物理一轮微专题复习 第10章 电磁感应 微专题55 含答案
- 格式:doc
- 大小:668.00 KB
- 文档页数:13
第十章电磁感应[全国卷5年考情分析]磁通量(Ⅰ)自感、涡流(Ⅰ)以上2个考点未曾独立命题第1节电磁感应现象__楞次定律(1)闭合电路内只要有磁通量,就有感应电流产生。
(×)(2)穿过线圈的磁通量和线圈的匝数无关。
(√)(3)线框不闭合时,即使穿过线框的磁通量发生变化,线框中也没有感应电流产生。
(√)(4)当导体切割磁感线时,一定产生感应电动势。
(√)(5)由楞次定律知,感应电流的磁场一定与引起感应电流的磁场方向相反。
(×)(6)感应电流的磁场一定阻碍引起感应电流的磁场的磁通量的变化。
(√)◎物理学史判断(1)1831年,英国物理学家法拉第发现了——电磁感应现象。
(√)(2)1834年,俄国物理学家楞次总结了确定感应电流方向的定律——楞次定律。
(√)1.磁通量没有方向,但有正、负之分。
2.感应电流的产生条件表述一、表述二本质相同。
3.右手定则常用于感应电流产生条件表述一对应的问题,楞次定律对表述一、表述二对应的问题都适用。
4.楞次定律的本质是能量守恒。
5.解题中常用到的二级结论:(1)楞次定律的三个推广含义:“增反减同”“增缩减扩”“来拒去留”。
(2)楞次定律的双解:①“加速向左运动”与“减速向右运动”等效。
②“×增加”与“·减少”所产生的感应电流方向一样,反之亦然。
突破点(一) 对电磁感应现象的理解和判断1.判断产生感应电流的两种方法(1)闭合电路的一部分导体切割磁感线,产生“动生电流”。
(2)“感生电流”,即导体回路必须闭合,穿过闭合导体回路的磁通量发生变化,二者缺一不可。
2.常见的产生感应电流的三种情况[题点全练]。
2022届高三物理一轮复习10:电磁感应、交流电(参考答案)一、选择题1. 【答案】C 。
【解析】A 、楞次总结出判断电磁感应现象中感应电流方向的规律,故A 错误;B 、乙图电路中,开关断开瞬间,灯泡立即熄灭,开关处电压等于电源的电动势加上自感电动势,开关处可能会产生电火花,故B 错误;C 、丙图中,在真空冶炼中,可以利用高频电流产生的涡流冶炼出高质量的合金,故C 正确;D 、奥斯特通过实验研究,发现了电流周围存在磁场,故D 错误.2. 【答案】B 。
【解析】解:A 、由楞次定律的第二种描述:“来拒去留”可知要使Q 向右运动,通过Q 、P 的磁通量应减小,所以流过P 的电流需减小;而S 闭合过程中电流增大,磁通量增大,故A 错误;B 、S 断开的瞬间,流过P 的电流减小,磁通量减小,所以Q 将向右运动,故B 正确;C 、在S 闭合的情况下,若将移动滑动头向b 端移动时,滑动变阻器接入电阻减小,则电路中电流增大,磁通量增大,故会使Q 左移,故C 错误;D 、在S 闭合的情况下,保持电阻R 的阻值不变,则电路中的电流不变,所以穿过Q 的磁通量不变,所以Q 内不能产生感应电流,Q 不动,故D 错误; 3. 【答案】 AD【解析】 t 1时刻线圈Q 中电流在增大,电流的磁场增强,穿过线圈P 的磁通量增加,P 有远离Q 的趋势,受到Q 的排斥作用,设这个力大小为F ,则有F N =F +G ,即F N >G ,A 选项正确.t 2时刻Q 中电流恒定,线圈P 中磁通量不变,不产生感应电流,P 只受重力G 与桌面支持力F N 作用而平衡,有F N =G ,故B 选项错.同理在t 4时刻Q 中电流恒定,有F N =G ,D 选项正确.t 3时刻Q 中电流变化,P 中磁通量变化,产生感应电流,但Q 中I =0,对P 无磁场力作用,仍是F N =G ,故C 选项错. 4. 【答案】BD【解析】由右手定则可知M 点电势高于N 点电势,故A 错误.根据法拉第电磁感应定律可得E =ΔΦΔt =Blv ,故B 正确.由左手定则知,金属杆所受安培力方向垂直于MN 斜向上,故C 错误.由E =Blv ,I =E R ,R =lsin θr ,F =BI l sin θ,解得F =B 2lvr,故D 正确.5. 【答案】BC【解析】AB 、根据B-t 图象,由楞次定律可知,线圈中感应电流方向一直为顺时针,但在t 0时刻,磁场的方向发生变化,故安培力方向A F 的方向在t 0时刻发生变化,则A 错误,B 正确;CD 、由闭合电路欧姆定律得:E I R =,又根据法拉第电磁感应定律得:22B r E t t π∆Φ∆==∆∆,又根据电阻定律得:2rR Sπρ=,联立得:004B rS I t ρ=,则C 正确,D 错误。
2020年高考一轮复习知识考点专题10 《电磁感应》第一节电磁感应现象楞次定律【基本概念、规律】一、磁通量1.定义:在磁感应强度为B的匀强磁场中,与磁场方向垂直的面积S和B的乘积.2.公式:Φ=B·S.3.单位:1 Wb=1_T·m2.4.标矢性:磁通量是标量,但有正、负.二、电磁感应1.电磁感应现象当穿过闭合电路的磁通量发生变化时,电路中有电流产生,这种现象称为电磁感应现象.2.产生感应电流的条件(1)电路闭合;(2)磁通量变化.3.能量转化发生电磁感应现象时,机械能或其他形式的能转化为电能.特别提醒:无论回路是否闭合,只要穿过线圈平面的磁通量发生变化,线圈中就有感应电动势产生.三、感应电流方向的判断1.楞次定律(1)内容:感应电流的磁场总要阻碍引起感应电流的磁通量的变化.(2)适用情况:所有的电磁感应现象.2.右手定则(1)内容:伸开右手,使拇指与其余四个手指垂直,并且都与手掌在同一个平面内,让磁感线从掌心进入,并使拇指指向导体运动的方向,这时四指所指的方向就是感应电流的方向.(2)适用情况:导体切割磁感线产生感应电流.【重要考点归纳】考点一电磁感应现象的判断1.判断电路中能否产生感应电流的一般流程:2.判断能否产生电磁感应现象,关键是看回路的磁通量是否发生了变化.磁通量的变化量ΔΦ=Φ2-Φ1有多种形式,主要有:(1)S、θ不变,B改变,这时ΔΦ=ΔB·S sin θ;(2)B、θ不变,S改变,这时ΔΦ=ΔS·B sin θ;(3)B、S不变,θ改变,这时ΔΦ=BS(sin θ2-sin θ1).考点二楞次定律的理解及应用1.楞次定律中“阻碍”的含义2.应用楞次定律判断感应电流方向的步骤考点三“一定律三定则”的综合应用1.“三个定则与一个定律”的比较2.无论是“安培力”还是“洛伦兹力”,只要是涉及磁力都用左手判断.“电生磁”或“磁生电”均用右手判断.【思想方法与技巧】楞次定律推论的应用楞次定律中“阻碍”的含义可以理解为感应电流的效果总是阻碍产生感应电流的原因,推论如下:(1)阻碍原磁通量的变化——“增反减同”;(2)阻碍相对运动——“来拒去留”;(3)使线圈面积有扩大或缩小的趋势——“增缩减扩”;(4)阻碍原电流的变化(自感现象)——“增反减同”第二节法拉第电磁感应定律自感涡流【基本概念、规律】一、法拉第电磁感应定律1.感应电动势(1)感应电动势:在电磁感应现象中产生的电动势.产生感应电动势的那部分导体就相当于电源,导体的电阻相当于电源内阻.(2)感应电流与感应电动势的关系:遵循闭合电路欧姆定律,即I=ER+r.2.法拉第电磁感应定律(1)内容:闭合电路中感应电动势的大小,跟穿过这一电路的磁通量的变化率成正比.(2)公式:E=n ΔΦΔt,n为线圈匝数.3.导体切割磁感线的情形(1)若B、l、v相互垂直,则E=Blv.(2)若B⊥l,l⊥v,v与B夹角为θ,则E=Blv sin_θ.二、自感与涡流1.自感现象(1)概念:由于导体本身的电流变化而产生的电磁感应现象称为自感,由于自感而产生的感应电动势叫做自感电动势.(2)表达式:E=L ΔI Δt.(3)自感系数L的影响因素:与线圈的大小、形状、匝数以及是否有铁芯有关.2.涡流当线圈中的电流发生变化时,在它附近的任何导体中都会产生像水的旋涡状的感应电流.(1)电磁阻尼:当导体在磁场中运动时,感应电流会使导体受到安培力,安培力的方向总是阻碍导体的运动.(2)电磁驱动:如果磁场相对于导体转动,在导体中会产生感应电流,使导体受到安培力作用,安培力使导体运动起来.交流感应电动机就是利用电磁驱动的原理工作的.【重要考点归纳】考点一公式E=nΔΦ/Δt的应用1.感应电动势大小的决定因素(1)感应电动势的大小由穿过闭合电路的磁通量的变化率ΔΦΔt和线圈的匝数共同决定,而与磁通量Φ、磁通量的变化量ΔΦ的大小没有必然联系.(2)当ΔΦ仅由B引起时,则E=n SΔBΔt;当ΔΦ仅由S引起时,则E=nBΔSΔt.2.磁通量的变化率ΔΦΔt是Φ-t图象上某点切线的斜率.3.应用电磁感应定律应注意的三个问题(1)公式E=n ΔΦΔt求解的是一个回路中某段时间内的平均电动势,在磁通量均匀变化时,瞬时值才等于平均值.(2)利用公式E=nS ΔBΔt求感应电动势时,S为线圈在磁场范围内的有效面积.(3)通过回路截面的电荷量q仅与n、ΔΦ和回路电阻R有关,与时间长短无关.推导如下:q=IΔt=nΔΦΔtRΔt=nΔΦR.考点二公式E=Blv的应用1.使用条件本公式是在一定条件下得出的,除了磁场是匀强磁场外,还需B、l、v三者相互垂直.实际问题中当它们不相互垂直时,应取垂直的分量进行计算,公式可为E=Blv sin θ,θ为B与v方向间的夹角.2.使用范围导体平动切割磁感线时,若v为平均速度,则E为平均感应电动势,即E=Bl v.若v为瞬时速度,则E为相应的瞬时感应电动势.3.有效性公式中的l为有效切割长度,即导体与v垂直的方向上的投影长度.例如,求下图中MN两点间的电动势时,有效长度分别为甲图:l=cd sin β.乙图:沿v1方向运动时,l=MN;沿v2方向运动时,l=0.丙图:沿v1方向运动时,l=2R;沿v2方向运动时,l=0;沿v3方向运动时,l=R.4.相对性E=Blv中的速度v是相对于磁场的速度,若磁场也运动,应注意速度间的相对关系.5.感应电动势两个公式的比较考点三自感现象的分析1.自感现象“阻碍”作用的理解(1)流过线圈的电流增加时,线圈中产生的自感电动势与电流方向相反,阻碍电流的增加,使其缓慢地增加.(2)流过线圈的电流减小时,线圈中产生的自感电动势与电流方向相同,阻碍电流的减小,使其缓慢地减小.2.自感现象的四个特点(1)自感电动势总是阻碍导体中原电流的变化.(2)通过线圈中的电流不能发生突变,只能缓慢变化.(3)电流稳定时,自感线圈就相当于普通导体.(4)线圈的自感系数越大,自感现象越明显,自感电动势只是延缓了过程的进行,但它不能使过程停止,更不能使过程反向.3.自感现象中的能量转化通电自感中,电能转化为磁场能;断电自感中,磁场能转化为电能.4.分析自感现象的两点注意(1)通过自感线圈中的电流不能发生突变,即通电过程,线圈中电流逐渐变大,断电过程,线圈中电流逐渐变小,方向不变.此时线圈可等效为“电源”,该“电源”与其他电路元件形成回路.(2)断电自感现象中灯泡是否“闪亮”问题的判断,在于对电流大小的分析,若断电后通过灯泡的电流比原来强,则灯泡先闪亮后再慢慢熄灭.第三节电磁感应中的电路和图象问题【基本概念、规律】一、电磁感应中的电路问题1.内电路和外电路(1)切割磁感线运动的导体或磁通量发生变化的线圈都相当于电源.(2)该部分导体的电阻或线圈的电阻相当于电源的内阻,其余部分是外电阻.2.电源电动势和路端电压(1)电动势:E=Blv或E=n ΔΦΔt.(2)路端电压:U=IR=ER+r·R.二、电磁感应中的图象问题1.图象类型(1)随时间t变化的图象如B-t图象、Φ-t图象、E-t图象和i-t图象.(2)随位移x变化的图象如E-x图象和i-x图象.2.问题类型(1)由给定的电磁感应过程判断或画出正确的图象.(2)由给定的有关图象分析电磁感应过程,求解相应的物理量.(3)利用给出的图象判断或画出新的图象.【重要考点归纳】考点一电磁感应中的电路问题1.对电源的理解:在电磁感应现象中,产生感应电动势的那部分导体就是电源,如切割磁感线的导体棒、有磁通量变化的线圈等.这种电源将其他形式的能转化为电能.2.对电路的理解:内电路是切割磁感线的导体或磁通量发生变化的线圈,外电路由电阻、电容等电学元件组成.3.解决电磁感应中电路问题的一般思路:(1)确定等效电源,利用E=n ΔΦΔt或E=Blv sin θ求感应电动势的大小,利用右手定则或楞次定律判断电流方向.(2)分析电路结构(内、外电路及外电路的串、并联关系),画出等效电路图.(3)利用电路规律求解.主要应用欧姆定律及串、并联电路的基本性质等列方程求解.4.(1)对等效于电源的导体或线圈,两端的电压一般不等于感应电动势,只有在其电阻不计时才相等.(2)沿等效电源中感应电流的方向,电势逐渐升高.考点二电磁感应中的图象问题1.题型特点一般可把图象问题分为三类:(1)由给定的电磁感应过程选出或画出正确的图象;(2)由给定的有关图象分析电磁感应过程,求解相应的物理量;(3)根据图象定量计算.2.解题关键弄清初始条件,正负方向的对应,变化范围,所研究物理量的函数表达式,进、出磁场的转折点是解决问题的关键.3.解决图象问题的一般步骤(1)明确图象的种类,即是B-t图象还是Φ-t图象,或者是E-t图象、I-t图象等;(2)分析电磁感应的具体过程;(3)用右手定则或楞次定律确定方向对应关系;(4)结合法拉第电磁感应定律、欧姆定律、牛顿运动定律等规律写出函数关系式;(5)根据函数关系式,进行数学分析,如分析斜率的变化、截距等;(6)画出图象或判断图象.4.解决图象类选择题的最简方法——分类排除法.首先对题中给出的四个图象根据大小或方向变化特点分类,然后定性地分析电磁感应过程中物理量的变化趋势(增大还是减小)、变化快慢(均匀变化还是非均匀变化),特别是用物理量的方向,排除错误选项,此法最简捷、最有效.【思想方法与技巧】电磁感应电路与图象的综合问题解决电路与图象综合问题的思路(1)电路分析弄清电路结构,画出等效电路图,明确计算电动势的公式.(2)图象分析①弄清图象所揭示的物理规律或物理量间的函数关系;②挖掘图象中的隐含条件,明确有关图线所包围的面积、图线的斜率(或其绝对值)、截距所表示的物理意义.(3)定量计算运用有关物理概念、公式、定理和定律列式计算.第四节电磁感应中的动力学和能量问题【基本概念、规律】一、电磁感应现象中的动力学问题1.安培力的大小⎭⎬⎫安培力公式:F =BIl 感应电动势:E =Blv 感应电流:I =E R⇒F =B 2l 2v R 2.安培力的方向(1)先用右手定则判定感应电流方向,再用左手定则判定安培力方向. (2)根据楞次定律,安培力的方向一定和导体切割磁感线运动方向相反. 二、电磁感应中的能量转化 1.过程分析(1)电磁感应现象中产生感应电流的过程,实质上是能量的转化过程.(2)感应电流在磁场中受安培力,若安培力做负功,则其他形式的能转化为电能;若安培力做正功,则电能转化为其他形式的能.(3)当感应电流通过用电器时,电能转化为其他形式的能. 2.安培力做功和电能变化的对应关系“外力”克服安培力做多少功,就有多少其他形式的能转化为电能;安培力做多少功,就有多少电能转化为其他形式的能.【重要考点归纳】考点一 电磁感应中的动力学问题分析1.导体的平衡态——静止状态或匀速直线运动状态. 处理方法:根据平衡条件(合外力等于零)列式分析. 2.导体的非平衡态——加速度不为零.处理方法:根据牛顿第二定律进行动态分析或结合功能关系分析. 3.分析电磁感应中的动力学问题的一般思路(1)先进行“源”的分析——分离出电路中由电磁感应所产生的电源,求出电源参数E 和r ; (2)再进行“路”的分析——分析电路结构,弄清串、并联关系,求出相关部分的电流大小,以便求解安培力;(3)然后是“力”的分析——分析研究对象(常是金属杆、导体线圈等)的受力情况,尤其注意其所受的安培力;(4)最后进行“运动”状态的分析——根据力和运动的关系,判断出正确的运动模型.考点二 电磁感应中的能量问题1.电磁感应过程的实质是不同形式的能量转化的过程,而能量的转化是通过安培力做功的形式实现的,安培力做功的过程,是电能转化为其他形式能的过程,外力克服安培力做功,则是其他形式的能转化为电能的过程.2.能量转化及焦耳热的求法 (1)能量转化(2)求解焦耳热Q的三种方法3.在解决电磁感应中的能量问题时,首先进行受力分析,判断各力做功和能量转化情况,再利用功能关系或能量守恒定律列式求解.【思想方法与技巧】电磁感应中的“双杆”模型1.模型分类“双杆”模型分为两类:一类是“一动一静”,甲杆静止不动,乙杆运动,其实质是单杆问题,不过要注意问题包含着一个条件:甲杆静止、受力平衡.另一种情况是两杆都在运动,对于这种情况,要注意两杆切割磁感线产生的感应电动势是相加还是相减.2.分析方法通过受力分析,确定运动状态,一般会有收尾状态.对于收尾状态则有恒定的速度或者加速度等,再结合运动学规律、牛顿运动定律和能量观点分析求解.3.分析“双杆”模型问题时,要注意双杆之间的制约关系,即“动杆”与“被动杆”之间的关系,需要注意的是,最终两杆的收尾状态的确定是分析该类问题的关键.电磁感应中的含容电路分析一、电磁感应回路中只有电容器元件1.这类问题的特点是电容器两端电压等于感应电动势,充电电流等于感应电流.2.(1)电容器的充电电流用I=ΔQΔt=CΔUΔt表示.(2)由本例可以看出:导体棒在恒定外力作用下,产生的电动势均匀增大,电流不变,所受安培阻力不变,导体棒做匀加速直线运动.二、电磁感应回路中电容器与电阻并联问题1.这一类问题的特点是电容器两端的电压等于与之并联的电阻两端的电压,充电过程中的电流只是感应电流的一支流.稳定后,充电电流为零.2.在这类问题中,导体棒在恒定外力作用下做变加速运动,最后做匀速运动.。
课时作业(二十六)1.D[解析]励磁线圈A中的电流是恒定电流,产生稳恒磁场,穿过线圈B的磁通量不发生变化,不产生感应电流,D正确.2.D[解析]通电直导线周围磁场分布如图所示,根据楞次定律和安培定则判断,选项D正确.3.AC[解析]线框从图示位置释放后,先在重力作用下向下运动,穿过线框的磁通量不变,故不产生感应电流,一直只受到重力,因此线框做直线运动,A正确,B错误;线框自右向左移动时,穿过线框的磁通量先向外减小,再向里增加,根据楞次定律和安培定则可判断,线框中感应电流一直沿逆时针方向,C正确,D错误.4.B[解析]cd导线受到的安培力向下,由左手定则可判断,cd导线中电流方向是由c指向d,所以c点的电势高于d点的电势,故A错误;结合A的分析可知,ab棒中的电流由b 流向a,因ab棒向左运动,由右手定则可判断,ab棒所处位置磁场方向竖直向上,则Ⅰ是S极,Ⅱ是N极,故B正确,C错误;根据楞次定律可判断,ab棒受到向右的安培力,故D错误.5.AD[解析]导体棒向左加速运动时,由右手定则可判断出,导体棒PQ中感应电流的方向从P到Q,PQ上半部分与R1构成闭合回路,流经R1的电流方向向上,选项A正确,选项C错误.PQ下半部分与R2构成闭合回路,流经R2的电流方向向上,选项D正确,选项B错误.6.D[解析]闭合S的瞬间,穿过B的磁通量没有变化,G中无感应电流,选项A、B错误.当闭合S后,若R接入电路的阻值增大,则A中电流减小,由右手螺旋定则知,穿过B的磁通量向下且减小,由楞次定律可判断,G中电流方向为b→a,故选项C错误,选项D正确.7.A[解析]A中感应电流方向为顺时针,由右手螺旋定则可判断,感应电流的磁场向里,由楞次定律可知,引起感应电流的磁场可能为向外增大或向里减小,若原磁场向外,则B 中电流方向应为逆时针,由于B带负电,故B应顺时针转动且转速增大,若原磁场向里,则B中电流方向应为顺时针,B应逆时针转动且转速减小,又因为导体环A具有扩展趋势,则B应顺时针转动且转速增大,A正确.8.AB[解析]闭合开关S的瞬间,金属环中向左的磁通量增大,根据楞次定律可判断,从左侧看,环中产生沿顺时针方向的感应电流,A正确;由于电阻率ρ铜<ρ铝,先后放上用横截面积相等的铜和铝导线制成的形状、大小相同的两个闭合环,铜环中产生的感应电流大于铝环中产生的感应电流,由安培力公式可知,铜环受到的安培力大于铝环受到的安培力,B正确;若将金属环置于线圈右侧,则闭合开关S的瞬间,环将向右弹射,C错误;电池正、负极调换后,同理可以得出金属环仍能向左弹射,D错误.9.B[解析]导体棒MN向左运动时,由右手定则可判断,感应电流方向为MNdcM,而ab 中的电流是由a到b的,即ab、cd中电流方向相反,则两导线相互排斥,故选项A、C错误;MN向右运动时,由右手定则可判断,cd中的感应电流由c到d,而ab中的电流是由a 到b的,故两导线相互吸引,根据力的作用是相互的,可知这两个力大小相等,故选项B正确,选项D错误.10.BC[解析]由楞次定律可知,电路接通的瞬间,螺线管中的电流从无到有,穿过铜环的磁通量向左增大,从左往右看,铜环中产生顺时针方向的感应电流,铜环有收缩的趋势,选项A、D错误,选项B、C正确.11.A[解析]由安培定则可判断,螺线管中磁感线方向向上,金属棒ab、cd处的磁感线方向均向下,当滑动触头向左滑动时,螺线管中电流增大,因此磁场变强,即磁感应强度变大,回路中的磁通量增大,由楞次定律可判断,感应电流方向为a→c→d→b→a,由左手定则可判断,ab受到的安培力方向向左,cd受到的安培力方向向右,故ab向左运动,cd 向右运动,A正确.12.ABC[解析]闭合或断开开关S的瞬间,线圈A中的电流发生变化,线圈A中产生感应电动势,故A、B正确;闭合开关S的瞬间,穿过线圈A的磁通量增加,根据安培定则可判断,A中产生的磁场方向向上,同时穿过线圈B的磁通量向上增大,根据楞次定律可判断,线圈B中感应电流的磁场方向向下,根据安培定则可判断,线圈B下端的电势高,电流能通过二极管M,不能通过二极管N,故C正确;结合对选项C的分析可知,S断开瞬间,穿过线圈B的磁通量向上减小,线圈B中产生的感应电流方向与S闭合瞬间线圈B中产生的感应电流方向相反,所以此时感应电流能通过二极管N,不能通过二极管M,故D 错误.课时作业(二十七)1.C[解析]无线充电时手机接收线圈部分的工作原理是电磁感应,故A错误;当给充电设备通以恒定直流电时,充电设备不会产生交变磁场,即不能正常充电,故B错误;接收线圈中交变电流的频率应与发射线圈中交变电流的频率相同,故C正确;被充电手机内部应该有一类似金属线圈的部件与手机电池相连,当有交变磁场时,产生感应电动势,故D错误.2.C[解析]金属探测器只能探测金属,不能用于食品生产,不能防止细小的沙石颗粒混入食品中,选项A错误;金属探测器探测金属时,被测金属中感应出涡流,选项B错误,C 正确;探测过程中金属探测器应与被测物体相对运动,相对静止时无法得到探测结果,选项D错误.3.B[解析]当回路断开时,电流要立即减小到零,但由于线圈的自感现象,会产生感应电动势,该自感电动势较大,所以刘伟被“电”到,即刘伟有电击感是因为两手之间瞬间有高电压,选项A错误,B正确;因多用电表的表笔已经与被测线圈脱离,则多用电表不可能被烧坏,选项C错误;实验过程中若李辉两手分别握住红、黑表笔的金属杆,则当多用电表表笔与线圈脱离后,在电表回路不会产生感应电动势,他不会受到电击,选项D错误.4.B[解析]I甲==··=,I乙==·S·=,所以I乙=2I甲,由于丙中磁通量始终=0,只有B正确.为零,故I丙5.BC[解析]磁场向右均匀增强,由楞次定律判断,电容器上极板带正电,故A错误,B正确;闭合线圈与阻值为r的电阻形成闭合回路,线圈相当于电源,电容器两极板间的电压等于路端电压,线圈产生的感应电动势E=nS=nSk,路端电压U=·r=,则电容器所带电荷量为Q=CU=,故C正确,D错误.6.AC[解析]根据楞次定律可得,当磁感应强度均匀减小时,圆环和线框内产生的感应电流的磁场方向都与原磁场方向相同,即感应电流方向都为顺时针方向,A正确,B错误;设圆环半径为a,则圆面积为S=πa2,圆周长为L=2πa,正方形面积为S'=2a2,正方形周长为L'=4a,因为磁感应强度是均匀减小的,故E=,所以圆环和正方形线框产生的感应电动势之比为==,两者的电阻之比为==,故电流之比为=×=×=,故C正确,D错误.7.AD[解析]当θ=0时,杆在圆心位置,切割磁感线的有效长度等于圆环直径,杆产生的感应电动势为E=2Bav,A正确;当θ=时,杆切割磁感线的有效长度等于圆环半径,杆产生的感应电动势为E=Bav,B错误;当θ=0时,回路的总电阻R1=(2a+πa)R0,杆受的安培力F1=BI1l=B··2a=,C错误;当θ=时,回路的总电阻R2=(a+πa)R0,杆受的安培力F 2=BI2l'=B··a=,D正确.8.BD[解析]当S闭合时,因二极管加上了反向电压,故L1一直不亮,S闭合时电流增大,线圈产生的自感电动势阻碍电流增大,故使得L2逐渐变亮,选项B正确,选项A错误;当S 由闭合断开时,由于线圈产生的自感电动势阻碍电流的减小,故通过L的电流要在L2→L1→D→L之中形成新的回路,所以L1突然变亮,然后逐渐变暗至熄灭,L2缓慢熄灭,选项C 错误,选项D正确.9.BCD[解析]设甲、乙两线圈匝数分别为n1、n2,半径分别为r1、r2,导线横截面积为S',图甲中,设有界磁场的面积为S,则线圈A产生的电动势E A=n1S,电阻R A=ρ,B 产生的电动势为E B=n2S,R B=ρ,因此==,电流之比为=·=,A错误,B正确;图乙中,A的电动势E'A=n1π,B的电动势E'B=n2π,因此=×=,电流之比=·=,C、D正确.10.(1)方向从b到a(2)[解析](1)由图像可知,0~t1时间内,有=由法拉第电磁感应定律有E=n=n·S其中S=π由闭合电路欧姆定律有I1=联立解得I1=.由楞次定律可判断,通过电阻R1的电流方向为从b到a.(2)通过电阻R1的电荷量q=I1t1=电阻R1上产生的热量Q=R1t1=.11.(1)(2)(3)[解析](1)感应电动势E=Bdv0感应电流I=故I=(2)安培力F=BId由牛顿第二定律得F=ma故a=(3)金属杆切割磁感线的速度v'=v0-v,则感应电动势E=Bd(v0-v)电功率P=故P=.专题训练(九)1.BD[解析]由右手定则可判断,ab中电流方向为a→b,A错误;导体棒ab切割磁感线产生的感应电动势E=Blv,ab为电源,cd间电阻R为外电路负载,de和cf间电阻中无电流,de和cf两端无电压,因此cd和fe两端电压相等,即U=×R==1 V,B、D正确,C错误.2.A[解析]棒摆到竖直位置时整根棒处在匀强磁场中,切割磁感线的长度为2a,导体棒切割磁感线产生的感应电动势E=B0·2a·v',其中v'==,则E=B0av,外电路的总电阻R==,根据闭合电路欧姆定律得I=,则总电流I=,故A、B两端的电压U=IR=·=B0av,选项A正确.3.A[解析]ab边切割磁感线产生的感应电动势为E=BLv=0.2 V,线框中感应电流为I==0.5 A,所以在0~5×10-2 s内,a、b两点间的电势差为U1=I·R=0.15 V;在5×10-2~10×10-2 s内,a、b两点间的电势差U2=E=0.2 V;在10×10-2~15×10-2 s内,a、b两点间的电势差为U3=I·R=0.05 V,选项A正确.4.B[解析]根据i t图像可知,在0~6 s内,MN边始终有大小恒定的电流通过,由F=BIl 可知,安培力的大小是恒定的,选项C、D错误;0~1 s、3~5 s内通过MN的电流方向为N →M,1~3 s、5~6 s内通过MN的电流方向为M→N,由左手定则可判断出MN边所受的安培力方向,0~1 s、3~5 s内安培力方向向上,1~3 s、5~6 s内安培力方向向下,选项B正确,A错误.5.AD[解析]运动的过程中切割的有效长度为L,产生的电动势为E=BLv,由图知,回路的周长与L成正比,即s=kL,设单位长度的电阻为R0,总电阻为kLR0,则电流I==,故A正确,B错误;导轨做匀速运动,所以合外力等于零,则F=F安=BIL,电流I不变,切割的有效长度L随时间均匀增大,故C错误,D正确.6.D[解析]线框切割磁感线产生的感应电动势E=BLv,设线框总电阻是R,则感应电流I==,由图乙所示图像可知,感应电流先均匀变大,后均匀变小,由于B、v、R是定值,故有效切割长度L应先变大后变小,且L随时间均匀变化.闭合圆环匀速进入磁场时,有效长度L先变大后变小,但L随时间不是均匀变化,不符合题意,故A错误;正方形线框进入磁场时,有效长度L不变,感应电流不变,不符合题意,故B错误;梯形线框匀速进入磁场时,有效长度L先均匀增加,后不变,再均匀减小,不符合题意,故C错误;三角形线框匀速进入磁场时,有效长度L先增加后减小,且随时间均匀变化,符合题意,故D正确.7.AD[解析]在0~t0时间内,由楞次定律可判断出感应电流方向为逆时针方向(为负值);在t0~2t0时间内,由楞次定律可判断出感应电流方向为顺时针方向(为正值),且大小为在0~t0时间内产生的电流大小的2倍;在2t0~3t0时间内,由楞次定律可判断出感应电流方向为逆时针方向(为负值),且大小与在0~t0时间内产生的感应电流大小相等.因此感应电流I随时间t的变化图线与选项A中图像相符,选项A正确,B错误.在0~t0时间内,ON边虽然有电流但没有进入磁场区域,所受安培力为零;在t0~2t0时间内,感应电流大小为在2t0~3t0时间内产生的2倍,ON边所受安培力为在2t0~3t0时间内的2倍,因此ON边所受的安培力大小F随时间t的变化图线与选项D中图像相符,选项C错误,D正确.8.AC[解析]由右手定则可判断,圆环中心为电源的正极、圆环边缘为电源的负极,因此通过R1的电流方向为自下而上,选项A正确;由题意可知,始终有长度为r的辐条在转动切割磁感线,因此感应电动势大小为Br2ω,选项B错误;由图可知,在磁场内部的半根辐条相当于电源,磁场外部的半根辐条与R1并联,因此理想电压表的示数为Br2ω,选项C正确;理想电流表的示数为,选项D错误.9.(1)0.4 A方向从b到a(2)1.5×10-3 C(3)1.6×10-2 J[解析](1)0~内,感应电动势大小E1=n==8 V电流大小I1==0.4 A由楞次定律可判断,电流方向为从b到a.(2)~内,感应电流大小I2=0.2 A流过电阻R0的电荷量q=I1+I2=1.5×10-3 C.(3)一个周期内电阻R0上产生的热量Q=R0+R0=1.6×10-2 J.10.(1)竖直向下(2)0.4 V(3)1 m/s[解析](1)带负电的微粒受到重力和电场力的作用而处于静止状态,因为重力竖直向下,所以电场力竖直向上,故M板带正电.ab棒向右做切割磁感线运动产生感应电动势,等效于电源,感应电流方向由b流向a,由右手定则可判断,磁场方向竖直向下.(2)微粒受到重力和电场力的作用而处于静止状态,根据平衡条件得mg=E|q|又E=所以U MN==0.1 VR3两端电压与电容器两端电压相等,由欧姆定律得通过R3的电流为I==0.05 A则ab棒两端的电压为U ab=U MN+I=0.4 V.(3)设金属棒ab运动的速度为v,由法拉第电磁感应定律得感应电动势E感=Blv由闭合电路欧姆定律得E=U ab+Ir=0.5 V感联立解得v=1 m/s.专题训练(十)A1.BD[解析]金属杆ab做加速度减小的加速运动,根据能量守恒定律可知,恒力F做的功等于杆增加的动能和电路中产生的电能.电阻消耗的功率等于电路中产生电能的功率,不等于恒力F的功率,故A错误;电阻消耗的功率等于克服安培力做功的功率,等于电路的电功率iE,故B、D正确,C错误.2.C[解析]根据能量守恒定律,外力做的功等于电路中产生的电能,设线框切割磁感线的有效长度为l,则外力对线框做的功W=·,而R=,联立得W=,因S a∶S b=4∶1,l a∶l b=1∶2,故W a∶W b=1∶1,选项C正确.3.BD[解析]ab边刚越过GH进入磁场区域Ⅰ时,感应电动势E1=BLv1,电流I1==,线框做匀速运动,所以有mg sin θ=BI1L=,当ab边刚越过JP时,感应电动势E2=2BLv1,电流I2==,根据牛顿第二定律得2BI2L-mg sin θ=ma,联立解得a=3g sin θ,故A错误;当加速度a=0时,以速度v2做匀速直线运动,即mg sin θ=,所以v1∶v2=4∶1,故B 正确;从t1时刻到t2时刻的过程中,根据能量守恒定律,导线框克服安培力做的功等于重力势能和动能的减少量之和,即克服安培力做功W=+,克服安培力做的功等于产生的电能,故C错误,D正确.4.D[解析]根据能量守恒定律,从cd边刚进入磁场到cd边刚穿出磁场的过程中,动能变化量为0,重力势能转化为线圈进入磁场的过程中产生的热量,Q=mgd,cd边刚进入磁场时速度为v0,cd边刚离开磁场时速度也为v0,所以线圈进入和穿出磁场的过程中产生的热量相等,则线圈从cd边进入磁场到ab边离开磁场的过程中产生的热量Q'=2mgd,感应电流做的功为2mgd,故A、B错误.因为线圈进磁场时要减速运动,全部进入磁场后做匀加速运动,若线圈进入磁场过程一直做减速运动,则刚全部进入磁场的瞬间速度最小,设线圈的最小速度为v,线圈从开始下落到线圈刚完全进入磁场的过程,根据能量守恒定律得mg(h+L)=Q+m,Q=mgd,则线圈的最小速度为v m=,故C错误.线圈可能先做减速运动,在完全进入磁场前已做匀速运动,则其做匀速运动时的速度最小,有mg=BIL=BL,则最小速度v m=,故D正确.5.AB[解析]导体棒ab匀速上升,受力平衡,cd棒静止,受力也平衡,对于两棒组成的整体,合外力为零,根据平衡条件可得,ab棒受到的拉力F=2mg=0.2 N,故A正确;cd棒受到=BIL=,cd棒静止,处于平衡状态,由平衡条件得=mg,解得v=2 m/s,的安培力F安故B正确;在2 s内,电路产生的电能Q=t=t=×2 J=0.4 J,故C错误;在2 s 内拉力做的功为W=Fvt=0.2×2×2 J=0.8 J,故D错误.6.D[解析]根据E=BLv,则电压表读数为U=,解得v=,选项A错误;电阻R产生焦耳热的功率为P R=,选项B错误;金属条经过磁场区域受到的安培力大小为F=BIL=,选项C错误;每根金属条经过磁场区域的全过程中克服安培力做功为W=Fd=,选项D正确.7.(1)0.5 m(2)0.64 J(3)0.8 C[解析](1)线框在磁场中匀速运动,有F安=FF安=BIL,I=,E=BLv1联立解得v1==2 m/s由动能定理得FD=m解得D=0.5 m(2)由能量守恒定律可知Q=2Fd=2×0.8×0.4 J=0.64 J(3)根据q=可得q==C=0.8 C8.(1)0.3 m(2)1.05 J[解析](1)在0.3~0.6 s内通过金属棒的电荷量是q1=I1t1=在0~0.3 s内通过金属棒的电荷量q2==由题意知=解得x2=0.3 m.(2)金属棒在0~0.6 s内通过的总位移为x=x1+x2=vt1+x2=0.75 m根据能量守恒定律得Mgx-mgx sin θ=(M+m)v2+Q解得Q=3.15 J由于金属棒与电阻R串联,电流相等,根据焦耳定律Q=I2Rt知,它们产生的热量与电阻成正比,所以金属棒在0~0.6 s内产生的热量Q r=Q=1.05 J.9.(1)(2)BLq-3mgr2-(3)-[解析](1)对b从开始至滑上水平导轨过程,由机械能守恒定律得M=Mgr1解得v b1=b刚滑上水平导轨时加速度最大,此时E=BLv b1,I=由牛顿第二定律得F安=BIL=Ma解得a=(2)在整个过程中,由动量定理得-B Lt=Mv b2-Mv b1即-BLq=Mv b2-Mv b1解得v b2=-根据牛顿第三定律,a在最高点时轨道对其支持力F N=F'N=mg由牛顿第二定律得mg+F N=m解得v a1=对a、b组成的系统,由能量守恒定律得Mgr1=M+m+2mgr2+Q解得Q=BLq-3mgr2-(3)a从右端半圆导轨最低点到最高点过程中,由能量守恒定律得2mgr2=m-m解得v a2=从b刚滑上水平导轨至a滑到右端半圆导轨最低点的过程中,由动量守恒定律得Mv b1=Mv b3+mv a2解得v b3=-专题训练(十)B1.ABC[解析]由右手定则可判断,当金属杆滑动时产生逆时针方向的电流,通过R的感应电流的方向为由a到d,故A正确;金属杆PQ切割磁感线产生的感应电动势的大小为E=Blv=1.0×1×2 V=2 V,故B正确;在整个回路中产生的感应电流为I==0.5 A,则安培力F=BIl=0.5 N,故C正确;金属杆PQ在外力F作用下在粗糙导轨上以速度v向右匀速安滑动,外力F做功大小等于电路产生的焦耳热和导轨与金属杆之间因摩擦产生的热量之和,故D错误.2.B[解析]根据E=BLv,I=,F=BIL,v=at以及F拉-F=ma可知,线框受到的水平外力是变力,且出磁场时比进磁场时要大,故出磁场时外力做功比进入磁场时外力做功多,故选项A、D错误;线框做匀加速直线运动,由图像及匀加速直线运动规律,结合电流与速度的关系可知,线框边长与磁场宽度之比为3∶8,出磁场的时间不是进入磁场时的一半,故选项B正确,选项C错误.3.C[解析]速度达到最大值v m前,金属棒做加速度减小的加速运动,故相同时间内速度的增加量减小,所以t=时,金属棒的速度大于,故A错误;由能量守恒定律可知,0~T 的时间内,金属棒机械能的减小量等于R上产生的焦耳热和金属棒与导轨间摩擦生热之和,故B错误;0~内金属棒的位移小于~T内金属棒的位移,金属棒做加速运动,所受的安培力增大,所以~T内金属棒克服安培力做功更多,产生的电能更多,电阻R上产生的焦耳热更多,故C正确;~T内的位移比0~内的位移大,故~T内克服滑动摩擦力做功更多,由功能关系得,~T内金属棒机械能的减少量更多,故D错误.4.C[解析]由右手定则可判断,金属杆中感应电流方向由b指向a,由左手定则知,金属=,I=,当达到最大速度时,金杆所受的安培力沿轨道向上,A、B错误;总电阻为R总属杆受力平衡,有mg sin θ=BIL=·(R1+R),变形得=·+,根据图像可得=k=s·m-1·Ω,=b=0.5 s·m-1,解得杆的质量m=0.1 kg,定值电阻R1=1 Ω,C正确.5.AD[解析]圆环向下切割磁感线,由右手定则可判断,圆环中感应电流的方向为顺时针方向(俯视),A正确;由左手定则可判断,圆环受的安培力向上,B错误;圆环中感应电动势为E=B·2πR·v,感应电流I=,电阻R'=ρ=,解得I=,圆环受的安培力F=BI·2πR=,圆环的加速度a==g-,圆环的质量m=d·2πR·πr2,解得加速度a=g-,C错误;当mg=F时,加速度a=0,速度最大,为v m=,D正确.6.BC[解析]初始时刻,cd边速度为v0,若此时所受重力不大于安培力,则产生的感应电动势最大,为E=BLv0,感应电流I==,cd边所受安培力的大小F=BIL=,A错误,B正确;由能量守恒定律得m+mgh=Q+E p,cd边第一次到达最下端的时刻,两根弹簧具有的弹性势能总量为E p=m-Q+mgh,大于m-Q,C正确;cd边最后静止在初始位置下方,重力做的功大于克服弹簧弹力做的功,由能量守恒定律可知,线框的动能和减少的重力势能转化为焦耳热及弹簧的弹性势能,因减少的重力势能大于增加的弹性势能,所以热量应大于m,故D错误.7.(1)(2)[解析](1)金属棒匀速运动时,根据平衡条件第一种情况,有mg sin θ-m0g=BI1L=第二种情况,有mg sin θ=BI2L=由题意知=4联立解得=.(2)第一次下滑至MN位置的过程中,根据动能定理得mgh-m0g-W1=(m+m0)第二次下滑至MN位置的过程中,根据动能定理得mgh-W2=m两次运动过程中,电阻R产生的热量之比为==.8.8.15 m/s1.85 m/s[解析]设某一时刻t,金属杆甲、乙之间的距离为x,速度分别为v1和v2,经过很短的时间Δt,杆甲移动距离为v1Δt,杆乙移动距离为v2Δt,回路面积改变ΔS=l[(x-v2Δt)+v1Δt]-lx=l(v1-v2)Δt由法拉第电磁感应定律得,回路中的感应电动势E=B=Bl(v1-v2)回路中的电流i=对金属杆甲,由牛顿第二定律得F-Bli=ma由于作用于金属杆甲和金属杆乙的安培力总是大小相等、方向相反,所以两杆的总动量(t=0时为0)等于外力F的冲量,即Ft=mv1+mv2联立解得v1=8.15 m/s,v2=1.85 m/s.9.(1)5 m/s(2)1.25 J(3)1.25 N[解析](1)在安培力作用下,b棒做减速运动,c棒做加速运动,当两棒速度相等时,c棒达到最大速度.以两棒为研究对象,根据动量守恒定律得m b v0=(m b+m c)v解得c棒的最大速度为v=v0=v0=5 m/s.(2)从b棒开始运动到两棒速度相等的过程中,系统减少的动能转化为电能,两棒中产生的总热量为Q=m b-(m b+m c)v2=2.5 J因为R b=R c,所以c棒从开始至达到最大速度过程产生的焦耳热为Q c==1.25 J(3)设c棒沿半圆轨道滑到最高点时的速度为v',从最低点上升到最高点的过程,由机械能守恒定律得m c v2-m c v'2=m c g·2R解得v'=3 m/s在最高点,设轨道对c棒的弹力为F,由牛顿第二定律得m c g+F=m c解得F=1.25 N由牛顿第三定律得,在最高点时c棒对轨道的压力为1.25 N,方向竖直向上.。
第十章电磁感应做真题明方向1.[2024·全国甲卷](多选)一有机玻璃管竖直放在水平地面上,管上有漆包线绕成的线圈,线圈的两端与电流传感器相连,线圈在玻璃管上部的5匝匀称分布,下部的3匝也匀称分布,下部相邻两匝间的距离大于上部相邻两匝间的距离.如图(a)所示.现让一个很小的强磁体在玻璃管内沿轴线从上端口由静止下落,电流传感器测得线圈中电流I随时间t 的改变如图(b)所示.则( )A.小磁体在玻璃管内下降速度越来越快B.下落过程中,小磁体的N极、S极上下颠倒了8次C.下落过程中,小磁体受到的电磁阻力始终保持不变D.与上部相比,小磁体通过线圈下部的过程中,磁通量改变率的最大值更大2.[2024·全国甲卷]三个用同样的细导线做成的刚性闭合线框,正方形线框的边长与圆线框的直径相等,圆线框的半径与正六边形线框的边长相等,如图所示.把它们放入磁感应强度随时间线性改变的同一匀强磁场中,线框所在平面均与磁场方向垂直,正方形、圆形和正六边形线框中感应电流的大小分别为I1、I2和I3.则( )A.I1<I3<I2B.I1>I3>I2C.I1=I2>I3D.I1=I2=I33.[2024·全国甲卷](多选)如图,两根相互平行的光滑长直金属导轨固定在水平绝缘桌面上,在导轨的左端接入电容为C的电容器和阻值为R的电阻.质量为m、阻值也为R的导体棒MN静止于导轨上,与导轨垂直,且接触良好,导轨电阻忽视不计,整个系统处于方向竖直向下的匀强磁场中.起先时,电容器所带的电荷量为Q,合上开关S后,( )A.通过导体棒MN电流的最大值为QRCB.导体棒MN向右先加速、后匀速运动C.导体棒MN速度最大时所受的安培力也最大D.电阻R上产生的焦耳热大于导体棒MN上产生的焦耳热4.[2024·山东卷](多选)如图所示,xOy平面的第一、三象限内以坐标原点O为圆心、半径为 2 L的扇形区域充溢方向垂直纸面对外的匀强磁场.边长为L的正方形金属框绕其始终在O点的顶点、在xOy平面内以角速度ω顺时针匀速转动t=0时刻,金属框起先进入第一象限.不考虑自感影响,关于金属框中感应电动势E随时间t改变规律的描述正确的是( )A.在t=0到t=π2ω的过程中,E始终增大B.在t=0到t=π2ω的过程中,E先增大后减小C.在t=0到t=π4ω的过程中,E的改变率始终增大D.在t=0到t=π4ω的过程中,E的改变率始终减小5.[2024·广东卷]如图是简化的某种旋转磁极式发电机原理图.定子是仅匝数n不同的两线圈,n1>n2,二者轴线在同一平面内且相互垂直,两线圈到其轴线交点O的距离相等,且均连接阻值为R 的电阻,转子是中心在O点的条形磁铁,绕O点在该平面内匀速转动时,两线圈输出正弦式交变电流.不计线圈电阻、自感及两线圈间的相互影响,下列说法正确的是( ) A.两线圈产生的电动势的有效值相等B.两线圈产生的交变电流频率相等C.两线圈产生的电动势同时达到最大值D.两电阻消耗的电功率相等第十章 电磁感应做真题 明方向1.AD 电流的峰值越来越大,即小磁体在依次穿过每个线圈的过程中磁通量的改变率越来越快,因此小磁体的速度越来越大,A 正确;下落过程中,小磁体在水平方向受的合力为零,故小磁体的N 极、S 极上下没有颠倒,B 错误;线圈可等效为条形磁铁,线圈的电流越大则磁性越强,因此电流的大小是改变的.小磁体受到的电磁阻力是改变的,不是始终不变的,C 错误;由图(b )可知,与上部相比,小磁体通过线圈下部的过程中,感应电流的最大值更大,故磁通量改变率的最大值更大,D 正确.故选AD .2.C 设正方形线框边长为a ,则圆线框半径为a 2 ,正六边形线框边长为a 2 ,由法拉第电磁感应定律得E =n ΔΦΔt =ΔB Δt S 面积,由电阻定律得R =ρl 周长S 截 ,由题意知ΔB Δt、ρ、S 截均为定值,所以电流I =E R ∝S 面积l 周长 ,面积分别为a 2、πa 24 、33a 28,周长分别为4a 、πa 、3a ,故电流I 1=I 2>I 3,故C 项正确.3.AD 合上开关的瞬间,导体棒两端电压等于电容器两端电压且为最大值,电流也最大,I =U R =Q RC,电流最大时,导体棒MN 所受的安培力最大,而导体棒速度最大时电流不是最大,所以A 正确,C 错误;导体棒MN 先加速后减速,不会匀速,假如导体棒MN 做匀速直线运动,电阻上始终有焦耳热产生,其他能量都不变,不符合能量守恒,所以B 错误;由于棒运动过程切割磁感线产生反电动势,导致只有起先时通过电阻R 的电流与通过导体棒MN 的电流相等,其他时候通过电阻R 的电流都比通过导体棒MN 的电流大,故由焦耳定律可知电阻R 上产生的焦耳热比导体棒MN 上产生的焦耳热多,D 正确.4.BC如图所示,金属框切割磁感线的有效长度为d ,依据转动切割磁感线产生的感应电动势公式有E =12 Bd 2ω,从图中可以看出在t =0到t =π2ω的过程中,d 是先增大到 2 L ,再减小到L ,所以电动势E 先增大后减小,A 项错误,B 项正确.在t =0到t =π4ω的过程中,d =L cos ωt ,感应电动势的表达式可写为E =12 Bd 2ω=BL 2ω2cos 2ωt,由表达式可以看出在t =0到t =π4ω 的过程中,E 的改变率始终增大,C 项正确,D 项错误.5.B由于两定子线圈匝数不同,依据法拉第电磁感应定律可知,在两线圈中产生的电动势最大值不相等,有效值不相等,A项错误;由于转子匀速转动的周期等于两定子产生沟通电的周期,所以两线圈产生的交变电流频率相等,B项正确;由于两线圈轴线在同一平面内且相互垂直,所以两线圈产生的感应电动势一个在最大值时,另一个为零,C项错误;由于在两线圈中产生的电动势的有效值不相等,依据P=E2R可知,两电阻消耗的电功率不相等,D项错误.。
第1讲电磁感应现象楞次定律一、单项选择题:在每一小题给出的四个选项中,只有一项为哪一项符合题目要求的。
1.如下列图,一水平放置的N匝矩形线框面积为S,匀强磁场的磁感应强度为B,方向斜向上,与水平面成30°角,现假设使矩形框以左边的一条边为轴转到竖直的虚线位置,如此此过程中磁通量的改变量的大小是( C )A.3-12BS B.3+12NBSC.3+12BS D.3-12NBS[解析] sin θ磁通量与匝数无关,Φ=BS中,B与S必须垂直。
初态Φ1=B cos θ·S,末态Φ2=-B cos θ·S,磁通量的变化量大小ΔΦ=|Φ2-Φ1|=|BS(-cos 30°-sin30°)|=3+12BS,所以应选C项。
2.(2020·浙江诸暨模拟)有人设计了一种储能装置:在人的腰部固定一块永久磁铁,N 极向外;在手臂上固定一个金属线圈,线圈连接着充电电容器。
当手不停地前后摆动时,固定在手臂上的线圈能在一个摆动周期内,两次扫过别在腰部的磁铁,从而实现储能。
如下说法正确的答案是( D )A.该装置违反物理规律,不可能实现B.此装置会使手臂受到阻力而导致人走路变慢C.在手摆动的过程中,电容器极板的电性不变D.在手摆动的过程中,手臂受到的安培力方向交替变化[解析] D.在手摆动的过程中,线圈交替的进入或者离开磁场,使穿过线圈的磁通量发生变化,因而会产生感应电流,从而实现储能,该装置符合法拉第电磁感应定律,可能实现,选项A错误;此装置不会影响人走路的速度,选项B错误;在手摆动的过程中,感应电流的方向不断变化,如此电容器极板的电性不断改变。
选项C错误;在手摆动的过程中,感应电流的方向不断变化,手臂受到的安培力方向交替变化。
选项D正确。
3.如下列图,通电导线MN与单匝矩形线圈abcd共面,位置靠近ab且与线圈相互绝缘。
当MN中电流突然减小时,线圈所受安培力的合力方向( B )A.向左B.向右C.垂直纸面向外D.垂直纸面向里[解析] 解法一:当MN中电流突然减小时,单匝矩形线圈abcd垂直纸面向里的磁通量减小,根据楞次定律,线圈abcd中产生的感应电流方向为顺时针方向,由左手定如此可知ab边与cd边所受安培力方向均向右,所以线圈所受安培力的合力方向向右,B正确。
2020届高中物理一轮复习精品资料:选修32部分第十章电磁感应答案第一节 电磁感应现象 楞次定律考点知识梳理〔一〕磁感线的条数;φ=BS ;φ=Bssinθ;韦伯;Wb ;标量;穿过某一面积的磁感线条数; 〔二〕穿过闭合电路的磁通量;感应电流;感应电动势;电源;磁通量;感应电动势;感应电流; 〔三〕感应电流的磁场总要阻碍引起感应电流的磁通量的变化;原磁通量;二者之间的相对运动;回路面积;原电流的变化 〔四〕左手;右手考能训练1.【解析】1i 产生的的磁场在导线所围的面积内的磁感应强度的方向垂直纸面向里;2i 产生的磁场在导线所围的面积内的磁感应强度的方向垂直纸面向里;3i 产生的磁场在导线所围的面积内的磁感应强度的方向垂直纸面向里;4i 产生的磁场在导线所围的面积内的磁感应强度的方向垂直纸面向外;因此四根导线产生的磁场叠加后在导线所围的面积内的磁场方向向里.故要使由四根直导线所围成的面积内的磁通量增加,只要将磁场方向相反的4i 去除就能够了. 【答案】D2.【解析】 由于c 、d 以相同的速度向右运动,穿过闭合电路的磁通量不变,在闭合电路中没有感应电流产生,因此,没有电流通过电流表和电压表,故电流表和电压表均无示数. 【答案】 D3.【解析】 将线框向左拉出磁场的过程中,线框的bc 部分做切割磁感线的运动,或者讲穿过线框的磁通量减少,因此线框中产生感应电流,应选项①正确.当线框以ab 边为轴转动时,线框的cd 边的右半段在做切割磁感线的运动,或者讲穿过线框的磁通量在发生变化,因此线框中将产生感应电流,应选项②正确.当线框以ad 边为轴转动〔小于60°〕时,穿过线框的磁通量在减小,因此在那个过程中线框中会产生感应电流,应选项③正确.假如转过的角度超过60°,bc 边将进入无磁场区,那么线框中将不产生感应电流〔60°~300°〕.当线框以bc 边为轴转动时,假如转动的角度小于60°,那么穿过线框的磁通量始终保持不变〔其值为磁感应强度与矩形面积的一半的乘积〕,应选项④是错的.答案:A4.【解析】 圆环b 的半径大于环a 的半径,由于Φ=Φ内-Φ外〔其中Φ内为磁铁内部的磁通量,Φ外为磁铁外部穿过线圈的磁通量〕,故其包含磁铁的外磁场范畴越大,那么合磁通量越小.〔磁铁内部、外部的磁通量方向相反,可抵消〕. 【答案】 A5.解析:当MN 中通以如图方向电流的瞬时,闭合回路abcd 中磁场方向向外增加,那么依照楞次定律,感应电流产生磁场的方向应当垂直纸面向里,再依照安培定那么可知, cd 中的电流的方向由d 到C . 答案:B6.解析:当磁体靠近超导体时,超导体的磁通量增加,由楞次定律可知,超导体电流的磁场方向与磁体的磁场方向相反.而超导体中产生感应电流后相当于通电螺线管,它与磁体是同名磁极相互靠近,因此两者互相排斥,当磁体受到向上的斥力与其重力相平稳时,磁体处于悬浮状态. 答案:D.7.解析:如图,设观看方向为面向北方,左西右东,那么地磁场方向平行赤道表面向北,假设飞机由东向西飞行时,由右手定那么可判定出电动势方向为由上向下, 假设飞机由西向东飞行时,由右手定那么可判定出电动势方向为由下向上,A 对B 错;沿着通过地磁极的那条经线运动时,速度方向平行于磁场,金属杆中一定没有感应电动势,C 错D 对。
第1讲电磁感应现象楞次定律[A组基础题组]一、单项选择题1.下列图中能产生感应电流的是( )解析:根据产生感应电流的条件判断:A中,电路没闭合,无感应电流;B中,磁感应强度不变,面积增大,闭合电路的磁通量增大,有感应电流;C中,穿过线圈的磁感线相互抵消,闭合电路的磁通量恒为零,无感应电流;D中,磁通量不发生变化,无感应电流。
答案:B2.在“研究磁通量变化时感应电流的方向”的实验中,先通过实验确定了电流流过检流计时指针的偏转方向如图。
在后续的实验中,竖直放置的感应线圈固定不动,条形磁铁从上方插入线圈或从线圈拔出时,检流计指针会偏转。
下列四图中分别标出了条形磁铁的极性、磁铁相对线圈的运动方向以及线圈中产生的感应电流的方向。
其中方向关系表示正确的是( )解析:由题中图可知,电流向右通过检流计时,检流计指针向左偏转;磁铁向下插入线圈时,穿过线圈的磁场方向向上,磁通量增加,根据楞次定律可以知道,回路中产生顺时针方向的电流,通过检流计的电流方向向右,其指针向左偏转,故A错误;磁铁向上拔出线圈时,穿过线圈的磁场方向向下,磁通量减小,根据楞次定律可知,线圈感应产生的磁场方向向下,故B错误;磁铁向上拔出线圈时,穿过线圈的磁场方向向上,磁通量减小,根据楞次定律可知,线圈感应产生的磁场方向向上,故C错误;磁铁向下插入线圈时,穿过线圈的磁场方向向下,磁通量增加,根据楞次定律可以知道,回路中产生顺时针方向的电流,通过检流计的电流方向向右,其指针向左偏转,故D正确。
答案:D3.如图,把一个带铁芯的线圈L、开关S和电源用导线连接,将一金属套环置于线圈L上,且使铁芯穿过套环。
则闭合开关S的瞬间( )A.套环将保持静止,套环内无电流流过B.套环将保持静止,套环内的电流与线圈内的电流方向相同C.套环将向上跳起,套环内的电流与线圈内的电流方向相反D.套环将向上跳起,套环内的电流与线圈内的电流方向相同解析:闭合开关S的瞬间,线圈和铁芯中的磁场增强,则闭合套环中的磁通量增加,根据楞次定律可知,套环中将产生感应电流,且感应电流产生的磁场与线圈中的磁场方向相反,所以套环受到斥力作用向上跳起,又根据右手螺旋定则可知,感应电流的方向与线圈中电流的方向相反,故A、B、D错误,C正确。
单元质检十电磁感应(时间:45分钟满分:100分)一、单项选择题(本题共5小题,每小题6分,共30分。
在每小题给出的四个选项中,只有一项符合题目要求)1.如图所示,电路中A、B是规格相同的灯泡,L是电阻可忽略不计的电感线圈,那么( )A.断开S,B立即熄灭,A闪亮一下后熄灭B.合上S,B先亮,A逐渐变亮,最后A、B一样亮C.断开S,A立即熄灭,B由亮变暗后熄灭D.合上S,A、B逐渐变亮,最后A、B一样亮2.如图所示,电阻不计的刚性U形光滑金属导轨固定在水平面上,导轨上连有电阻R。
金属杆ab可在导轨上滑动,滑动时保持与导轨垂直。
整个空间存在一个竖直向上的匀强磁场区域。
现有一位于导轨平面内且与导轨平行的向左的拉力作用于金属杆ab的中点上,使之从静止开始在导轨上向左运动。
已知拉力的功率恒定不变,金属杆电阻不计。
在金属杆ab沿导轨向左运动的过程中,关于金属杆ab的速度与时间的大致图象,下列正确的是( )3.如图所示,位于同一绝缘水平面内的两根固定金属导轨MN、M'N',电阻不计,两导轨之间存在竖直向下的匀强磁场。
现将两根粗细均匀、电阻分布均匀的相同铜棒ab、cd放在两导轨上,若两棒从图示位置以相同的速度沿MN方向做匀速直线运动,运动过程中始终与两导轨接触良好,且始终与导轨MN垂直,不计一切摩擦,则下列说法正确的是( )A.回路中有顺时针方向的感应电流B.回路中的感应电流不断增大C.回路中的热功率不断增大D.两棒所受安培力的合力不断减小4.(河北卷)如图,两光滑导轨水平放置在竖直向下的匀强磁场中,磁感应强度大小为B。
导轨间距最窄处为一狭缝,取狭缝所在处O点为坐标原点。
狭缝右侧两导轨与x轴夹角均为θ,一电容为C的电容器与导轨左端相连。
导轨上的金属棒与x轴垂直,在外力F作用下从O点开始以速度v向右匀速运动,忽略所有电阻。
下列说法正确的是( )A.通过金属棒的电流为2BCv2tanθB.金属棒到达x0时,电容器极板上的电荷量为BCvx0tanθC.金属棒运动过程中,电容器的上极板带负电D.金属棒运动过程中,外力F做功的功率恒定5.如图所示,平行金属导轨与水平面成θ角,导轨与固定电阻R1和R2相连,匀强磁场垂直穿过导轨平面,有一导体棒ab,质量为m,导体棒的电阻与固定电阻R1和R2的阻值均相等,与导轨之间的动摩擦因数为μ,导体棒ab沿导轨向上滑动,当上滑的速度为v时,受到安培力的大小为F,此时( )A.电阻R1消耗的热功率为Fv3B.电阻R2消耗的热功率为Fv6C.整个装置因摩擦而消耗的热功率为μmgvsinθD.整个装置消耗的机械功率为Fv二、多项选择题(本题共3小题,每小题6分,共18分。
[方法点拨](1)产生电动势的那部分导体相当于电源,电源内部电流由负极流向正极,电源两端电压为路端电压;(2)Φ-t图象、B-t图象的斜率不变或平行,感应电动势大小不变,电流方向不变.1.(B-t图象)(多选)如图1甲所示,abcd是匝数为100匝、边长为10 cm、总电阻为0.1 Ω的正方形闭合导线圈,放在与线圈平面垂直的如图所示的匀强磁场中,磁感应强度B随时间t的变化关系如图乙所示,则以下说法正确的是()图1A.导线圈中产生的是交变电流B.在t=2。
5 s时导线圈产生的感应电动势为1 VC.在0~2 s内通过导线横截面的电荷量为20 CD.在t=1 s时,导线圈内电流的瞬时功率为10 W2.(I-t图象)如图2所示,导体棒沿两平行金属导轨从图中位置以速度v向右匀速通过一正方形磁场区域abcd,ac垂直于导轨且平行于导体棒,ac右侧的磁感应强度是左侧的2倍且方向相反,导轨和导体棒的电阻均不计,下列关于导体棒中感应电流和所受安培力随时间变化的图象正确的是(规定电流从M经R到N为正方向,安培力向左为正方向)()图23.(线框切割有界磁场)(多选)空间中存在一垂直纸面向里的匀强磁场,磁场区域的横截面为等腰直角三角形,底边水平,其斜边长度为L。
一正方形导体框abcd的边长也为L,开始正方形导体框的ab边与磁场区域横截面的斜边刚好重合,如图3所示.由图示的位置开始计时,正方形导体框以平行于bc边的速度v匀速穿越磁场.若导体框中的感应电流为i,a、b两点间的电压为U ab,感应电流取逆时针方向为正,则导体框穿越磁场的过程中,i、U ab随时间的变化规律的图象正确的是()图34.(电路问题)(多选)如图4所示,用粗细均匀的铜导线制成半径为r的圆环,PQ为圆环的直径,其左右两侧存在垂直圆环所在平面的匀强磁场,磁感应强度大小均为B,但方向相反,圆环的电阻为2R,一根长度为2r、电阻为R的金属棒MN绕着圆环的圆心O点紧贴着圆环以角速度ω沿顺时针方向匀速转动,转动过程中金属棒MN与圆环始终接触良好,则下列说法正确的是()图4A.金属棒MN两端的电压大小为Bωr2B.圆环消耗的电功率是恒定的C.圆环中电流的大小为错误!D.金属棒MN旋转一周的过程中,电路中产生的热量为错误!5.(电路问题)(多选)如图5所示,一个“日”字形金属框架竖直放置,AB、CD、EF边水平且间距均为L,阻值均为R,框架其余部分电阻不计.水平虚线下方有一宽度为L的垂直纸面向里的匀强磁场.释放框架,当AB边刚进入磁场时框架恰好匀速,从AB边到达虚线至线框穿出磁场的过程中,AB两端的电势差U AB、AB边中的电流I(设从A到B为正)随位移x变化的图象正确的是()图56.如图6甲所示,矩形线圈abcd固定于方向相反的两个磁场中,两磁场的分界线OO′恰好把线圈分成对称的左右两部分,两磁场的磁感应强度随时间的变化规律如图乙所示,规定磁场垂直纸面向里为正,线圈中感应电流逆时针方向为正.则线圈感应电流随时间的变化图象为()图67.如图7甲所示,一匝数N=10、总电阻为R=2.5 Ω、边长L=0。
3 m的均质正三角形金属线框静置在粗糙水平面上,线框的顶点正好是半径r=L3的圆形磁场的圆心,磁场方向竖直向下(正方向),磁感应强度大小B随时间t变化的关系如图乙所示,a、b是磁场边界与线框的两个交点,已知线框与水平面间的最大静摩擦力F f=0.6 N,取π=3,则()图7A.t=0时穿过线框的磁通量为0.06 WbB.线框静止时,线框中的感应电流大小为0。
6 AC.线框静止时,a、b两点间电压为1 18VD.经时间t=0.8 s,线框开始滑动8.(多选)如图8,在光滑水平桌面上有一边长为L、电阻为R的正方形导线框,导线框右侧有两个宽度也为L的有界匀强磁场,磁感应强度大小均为B、方向分别竖直向下和竖直向上.t=0时导线框的右边恰与磁场的左边界重合,随后导线框在外力作用下,以速度v匀速进入并通过磁场区域.规定电流i沿逆时针方向时为正,磁感线竖直向下时磁通量Φ为正,安培力的合力F向左为正.则以下关于Φ、i、F和导线框中的电功率P随时间变化的图象大致正确的是()图89.如图9甲所示,光滑平行金属导轨MN、PQ所在平面与水平面成θ角,M、P两端接一电阻为R的定值电阻,电阻为r的金属棒ab垂直导轨放置,其他部分电阻不计.整个装置处在磁感应强度大小为B、方向垂直导轨平面向上的匀强磁场中.t=0时对金属棒施加一平行于导轨向上的外力F,使金属棒由静止开始沿导轨向上运动,通过定值电阻R的电荷量q随时间的平方t2变化的关系如图乙所示.下列关于穿过回路abPMa的磁通量Φ、金属棒的加速度a、外力F、通过电阻R的电流I随时间t变化的图象中正确的是()图910.(多选)如图10所示,顶角θ=45°的金属导轨MON固定在水平面内,导轨处在方向竖直向下、磁感应强度为B的匀强磁场中.一根与ON垂直的导体棒在水平外力作用下以恒定速度v0沿导轨MON 向右滑动,导体棒的质量为m,导轨与导体棒单位长度的电阻均为r。
导体棒与导轨接触点为a和b,导体棒在滑动过程中始终保持与导轨良好接触.t=0时导体棒位于顶角O处,则流过导体棒的电流强度I、导体棒内产生的焦耳热Q、导体棒做匀速直线运动时水平外力F、导体棒的电功率P各量大小随时间变化的关系正确的是()图1011.(多选)直角三角形金属框abc放置在竖直向上的匀强磁场中,磁感应强度大小为B,方向平行于ab边向上.若金属框绕ab边向纸面外以角速度ω匀速转动90°(从上往下看逆时针转动),如图11甲所示,c、a两点间的电势差为U ca,通过ab边的电荷量为q.若金属框绕bc边向纸面内以角速度ω匀速转动90°,如图乙所示,c、a两点间的电势差为U ca′,通过ab边的电荷量为q′.已知bc、ab边的长度都为l,金属框的总电阻为R.下列判断正确的是()图11A.U ca=错误!Bωl2B.U ca′=错误!Bωl2C.q=2Bπl28R D.q′=错误!答案精析1.ACD[在0~2 s内,磁感应强度变化率为ΔB1Δt1=1 T/s,根据法拉第电磁感应定律,产生的感应电动势为E1=nS错误!=100×0.12×1 V =1 V;在2~3 s内,磁感应强度变化率为错误!=2 T/s,根据法拉第电磁感应定律,产生的感应电动势为E2=nS错误!=100×0.12×2 V=2 V.导线圈中产生的感应电流为方波交变电流,选项A正确.在t=2.5 s 时,产生的感应电动势为E2=2 V,选项B错误.在0~2 s内,感应电流I=错误!=10 A,通过导体横截面的电荷量为q=IΔt=20 C,选项C 正确.在t=1 s时,导线圈内感应电流的瞬时功率P=UI=I2R=102×0。
1 W=10 W,选项D正确.]2.A[由E=BLv可知,导体棒由b运动到ac过程中,切割磁感线有效长度L均匀增大,感应电动势E均匀增大,由欧姆定律可知,感应电流I均匀增大.由右手定则可知,感应电流方向由M经R到N,由左手定则可知,导体棒所受安培力水平向左,大小不断增大,故B、C、D项错,A项正确.]3.AD[由楞次定律可知,导体框进入磁场时感应电流的方向为逆时针,出磁场时感应电流的方向为顺时针,由E=Blv可知i=错误!=错误!,导体框进、出磁场时,有效切割长度l均由L逐渐变为零,所以电流也是从大变小,A正确,B错误;进磁场时ab边为电源,U ab为负值,且大小为错误!BLv,出磁场时ab边不是电源,电流从b到a,U ab 为负值,且大小为错误!,C 错误,D 正确.]4.BD [由右手定则知金属棒MN 中产生的感应电动势相当于两电源串联,总电动势E =2×12Br 2ω=Br 2ω,金属棒MN 相当于电源,外电路电阻为错误!,因此金属棒MN 两端的电压等于错误!E =错误!Bωr 2,选项A 错误;根据闭合电路欧姆定律得总电流I =错误!,圆环中电流大小为总电流的一半,为错误!,选项C 错误;通过圆环的电流和金属棒MN 两端的电压不变,故圆环消耗的电功率是不变的,选项B 正确;金属棒MN 旋转一周的时间t =错误!,因此电路中产生的热量W =EIt =错误!,选项D 正确.]5.AC [0~L 过程中,此时AB 相当于内阻为R 的电源,B 为电源正极,电势较高,AB 两端的电势差为路端电压,设为-U ,此时由欧姆定律有:I 0=错误!,U =I 0·错误!R =错误!,其中E 为电源电压,I 0为电路总电流;L ~2L 过程中,CD 相当于内阻为R 的电源,此时U BA =E -I 0R =错误!E =U ,所以U AB =-U ;2L ~3L 过程中,EF 相当于内阻为R 的电源,此时U BA =E -I 0R =错误!E =U ,所以U AB =-U ,则A 图象符合,A 项正确,B 项错误;0~L 过程中,因为AB 边刚进入磁场时框架恰好匀速,由受力平衡可知,电流方向从A 到B ,此时电流I 1=错误!=错误!;L ~2L 过程中,CD 相当于内阻为R 的电源,电流方向从B 到A ,此时电流I 2=-错误!I 1=-错误!;2L ~3L 过程中,EF 相当于内阻为R 的电源,电流方向从B 到A ,此时电流I 3=-错误!I 1=-错误!,则C 图象符合,C 项正确,D 项错误.]6.A [由题图乙可知,在0~T 2内,左侧磁场强度大小逐渐增大,右侧磁场强度大小逐渐减小,根据楞次定律,线圈中感应电流方向为逆时针;在错误!~T 内,左侧磁场强度大小逐渐减小,右侧磁场强度大小逐渐增大,根据楞次定律,线圈中感应电流方向为顺时针.再根据均匀变化的磁场产生恒定的电流知,A 正确.]7.D [由磁通量的定义可知t =0时穿过线框的磁通量为Φ=B 0·错误!πr 2=0。
01 Wb ,A 错;由法拉第电磁感应定律知E =N ΔΦΔt =N 错误!·错误!πr 2=0。
25 V ,所以线框中的感应电流为I =错误!=0。
1 A ,B 错;由楞次定律及闭合电路欧姆定律可知U ab =错误!E =错误! V ,C 错;线框位于磁场中的两条边受到的安培力大小为F 1=NBIr ,且两个力的夹角为120°,合力大小等于F 1,所以当F 1等于最大静摩擦力时,线框就要开始滑动,即NBIr =F f ,由题图乙知B =2+5t (T),联立并代入数据得t =0.8 s,D 对.]8.BD9.C [设金属导轨间的距离为l ,金属棒沿导轨向上运动的位移为x ,由题图乙可得q =错误!t =错误!=kt 2,x =错误!t 2,故金属棒做匀加速直线运动,B 错误;由Φ=Bl 错误!可知,A 错误;回路中的电流I =错误!t ,由牛顿第二定律有F -mg sin θ-BIl =ma ,故有F =错误!t +mg sin θ+ma ,C 正确,D 错误.]10.AC[0到t时间内,导体棒的位移为:x=v0t,t时刻,导体棒的长度为:l=x,导体棒的电动势为E=Blv0,回路总电阻为:R=(2x +错误!x)r,电流强度为:I=错误!=错误!,故I的大小保持不变,电流方向为b→a,A项正确;t时刻导体棒的电功率:P=I2R′=错误!2×v0tr=错误!,D项错误.因为P∝t,所以Q=错误!Pt=错误!,Q-t图线是开口向上的抛物线,B项错误;导体棒做匀速直线运动,水平外力与安培力平衡,则有F=BIl=错误!,C项正确.]11.AD[甲图bc和ac边切割磁感线,产生的电动势E ca=E cb=Bl错误!=错误!Bωl2。