土壤中的降解行为受到许多因素的影响,包括土壤pH值、温度、湿度、土壤微生物群落等。
较高的土壤pH值和温度通常有利于羧甲基纤维素水凝胶的降解,而较干燥的土壤条件则可能减缓降解速度。
三、观点和理解羧甲基纤维素水凝胶作为一种新型材料,在土壤修复、植物保护、土壤改良等领域具有重要的应用潜力。
它可以作为土壤保水剂,提高土壤保水保肥能力,促进植物生长。
羧甲基纤维素水凝胶还可以被用作土壤污染物的吸附剂,通过吸附和降解有害物质,起到土壤修复的作用。
然而,目前对于羧甲基纤维素水凝胶的制备方法和在土壤中的降解行为还有许多未知之处,需要进一步的研究来揭示其机制和优化其应用。
总结回顾:本文探讨了羧甲基纤维素水凝胶的制备方法以及在土壤中的降解行为。
硕士学位论文MASTERTHESIS
学校代码:10255学号:2110445
细菌纤维素基复合水凝胶的制备及其性能研究PRODUCTIONANDCHARACTERIZATIONOFBACTERIALCELLIJLoSENANoCOMPoSITEHYDRoGEL
学科专业生物化工作者杜倩雯指导教师洪枫研究员答辩日期2014年5月27日东华大学学位论文原创性声明本人郑重声明:我恪守学术道德,崇尚严谨学风。所呈交的学位论文,是本人在导师的指导下,独立进行研究工作所取得的成果。除文中已明确注明和引用的内容外,本论文不包含任何其他个人或集体已经发表或撰写过的作品及成果的内容。论文为本人亲自撰写,我对所写的内容负责,并完全意识到本声明的法律结果由本人承担。
学位论文作者签名:旮1奄电日期:功f¥年F月{秒日东华大学学位论文版权使用授权书学位论文作者完全了解学校有关保留、使用学位论文的规定,同意学校保留并向国家有关部门或机构送交论文的复印件和电子版,允许论文被查阅或借阅。本人授权东华大学可以将本学位论文的全部或部分内容编入有关数据库进行检索,可以采用影印、缩印或扫描等复制手段保存和汇编本学位论文。保密口,在——年解密后适用本版权书。本学位论文属于,不保密Ⅵ
学位论文作者签名:耷i亳岔日期:hl仁年,月’o日指导教师签名:广噬缸&
日期:加f移年r月Jo日细菌纤维素基复合水凝胶的制备及其性能研究摘要细菌纤维素(BacterialCellulose)具有纳米级超细网状结构,比植物纤维素有更多优良特性,如高纯度、高结晶度、比表面积大、良好的亲水性以及生物相容性,并易于在环境中降解,是一种很有前景的纳米生物医用材料。近年来,为改善细菌纤维素性能,拓展其应用,细菌纤维素复合材料已成为国际生物医用材料研究的热点之一。由于细菌纤维素的力学性能不能满足于某些领域的应用,因此本文主要目的是利用细菌纤维素为基体,在保留其较好的纳米三维网络结构的基础上,通过反复冷冻一溶融法制备了细菌纤维素/聚乙烯醇(Polyvinylalcohol,PVA)(BC/PVA)和细菌纤维素/聚乙烯醇/聚乙二醇(Polyethyleneglycol,PEG)(BC/PVA/PEG)复合水凝胶。并采用扫描电镜,红外光谱,x一射线衍射,拉伸性能测试和热学性能测试等手段对水凝胶的结构和性能进行表征。研究发现复合水凝胶中BC三维网络保持完整,PVA通过氢键作用包覆在BC纤维上,PEG起到促进PVA氢键生成的作用,三者之间以氢键良好地结合。拉伸力学性能测试结果表明,随着PEG的加入,水凝胶的力学性能得到显著增强。相对‘-FBC/PVA,BC/PVA/PEG复合水凝胶的热稳定性由于PEG的添加得到明显提高。关键词:细菌纤维素;聚乙烯醇;聚乙二醇;复合水凝胶,增强PRODUCTIoNANDCHARACTERIZATIONOFBACTERIALCELLULOSENANOCOMPOSITEHYDROGEL
AbstractBacterialcellulose(BC)hasdevelopedasanalternativetoplantcelluloseinrecent
years.
Duetoitsexcellentnano-sizedfibrilnetworkstructure,highwater-holdingcapacity,high
crystallinity,hightensilestrengthandgoodbiocompatibility,BCisbeingusedasapromising
biomaterialformakingbiocompositesinthefieldoftissueengineering,suchasscaffoldfor
cartilage,wounddressing,dentalimplants,nerveregenerationandvasculargrafts.However,themechanicalpropertiesofpureBCarestilltOOweakforthosebiomaterials.In
thisstudy,differentBC/PVA/PEGcompositehydrogelswereproducedbyusingsimple
freeze-thawcyclesandwereevaluatedwithrespecttothephysicochemicalpropertiesofBC/PVA/PEGcompositesincludingstructure,crystallinity,tensilestrengthandthermalstability
byusingscanningelectronmicroscopy,infraredspectroscopy,X—raydiffraction,tensiletestandthermalanalysis.Asexpected,SEMimagesindicatedthatPVAcoveredwellontheoriginalBCfibersforminganinterpenetratednetwork,whichcombinedwithPEGbyhydrogen
bond.The
additionofPEGresultedinanapparentincreaseofcrystallizationofPVA,which
hasbeen
validatedbyXRDresults.TensilestrengthresultsshowedthattheaddtionofPEGsignificantly
improvedthemechanicalpropertiesofthecompositehydrogels.ComparedtotheBC/PVA,the
thermalstabilityofBC/PVA/PEGhydrogelswasimprovedsignificantlywiththeadditionofPEG.
Keywords:Bacterialcellulose,Polyvinylalcohol,Polyethyleneglycol,Compositehydrogel,Enhancement目录第一章绪论………………………………………………………………………………………11.1前言……………………………………………………………………………………………………………….11.2细菌纤维素的概况………………………………………………………………………11.2.1细菌纤维素的生物合成…………………………………………………………21.2.2细菌纤维素的结构和特性………………………………………………………31.3细菌纤维素商业应用……………………………………………………………………41.3.1细菌纤维素在医用敷料中的应用………………………………………………41.3.2细菌纤维素在组织工程中的应用………………………………………………51.3-3细菌纤维素在人造血管中的应用………………………………………………61.3.4细菌纤维素在食品工业中的应用………………………………………………71.3.5细菌纤维素在造纸工业中的应用………………………………………………71-3.6细菌纤维素在其他领域的应用…………………………………………………71.4细菌纤维素复合材料……………………………………………………………………81.4.1细菌纤维素用于制各无机纳米复合材料………………………………………81.4.2细菌纤维素用于制备高分子复合材料…………………………………………91.5课题的立题背景和主要研究内容…………………………………………………….10第二章木醋杆菌株型对细菌纤维素合成及性能的影响……………………………………..11
2.1实验试剂与仪器……………………………………………………………………….112.1.1菌种来源…………………………………………………………………………112.1.2实验试剂………………………………………………………………………..112.1.3实验器材………………………………………………………………………..122.1.4基本培养基……………………………………………………………………..132.2实验方法……………………………………………………………………………….】32.2.1木醋杆菌种子复壮……………………………………………………………一132.2.2细菌纤维素膜的制备…………………………………………………………一132.2.3细菌纤维素膜的后处理………………………………………………………一132.2.4碳源类型对细菌纤维素产量的影响…………………………………………~142-2.5种龄对细菌纤维素产量的影响………………………………………………..142.2.6接种量对细菌纤维素产蕈的影响……………………………………………..142.2.7发酵起始pH对细菌纤维素产量的影响………………………………………142.2.8ili交冈素表格设计……………………………………………………………一142.2.9发酵天数对细菌纤维素合成的影响…………………………………………一152.2.10细卤纤维素膜的表征…………………………………………………………162.3结果与讨论…………………………………………………………………………….17