高中数学必修二第四章圆与方程知识点与常考题(附解析)
- 格式:doc
- 大小:919.38 KB
- 文档页数:34
人教A 版高中数学必修二4.1.1圆的标准方程学校:___________姓名:___________班级:___________考号:___________一、单选题1.圆心是(4,-1),且过点(5,2)的圆的标准方程是( )A .(x -4)2+(y +1)2=10B .(x +4)2+(y -1)2=10C .(x -4)2+(y +1)2=100D .(x -4)2+(y +1)22.已知圆的方程是(x -2)2+(y -3)2=4,则点P (3,2)满足( )A .是圆心B .在圆上C .在圆内D .在圆外 3.圆(x +1)2+(y -2)2=4的圆心坐标和半径分别为( )A .(-1,2),2B .(1,-2),2C .(-1,2),4D .(1,-2),44.(2016·锦州高一检测)若圆C 与圆(x +2)2+(y -1)2=1关于原点对称,则圆C 的方程是 ( )A .(x -2)2+(y +1)2=1B .(x -2)2+(y -1)2=1C .(x -1)2+(y +2)2=1D .(x +1)2+(y +2)2=15.圆2228130+--+=x y x y 的圆心到直线10ax y +-=的距离为1,则a =( )A .43-B .34-CD .26.若(2,1)P -为圆22(1)25-+=x y 的弦AB 的中点,则直线AB 的方程是( ) A .250x y --= B .230x y +-= C .10x y +-= D .30x y --=7.(2016~2017·宁波高一检测)点1,22⎛ ⎝⎭与圆x 2+y 2=12 的位置关系是 ( ) A .在圆上 B .在圆内 C .在圆外 D .不能确定 8.若点(2a ,a -1)在圆x 2+(y +1)2=5的内部,则a 的取值范围是 ( )A .(-∞,1]B .(-1,1)C .(2,5)D .(1,+∞) 9.若点(1,1)P 为圆2260x y x +-=的弦AB 的中点,则弦AB 所在直线的方程为 ( ) A .230x y +-= B .230x y +-=C .210x y --=D .210x y -+= 10.点M 在圆()()22539x y -+-=上运动,点M 到直线3420x y +-=的最短距离为( )A .2B .5C .8D .9二、填空题11.以点(2,-1)为圆心且与直线x +y =6相切的圆的方程是________________.12.圆心既在直线x -y =0上,又在直线x +y -4=0上,且经过原点的圆的方程是___. 13.已知圆C 经过(5,1),(1,3)A B 两点,圆心在x 轴上,则C 的方程为__________. 14.以直线240x y +-=与两坐标轴的一个交点为圆心,过另一个交点的圆的方程为_________.三、解答题15.已知点()()1,2,1,4A B --,求(1)过点A,B 且周长最小的圆的方程;(2)过点A,B 且圆心在直线240x y --=上的圆的方程.16.已知圆N 的标准方程为(x -5)2+(y -6)2=a 2(a >0).(1)若点M (6,9)在圆上,求a 的值;(2)已知点P (3,3)和点Q (5,3),线段PQ (不含端点)与圆N 有且只有一个公共点,求a 的取值范围.17.如图,矩形ABCD 的两条对角线相交于点M (2,0),AB 边所在直线的方程为x -3y -6=0,点T (-1,1)在AD 边所在的直线上.求AD 边所在直线的方程.18.求圆心在直线4x +y =0上,且与直线l :x +y -1=0切于点P (3,-2)的圆的方程,并找出圆的圆心及半径.参考答案1.A【解析】设圆的标准方程为(x -4)2+(y +1)2=r 2,把点(5,2)代入可得r 2=10,故选A .考点:圆的标准方程.2.C【解析】把点的坐标代入到圆的方程中,因为(3-2)2+(2-3)2=2<4,故点P (3,2)在圆内,选C. 3.A【解析】根据圆的标准方程可知,圆(x +1)2+(y -2)2=4的圆心坐标为(-1,2),半径r =2,选A. 4.A【解析】∵点P(x ,y)关于原点的对称点为P′(-x ,-y),∴将-x ,-y 代入⊙C 的方程得(-x +2)2+(-y -1)2=1.即(x -2)2+(y +1)2=1,故选A .5.A【解析】试题分析:由2228130x y x y +--+=配方得22(1)(4)4x y -+-=,所以圆心为(1,4),因为圆2228130x y x y +--+=的圆心到直线10ax y +-=的距离为1,所以1=,解得43a =-,故选A. 【考点】 圆的方程,点到直线的距离公式【名师点睛】直线与圆的位置关系有三种情况:相交、相切和相离. 已知直线与圆的位置关系时,常用几何法将位置关系转化为圆心到直线的距离d 与半径r 的大小关系,以此来确定参数的值或取值范围.6.D【分析】由垂径定理,得AB 中点与圆心C 的连线与AB 垂直,可得AB 斜率k =1,结合直线方程的点斜式列式,即可得直线AB 的方程.【详解】∵AB 是圆(x ﹣1)2+y 2=25的弦,圆心为C (1,0)AB 的中点P (2,﹣1)满足AB ⊥CP因此,AB 的斜率k =-1110112CP k -==+-, 可得直线AB 的方程是y +1=x ﹣2,化简得x ﹣y ﹣3=0故选D .【点睛】本题考查圆的弦的性质,考查直线方程的求法,属于基础题.7.C【解析】将点1(,)22的坐标代入圆的方程可知(12 )2+(2)2=1>12 .∴点在圆外.选C. 8.B【分析】点(2a ,a -1)在圆x 2+(y +1)2=5的内部,则(2a )2+a 2<5,解得-1<a <1,选B . 9.C【分析】由题意,求出圆的标准方程,再求出圆心与点p 确定直线的斜率为101132-=--,再利用垂径定理求得弦AB 直线斜率,再用点斜式求出方程.【详解】圆2260x y x +-=的标准方程为22(3)9x y -+= 又因为点()1,1P 为圆的弦AB 的中点,圆心与点P 确定直线的斜率为101132-=-- 故弦AB 所在直线的斜率为2所以直线AB 的直线方程:y-1=2(x-1)即2x-y-1=0本题主要考查了直线与圆的综合知识,对于直线和圆的相关知识点的熟练运用是解题的关键.属于较易题.10.A【详解】解析过程略11.22154202x y x y +-+-= 【解析】试题分析:圆心到直线的距离D r ===x -2)2+(y +1)2=252考点:1.直线和圆相切的位置关系;2.圆的方程12.(x -2)2+(y -2)2=8【解析】由040x y x y -=⎧⎨+-=⎩ ,解得22x y =⎧⎨=⎩.∴圆心坐标为(2,2),半径r =(x -2)2+(y -2)2=8.13.22(2)10x y -+=.【分析】由圆的几何性质得,圆心在AB 的垂直平分线上,结合题意知,求出AB 的垂直平分线方程,令0y =,可得圆心坐标,从而可得圆的半径,进而可得圆的方程.【详解】由圆的几何性质得,圆心在AB 的垂直平分线上,结合题意知,AB 的垂直平分线为24y x =-,令0y =,得2x =,故圆心坐标为(2,0),所以圆的半径=22(2)10x y -+=.本题主要考查圆的性质和圆的方程的求解,意在考查对基础知识的掌握与应用,属于基础题. 14.x 2+(y -4)2=20或(x -2)2+y 2=20【解析】令x =0得y =4,令y =0得x =2,∴直线与两轴交点坐标为A (0,4)和B (2,0),以A 为圆心过B 的圆方程为x 2+(y -4)2=20,以B 为圆心过A 的圆方程为(x -2)2+y 2=20.15.(1)()22110x y +-=;(2)()()223220x y -+-=【分析】(1)当AB 为直径时,过,A B 的圆的半径最小,从而周长最小,进而求得圆心的坐标和圆的半径,即可得到圆的方程.(2) 解法1:AB 的斜率为3k =-时,则AB 的垂直平分线的方程330x y -+=,进而求得圆心坐标和圆的半径,得到圆的标准方程;解法2:设圆的方程为:222()()x a y b r -+-=,列方程组,求得,,a b r 的值,即可得到圆的方程.【详解】(1)当AB 为直径时,过A 、B 的圆的半径最小,从而周长最小.即AB 中点(0,1)为圆心, 半径r =12|AB |.则圆的方程为:x 2+(y -1)2=10. (2) 解法1:AB 的斜率为k =-3,则AB 的垂直平分线的方程是y -1=13x .即x -3y +3=0 由圆心在直线240x y --=上得两直线交点为圆心即圆心坐标是C (3,2).r =|AC |(x -3)2+(y -2)2=20. 解法2:待定系数法 设圆的方程为:(x -a )2+(y -b )2=r 2. 则2222222(1)(2)3(1)(4)224020a b r a a b r b a b r ⎧-+--==⎧⎪⎪--+-=⇒=⎨⎨⎪⎪--==⎩⎩∴圆的方程为:(x -3)2+(y -2)2=20.本题主要考查了圆的标准方程的求解,其中熟记圆的标准方程和根据题设条件,求解圆的圆心坐标和圆的半径是解答的关键,着重考查了分析问题和解答问题的能力,以及推理与运算能力.16.(1)a = ;(2)【解析】试题分析:点在圆上说明点的坐标满足方程,代入后接方程求出参数a ;一条线段(不含端点)与圆有且只有一个公共点,说明线段的两个端点一个在圆内另一个在圆外,根据点与圆的位置关系列出不等式,解不等式求出 参数a 的范围,给出答案.(1)因为点M 在圆上,所以(6-5)2+(9-6)2=a 2,又由a >0,可得a .(2)由两点间距离公式可得|PN |==|QN |3=,因为线段PQ 与圆有且只有一个公共点,即P 、Q 两点一个在圆内、另一个在圆外,由于3<,所以3<a 即a 的取值范围是(3.【点睛】本题主要考查点与圆的位置关系问题,判断点与圆的位置关系只需考查点与圆心得距离,若小于半径,点在圆内;若等于半径,点在圆上;若大于半径,点在圆外;具体实际操作只需把点的坐标代入圆的方程,看是小于、等于、大于;决定点在圆内、圆上、圆外. 17.320x y ++=【解析】试题分析:本题考查直线方程的几种形式中的点斜式,已知直线上一点的坐标,并能求出直线的斜率,利用直线方程的点斜式可以写出直线方程,矩形相邻两边所在的直线互相垂直,利用两条直线垂直斜率的关系求出AD 所在直线的斜率,直线AD 过点T ,利用点斜式求出AD 所在直线的方程,试题解析:因为AB 边所在直线的方程为x -3y -6=0,且AD 与AB 垂直,所以直线AD 的斜率为-3.又因为点T (-1,1)在直线AD 上,所以AD 边所在直线的方程为y -1=-3(x +1),即3x +y +2=0.【点睛】直线方程有五种形式,包括直线方程的点斜式、斜截式、两点式、截距式和一般式,利用哪种形式解题取决于直线所提供的条件和所要解决的问题,需要灵活使用,需要注意的是点斜式、斜截式、两点式、截距式都有其缺欠,不能表达斜率不存在的直线,而截距式不等表达两轴截距不存在的直线以及过圆点的直线,使用时要注意补充.18.方程22(1)(4)8x y -++= ;圆心(1,-4) ;半径【解析】试题分析:求圆的方程有两种方法,第一种方法是设出圆的标准方程(x -a )2+(y -b )2=r 2, 采用待定系数法求解;第二种方法是设圆的一半方程220x y Dx Ey F ++++=22(40)D E F +-> ,采用待定系数法求解;本题设出圆的标准方程,利用圆心在直线上,列出一个方程,切点在圆上列出一个方程,直线与圆相切,圆心和切点连线与切线垂直,斜率互为负倒数列一个方程,解方程组求出圆心和半径.试题分析:设圆的标准方程为(x -a )2+(y -b )2=r 2,由题意有22240213(3)(2)a b b a a b r +=⎧⎪+⎪=⎨-⎪-+--=⎪⎩, 化简得222405(3)(2)a b b a a b r +=⎧⎪=-⎨⎪-+--=⎩ ,解得2148a b r =⎧⎪=-⎨⎪=⎩.所求圆的方程为(x -1)2+(y +4)2=8,它是以(1,-4)为圆心,以【点睛】求圆的方程有两种方法,第一种方法是设出圆的标准方程(x -a )2+(y -b )2=r 2, 采用待定系数法求解;第二种方法是设圆的一半方程220x y Dx Ey F ++++=22(40)D E F +-> ,采用待定系数法求解;另外提供圆的切线和切点坐标要注意利用第一切点在圆上,第二圆心与切点连线与切线垂直,第三圆心到切线的距离等于圆的半径.。
第1讲 第4章 § 圆的标准方程¤知识要点:1. 圆的标准方程:方程222()()(0)x a y b r r -+-=>表示圆心为A (a ,b ),半径长为r 的圆.2. 求圆的标准方程的常用方法:(1)几何法:根据题意,求出圆心坐标与半径,然后写出标准方程;(2)待定系数法:先根据条件列出关于a 、b 、r 的方程组,然后解出a 、b 、r ,再代入标准方程. ¤例题精讲:【例1】过点(1,1)A -、(1,1)B -且圆心在直线x +y -2=0上的圆的方程是( ).A.(x -3)2+(y +1)2=4B.(x +3)2+(y -1)2=4C.(x -1)2+(y -1)2=4D.(x +1)2+(y +1)2=4解:由圆心在直线x +y -2=0上可以得到A 、C 满足条件, 再把A 点坐标(1,-1)代入圆方程. A 不满足条件. 所以,选C.另解:设圆心C 的坐标为(a ,b ),半径为r , 因为圆心C 在直线x +y -2=0上, ∴b =2-a .由|CA |=|CB |,得(a -1)2+(b +1)2=(a +1)2+(b -1)2,解得a =1,b =1.因此,所求圆的方程为(x -1)2+(y -1)2=4. 选C. 【例2】求下列各圆的方程:(1)过点(2,0)A -,圆心在(3,2)-;(2)圆心在直线270x y --=上的圆C 与y 轴交于两点(0,4),(0,2)A B --解:(1)设所求圆的方程为222(3)(2)x y r -++=. 则 222(23)(02)r --++=, 解得229r =. ∴ 圆的方程为22(3)(2)29x y -++=.(2)圆心在线段AB 的垂直平分线3y =-上,代入直线270x y --=得2x =,圆心为(2,3)-,半径r ==∴ 圆C 的方程为22(2)(3)5x y -++=.【例3】推导以点(,)A a b 为圆心,r 为半径的圆的方程.解:设圆上任意一点(,)M x y ,则||MA r =.由r =.化简即得圆的标准方程:222()()x a y b r -+-=第2讲 § 圆的一般方程¤知识要点:1. 圆的一般方程:方程220x y Dx Ey F ++++= (2240D E F +->)表示圆心是(,)22D E --的圆. 2. 轨迹方程是指点动点M 的坐标(,)x y 满足的关系式. ¤例题精讲:【例1】求过三点A (2,2)、B (5,3)、C (3,-1)的圆的方程. 解:设所求圆的方程为220x y Dx Ey F ++++=. 则442202595309130D E F D E F D E F ++++=⎧⎪++++=⎨⎪++-+=⎩, 解得8212D E F =-⎧⎪=-⎨⎪=⎩. ∴ 圆的方程为2282120x y x y +--+=.【例2】设方程222422(3)2(14)16790x y m x m y m m +-++-+-+=,若该方程表示一个圆,求m 的取值范围及圆心的轨迹方程.解:配方得[]222(3)(14)16x m y m m ⎡⎤-++--=+⎣⎦,该方程表示圆,则有160m +>,得1(,)6m ∈-+∞,此时圆心的轨迹方程为2314x m y m=+⎧⎨=-⎩,消去m ,得24(3)1y x =--, 由1(,)6m ∈-+∞得x =m +317(,)6∈+∞. ∴所求的轨迹方程是24(3)1y x =--,17(,)6x ∈+∞ 第3讲§ 直线与圆的位置关系¤知识要点:1. 直线与圆的位置关系及其判定: 方法一:方程组思想,由直线与圆的方程组成的方程组,消去x 或(y ),化为一元二次方程,由判别式符号进行判别;方法二:利用圆心(,a b )到直线0Ax By C ++=的距离d =d 与r 的大小.(1)相交d r ⇔<⇔ 0∆>;(2)相切d r ⇔=⇔0∆=;(3)相离d r ⇔>⇔0∆<.2. 直线与圆的相切研究,是高考考查的重要内容. 同时,我们要熟记直线与圆的各种方程、几何性质,也要掌握一些常用公式,例如点线距离公式0022||Ax By C d A B++=+¤例题精讲:【例1】若直线(1+a )x +y +1=0与圆x 2+y 2-2x =0相切,则a 的值为 . 解:将圆x 2+y 2-2x =0的方程化为标准式:(x -1)2+y 2=1, 其圆心为(1,0),半径为1,由直线(1+a )x +y +1=0与该圆相切,则圆心到直线的距离2|11|1(1)1a d a ++==++, ∴ a =-1. 【例2】求直线:220l x y --=被圆22:(3)9C x y -+=所截得的弦长. (P 144 练习1题)解:由题意,列出方程组22220(3)9x y x y --=⎧⎨-+=⎩,消y 得251440x x -+=,得12145x x +=,1245x x =. 设直线220x y --=与圆22(3)9x y -+=交于点11(,)A x y ,22(,)B x y ,则222211212||(1)||(1)()4AB k x x k x x x x =+-=++- =221442145(12)()4555+-⨯=. 另解:圆心C 的坐标是(3,0),半径长3r =. 圆心到直线220x y --=的距离|2302|4555d ⨯--==. 所以,直线220x y --=被圆22(3)9x y -+=截得的弦长是2222452145223()55r d -=-=. 第4讲 § 圆与圆的位置关系¤知识要点:两圆的位置关系及其判定: 设两圆圆心分别为12,O O ,半径分别为12,r r ,则: (1)两圆相交121212||||r r O O r r ⇔-<<+;(2)两圆外切1212||O O r r ⇔=+;(3)两圆内切1212||||O O r r ⇔=-;¤例题精讲:【例1】已知圆1C :22660x y x +--=①,圆2C :22460x y y +--=② (1)试判断两圆的位置关系;(2)求公共弦所在的直线方程.解:(1)∵圆1C 的圆心为(3,0),半径为115r =,圆2C 的圆心为(0,2),半径为210r =, 又12||13C C =,∴12||r r -<12||C C <12r r +, ∴圆1C 与2C 相交. (2)由①-②,得公共弦所在的直线方程为320x y -=.【例2】求经过两圆22640x y x ++-=和226280x y y ++-=的交点,并且圆心在直线40x y --=上的圆的方程.解:设所求圆的方程为22628x y y ++-22(64)0x y x λ+++-=,即22(1)(1)662840x y x y λλλλ+++++--=, 则所求圆的圆心为33(,)11λλλ--++. ∵圆心在直线40x y --=上, ∴334011λλλ-+-=++,解得17λ=-.∴ 所求圆的方程为2x +27320y x y -+-=第5讲 § 直线与圆的方程的应用¤知识要点:坐标法:建立适当的直角坐标系后,借助代数方法把要研究的几何问题,转化为坐标之间的运算,由此解决几何问题 ¤例题精讲:【例1】有一种大型商品,A 、B 两地都有出售,且价格相同,某地居民从两地之一购得商品后运回的费用是:每单位距离,A 地的运费是B 地运费的3倍.已知A 、B 两地相距10千米,顾客购物的标准是总费用较低,求A 、B 两地的售货区域的分界线的曲线形状,并指出曲线上、曲线内、曲线外的居民如何选择购货地.解:建立使A (-5,0)、B (5,0)的直角坐标系,设单位距离的运费是a 元. 若在A 地购货费用较低,则:价格+A 地运费≤价格+B 地运费即 22223(5)(5)a x y a x y ++≤-+.∵ a >0,∴ 8x 2+8y 2+100x +200y ≤0.得 (x +254)2+y 2≤(154)2.∴ 两地购物区域的分界线是以点C (-254,0)为圆心,154为半径的圆.所以,在圆C 内的居民从A 地购物便宜,圆C 外的居民从B 地购物便宜,圆C 上的居民从A 、B两地购物总费用相等.【例2】自点A (-3,3)发出的光线l 射到x 轴上,被x 轴反射, 其反射光线所在的直线与圆224470x y x y +--+=相切, 求光线l 所在的直线方程.解:由已知可得圆C :22(2)(2)1x y -+-=关于x 轴对称的圆C ‘的方程为22(2)(2)1x y -++=,其圆心C ‘(2,-2),易知l 与圆C ’相切. 设l : y -3=k (x +3), 即kx -y +3k +3=0.∴25511k k+=+,整理得12k 2+25k +12=0, 解得34k =-或43k =-. 所以,所求直线方程为y -3=34- (x +3)或 y -3=43- (x +3),即3x +4y -3=0或4x +3y +3=0.点评:关于求切线问题, 利用圆心到切线的距离等于圆的半径的条件, 是解决圆的切线方程的常用方法.如果由方程组思想,通过“0∆=”求切线方程也可, 但过程要复杂些.第6讲 § 空间直角坐标系¤知识要点:1. 空间直角坐标系:从空间某一个定点O 引三条互相垂直且有相同单位长度的数轴Ox 、Oy 、Oz ,这样的坐标系叫做空间直角坐标系O -xyz ,点O 叫做坐标原点,x 轴、y 轴、z 轴叫做坐标轴. 通过每两个坐标轴的平面叫做坐标平面,分别称为xOy 平面、yOz 平面、zOx 平面.2. 右手直角坐标系:在空间直角坐标系中,让右手拇指指向x 轴的正方向,食指指向y 轴的正方向,若中指指向z 轴的正方向,则称这个坐标系为右手直角坐标系.3. 空间直角坐标系中的坐标:对于空间任一点M ,作出M 点在三条坐标轴Ox 轴、Oy 轴、Oz 轴上的射影,若射影在相应数轴上的坐标依次为x 、y 、z ,则把有序实数组(x , y , z )叫做M 点在此空间直角坐标系中的坐标,记作M (x , y , z ),其中x 叫做点M 的横坐标,y 叫做点M 的纵坐标,z 叫做点M 的竖坐标.4. 在xOy 平面上的点的竖坐标都是零,在yOz 平面上的点的横坐标都是零,在zOx 平面上的点的纵坐标都是零;在Ox 轴上的点的纵坐标、竖坐标都是零,在Oy 轴上的点的横坐标、竖坐标都是零,在Oz 轴上的点的横坐标、纵坐标都是零¤例题精讲:【例1】在空间直角坐标系中,作出点M (6,-2, 4).解:点M 的位置可按如下步骤作出:先在x 轴上作出横坐标是6的点1M ,再将1M 沿与y 轴平行的方向向左移动2个单位得到点2M ,然后将2M 沿与z 轴平行的方向向上移动4个单位即得点M . M 点的位置如图所示.【例2】在长方体1111ABCD A B C D -中,AB =12,AD =8,1AA =5,试建立适当的空间直角坐标系,写出各顶点的坐标.解:以A 为原点,射线AB 、AD 、1AA 分别为x 轴、y 轴、z 轴的正半轴,建立空间直角坐标系,则A (0,0,0)、B (12,0,0)、C (12,8,0)、D (0,8,0)、1A (0,0,5)、1B (12,0,5)、1C (12,8,5)、1D (0,8,5).【例3】已知正四棱锥P -ABCD 的底面边长为4,侧棱长为10,试建立适当的空间直角坐标系,写出各顶点的坐标.分析:先由条件求出正四棱锥的高,再根据正四棱锥的对称性,建立适当的空间直角坐标系.解:正四棱锥P -ABCD 的底面边长为4,侧棱长为10,∴正四棱锥的高为223. 以正四棱锥的底面中心为原点,平行于AB 、BC 所在的直线分别为x 轴、y 轴,建立如图示的空间直角坐标系,则正四棱锥各顶点的坐标分别为A (2,-2,0)、B (2,2,0)、C (-2,2,0)、D (-2,-2,0)、P (0,0,223).点评:在求解此类问题时,关键是能根据已知图形,建立适当的空间直角坐标系,从而便于计算所需确定的点的坐标.第7讲 § 空间两点间的距离公式¤知识要点: 1. 空间两点1111(,,)P x y z 、2222(,,)P x y z 间的距离公式:22212121212||()()()PP x x y y z z =-+-+-.2. 坐标法求解立体几何问题时的三个步骤:①在立体几何图形中建立空间直角坐标系;②依题意确定1M2M M (6,-2,4) Oxyz62 4各相应点的坐标;③通过坐标运算得到答案.3. 对称问题,常用对称的定义求解. 一般地,点P(x, y, z) 关于坐标平面xOy、yOz、zOx的对称点的坐标分别为(x, y,- z)、(-x, y, z)、(x, -y, z);关于x轴、y轴、z轴的对称点的坐标分别为(x, -y,- z)、(-x, y, -z)、(-x, -y, z);关于原点的对称点的坐标为(-x,- y,- z).。
高一数学必修二《圆与方程》知识点整理(后附答案)一、标准方程()()222x a y b r -+-=1.求标准方程的方法——关键是求出圆心(),a b 和半径r①待定系数:往往已知圆上三点坐标,例如教材119P 例2②利用平面几何性质往往涉及到直线与圆的位置关系,特别是:相切和相交相切:利用到圆心与切点的连线垂直直线相交:利用到点到直线的距离公式及垂径定理二、一般方程()2222040x y Dx Ey F D E F ++++=+->2.求圆的一般方程一般可采用待定系数法:三、点与圆的位置关系1.判断方法:点到圆心的距离d 与半径r 的大小关系d r <⇒点在圆内;d r =⇒点在圆上;d r >⇒点在圆外2.涉及最值:(1)圆外一点B ,圆上一动点P ,讨论PB 的最值min PB BN BC r ==-max PB BM BC r ==+(2)圆内一点A ,圆上一动点P ,讨论PA 的最值min PA AN r AC ==-max PA AM r AC ==+思考:过此A 点作最短的弦?(此弦垂直AC )四、直线与圆的位置关系1.判断方法(d 为圆心到直线的距离)(1)相离⇔没有公共点⇔0d r ∆<⇔>(2)相切⇔只有一个公共点⇔0d r ∆=⇔=(3)相交⇔有两个公共点⇔0d r ∆>⇔<2.直线与圆相切(1)知识要点①基本图形②主要元素:切点坐标、切线方程、切线长等问题:直线l 与圆C 相切意味着什么?圆心C 到直线l 的距离恰好等于半径r(2)常见题型——求过定点的切线方程①切线条数点在圆外——两条;点在圆上——一条;点在圆内——无②求切线方程的方法及注意点...i )点在圆外如定点()00,P x y ,圆:()()222x a y b r -+-=,[()()22200x a y b r -+->] 第一步:设切线l 方程()00y y k x x -=-第二步:通过d r =k ⇒,从而得到切线方程特别注意:以上解题步骤仅对k 存在有效,当k 不存在时,应补上——千万不要漏了! 如:过点()1,1P 作圆2246120x y x y +--+=的切线,求切线方程. 答案:3410x y -+=和1x =③求切线长:利用基本图形,222AP CP r AP =-⇒=求切点坐标:利用两个关系列出两个方程1AC AP AC r k k ⎧=⎨⋅=-⎩ 3.直线与圆相交(1)求弦长及弦长的应用问题垂径定理....及勾股定理——常用4.直线与圆相离六、最值问题方法主要有三种:(1)数形结合;(2)代换;(3)参数方程1.已知实数x ,y 满足方程22410x y x +-+=,求:(1)5yx -的最大值和最小值;——看作斜率(2)y x -的最小值;——截距(线性规划)(3)22x y +的最大值和最小值.——两点间的距离的平方九、圆与圆的位置关系1.判断方法:几何法(d 为圆心距) (1)12d r r >+⇔外离(2)12d r r =+⇔外切 (3)1212r r d r r -<<+⇔相交 (4)12d r r =-⇔内切 (5)12d r r <-⇔内含。
高中数学人教A版必修2 第四章圆与方程高考复习习题(解答题101-200)含答案解析学校:___________姓名:___________班级:___________考号:___________一、解答题1.在平面直角坐标系中,已知圆的方程为:,直线的方程为.(1)当时,求直线被圆截得的弦长;(2)当直线被圆截得的弦长最短时,求直线的方程;(3)在(2)的前提下,若为直线上的动点,且圆上存在两个不同的点到点的距离为,求点的横坐标的取值范围.2.已知以点为圆心的圆与直线相切,过点的动直线与圆相交与两点,是的中点,直线与直线相交于点。
(1)求圆的方程;(2)当时,求直线的方程;(3)是否为定值,若是,求出定值;若不是,说明理由.3.已知椭圆的方程为,其离心率,且短轴的个端点与两焦点组成的三角形面积为,过椭圆上的点作轴的垂线,垂足为,点满足,设点的轨迹为曲线.(1)求曲线的方程;(2)若直线与曲线相切,且交椭圆于、两点,,记的面积为,的面积为,求的最大值 .4.已知(-,),(,)为椭圆的左、右顶点,为其右焦点,是椭圆上异于,的动点,且面积的最大值为.(1)求椭圆 的方程;(2)直线 与椭圆在点 处的切线交于点 ,当点 在椭圆上运动时,求证:以 为直径的圆与直线 恒相切.5.已知圆 ,直线(1)若直线 与圆 相交于两点 ,弦长 等于 ,求 的值;(2)已知点 ,点 为圆心,若在直线 上存在定点 (异于点 ),满足:对于圆 上任一点 ,都有 为一常数,试求所有满足条件的点 的坐标及改常数.6.已知动圆C 恒过点. (1)求圆心C 的轨迹方程;(2)若过点()3,0P 的直线交轨迹C 于A , B 两点,直线OA , OB (O 为坐标原点)分别交直线3x =-于点M , N ,证明:以MN 为直径的圆被x 轴截得的弦长为定值.7.如图,圆 : .(1)若圆 与 轴相切,求圆 的方程;(2)求圆心 的轨迹方程;(3)已知 ,圆 与 轴相交于两点 (点 在点 的左侧).过点 任作一条直线与圆 : 相交于两点 .问:是否存在实数 ,使得 ?若存在,求出实数 的值,若不存在,请说明理由。
第三节圆_的_方_程[知识能否忆起]1.圆的定义及方程2.点与圆的位置关系点M (x 0,y 0)与圆(x -a )2+(y -b )2=r 2的位置关系: (1)若M (x 0,y 0)在圆外,则(x 0-a )2+(y 0-b )2>r 2. (2)若M (x 0,y 0)在圆上,则(x 0-a )2+(y 0-b )2=r 2. (3)若M (x 0,y 0)在圆内,则(x 0-a )2+(y 0-b )2<r 2.[小题能否全取]1.(教材习题改编)方程x 2+y 2+4mx -2y +5m =0表示圆的充要条件是( ) A.14<m <1 B .m <14或m >1C .m <14D .m >1解析:选B 由(4m )2+4-4×5m >0得m <14或m >1.2.(教材习题改编)点(1,1)在圆(x -a )2+(y +a )2=4内,则实数a 的取值范围是( ) A .(-1,1)B .(0,1)C .(-∞,-1)∪(1,+∞)D .(1,+∞)解析:选A ∵点(1,1)在圆的内部, ∴(1-a )2+(1+a )2<4, ∴-1<a <1.3.圆心在y 轴上,半径为1,且过点(1,2)的圆的方程为( ) A .x 2+(y -2)2=1B .x 2+(y +2)2=1C .(x -1)2+(y -3)2=1D .x 2+(y -3)2=1解析:选A 设圆心坐标为(0,b ),则由题意知(0-1)2+(b -2)2=1,解得b =2,故圆的方程为x 2+(y -2)2=1.4.(2012·潍坊调研)圆x 2-2x +y 2-3=0的圆心到直线x +3y -3=0的距离为________.解析:圆心(1,0),d =|1-3|1+3=1.答案:15.(教材习题改编)圆心在原点且与直线x +y -2=0相切的圆的方程为 ____________________.解析:设圆的方程为x 2+y 2=a 2(a >0) ∴|2|1+1=a ,∴a =2,∴x 2+y 2=2. 答案:x 2+y 2=21.方程Ax 2+Bxy +Cy 2+Dx +Ey +F =0表示圆的充要条件是: (1)B =0;(2)A =C ≠0;(3)D 2+E 2-4AF >0.2.求圆的方程时,要注意应用圆的几何性质简化运算. (1)圆心在过切点且与切线垂直的直线上. (2)圆心在任一弦的中垂线上.(3)两圆内切或外切时,切点与两圆圆心三点共线.典题导入[例1] (1)(2012·顺义模拟)已知圆C 关于y 轴对称,经过点(1,0)且被x 轴分成两段弧长之比为1∶2,则圆C 的方程为( )A.⎝⎛⎭⎫x ±332+y 2=43B.⎝⎛⎭⎫x ±332+y 2=13C .x 2+⎝⎛⎭⎫y ±332=43D .x 2+⎝⎛⎭⎫y ±332=13(2)已知圆C 经过A (5,1),B (1,3)两点,圆心在x 轴上,则圆C 的方程为________________. [自主解答] (1)由已知知圆心在y 轴上,且被x 轴所分劣弧所对圆心角为2π3,设圆心(0,b ),半径为r ,则r sin π3=1,r cos π3=|b |,解得r =23,|b |=33,即b =±33.故圆的方程为x 2+⎝⎛⎭⎫y ±332=43.(2)圆C 的方程为x 2+y 2+Dx +F =0,则⎩⎪⎨⎪⎧26+5D +F =0,10+D +F =0, 解得⎩⎪⎨⎪⎧D =-4,F =-6.圆C 的方程为x 2+y 2-4x -6=0. [答案] (1)C (2)x 2+y 2-4x -6=0由题悟法1.利用待定系数法求圆的方程关键是建立关于a ,b ,r 或D ,E ,F 的方程组. 2.利用圆的几何性质求方程可直接求出圆心坐标和半径,进而写出方程,体现了数形结合思想的运用.以题试法1.(2012·浙江五校联考)过圆x 2+y 2=4外一点P (4,2)作圆的两条切线,切点分别为A ,B ,则△ABP 的外接圆的方程是( )A .(x -4)2+(y -2)2=1B .x 2+(y -2)2=4C .(x +2)2+(y +1)2=5D .(x -2)2+(y -1)2=5解析:选D 易知圆心为坐标原点O ,根据圆的切线的性质可知OA ⊥P A ,OB ⊥PB ,因此P ,A ,O ,B 四点共圆,△P AB 的外接圆就是以线段OP 为直径的圆,这个圆的方程是(x -2)2+(y -1)2=5.典题导入[例2] (1)(2012·湖北高考)过点P (1,1)的直线,将圆形区域{(x ,y )|x 2+y 2≤4}分为两部分,使得这两部分的面积之差最大,则该直线的方程为( )A .x +y -2=0B .y -1=0C .x -y =0D .x +3y -4=0(2)P (x ,y )在圆C :(x -1)2+(y -1)2=1上移动,则x 2+y 2的最小值为________. [自主解答] (1)当圆心与P 的连线和过点P 的直线垂直时,符合条件.圆心O 与P 点连线的斜率k =1,∴直线OP 垂直于x +y -2=0.(2)由C (1,1)得|OC |=2,则|OP |min =2-1,即(x 2+y 2)min =2-1.所以x 2+y 2的最小值为(2-1)2=3-2 2.[答案] (1)A (2)3-2 2由题悟法解决与圆有关的最值问题的常用方法 (1)形如u =y -bx -a的最值问题,可转化为定点(a ,b )与圆上的动点(x ,y )的斜率的最值问题(如A 级T 9);9.(2012·南京模拟)已知x ,y 满足x 2+y 2=1,则y -2x -1的最小值为________.解析:y -2x -1表示圆上的点P (x ,y )与点Q (1,2)连线的斜率,所以y -2x -1的最小值是直线PQ与圆相切时的斜率.设直线PQ 的方程为y -2=k (x -1)即kx -y +2-k =0.由|2-k |k 2+1=1得k =34,结合图形可知,y -2x -1≥34,故最小值为34. 答案:34(2)形如t =ax +by 的最值问题,可转化为动直线的截距的最值问题(如以题试法2(2)); (3)形如(x -a )2+(y -b )2的最值问题,可转化为动点到定点的距离的最值问题(如例(2)).以题试法2.(1)(2012·东北三校联考)与曲线C :x 2+y 2+2x +2y =0相内切,同时又与直线l :y =2-x 相切的半径最小的圆的半径是________.(2)已知实数x ,y 满足(x -2)2+(y +1)2=1则2x -y 的最大值为________,最小值为________.解析:(1)依题意,曲线C 表示的是以点C (-1,-1)为圆心,2为半径的圆,圆心C (-1,-1)到直线y =2-x 即x +y -2=0的距离等于|-1-1-2|2=22,易知所求圆的半径等于22+22=322.(2)令b =2x -y ,则b 为直线2x -y =b 在y 轴上的截距的相反数,当直线2x -y =b 与圆相切时,b 取得最值.由|2×2+1-b |5=1.解得b =5±5,所以2x -y 的最大值为5+5,最小值为5- 5.答案:(1)322 (2)5+5 5-5典题导入[例3] (2012·正定模拟)如图,已知点A (-1,0)与点B (1,0),C 是圆x 2+y 2=1上的动点,连接BC 并延长至D ,使得|CD |=|BC |,求AC 与OD 的交点P 的轨迹方程.[自主解答] 设动点P (x ,y ),由题意可知P 是△ABD 的重心. 由A (-1,0),B (1,0),令动点C (x 0,y 0), 则D (2x 0-1,2y 0),由重心坐标公式得 ⎩⎪⎨⎪⎧x =-1+1+2x 0-13,y =2y 03,则⎩⎪⎨⎪⎧x 0=3x +12,y 0=3y 2(y 0≠0),代入x 2+y 2=1,整理得⎝⎛⎭⎫x +132+y 2=49(y ≠0), 故所求轨迹方程为⎝⎛⎭⎫x +132+y 2=49(y ≠0).由题悟法求与圆有关的轨迹问题时,根据题设条件的不同常采用以下方法: (1)直接法:直接根据题目提供的条件列出方程. (2)定义法:根据直线、圆、圆锥曲线等定义列方程. (3)几何法:利用圆与圆的几何性质列方程.(4)代入法:找到要求点与已知点的关系,代入已知点满足的关系式等.以题试法3.(2012·郑州模拟)动点P 到点A (8,0)的距离是到点B (2,0)的距离的2倍,则动点P 的轨迹方程为( )A .x 2+y 2=32B .x 2+y 2=16C .(x -1)2+y 2=16D .x 2+(y -1)2=16解析:选B 设P (x ,y ),则由题意可得2(x -2)2+y 2=(x -8)2+y 2,化简整理得x 2+y 2=16.[题后悟道] 该题是圆与集合,不等式交汇问题,解决本题的关键点有: ①弄清集合代表的几何意义;②结合直线与圆的位置关系求得m 的取值范围. 针对训练若直线l :ax +by +4=0(a >0,b >0)始终平分圆C :x 2+y 2+8x +2y +1=0,则ab 的最大值为( )A .4B .2C .1D.14解析:选C 圆C 的圆心坐标为(-4,-1), 则有-4a -b +4=0,即4a +b =4. 所以ab =14(4a ·b )≤14⎝ ⎛⎭⎪⎫4a +b 22=14×⎝⎛⎭⎫422=1.当且仅当a =12,b =2取得等号.1.圆(x +2)2+y 2=5关于原点P (0,0)对称的圆的方程为( ) A .(x -2)2+y 2=5 B .x 2+(y -2)2=5 C .(x +2)2+(y +2)2=5D .x 2+(y +2)2=5解析:选A 圆上任一点(x ,y )关于原点对称点为(-x ,-y )在圆(x +2)2+y 2=5上,即(-x +2)2+(-y )2=5.即(x -2)2+y 2=5.2.(2012·辽宁高考)将圆x 2+y 2-2x -4y +1=0平分的直线是( ) A .x +y -1=0 B .x +y +3=0 C .x -y +1=0D .x -y +3=0解析:选C 要使直线平分圆,只要直线经过圆的圆心即可,圆心坐标为(1,2).A ,B ,C ,D 四个选项中,只有C 选项中的直线经过圆心.3.(2012·青岛二中期末)若圆C 的半径为1,圆心在第一象限,且与直线4x -3y =0和x 轴都相切,则该圆的标准方程是( )A .(x -3)2+⎝⎛⎭⎫y -732=1 B .(x -2)2+(y -1)2=1 C .(x -1)2+(y -3)2=1D.⎝⎛⎭⎫x -322+(y -1)2=1 解析:选B 依题意设圆心C (a,1)(a >0),由圆C 与直线4x -3y =0相切,得|4a -3|5=1,解得a =2,则圆C 的标准方程是(x -2)2+(y -1)2=1.4.(2012·海淀检测)点P (4,-2)与圆x 2+y 2=4上任一点连线的中点的轨迹方程是( ) A .(x -2)2+(y +1)2=1 B .(x -2)2+(y +1)2=4 C .(x +4)2+(y -2)2=4D .(x +2)2+(y -1)2=1解析:选A设圆上任一点为Q (x 0,y 0),PQ 的中点为M (x ,y ),则⎩⎨⎧x =4+x2,y =-2+y2,解得⎩⎪⎨⎪⎧x 0=2x -4,y 0=2y +2.因为点Q 在圆x 2+y 2=4上,所以(2x -4)2+(2y +2)2=4,即(x -2)2+(y +1)2=1.5.(2013·杭州模拟)若圆x 2+y 2-2x +6y +5a =0,关于直线y =x +2b 成轴对称图形,则a -b 的取值范围是( )A .(-∞,4)B .(-∞,0)C .(-4,+∞)D .(4,+∞)解析:选A 将圆的方程变形为(x -1)2+(y +3)2=10-5a ,可知,圆心为(1,-3),且10-5a >0,即a <2.∵圆关于直线y =x +2b 对称,∴圆心在直线y =x +2b 上,即-3=1+2b ,解得b =-2,∴a -b <4.6.已知点M 是直线3x +4y -2=0上的动点,点N 为圆(x +1)2+(y +1)2=1上的动点,则|MN |的最小值是( )A.95 B .1 C.45D.135解析:选C 圆心(-1,-1)到点M 的距离的最小值为点(-1,-1)到直线的距离d =|-3-4-2|5=95,故点N 到点M 的距离的最小值为d -1=45. 7.如果三角形三个顶点分别是O (0,0),A (0,15),B (-8,0),则它的内切圆方程为________________.解析:因为△AOB 是直角三角形,所以内切圆半径为r =|OA |+|OB |-|AB |2=15+8-172=3,圆心坐标为(-3,3),故内切圆方程为(x +3)2+(y -3)2=9.答案:(x +3)2+(y -3)2=98.(2013·河南三市调研)已知圆C 的圆心与抛物线y 2=4x 的焦点关于直线y =x 对称,直线4x -3y -2=0与圆C 相交于A ,B 两点,且|AB |=6,则圆C 的方程为__________.解析:设所求圆的半径是R ,依题意得,抛物线y 2=4x 的焦点坐标是(1,0),则圆C 的圆心坐标是(0,1),圆心到直线4x -3y -2=0的距离d =|4×0-3×1-2|42+(-3)2=1,则R 2=d 2+⎝⎛⎭⎫|AB |22=10,因此圆C 的方程是x 2+(y -1)2=10.答案:x 2+(y -1)2=109.(2012·南京模拟)已知x ,y 满足x 2+y 2=1,则y -2x -1的最小值为________.解析:y -2x -1表示圆上的点P (x ,y )与点Q (1,2)连线的斜率,所以y -2x -1的最小值是直线PQ与圆相切时的斜率.设直线PQ 的方程为y -2=k (x -1)即kx -y +2-k =0.由|2-k |k 2+1=1得k =34,结合图形可知,y -2x -1≥34,故最小值为34. 答案:3410.过点C (3,4)且与x 轴,y 轴都相切的两个圆的半径分别为r 1,r 2,求r 1r 2. 解:由题意知,这两个圆的圆心都在第一象限, 且在直线y =x 上,故可设两圆方程为 (x -a )2+(y -a )2=a 2,(x -b )2+(y -b )2=b 2, 且r 1=a ,r 2=b .由于两圆都过点C , 则(3-a )2+(4-a )2=a 2,(3-b )2+(4-b )2=b 2 即a 2-14a +25=0,b 2-14b +25=0. 则a 、b 是方程x 2-14x +25=0的两个根.故r 1r 2=ab =25.11.已知以点P 为圆心的圆经过点A (-1,0)和B (3,4),线段AB 的垂直平分线交圆P 于点C 和D ,且|CD |=410.(1)求直线CD 的方程; (2)求圆P 的方程.解:(1)直线AB 的斜率k =1,AB 的中点坐标为(1,2). 则直线CD 的方程为y -2=-(x -1), 即x +y -3=0.(2)设圆心P (a ,b ),则由P 在CD 上得a +b -3=0.① 又∵直径|CD |=410,∴|P A |=210, ∴(a +1)2+b 2=40.②由①②解得⎩⎪⎨⎪⎧ a =-3,b =6或⎩⎪⎨⎪⎧a =5,b =-2.∴圆心P (-3,6)或P (5,-2). ∴圆P 的方程为(x +3)2+(y -6)2=40 或(x -5)2+(y +2)2=40.12.(2012·吉林摸底)已知关于x ,y 的方程C :x 2+y 2-2x -4y +m =0. (1)当m 为何值时,方程C 表示圆;(2)在(1)的条件下,若圆C 与直线l :x +2y -4=0相交于M 、N 两点,且|MN |=455,求m 的值.解:(1)方程C 可化为(x -1)2+(y -2)2=5-m ,显然只要5-m >0,即m <5时方程C 表示圆.(2)因为圆C 的方程为(x -1)2+(y -2)2=5-m ,其中m <5,所以圆心C (1,2),半径r =5-m ,则圆心C (1,2)到直线l :x +2y -4=0的距离为d =|1+2×2-4|12+22=15,因为|MN |=455,所以12|MN |=255,所以5-m =⎝⎛⎭⎫152+⎝⎛⎭⎫2552, 解得m =4.1.(2012·常州模拟)以双曲线x 26-y 23=1的右焦点为圆心且与双曲线的渐近线相切的圆的方程是( )A .(x -3)2+y 2=1B .(x -3)2+y 2=3C .(x -3)2+y 2=3D .(x -3)2+y 2=9解析:选B 双曲线的渐近线方程为x ±2y =0,其右焦点为(3,0),所求圆半径r =|3|12+(±2)2=3,所求圆方程为(x -3)2+y 2=3.2.由直线y =x +2上的点P 向圆C :(x -4)2+(y +2)2=1引切线PT (T 为切点),当|PT |最小时,点P 的坐标是( )A .(-1,1)B .(0,2)C .(-2,0)D .(1,3)解析:选B 根据切线长、圆的半径和圆心到点P 的距离的关系,可知|PT |=|PC |2-1,故|PT |最小时,即|PC |最小,此时PC 垂直于直线y =x +2,则直线PC 的方程为y +2=-(x-4),即y =-x +2,联立方程⎩⎪⎨⎪⎧y =x +2,y =-x +2,解得点P 的坐标为(0,2).3.已知圆M 过两点C (1,-1),D (-1,1),且圆心M 在x +y -2=0上. (1)求圆M 的方程;(2)设P 是直线3x +4y +8=0上的动点,P A 、PB 是圆M 的两条切线,A ,B 为切点,求四边形P AMB 面积的最小值.解:(1)设圆M 的方程为(x -a )2+(y -b )2=r 2(r >0).根据题意,得⎩⎪⎨⎪⎧(1-a )2+(-1-b )2=r 2,(-1-a )2+(1-b )2=r 2,a +b -2=0.解得a =b =1,r =2,故所求圆M 的方程为(x -1)2+(y -1)2=4.(2)因为四边形P AMB 的面积S =S △P AM +S △PBM =12|AM |·|P A |+12|BM |·|PB |, 又|AM |=|BM |=2,|P A |=|PB |,所以S =2|P A |, 而|P A |=|PM |2-|AM |2=|PM |2-4,即S =2|PM |2-4.因此要求S 的最小值,只需求|PM |的最小值即可, 即在直线3x +4y +8=0上找一点P ,使得|PM |的值最小,所以|PM |min =|3×1+4×1+8|32+42=3,所以四边形P AMB 面积的最小值为S =2|PM |2min -4=232-4=2 5.1.在圆x 2+y 2-2x -6y =0内,过点E (0,1)的最长弦和最短弦分别为AC 和BD ,则四边形ABCD 的面积为( )A .5 2B .10 2C .15 2D .20 2解析:选B 由题意可知,圆的圆心坐标是(1,3),半径是10,且点E (0,1)位于该圆内,故过点E (0,1)的最短弦长|BD |=210-(12+22)=25(注:过圆内一定点的最短弦是以该点为中点的弦),过点E (0,1)的最长弦长等于该圆的直径,即|AC |=210,且AC ⊥BD ,因此四边形ABCD 的面积等于12|AC |×|BD |=12×210×25=10 2.2.已知两点A (-2,0),B (0,2),点C 是圆x 2+y 2-2x =0上任意一点,则△ABC 面积的最小值是________.解析:l AB :x -y +2=0,圆心(1,0)到l 的距离d =32, 则AB 边上的高的最小值为32-1. 故△ABC 面积的最小值是12×22×⎝⎛⎭⎫32-1=3- 2.答案:3- 23.(2012·抚顺调研)已知圆x 2+y 2=4上一定点A (2,0),B (1,1)为圆内一点,P ,Q 为圆上的动点.(1)求线段AP中点的轨迹方程;(2)若∠PBQ=90°,求线段PQ中点的轨迹方程.解:(1)设AP的中点为M(x,y),由中点坐标公式可知,P点坐标为(2x-2,2y).因为P点在圆x2+y2=4上,所以(2x-2)2+(2y)2=4.故线段AP中点的轨迹方程为(x-1)2+y2=1.(2)设PQ的中点为N(x,y),在Rt△PBQ中,|PN|=|BN|,设O为坐标原点,连接ON,则ON⊥PQ,所以|OP|2=|ON|2+|PN|2=|ON|2+|BN|2,所以x2+y2+(x-1)2+(y-1)2=4.故线段PQ中点的轨迹方程为x2+y2-x-y-1=0.一、直线与圆的位置关系(圆心到直线的距离为d,圆的半径为r)二、圆与圆的位置关系(⊙O1、⊙O2半径r1、r2,d=|O1O2|)[小题能否全取]1.(教材习题改编)圆(x-1)2+(y+2)2=6与直线2x+y-5=0的位置关系是()A.相切B.相交但直线不过圆心C.相交过圆心D.相离解析:选B由题意知圆心(1,-2)到直线2x+y-5=0的距离d=5,0<d<6,故该直线与圆相交但不过圆心.2.(2012·银川质检)由直线y =x +1上的一点向圆x 2+y 2-6x +8=0引切线,则切线长的最小值为( )A.7B .2 2C .3D. 2解析:选A 由题意知,圆心到直线上的点的距离最小时,切线长最小.圆x 2+y 2-6x +8=0可化为(x -3)2+y 2=1,则圆心(3,0)到直线y =x +1的距离为42=22,切线长的最小值为(22)2-1=7.3.直线x -y +1=0与圆x 2+y 2=r 2相交于A ,B 两点,且AB 的长为2,则圆的半径为( )A.322B.62C .1D .2解析:选B 圆心(0,0)到直线x -y +1=0的距离d =12.则r 2=⎝⎛⎭⎫12|AB |2+d 2=32,r =62. 4.(教材习题改编)若圆x 2+y 2=1与直线y =kx +2没有公共点,则实数k 的取值范围是________.解析:由题意知21+k2>1,解得-3<k < 3.答案:(-3, 3)5.已知两圆C 1:x 2+y 2-2x +10y -24=0,C 2:x 2+y 2+2x +2y -8=0,则两圆公共弦所在的直线方程是____________.解析:两圆相减即得x -2y +4=0. 答案:x -2y +4=01.求圆的弦长问题,注意应用圆的几何性质解题,即用圆心与弦中点连线与弦垂直的性质,可用勾股定理或斜率之积为-1列方程来简化运算.2.对于圆的切线问题,要注意切线斜率不存在的情况.典题导入[例1] (2012·陕西高考) 已知圆C :x 2+y 2-4x =0,l 是过点P (3,0)的直线,则( )A .l 与C 相交B .l 与C 相切C .l 与C 相离D .以上三个选项均有可能[自主解答] 将点P (3,0)的坐标代入圆的方程,得 32+02-4×3=9-12=-3<0, 所以点P (3,0)在圆内.故过点P 的直线l 定与圆C 相交. [答案] A本例中若直线l 为“x -y +4=0”问题不变. 解:∵圆的方程为(x -2)2+y 2=4, ∴圆心(2,0),r =2. 又圆心到直线的距离为d =62=32>2. ∴l 与C 相离.由题悟法判断直线与圆的位置关系常见的方法(1)几何法:利用圆心到直线的距离d 和圆半径r 的大小关系. (2)代数法:联立直线与圆的方程消元后利用Δ判断.(3)点与圆的位置关系法:若直线恒过定点且定点在圆内可判断直线与圆相交.以题试法1.(2012·哈师大附中月考)已知直线l 过点(-2,0),当直线l 与圆x 2+y 2=2x 有两个交点时,其斜率k 的取值范围是( )A .(-22,22)B .(-2,2) C.⎝⎛⎭⎫-24,24D.⎝⎛⎭⎫-18,18 解析:选C 易知圆心坐标是(1,0),圆的半径是1,直线l 的方程是y =k (x +2),即kx -y +2k =0,根据点到直线的距离公式得|k +2k |k 2+1<1,即k 2<18,解得-24<k <24.典题导入[例2] (1)(2012·广东高考)在平面直角坐标系xOy 中,直线3x +4y -5=0与圆x 2+y 2=4相交于A 、B 两点,则弦AB 的长等于( )A .33B .2 3 C. 3D .1(2)(2012·天津高考)设m ,n ∈R ,若直线(m +1)x +(n +1)y -2=0与圆(x -1)2+(y -1)2=1相切,则m +n 的取值范围是( )A .[1-3,1+ 3 ]B .(-∞,1- 3 ]∪[1+3,+∞)C .[2-22,2+2 2 ]D .(-∞,2-2 2 ]∪[2+22,+∞)[自主解答] (1)圆x 2+y 2=4的圆心(0,0),半径为2,则圆心到直线3x +4y -5=0的距离d =532+42=1.故|AB |=2r 2-d 2=24-1=2 3.(2)圆心(1,1)到直线(m +1)x +(n +1)y -2=0的距离为|m +n |(m +1)2+(n +1)2=1,所以m +n+1=mn ≤14(m +n )2,整理得[(m +n )-2]2-8≥0,解得m +n ≥2+22或m +n ≤2-2 2.[答案] (1)B (2)D由题悟法1.圆的弦长的常用求法:(1)几何法:设圆的半径为r ,弦心距为d ,弦长为l ,则⎝⎛⎭⎫l 22=r 2-d 2. (2)代数方法:运用韦达定理及弦长公式: |AB |=1+k 2|x 1-x 2|=(1+k 2)[(x 1+x 2)2-4x 1x 2]. [注意] 常用几何法研究圆的弦的有关问题.2.求过一点的圆的切线方程时,首先要判断此点与圆的位置关系,若点在圆内,无解;若点在圆上,有一解;若点在圆外,有两解.以题试法2.(2012·杭州模拟)直线y =kx +3与圆(x -2)2+(y -3)2=4相交于M ,N 两点,若|MN |≥23,则k 的取值范围是( )A.⎣⎡⎦⎤-34,0B.⎣⎡⎦⎤-33,33 C .[-3, 3]D.⎣⎡⎦⎤-23,0解析:选B 如图,设圆心C (2,3)到直线y =kx +3的距离为d ,若|MN |≥23,则d 2=r 2-⎝⎛⎭⎫12|MN |2≤4-3=1,即|2k |21+k2≤1,解得-33≤k ≤ 33.典题导入[例3] (1)(2012·山东高考)圆(x +2)2+y 2=4与圆(x -2)2+(y -1)2=9的位置关系为( )A .内切B .相交C .外切D .相离(2)设两圆C 1、C 2都和两坐标轴相切,且都过点(4,1),则两圆心的距离|C 1C 2|=________. [自主解答] (1)两圆圆心分别为(-2,0),(2,1),半径分别为2和3,圆心距d =42+1=17.∵3-2<d <3+2,∴两圆相交.(2)由题意可设两圆的方程为(x -r i )2+(y -r i )2=r 2i ,r i >0,i =1,2.由两圆都过点(4,1)得(4-r i )2+(1-r i )2=r 2i ,整理得r 2i -10r i +17=0,此方程的两根即为两圆的半径r 1,r 2,所以r 1r 2=17,r 1+r 2=10,则|C 1C 2|=(r 1-r 2)2+(r 1-r 2)2=2×(r 1+r 2)2-4r 1r 2=2×100-68=8. [答案] (1)B (2)8由题悟法两圆位置关系的判断常用几何法,即利用两圆圆心之间的距离与两圆半径之间的关系,一般不采用代数法.若两圆相交,则两圆公共弦所在直线的方程可由两圆的方程作差得到.以题试法3.(2012·青岛二中月考)若⊙O :x 2+y 2=5与⊙O 1:(x -m )2+y 2=20(m ∈R )相交于A 、B 两点,且两圆在点A 处的切线互相垂直,则线段AB 的长是________.解析:依题意得|OO 1|=5+20=5,且△OO 1A 是直角三角形,S △O O 1A =12·|AB |2·|OO 1|=12·|OA |·|AO 1|,因此|AB |=2·|OA |·|AO 1||OO 1|=2×5×255=4. 答案:4[典例](2012·东城模拟)直线l过点(-4,0)且与圆(x+1)2+(y-2)2=25交于A,B两点,如果|AB|=8,那么直线l的方程为()A.5x+12y+20=0B.5x-12y+20=0或x+4=0C.5x-12y+20=0D.5x+12y+20=0或x+4=0[尝试解题]过点(-4,0)的直线若垂直于x轴,经验证符合条件,即方程为x+4=0满足题意;若存在斜率,设其直线方程为y=k(x+4),由被圆截得的弦长为8,可得圆心(-1,2)到直线y=k(x+4)的距离为3,即|3k-2|1+k2=3,解得k=-512,此时直线方程为5x+12y+20=0,综上直线方程为5x+12y+20=0或x+4=0.[答案] D——————[易错提醒]—————————————————————————1.解答本题易误认为斜率k一定存在从而错选A.2.对于过定点的动直线设方程时,可结合题意或作出符合题意的图形分析斜率k是否存在,以避免漏解.——————————————————————————————————————针对训练1.过点A(2,4)向圆x2+y2=4所引切线的方程为__________________.解析:显然x=2为所求切线之一.当切线斜率存在时,设切线方程为y-4=k(x-2),即kx -y +4-2k =0,那么|4-2k |k 2+1=2,k =34,即3x -4y +10=0.答案:x =2或3x -4y +10=02.已知直线l 过(2,1),(m,3)两点,则直线l 的方程为________________. 解析:当m =2时,直线l 的方程为x =2; 当m ≠2时,直线l 的方程为y -13-1=x -2m -2,即2x -(m -2)y +m -6=0.因为m =2时,方程2x -(m -2)y +m -6=0, 即为x =2,所以直线l 的方程为2x -(m -2)y +m -6=0. 答案:2x -(m -2)y +m -6=0一、选择题1.(2012·人大附中月考)设m >0,则直线2(x +y )+1+m =0与圆x 2+y 2=m 的位置关系为( )A .相切B .相交C .相切或相离D .相交或相切解析:选C 圆心到直线l 的距离为d =1+m 2,圆半径为m .因为d -r =1+m 2-m =12(m -2m +1)=12(m -1)2≥0,所以直线与圆的位置关系是相切或相离.2.(2012·福建高考)直线x +3y -2=0与圆x 2+y 2=4相交于A ,B 两点,则弦AB 的长度等于( )A .2 5B .2 3 C. 3D .1解析:选B 因为圆心(0,0)到直线x +3y -2=0的距离为1,所以AB =24-1=2 3.3.(2012·安徽高考)若直线x -y +1=0与圆(x -a )2+y 2=2有公共点,则实数a 的取值范围是( )A .[-3,-1]B .[-1,3]C .[-3,1]D .(-∞,-3]∪[1,+∞)解析:选C 欲使直线x -y +1=0与圆(x -a )2+y 2=2有公共点,只需使圆心到直线的距离小于等于圆的半径2即可,即|a -0+1|12+(-1)2≤2,化简得|a +1|≤2,解得-3≤a ≤1.4.过圆x 2+y 2=1上一点作圆的切线与x 轴,y 轴的正半轴交于A ,B 两点,则|AB |的最小值为( )A. 2B. 3 C .2D .3解析:选C 设圆上的点为(x 0,y 0),其中x 0>0,y 0>0,则切线方程为x 0x +y 0y =1.分别令x =0,y =0得A ⎝⎛⎭⎫1x 0,0,B ⎝⎛⎭⎫0,1y 0,则|AB |= ⎝⎛⎭⎫1x 02+⎝⎛⎭⎫1y 02=1x 0y 0≥1x 20+y 202=2.当且仅当x 0=y 0时,等号成立.5.(2013·兰州模拟)若圆x 2+y 2=r 2(r >0)上仅有4个点到直线x -y -2=0的距离为1,则实数r 的取值范围为( )A .(2+1,+∞)B .(2-1, 2+1)C .(0, 2-1)D .(0, 2+1)解析:选A 计算得圆心到直线l 的距离为22= 2>1,如图.直线l :x -y -2=0与圆相交,l 1,l 2与l 平行,且与直线l 的距离为1,故可以看出,圆的半径应该大于圆心到直线l 2的距离 2+1.6.(2013·临沂模拟)已知点P (x ,y )是直线kx +y +4=0(k >0)上一动点,P A ,PB 是圆C :x 2+y 2-2y =0的两条切线,A ,B 是切点,若四边形P ACB 的最小面积是2,则k 的值为( )A. 2B.212C .2 2D .2解析:选D 圆心C (0,1)到l 的距离d =5k 2+1, 所以四边形面积的最小值为2×⎝⎛⎭⎫12×1×d 2-1=2,解得k 2=4,即k =±2. 又k >0,即k =2.7.(2012·朝阳高三期末)设直线x -my -1=0与圆(x -1)2+(y -2)2=4相交于A 、B 两点,且弦AB 的长为23,则实数m 的值是________.解析:由题意得,圆心(1,2)到直线x -my -1=0的距离d =4-3=1,即|1-2m -1|1+m 2=1,解得m =±33. 答案:±338.(2012·东北三校联考)若a ,b ,c 是直角三角形ABC 三边的长(c 为斜边),则圆C :x 2+y 2=4被直线l :ax +by +c =0所截得的弦长为________.解析:由题意可知圆C :x 2+y 2=4被直线l :ax +by +c =0所截得的弦长为2 4-⎝ ⎛⎭⎪⎫c a 2+b 22,由于a 2+b 2=c 2,所以所求弦长为2 3. 答案:2 39.(2012·江西高考)过直线x +y -22=0上点P 作圆x 2+y 2=1的两条切线,若两条切线的夹角是60°,则点P 的坐标是________.解析:∵点P 在直线x +y -22=0上,∴可设点P (x 0,-x 0+22),且其中一个切点为M .∵两条切线的夹角为60°,∴∠OPM =30°.故在Rt △OPM 中,有OP =2OM =2.由两点间的距离公式得OP =x 20+(-x 0+22)2=2,解得x 0= 2.故点P 的坐标是( 2, 2).答案:( 2, 2)10.(2012·福州调研)已知⊙M :x 2+(y -2)2=1,Q 是x 轴上的动点,QA ,QB 分别切⊙M 于A ,B 两点.(1)若|AB |=423,求|MQ |及直线MQ 的方程;(2)求证:直线AB 恒过定点.解:(1)设直线MQ 交AB 于点P ,则|AP |=223,又|AM |=1,AP ⊥MQ ,AM ⊥AQ ,得|MP |= 12-89=13,又∵|MQ |=|MA |2|MP |,∴|MQ |=3.设Q (x,0),而点M (0,2),由x 2+22=3,得x =±5,则Q 点的坐标为(5,0)或(-5,0).从而直线MQ 的方程为2x +5y -25=0或2x -5y +25=0.(2)证明:设点Q (q,0),由几何性质,可知A ,B 两点在以QM 为直径的圆上,此圆的方程为x (x -q )+y (y -2)=0,而线段AB 是此圆与已知圆的公共弦,相减可得AB 的方程为qx-2y +3=0,所以直线AB 恒过定点⎝⎛⎭⎫0,32. 11.已知以点C ⎝⎛⎭⎫t ,2t (t ∈R ,t ≠0)为圆心的圆与x 轴交于点O 、A ,与y 轴交于点O 、B ,其中O 为原点.(1)求证:△AOB 的面积为定值;(2)设直线2x +y -4=0与圆C 交于点M 、N ,若|OM |=|ON |,求圆C 的方程.解:(1)证明:由题设知,圆C 的方程为(x -t )2+⎝⎛⎭⎫y -2t 2=t 2+4t 2,化简得x 2-2tx +y 2-4ty =0, 当y =0时,x =0或2t ,则A (2t,0);当x =0时,y =0或4t,则B ⎝⎛⎭⎫0,4t , 所以S △AOB =12|OA |·|OB | =12|2t |·⎪⎪⎪⎪4t =4为定值. (2)∵|OM |=|ON |,则原点O 在MN 的中垂线上,设MN 的中点为H ,则CH ⊥MN ,∴C 、H 、O 三点共线,则直线OC 的斜率k =2t t =2t 2=12,∴t =2或t =-2. ∴圆心为C (2,1)或C (-2,-1),∴圆C 的方程为(x -2)2+(y -1)2=5或(x +2)2+(y +1)2=5,由于当圆方程为(x +2)2+(y +1)2=5时,直线2x +y -4=0到圆心的距离d >r ,此时不满足直线与圆相交,故舍去,∴圆C 的方程为(x -2)2+(y -1)2=5.12.在平面直角坐标系xOy 中,已知圆x 2+y 2-12x +32=0的圆心为Q ,过点P (0,2),且斜率为k 的直线与圆Q 相交于不同的两点A 、B .(1)求k 的取值范围;(2)是否存在常数k ,使得向量OA +OB 与PQ 共线?如果存在,求k 值;如果不存在,请说明理由.解:(1)圆的方程可写成(x -6)2+y 2=4,所以圆心为Q (6,0).过P (0,2)且斜率为k 的直线方程为y =kx +2,代入圆的方程得x 2+(kx +2)2-12x +32=0,整理得(1+k 2)x 2+4(k -3)x +36=0.①直线与圆交于两个不同的点A 、B 等价于Δ=[4(k -3)]2-4×36(1+k 2)=42(-8k 2-6k )>0,解得-34<k <0,即k 的取值范围为⎝⎛⎭⎫-34,0. (2)设A (x 1,y 1)、B (x 2,y 2)则OA +OB =(x 1+x 2,y 1+y 2),由方程①得x 1+x 2=-4(k -3)1+k 2.② 又y 1+y 2=k (x 1+x 2)+4.③因P (0,2)、Q (6,0),PQ =(6,-2),所以OA +OB 与PQ 共线等价于-2(x 1+x 2)=6(y 1+y 2),将②③代入上式,解得k =-34. 而由(1)知k ∈⎝⎛⎭⎫-34,0,故没有符合题意的常数k.1.已知两圆x 2+y 2-10x -10y =0,x 2+y 2+6x -2y -40=0,则它们的公共弦所在直线的方程为________________;公共弦长为________.解析:由两圆的方程x 2+y 2-10x -10y =0,x 2+y 2+6x -2y -40=0,相减并整理得公共弦所在直线的方程为2x +y -5=0.圆心(5,5)到直线2x +y -5=0的距离为105=25,弦长的一半为50-20=30,得公共弦长为230. 答案:2x +y -5=0 2302.(2012·上海模拟)已知圆的方程为x 2+y 2-6x -8y =0,a 1,a 2,…,a 11是该圆过点(3,5)的11条弦的长,若数列a 1,a 2,…,a 11成等差数列,则该等差数列公差的最大值是________.解析:容易判断,点(3,5)在圆内部,过圆内一点最长的弦是直径,过该点与直径垂直的弦最短,因此,过(3,5)的弦中,最长为10,最短为46,故公差最大为10-4610=5-265. 答案:5-2653.(2012·江西六校联考)已知抛物线C :y 2=2px (p >0)的准线为l ,焦点为F ,圆M 的圆心在x 轴的正半轴上,圆M 与y 轴相切,过原点O 作倾斜角为π3的直线n ,交直线l 于点A ,交圆M 于不同的两点O 、B ,且|AO |=|BO |=2.(1)求圆M 和抛物线C 的方程;(2)若P 为抛物线C 上的动点,求PM ,·PF ,的最小值; (3)过直线l 上的动点Q 向圆M 作切线,切点分别为S 、T ,求证:直线ST 恒过一个定点,并求该定点的坐标.解:(1)易得B (1,3),A (-1,-3),设圆M 的方程为(x -a )2+y 2=a 2(a >0), 将点B (1,3)代入圆M 的方程得a =2,所以圆M 的方程为(x -2)2+y 2=4,因为点A (-1,-3)在准线l 上,所以p 2=1,p =2,所以抛物线C 的方程为y 2=4x . (2)由(1)得,M (2,0),F (1,0),设点P (x ,y ),则PM ,=(2-x ,-y ),PF ,=(1-x ,-y ),又点P 在抛物线y 2=4x 上,所以PM ,·PF ,=(2-x )(1-x )+y 2=x 2-3x +2+4x =x 2+x +2,因为x ≥0,所以PM ,·PF ,≥2,即PM ,·PF ,的最小值为2. (3)证明:设点Q (-1,m ),则|QS |=|QT |=m 2+5,以Q 为圆心,m 2+5为半径的圆的方程为(x +1)2+(y -m )2=m 2+5,即x 2+y 2+2x -2my -4=0,①又圆M 的方程为(x -2)2+y 2=4,即x 2+y 2-4x =0,②由①②两式相减即得直线ST 的方程3x -my -2=0,显然直线ST 恒过定点⎝⎛⎭⎫23,0.1.两个圆:C 1:x 2+y 2+2x +2y -2=0与C 2:x 2+y 2-4x -2y +1=0的公切线有且仅有( )A .1条B .2条C .3条D .4条解析:选B 由题知C 1:(x +1)2+(y +1)2=4,则圆心C 1(-1,-1),C 2:(x -2)2+(y -1)2=4,圆心C 2(2,1),两圆半径均为2,又|C 1C 2|=(2+1)2+(1+1)2=13<4,则两圆相交⇒只有两条外公切线.2.(2012·江苏高考)在平面直角坐标系xOy 中,圆C 的方程为x 2+y 2-8x +15=0,若直线y =kx -2上至少存在一点,使得以该点为圆心,1为半径的圆与圆C 有公共点,则k 的最大值是________.解析:设圆心C (4,0)到直线y =kx -2的距离为d ,则d =|4k -2|k 2+1,由题意知,问题转化为d ≤2,即d =|4k -2|k 2+1≤2,得0≤k ≤43,所以k max =43. 答案:43 3.过点(-1,-2)的直线l 被圆x 2+y 2-2x -2y +1=0截得的弦长为 2,则直线l 的斜率为________.解析:将圆的方程化成标准方程为(x -1)2+(y -1)2=1,其圆心为(1,1),半径r =1.由弦长为2得弦心距为22.设直线方程为y +2=k (x +1),即kx -y +k -2=0,则|2k -3|k 2+1=22,化简得7k 2-24k +17=0,得k =1或k =177. 答案:1或1774.圆O 1的方程为x 2+(y +1)2=4,圆O 2的圆心为O 2(2,1).(1)若圆O 2与圆O 1外切,求圆O 2的方程;(2)若圆O 2与圆O 1交于A 、B 两点,且|AB |=22,求圆O 2的方程.解:(1)设圆O 2的半径为r 2,∵两圆外切,∴|O 1O 2|=r 1+r 2,r 2=|O 1O 2|-r 1=2(2-1),故圆O 2的方程是(x -2)2+(y -1)2=4(2-1)2.(2)设圆O 2的方程为(x -2)2+(y -1)2=r 22,又圆O 1的方程为x 2+(y +1)2=4,此两圆的方程相减,即得两圆公共弦AB 所在直线的方程:4x +4y +r 22-8=0. 因为圆心O 1(0,-1)到直线AB 的距离为 |r 22-12|42= 4-⎝⎛⎭⎫2222=2, 解得r 22=4或r 22=20.故圆O 2的方程为(x -2)2+(y -1)2=4或(x -2)2+(y -1)2=20.。
高一数学必修二第四章圆与方程练习题及答案高一数学(必修2)第四章圆与方程基础训练一、选择题1.圆(x+2)²+y²=5关于原点P(0,0)对称的圆的方程为()A。
(x-2)²+y²=5B。
x²+(y-2)²=5C。
(x+2)²+(y+2)²=5D。
x²+(y+2)²=52.若P(2,-1)为圆(x-1)²+y²=25的弦AB的中点,则直线AB 的方程是()A。
x-y-3=0B。
2x+y-3=0C。
x+y-1=0D。
2x-y-5=03.圆x²+y²-2x-2y+1=0上的点到直线x-y=2的距离最大值是()A。
2B。
1+√2C。
1-√2D。
1+2√24.将直线2x-y+λ=0,沿x轴向左平移1个单位,所得直线与圆x²+y²+2x-4y=0相切,则实数λ的值为()A。
-3或7B。
-2或8C。
2或10D。
1或115.在坐标平面内,与点A(1,2)距离为1,且与点B(3,1)距离为2的直线共有()A。
1条B。
2条C。
3条D。
4条6.圆x²+y²-4x=0在点P(1,3)处的切线方程为()A。
x+3y-2=0B。
x+3y-4=0C。
x-3y+4=0D。
x-3y+2=0二、填空题1.若经过点P(-1,0)的直线与圆x²+y²+4x-2y+3=0相切,则此直线在y轴上的截距是-2.2.由动点P向圆x²+y²=1引两条切线PA,PB,切点分别为A,B,∠APB=60,则动点P的轨迹方程为x²+y²-x=0.3.圆心在直线2x-y-7=0上的圆C与y轴交于两点A(0,-4),B(0,-2),则圆C的方程为(x-1)²+(y+1)²=4.4.已知圆(x-3)²+y²=4和过原点的直线y=kx的交点为P,Q,则OP·OQ的值为2.5.已知P是直线3x+4y+8=0上的动点,PA,PB是圆x²+y²-2x-2y+1=0的切线,A,B是切点,C是圆心,那么四边形PACB面积的最小值是3.三、解答题1.点P(a,b)在直线x+y+1=0上,求a²+b²-2a-2b+2的最小值。
第三节圆_的_方_程[知识能否忆起]1.圆的定义及方程 定义 平面内与定点的距离等于定长的点的集合(轨迹) 标准 方程 (x -a )2+(y -b )2=r 2(r >0)圆心:(a ,b ),半径:r一般 方程 x 2+y 2+Dx +Ey +F =0(D 2+E 2-4F >0)圆心:⎝⎛⎭⎫-D 2,-E 2, 半径:12D 2+E 2-4F2.点与圆的位置关系点M (x 0,y 0)与圆(x -a )2+(y -b )2=r 2的位置关系: (1)若M (x 0,y 0)在圆外,则(x 0-a )2+(y 0-b )2>r 2. (2)若M (x 0,y 0)在圆上,则(x 0-a )2+(y 0-b )2=r 2. (3)若M (x 0,y 0)在圆内,则(x 0-a )2+(y 0-b )2<r 2.[小题能否全取]1.(教材习题改编)方程x 2+y 2+4mx -2y +5m =0表示圆的充要条件是( ) A.14<m <1 B .m <14或m >1C .m <14D .m >1解析:选B 由(4m )2+4-4×5m >0得m <14或m >1.2.(教材习题改编)点(1,1)在圆(x -a )2+(y +a )2=4内,则实数a 的取值范围是( ) A .(-1,1)B .(0,1)C .(-∞,-1)∪(1,+∞)D .(1,+∞)解析:选A ∵点(1,1)在圆的内部, ∴(1-a )2+(1+a )2<4, ∴-1<a <1.3.圆心在y 轴上,半径为1,且过点(1,2)的圆的方程为( ) A .x 2+(y -2)2=1B .x 2+(y +2)2=1C .(x -1)2+(y -3)2=1D .x 2+(y -3)2=1解析:选A 设圆心坐标为(0,b ),则由题意知(0-1)2+(b -2)2=1,解得b =2,故圆的方程为x 2+(y -2)2=1.4.(2012·潍坊调研)圆x 2-2x +y 2-3=0的圆心到直线x +3y -3=0的距离为________.解析:圆心(1,0),d =|1-3|1+3=1.答案:15.(教材习题改编)圆心在原点且与直线x +y -2=0相切的圆的方程为 ____________________.解析:设圆的方程为x 2+y 2=a 2(a >0) ∴|2|1+1=a ,∴a =2,∴x 2+y 2=2. 答案:x 2+y 2=21.方程Ax 2+Bxy +Cy 2+Dx +Ey +F =0表示圆的充要条件是: (1)B =0;(2)A =C ≠0;(3)D 2+E 2-4AF >0.2.求圆的方程时,要注意应用圆的几何性质简化运算. (1)圆心在过切点且与切线垂直的直线上. (2)圆心在任一弦的中垂线上.(3)两圆内切或外切时,切点与两圆圆心三点共线.圆的方程的求法典题导入[例1] (1)(2012·顺义模拟)已知圆C 关于y 轴对称,经过点(1,0)且被x 轴分成两段弧长之比为1∶2,则圆C 的方程为( )A.⎝⎛⎭⎫x ±332+y 2=43B.⎝⎛⎭⎫x ±332+y 2=13C .x 2+⎝⎛⎭⎫y ±332=43D .x 2+⎝⎛⎭⎫y ±332=13(2)已知圆C 经过A (5,1),B (1,3)两点,圆心在x 轴上,则圆C 的方程为________________. [自主解答] (1)由已知知圆心在y 轴上,且被x 轴所分劣弧所对圆心角为2π3,设圆心(0,b ),半径为r ,则r sin π3=1,r cos π3=|b |,解得r =23,|b |=33,即b =±33.故圆的方程为x 2+⎝⎛⎭⎫y ±332=43.(2)圆C 的方程为x 2+y 2+Dx +F =0,则⎩⎪⎨⎪⎧26+5D +F =0,10+D +F =0, 解得⎩⎪⎨⎪⎧D =-4,F =-6.圆C 的方程为x 2+y 2-4x -6=0. [答案] (1)C (2)x 2+y 2-4x -6=0由题悟法1.利用待定系数法求圆的方程关键是建立关于a ,b ,r 或D ,E ,F 的方程组. 2.利用圆的几何性质求方程可直接求出圆心坐标和半径,进而写出方程,体现了数形结合思想的运用.以题试法1.(2012·浙江五校联考)过圆x 2+y 2=4外一点P (4,2)作圆的两条切线,切点分别为A ,B ,则△ABP 的外接圆的方程是( )A .(x -4)2+(y -2)2=1B .x 2+(y -2)2=4C .(x +2)2+(y +1)2=5D .(x -2)2+(y -1)2=5解析:选D 易知圆心为坐标原点O ,根据圆的切线的性质可知OA ⊥P A ,OB ⊥PB ,因此P ,A ,O ,B 四点共圆,△P AB 的外接圆就是以线段OP 为直径的圆,这个圆的方程是(x -2)2+(y -1)2=5.与圆有关的最值问题典题导入[例2] (1)(2012·湖北高考)过点P (1,1)的直线,将圆形区域{(x ,y )|x 2+y 2≤4}分为两部分,使得这两部分的面积之差最大,则该直线的方程为( )A .x +y -2=0B .y -1=0C .x -y =0D .x +3y -4=0(2)P (x ,y )在圆C :(x -1)2+(y -1)2=1上移动,则x 2+y 2的最小值为________. [自主解答] (1)当圆心与P 的连线和过点P 的直线垂直时,符合条件.圆心O 与P 点连线的斜率k =1,∴直线OP 垂直于x +y -2=0.(2)由C (1,1)得|OC |=2,则|OP |min =2-1,即(x 2+y 2)min =2-1.所以x 2+y 2的最小值为(2-1)2=3-2 2.[答案] (1)A (2)3-2 2由题悟法解决与圆有关的最值问题的常用方法 (1)形如u =y -bx -a的最值问题,可转化为定点(a ,b )与圆上的动点(x ,y )的斜率的最值问题(如A 级T 9);9.(2012·南京模拟)已知x ,y 满足x 2+y 2=1,则y -2x -1的最小值为________.解析:y -2x -1表示圆上的点P (x ,y )与点Q (1,2)连线的斜率,所以y -2x -1的最小值是直线PQ与圆相切时的斜率.设直线PQ 的方程为y -2=k (x -1)即kx -y +2-k =0.由|2-k |k 2+1=1得k =34,结合图形可知,y -2x -1≥34,故最小值为34. 答案:34(2)形如t =ax +by 的最值问题,可转化为动直线的截距的最值问题(如以题试法2(2)); (3)形如(x -a )2+(y -b )2的最值问题,可转化为动点到定点的距离的最值问题(如例(2)).以题试法2.(1)(2012·东北三校联考)与曲线C :x 2+y 2+2x +2y =0相内切,同时又与直线l :y =2-x 相切的半径最小的圆的半径是________.(2)已知实数x ,y 满足(x -2)2+(y +1)2=1则2x -y 的最大值为________,最小值为________.解析:(1)依题意,曲线C 表示的是以点C (-1,-1)为圆心,2为半径的圆,圆心C (-1,-1)到直线y =2-x 即x +y -2=0的距离等于|-1-1-2|2=22,易知所求圆的半径等于22+22=322.(2)令b =2x -y ,则b 为直线2x -y =b 在y 轴上的截距的相反数,当直线2x -y =b 与圆相切时,b 取得最值.由|2×2+1-b |5=1.解得b =5±5,所以2x -y 的最大值为5+5,最小值为5- 5.答案:(1)322 (2)5+5 5-5与圆有关的轨迹问题典题导入[例3] (2012·正定模拟)如图,已知点A (-1,0)与点B (1,0),C 是圆x 2+y 2=1上的动点,连接BC 并延长至D ,使得|CD |=|BC |,求AC 与OD 的交点P 的轨迹方程.[自主解答] 设动点P (x ,y ),由题意可知P 是△ABD 的重心. 由A (-1,0),B (1,0),令动点C (x 0,y 0), 则D (2x 0-1,2y 0),由重心坐标公式得 ⎩⎪⎨⎪⎧x =-1+1+2x 0-13,y =2y 03,则⎩⎪⎨⎪⎧x 0=3x +12,y 0=3y 2(y 0≠0),代入x 2+y 2=1,整理得⎝⎛⎭⎫x +132+y 2=49(y ≠0), 故所求轨迹方程为⎝⎛⎭⎫x +132+y 2=49(y ≠0).由题悟法求与圆有关的轨迹问题时,根据题设条件的不同常采用以下方法: (1)直接法:直接根据题目提供的条件列出方程. (2)定义法:根据直线、圆、圆锥曲线等定义列方程. (3)几何法:利用圆与圆的几何性质列方程.(4)代入法:找到要求点与已知点的关系,代入已知点满足的关系式等.以题试法3.(2012·郑州模拟)动点P 到点A (8,0)的距离是到点B (2,0)的距离的2倍,则动点P 的轨迹方程为( )A .x 2+y 2=32B .x 2+y 2=16C .(x -1)2+y 2=16D .x 2+(y -1)2=16解析:选B 设P (x ,y ),则由题意可得2(x -2)2+y 2=(x -8)2+y 2,化简整理得x 2+y 2=16.与圆有关的交汇问题是近几年高考命题的热点,这类问题,要特别注意圆的定义及其性质的运用. 同时,要根据条件,合理选择代数方法或几何方法, 凡是涉及参数的问题,一定要注意参数的变化对问 题的影响,以便确定是否分类讨论.同时要有丰富 的相关知识储备,解题时只有做到平心静气地认真 研究,不断寻求解决问题的方法和技巧,才能真正 把握好问题.[典例] (2011·江苏高考)设集合A =⎩⎨⎧⎭⎬⎫(x ,y )⎪⎪m2≤(x -2)2+y 2≤m 2,x ,y ∈R ,B ={(x ,y )|2m ≤x +y ≤2m +1,x ,y ∈R }.若A ∩B ≠∅,则实数m 的取值范围是________.[解析] 由题意知A ≠∅,则m 2≤m 2,即m ≤0或m ≥12.因为A ∩B ≠∅,则有:(1)当2m +1<2,即m <12时,圆心(2,0)到直线x +y =2m +1的距离为d 1=|2-2m -1|2≤|m |,化简得2m 2-4m +1≤0,解得1-22≤m ≤1+22,所以1-22≤m ≤12; (2)当2m ≤2≤2m +1,即12≤m ≤1时,A ∩B ≠∅恒成立;(3)当2m >2,即m >1时,圆心(2,0)到直线x +y =2m 的距离为d 2=|2-2m |2≤|m |,化简得m 2-4m +2≤0, 解得2-2≤m ≤2+2, 所以1<m ≤2+ 2.综上可知:满足题意的m 的取值范围为⎣⎡⎦⎤12,2+2. [答案] ⎣⎡⎦⎤12,2+2 [题后悟道] 该题是圆与集合,不等式交汇问题,解决本题的关键点有: ①弄清集合代表的几何意义;②结合直线与圆的位置关系求得m 的取值范围. 针对训练若直线l :ax +by +4=0(a >0,b >0)始终平分圆C :x 2+y 2+8x +2y +1=0,则ab 的最大值为( )A .4B .2C .1D.14解析:选C 圆C 的圆心坐标为(-4,-1), 则有-4a -b +4=0,即4a +b =4. 所以ab =14(4a ·b )≤14⎝ ⎛⎭⎪⎫4a +b 22=14×⎝⎛⎭⎫422=1.当且仅当a =12,b =2取得等号.1.圆(x +2)2+y 2=5关于原点P (0,0)对称的圆的方程为( ) A .(x -2)2+y 2=5 B .x 2+(y -2)2=5 C .(x +2)2+(y +2)2=5D .x 2+(y +2)2=5解析:选A 圆上任一点(x ,y )关于原点对称点为(-x ,-y )在圆(x +2)2+y 2=5上,即(-x +2)2+(-y )2=5.即(x -2)2+y 2=5.2.(2012·辽宁高考)将圆x 2+y 2-2x -4y +1=0平分的直线是( )A .x +y -1=0B .x +y +3=0C .x -y +1=0D .x -y +3=0解析:选C 要使直线平分圆,只要直线经过圆的圆心即可,圆心坐标为(1,2).A ,B ,C ,D 四个选项中,只有C 选项中的直线经过圆心.3.(2012·青岛二中期末)若圆C 的半径为1,圆心在第一象限,且与直线4x -3y =0和x 轴都相切,则该圆的标准方程是( )A .(x -3)2+⎝⎛⎭⎫y -732=1 B .(x -2)2+(y -1)2=1 C .(x -1)2+(y -3)2=1D.⎝⎛⎭⎫x -322+(y -1)2=1 解析:选B 依题意设圆心C (a,1)(a >0),由圆C 与直线4x -3y =0相切,得|4a -3|5=1,解得a =2,则圆C 的标准方程是(x -2)2+(y -1)2=1.4.(2012·海淀检测)点P (4,-2)与圆x 2+y 2=4上任一点连线的中点的轨迹方程是( ) A .(x -2)2+(y +1)2=1 B .(x -2)2+(y +1)2=4 C .(x +4)2+(y -2)2=4D .(x +2)2+(y -1)2=1解析:选A设圆上任一点为Q (x 0,y 0),PQ 的中点为M (x ,y ),则⎩⎨⎧x =4+x 02,y =-2+y2,解得⎩⎪⎨⎪⎧x 0=2x -4,y 0=2y +2.因为点Q 在圆x 2+y 2=4上,所以(2x -4)2+(2y +2)2=4,即(x -2)2+(y +1)2=1.5.(2013·杭州模拟)若圆x 2+y 2-2x +6y +5a =0,关于直线y =x +2b 成轴对称图形,则a -b 的取值范围是( )A .(-∞,4)B .(-∞,0)C .(-4,+∞)D .(4,+∞)解析:选A 将圆的方程变形为(x -1)2+(y +3)2=10-5a ,可知,圆心为(1,-3),且10-5a >0,即a <2.∵圆关于直线y =x +2b 对称,∴圆心在直线y =x +2b 上,即-3=1+2b ,解得b =-2,∴a -b <4.6.已知点M 是直线3x +4y -2=0上的动点,点N 为圆(x +1)2+(y +1)2=1上的动点,则|MN |的最小值是( )A.95B .1C.45D.135解析:选C 圆心(-1,-1)到点M 的距离的最小值为点(-1,-1)到直线的距离d =|-3-4-2|5=95,故点N 到点M 的距离的最小值为d -1=45. 7.如果三角形三个顶点分别是O (0,0),A (0,15),B (-8,0),则它的内切圆方程为________________.解析:因为△AOB 是直角三角形,所以内切圆半径为r =|OA |+|OB |-|AB |2=15+8-172=3,圆心坐标为(-3,3),故内切圆方程为(x +3)2+(y -3)2=9.答案:(x +3)2+(y -3)2=98.(2013·河南三市调研)已知圆C 的圆心与抛物线y 2=4x 的焦点关于直线y =x 对称,直线4x -3y -2=0与圆C 相交于A ,B 两点,且|AB |=6,则圆C 的方程为__________.解析:设所求圆的半径是R ,依题意得,抛物线y 2=4x 的焦点坐标是(1,0),则圆C 的圆心坐标是(0,1),圆心到直线4x -3y -2=0的距离d =|4×0-3×1-2|42+(-3)2=1,则R 2=d 2+⎝⎛⎭⎫|AB |22=10,因此圆C 的方程是x 2+(y -1)2=10.答案:x 2+(y -1)2=109.(2012·南京模拟)已知x ,y 满足x 2+y 2=1,则y -2x -1的最小值为________.解析:y -2x -1表示圆上的点P (x ,y )与点Q (1,2)连线的斜率,所以y -2x -1的最小值是直线PQ与圆相切时的斜率.设直线PQ 的方程为y -2=k (x -1)即kx -y +2-k =0.由|2-k |k 2+1=1得k =34,结合图形可知,y -2x -1≥34,故最小值为34. 答案:3410.过点C (3,4)且与x 轴,y 轴都相切的两个圆的半径分别为r 1,r 2,求r 1r 2. 解:由题意知,这两个圆的圆心都在第一象限, 且在直线y =x 上,故可设两圆方程为 (x -a )2+(y -a )2=a 2,(x -b )2+(y -b )2=b 2,且r 1=a ,r 2=b .由于两圆都过点C , 则(3-a )2+(4-a )2=a 2,(3-b )2+(4-b )2=b 2 即a 2-14a +25=0,b 2-14b +25=0. 则a 、b 是方程x 2-14x +25=0的两个根. 故r 1r 2=ab =25.11.已知以点P 为圆心的圆经过点A (-1,0)和B (3,4),线段AB 的垂直平分线交圆P 于点C 和D ,且|CD |=410.(1)求直线CD 的方程; (2)求圆P 的方程.解:(1)直线AB 的斜率k =1,AB 的中点坐标为(1,2). 则直线CD 的方程为y -2=-(x -1), 即x +y -3=0.(2)设圆心P (a ,b ),则由P 在CD 上得a +b -3=0.① 又∵直径|CD |=410,∴|P A |=210, ∴(a +1)2+b 2=40.②由①②解得⎩⎪⎨⎪⎧ a =-3,b =6或⎩⎪⎨⎪⎧a =5,b =-2.∴圆心P (-3,6)或P (5,-2). ∴圆P 的方程为(x +3)2+(y -6)2=40 或(x -5)2+(y +2)2=40.12.(2012·吉林摸底)已知关于x ,y 的方程C :x 2+y 2-2x -4y +m =0. (1)当m 为何值时,方程C 表示圆;(2)在(1)的条件下,若圆C 与直线l :x +2y -4=0相交于M 、N 两点,且|MN |=455,求m 的值.解:(1)方程C 可化为(x -1)2+(y -2)2=5-m ,显然只要5-m >0,即m <5时方程C 表示圆.(2)因为圆C 的方程为(x -1)2+(y -2)2=5-m ,其中m <5,所以圆心C (1,2),半径r =5-m ,则圆心C (1,2)到直线l :x +2y -4=0的距离为d =|1+2×2-4|12+22=15,因为|MN |=455,所以12|MN |=255, 所以5-m =⎝⎛⎭⎫152+⎝⎛⎭⎫2552, 解得m =4.1.(2012·常州模拟)以双曲线x 26-y 23=1的右焦点为圆心且与双曲线的渐近线相切的圆的方程是( )A .(x -3)2+y 2=1B .(x -3)2+y 2=3C .(x -3)2+y 2=3D .(x -3)2+y 2=9解析:选B 双曲线的渐近线方程为x ±2y =0,其右焦点为(3,0),所求圆半径r =|3|12+(±2)2=3,所求圆方程为(x -3)2+y 2=3.2.由直线y =x +2上的点P 向圆C :(x -4)2+(y +2)2=1引切线PT (T 为切点),当|PT |最小时,点P 的坐标是( )A .(-1,1)B .(0,2)C .(-2,0)D .(1,3)解析:选B 根据切线长、圆的半径和圆心到点P 的距离的关系,可知|PT |=|PC |2-1,故|PT |最小时,即|PC |最小,此时PC 垂直于直线y =x +2,则直线PC 的方程为y +2=-(x-4),即y =-x +2,联立方程⎩⎪⎨⎪⎧y =x +2,y =-x +2,解得点P 的坐标为(0,2).3.已知圆M 过两点C (1,-1),D (-1,1),且圆心M 在x +y -2=0上. (1)求圆M 的方程;(2)设P 是直线3x +4y +8=0上的动点,P A 、PB 是圆M 的两条切线,A ,B 为切点,求四边形P AMB 面积的最小值.解:(1)设圆M 的方程为(x -a )2+(y -b )2=r 2(r >0).根据题意,得⎩⎪⎨⎪⎧(1-a )2+(-1-b )2=r 2,(-1-a )2+(1-b )2=r 2,a +b -2=0.解得a =b =1,r =2,故所求圆M 的方程为(x -1)2+(y -1)2=4. (2)因为四边形P AMB 的面积S =S △P AM +S △PBM =12|AM |·|P A |+12|BM |·|PB |, 又|AM |=|BM |=2,|P A |=|PB |,所以S =2|P A |, 而|P A |=|PM |2-|AM |2=|PM |2-4,即S =2|PM |2-4.因此要求S 的最小值,只需求|PM |的最小值即可, 即在直线3x +4y +8=0上找一点P ,使得|PM |的值最小, 所以|PM |min =|3×1+4×1+8|32+42=3,所以四边形P AMB 面积的最小值为S =2|PM |2min -4=232-4=2 5.1.在圆x 2+y 2-2x -6y =0内,过点E (0,1)的最长弦和最短弦分别为AC 和BD ,则四边形ABCD 的面积为( )A .5 2B .10 2C .15 2D .20 2解析:选B 由题意可知,圆的圆心坐标是(1,3),半径是10,且点E (0,1)位于该圆内,故过点E (0,1)的最短弦长|BD |=210-(12+22)=25(注:过圆内一定点的最短弦是以该点为中点的弦),过点E (0,1)的最长弦长等于该圆的直径,即|AC |=210,且AC ⊥BD ,因此四边形ABCD 的面积等于12|AC |×|BD |=12×210×25=10 2.2.已知两点A (-2,0),B (0,2),点C 是圆x 2+y 2-2x =0上任意一点,则△ABC 面积的最小值是________.解析:l AB :x -y +2=0,圆心(1,0)到l 的距离d =32,则AB 边上的高的最小值为32-1. 故△ABC 面积的最小值是12×22×⎝⎛⎭⎫32-1=3- 2.答案:3- 23.(2012·抚顺调研)已知圆x 2+y 2=4上一定点A (2,0),B (1,1)为圆内一点,P ,Q 为圆上的动点.(1)求线段AP 中点的轨迹方程;(2)若∠PBQ =90°,求线段PQ 中点的轨迹方程.解:(1)设AP 的中点为M (x ,y ),由中点坐标公式可知,P 点坐标为(2x -2,2y ). 因为P 点在圆x 2+y 2=4上,所以(2x -2)2+(2y )2=4. 故线段AP 中点的轨迹方程为(x -1)2+y 2=1.(2)设PQ 的中点为N (x ,y ),在Rt △PBQ 中,|PN |=|BN |,设O 为坐标原点,连接ON ,则ON ⊥PQ ,所以|OP |2=|ON |2+|PN |2=|ON |2+|BN |2,所以x 2+y 2+(x -1)2+(y -1)2=4.故线段PQ 中点的轨迹方程为x 2+y 2-x -y -1=0.第四节直线与圆、圆与圆的位置关系[知识能否忆起]一、直线与圆的位置关系(圆心到直线的距离为d ,圆的半径为r )相离相切相交图形量化 方程观点 Δ<0 Δ=0 Δ>0 几何观点d >rd =rd <r二、圆与圆的位置关系(⊙O 1、⊙O 2半径r 1、r 2,d =|O 1O 2|) 相离外切相交内切内含图形量化 d >r 1+r 2d =r 1+r 2|r 1-r 2|<d <r 1+r 2d =|r 1-r 2|d <|r 1-r 2|[小题能否全取]1.(教材习题改编)圆(x -1)2+(y +2)2=6与直线2x +y -5=0的位置关系是( ) A .相切 B .相交但直线不过圆心 C .相交过圆心D .相离解析:选B 由题意知圆心(1,-2)到直线2x +y -5=0的距离d =5,0<d <6,故该直线与圆相交但不过圆心.2.(2012·银川质检)由直线y =x +1上的一点向圆x 2+y 2-6x +8=0引切线,则切线长的最小值为( )A.7B .2 2C .3D. 2解析:选A 由题意知,圆心到直线上的点的距离最小时,切线长最小.圆x 2+y 2-6x +8=0可化为(x -3)2+y 2=1,则圆心(3,0)到直线y =x +1的距离为42=22,切线长的最小值为(22)2-1=7.3.直线x -y +1=0与圆x 2+y 2=r 2相交于A ,B 两点,且AB 的长为2,则圆的半径为( )A.322B.62C .1D .2解析:选B 圆心(0,0)到直线x -y +1=0的距离d =12.则r 2=⎝⎛⎭⎫12|AB |2+d 2=32,r =62. 4.(教材习题改编)若圆x 2+y 2=1与直线y =kx +2没有公共点,则实数k 的取值范围是________.解析:由题意知21+k 2>1,解得-3<k < 3.答案:(-3, 3)5.已知两圆C 1:x 2+y 2-2x +10y -24=0,C 2:x 2+y 2+2x +2y -8=0,则两圆公共弦所在的直线方程是____________.解析:两圆相减即得x-2y+4=0.答案:x-2y+4=01.求圆的弦长问题,注意应用圆的几何性质解题,即用圆心与弦中点连线与弦垂直的性质,可用勾股定理或斜率之积为-1列方程来简化运算.2.对于圆的切线问题,要注意切线斜率不存在的情况.直线与圆的位置关系的判断典题导入[例1](2012·陕西高考)已知圆C:x2+y2-4x=0,l是过点P(3,0)的直线,则() A.l与C相交B.l与C相切C.l与C相离D.以上三个选项均有可能[自主解答]将点P(3,0)的坐标代入圆的方程,得32+02-4×3=9-12=-3<0,所以点P(3,0)在圆内.故过点P的直线l定与圆C相交.[答案] A本例中若直线l为“x-y+4=0”问题不变.解:∵圆的方程为(x-2)2+y2=4,∴圆心(2,0),r=2.=32>2.又圆心到直线的距离为d=62∴l与C相离.由题悟法判断直线与圆的位置关系常见的方法(1)几何法:利用圆心到直线的距离d和圆半径r的大小关系.(2)代数法:联立直线与圆的方程消元后利用Δ判断.(3)点与圆的位置关系法:若直线恒过定点且定点在圆内可判断直线与圆相交.以题试法1.(2012·哈师大附中月考)已知直线l 过点(-2,0),当直线l 与圆x 2+y 2=2x 有两个交点时,其斜率k 的取值范围是( )A .(-22,22)B .(-2,2) C.⎝⎛⎭⎫-24,24D.⎝⎛⎭⎫-18,18 解析:选C 易知圆心坐标是(1,0),圆的半径是1,直线l 的方程是y =k (x +2),即kx -y +2k =0,根据点到直线的距离公式得|k +2k |k 2+1<1,即k 2<18,解得-24<k <24.直线与圆的位置关系的综合典题导入[例2] (1)(2012·广东高考)在平面直角坐标系xOy 中,直线3x +4y -5=0与圆x 2+y 2=4相交于A 、B 两点,则弦AB 的长等于( )A .33B .2 3 C. 3D .1(2)(2012·天津高考)设m ,n ∈R ,若直线(m +1)x +(n +1)y -2=0与圆(x -1)2+(y -1)2=1相切,则m +n 的取值范围是( )A .[1-3,1+ 3 ]B .(-∞,1- 3 ]∪[1+3,+∞)C .[2-22,2+2 2 ]D .(-∞,2-2 2 ]∪[2+22,+∞)[自主解答] (1)圆x 2+y 2=4的圆心(0,0),半径为2,则圆心到直线3x +4y -5=0的距离d =532+42=1.故|AB |=2r 2-d 2=24-1=2 3.(2)圆心(1,1)到直线(m +1)x +(n +1)y -2=0的距离为|m +n |(m +1)2+(n +1)2=1,所以m +n+1=mn ≤14(m +n )2,整理得[(m +n )-2]2-8≥0,解得m +n ≥2+22或m +n ≤2-2 2.[答案] (1)B (2)D由题悟法1.圆的弦长的常用求法:(1)几何法:设圆的半径为r ,弦心距为d ,弦长为l ,则⎝⎛⎭⎫l 22=r 2-d 2. (2)代数方法:运用韦达定理及弦长公式: |AB |=1+k 2|x 1-x 2|=(1+k 2)[(x 1+x 2)2-4x 1x 2]. [注意] 常用几何法研究圆的弦的有关问题.2.求过一点的圆的切线方程时,首先要判断此点与圆的位置关系,若点在圆内,无解;若点在圆上,有一解;若点在圆外,有两解.以题试法2.(2012·杭州模拟)直线y =kx +3与圆(x -2)2+(y -3)2=4相交于M ,N 两点,若|MN |≥23,则k 的取值范围是( )A.⎣⎡⎦⎤-34,0B.⎣⎡⎦⎤-33,33 C .[-3, 3]D.⎣⎡⎦⎤-23,0 解析:选B 如图,设圆心C (2,3)到直线y =kx +3的距离为d ,若|MN |≥23,则d 2=r 2-⎝⎛⎭⎫12|MN |2≤4-3=1,即|2k |21+k 2≤1,解得-33≤k ≤ 33.圆与圆的位置关系典题导入[例3] (1)(2012·山东高考)圆(x +2)2+y 2=4与圆(x -2)2+(y -1)2=9的位置关系为( )A .内切B .相交C .外切D .相离(2)设两圆C 1、C 2都和两坐标轴相切,且都过点(4,1),则两圆心的距离|C 1C 2|=________. [自主解答] (1)两圆圆心分别为(-2,0),(2,1),半径分别为2和3,圆心距d =42+1=17.∵3-2<d <3+2,∴两圆相交.(2)由题意可设两圆的方程为(x -r i )2+(y -r i )2=r 2i ,r i >0,i =1,2.由两圆都过点(4,1)得(4-r i )2+(1-r i )2=r 2i ,整理得r 2i -10r i +17=0,此方程的两根即为两圆的半径r 1,r 2,所以r 1r 2=17,r 1+r 2=10,则|C 1C 2|=(r 1-r 2)2+(r 1-r 2)2=2×(r 1+r 2)2-4r 1r 2=2×100-68=8. [答案] (1)B (2)8由题悟法两圆位置关系的判断常用几何法,即利用两圆圆心之间的距离与两圆半径之间的关系,一般不采用代数法.若两圆相交,则两圆公共弦所在直线的方程可由两圆的方程作差得到.以题试法3.(2012·青岛二中月考)若⊙O :x 2+y 2=5与⊙O 1:(x -m )2+y 2=20(m ∈R )相交于A 、B 两点,且两圆在点A 处的切线互相垂直,则线段AB 的长是________.解析:依题意得|OO 1|=5+20=5,且△OO 1A 是直角三角形,S △O O 1A =12·|AB |2·|OO 1|=12·|OA |·|AO 1|,因此|AB |=2·|OA |·|AO 1||OO 1|=2×5×255=4. 答案:4[典例](2012·东城模拟)直线l过点(-4,0)且与圆(x+1)2+(y-2)2=25交于A,B两点,如果|AB|=8,那么直线l的方程为()A.5x+12y+20=0B.5x-12y+20=0或x+4=0C.5x-12y+20=0D.5x+12y+20=0或x+4=0[尝试解题]过点(-4,0)的直线若垂直于x轴,经验证符合条件,即方程为x+4=0满足题意;若存在斜率,设其直线方程为y=k(x+4),由被圆截得的弦长为8,可得圆心(-1,2)到直线y=k(x+4)的距离为3,即|3k-2|1+k2=3,解得k=-512,此时直线方程为5x+12y+20=0,综上直线方程为5x+12y+20=0或x+4=0.[答案] D——————[易错提醒]—————————————————————————1.解答本题易误认为斜率k一定存在从而错选A.2.对于过定点的动直线设方程时,可结合题意或作出符合题意的图形分析斜率k是否存在,以避免漏解.——————————————————————————————————————针对训练1.过点A(2,4)向圆x2+y2=4所引切线的方程为__________________.解析:显然x=2为所求切线之一.当切线斜率存在时,设切线方程为y-4=k(x-2),即kx -y +4-2k =0,那么|4-2k |k 2+1=2,k =34,即3x -4y +10=0.答案:x =2或3x -4y +10=02.已知直线l 过(2,1),(m,3)两点,则直线l 的方程为________________. 解析:当m =2时,直线l 的方程为x =2; 当m ≠2时,直线l 的方程为y -13-1=x -2m -2,即2x -(m -2)y +m -6=0.因为m =2时,方程2x -(m -2)y +m -6=0, 即为x =2,所以直线l 的方程为2x -(m -2)y +m -6=0. 答案:2x -(m -2)y +m -6=0一、选择题1.(2012·人大附中月考)设m >0,则直线2(x +y )+1+m =0与圆x 2+y 2=m 的位置关系为( )A .相切B .相交C .相切或相离D .相交或相切解析:选C 圆心到直线l 的距离为d =1+m 2,圆半径为m .因为d -r =1+m 2-m =12(m -2m +1)=12(m -1)2≥0,所以直线与圆的位置关系是相切或相离.2.(2012·福建高考)直线x +3y -2=0与圆x 2+y 2=4相交于A ,B 两点,则弦AB 的长度等于( )A .2 5B .2 3 C. 3D .1解析:选B 因为圆心(0,0)到直线x +3y -2=0的距离为1,所以AB =24-1=2 3.3.(2012·安徽高考)若直线x -y +1=0与圆(x -a )2+y 2=2有公共点,则实数a 的取值范围是( )A .[-3,-1]B .[-1,3]C .[-3,1]D .(-∞,-3]∪[1,+∞)解析:选C 欲使直线x -y +1=0与圆(x -a )2+y 2=2有公共点,只需使圆心到直线的距离小于等于圆的半径2即可,即|a -0+1|12+(-1)2≤2,化简得|a +1|≤2,解得-3≤a ≤1.4.过圆x 2+y 2=1上一点作圆的切线与x 轴,y 轴的正半轴交于A ,B 两点,则|AB |的最小值为( )A. 2B. 3 C .2 D .3解析:选C 设圆上的点为(x 0,y 0),其中x 0>0,y 0>0,则切线方程为x 0x +y 0y =1.分别令x =0,y =0得A ⎝⎛⎭⎫1x 0,0,B ⎝⎛⎭⎫0,1y 0,则|AB |= ⎝⎛⎭⎫1x 02+⎝⎛⎭⎫1y 02=1x 0y 0≥1x 20+y 202=2.当且仅当x 0=y 0时,等号成立.5.(2013·兰州模拟)若圆x 2+y 2=r 2(r >0)上仅有4个点到直线x -y -2=0的距离为1,则实数r 的取值范围为( )A .(2+1,+∞)B .(2-1, 2+1)C .(0, 2-1)D .(0, 2+1)解析:选A 计算得圆心到直线l 的距离为22= 2>1,如图.直线l :x -y -2=0与圆相交,l 1,l 2与l 平行,且与直线l 的距离为1,故可以看出,圆的半径应该大于圆心到直线l 2的距离 2+1.6.(2013·临沂模拟)已知点P (x ,y )是直线kx +y +4=0(k >0)上一动点,P A ,PB 是圆C :x 2+y 2-2y =0的两条切线,A ,B 是切点,若四边形P ACB 的最小面积是2,则k 的值为( )A. 2B.212 C .2 2 D .2解析:选D 圆心C (0,1)到l 的距离d =5k 2+1, 所以四边形面积的最小值为2×⎝⎛⎭⎫12×1×d 2-1=2, 解得k 2=4,即k =±2.又k >0,即k =2.7.(2012·朝阳高三期末)设直线x -my -1=0与圆(x -1)2+(y -2)2=4相交于A 、B 两点,且弦AB 的长为23,则实数m 的值是________.解析:由题意得,圆心(1,2)到直线x -my -1=0的距离d =4-3=1,即|1-2m -1|1+m 2=1,解得m =±33. 答案:±338.(2012·东北三校联考)若a ,b ,c 是直角三角形ABC 三边的长(c 为斜边),则圆C :x 2+y 2=4被直线l :ax +by +c =0所截得的弦长为________.解析:由题意可知圆C :x 2+y 2=4被直线l :ax +by +c =0所截得的弦长为2 4-⎝ ⎛⎭⎪⎫c a 2+b 22,由于a 2+b 2=c 2,所以所求弦长为2 3. 答案:2 39.(2012·江西高考)过直线x +y -22=0上点P 作圆x 2+y 2=1的两条切线,若两条切线的夹角是60°,则点P 的坐标是________.解析:∵点P 在直线x +y -22=0上,∴可设点P (x 0,-x 0+22),且其中一个切点为M .∵两条切线的夹角为60°,∴∠OPM =30°.故在Rt △OPM 中,有OP =2OM =2.由两点间的距离公式得OP = x 20+(-x 0+22)2=2,解得x 0= 2.故点P 的坐标是( 2, 2).答案:( 2, 2)10.(2012·福州调研)已知⊙M :x 2+(y -2)2=1,Q 是x 轴上的动点,QA ,QB 分别切⊙M 于A ,B 两点.(1)若|AB |=423,求|MQ |及直线MQ 的方程; (2)求证:直线AB 恒过定点.解:(1)设直线MQ 交AB 于点P ,则|AP |=223,又|AM |=1,AP ⊥MQ ,AM ⊥AQ ,得|MP |= 12-89=13, 又∵|MQ |=|MA |2|MP |,∴|MQ |=3. 设Q (x,0),而点M (0,2),由x 2+22=3,得x =±5, 则Q 点的坐标为(5,0)或(-5,0).从而直线MQ 的方程为2x +5y -25=0或2x -5y +25=0.(2)证明:设点Q (q,0),由几何性质,可知A ,B 两点在以QM 为直径的圆上,此圆的方程为x (x -q )+y (y -2)=0,而线段AB 是此圆与已知圆的公共弦,相减可得AB 的方程为qx-2y +3=0,所以直线AB 恒过定点⎝⎛⎭⎫0,32. 11.已知以点C ⎝⎛⎭⎫t ,2t (t ∈R ,t ≠0)为圆心的圆与x 轴交于点O 、A ,与y 轴交于点O 、B ,其中O 为原点.(1)求证:△AOB 的面积为定值;(2)设直线2x +y -4=0与圆C 交于点M 、N ,若|OM |=|ON |,求圆C 的方程.解:(1)证明:由题设知,圆C 的方程为(x -t )2+⎝⎛⎭⎫y -2t 2=t 2+4t 2, 化简得x 2-2tx +y 2-4ty =0, 当y =0时,x =0或2t ,则A (2t,0);当x =0时,y =0或4t,则B ⎝⎛⎭⎫0,4t , 所以S △AOB =12|OA |·|OB | =12|2t |·⎪⎪⎪⎪4t =4为定值. (2)∵|OM |=|ON |,则原点O 在MN 的中垂线上,设MN 的中点为H ,则CH ⊥MN , ∴C 、H 、O 三点共线,则直线OC 的斜率k =2t t =2t 2=12,∴t =2或t =-2. ∴圆心为C (2,1)或C (-2,-1),∴圆C 的方程为(x -2)2+(y -1)2=5或(x +2)2+(y +1)2=5,由于当圆方程为(x +2)2+(y +1)2=5时,直线2x +y -4=0到圆心的距离d >r ,此时不满足直线与圆相交,故舍去,∴圆C 的方程为(x -2)2+(y -1)2=5.12.在平面直角坐标系xOy 中,已知圆x 2+y 2-12x +32=0的圆心为Q ,过点P (0,2),且斜率为k 的直线与圆Q 相交于不同的两点A 、B .(1)求k 的取值范围;(2)是否存在常数k ,使得向量OA +OB 与PQ 共线?如果存在,求k 值;如果不存在,请说明理由.解:(1)圆的方程可写成(x -6)2+y 2=4,所以圆心为Q (6,0).过P (0,2)且斜率为k 的直线方程为y =kx +2,代入圆的方程得x 2+(kx +2)2-12x +32=0,整理得(1+k 2)x 2+4(k -3)x +36=0.①直线与圆交于两个不同的点A 、B 等价于Δ=[4(k -3)]2-4×36(1+k 2)=42(-8k 2-6k )>0,解得-34<k <0,即k 的取值范围为⎝⎛⎭⎫-34,0. (2)设A (x 1,y 1)、B (x 2,y 2)则OA +OB =(x 1+x 2,y 1+y 2),由方程①得x 1+x 2=-4(k -3)1+k 2.② 又y 1+y 2=k (x 1+x 2)+4.③ 因P (0,2)、Q (6,0),PQ =(6,-2), 所以OA +OB 与PQ 共线等价于-2(x 1+x 2)=6(y 1+y 2),将②③代入上式,解得k =-34. 而由(1)知k ∈⎝⎛⎭⎫-34,0,故没有符合题意的常数k .1.已知两圆x 2+y 2-10x -10y =0,x 2+y 2+6x -2y -40=0,则它们的公共弦所在直线的方程为________________;公共弦长为________.解析:由两圆的方程x 2+y 2-10x -10y =0,x 2+y 2+6x -2y -40=0,相减并整理得公共弦所在直线的方程为2x +y -5=0.圆心(5,5)到直线2x +y -5=0的距离为105=25,弦长的一半为50-20=30,得公共弦长为230. 答案:2x +y -5=0 2302.(2012·上海模拟)已知圆的方程为x 2+y 2-6x -8y =0,a 1,a 2,…,a 11是该圆过点(3,5)的11条弦的长,若数列a 1,a 2,…,a 11成等差数列,则该等差数列公差的最大值是________.解析:容易判断,点(3,5)在圆内部,过圆内一点最长的弦是直径,过该点与直径垂直的弦最短,因此,过(3,5)的弦中,最长为10,最短为46,故公差最大为10-4610=5-265. 答案:5-2653.(2012·江西六校联考)已知抛物线C :y 2=2px (p >0)的准线为l ,焦点为F ,圆M 的圆心在x 轴的正半轴上,圆M 与y 轴相切,过原点O 作倾斜角为π3的直线n ,交直线l 于点A ,交圆M 于不同的两点O 、B ,且|AO |=|BO |=2.(1)求圆M 和抛物线C 的方程;(2)若P 为抛物线C 上的动点,求PM ,·PF ,的最小值;(3)过直线l 上的动点Q 向圆M 作切线,切点分别为S 、T ,求证:直线ST 恒过一个定点,并求该定点的坐标.解:(1)易得B (1,3),A (-1,-3),设圆M 的方程为(x -a )2+y 2=a 2(a >0), 将点B (1,3)代入圆M 的方程得a =2,所以圆M 的方程为(x -2)2+y 2=4,因为点A (-1,-3)在准线l 上,所以p 2=1,p =2,所以抛物线C 的方程为y 2=4x . (2)由(1)得,M (2,0),F (1,0),设点P (x ,y ),则PM ,=(2-x ,-y ),PF ,=(1-x ,-y ),又点P 在抛物线y 2=4x 上,所以PM ,·PF ,=(2-x )(1-x )+y 2=x 2-3x +2+4x =x 2+x +2,因为x ≥0,所以PM ,·PF ,≥2,即PM ,·PF ,的最小值为2.(3)证明:设点Q (-1,m ),则|QS |=|QT |=m 2+5,以Q 为圆心,m 2+5为半径的圆的方程为(x +1)2+(y -m )2=m 2+5,即x 2+y 2+2x -2my -4=0,①又圆M 的方程为(x -2)2+y 2=4,即x 2+y 2-4x =0,②由①②两式相减即得直线ST 的方程3x -my -2=0,显然直线ST 恒过定点⎝⎛⎭⎫23,0.1.两个圆:C 1:x 2+y 2+2x +2y -2=0与C 2:x 2+y 2-4x -2y +1=0的公切线有且仅有( )A .1条B .2条C .3条D .4条解析:选B 由题知C 1:(x +1)2+(y +1)2=4,则圆心C 1(-1,-1),C 2:(x -2)2+(y。
第四章 圆与方程 知识点与习题★1、圆的定义:平面内到一定点的距离等于定长的点的集合叫做圆,定点为圆心,定长为圆的半径。
设M (x,y )为⊙A 上任意一点,则圆的集合可以写作:P = {M | |MA| = r }★2(1点00(,)M x y 与圆222()()x a y b r -+-=的位置关系:当2200()()x a y b -+->2r ,点在圆外; 当2200()()x a y b -+-=2r ,点在圆上 当2200()()x a y b -+-<2r ,点在圆内;(2 (x+D/2)+(y+E/2)=(D +E -4F)/4 (0422>-+F E D )当0422>-+F E D 时,方程表示圆,此时圆心为⎪⎭⎫ ⎝⎛--2,2E D ,半径为F E D r 42122-+=当0422=-+F E D 时,表示一个点;当0422<-+F E D 时,方程不表示任何图形。
(3)求圆的方程的方法:①待定系数法:先设后求。
确定一个圆需要三个独立条件,若利用圆的标准方程, 需求出a ,b ,r ;若利用一般方程,需要求出D ,E ,F ;②直接法:直接根据已知条件求出圆心坐标以及半径长度。
另外要注意多利用圆的几何性质:如弦的中垂线必经过圆心,以此来确定圆心的位置。
★3、直线与圆的位置关系:直线与圆的位置关系有相离,相切,相交三种情况:(1)设直线0:=++C By Ax l ,圆()()222:r b y a x C =-+-,圆心()b a C ,到l 则有相离与C l r d ⇔>;相切与C l r d ⇔=;相交与C l r d ⇔<(2)过圆外一点的切线k ,②若求得两个相同的解,带入切线方程,得到一条切线;接下来验证过该点的斜率不存在的直线(此 时,该直线一定为另一条切线):圆(x-a)2+(y-b)2=r 2,圆上一点为(x 0,y 0),则过此点的切线方程为★4、圆与圆的位置关系:通过两圆半径的和(差),与圆心距(d )之间的大小比较来确定。
必修二第四章圆与方程知识点与常考题(附解析)知识点:4.1.1 圆的标准方程1、圆的标准方程:222()()x a y b r -+-=圆心为A(a,b),半径为r 的圆的方程2、点00(,)M x y 与圆222()()x a y b r -+-=的关系的判断方法:(1)2200()()x a y b -+->2r ,点在圆外(2)2200()()x a y b -+-=2r ,点在圆上(3)2200()()x a y b -+-<2r ,点在圆内4.1.2 圆的一般方程1、圆的一般方程:022=++++F Ey Dx y x ,圆心为半径为2、圆的一般方程的特点:(1)①x2和y2的系数相同,不等于0.②没有xy 这样的二次项.(2)圆的一般方程中有三个特定的系数D 、E 、F ,因之只要求出这三个系数,圆的方程就确定了.(3)、与圆的标准方程相比较,它是一种特殊的二元二次方程,代数特征明显,圆的标准方程则指出了圆心坐标与半径大小,几何特征较明显。
4.2.1 圆与圆的位置关系1、用点到直线的距离来判断直线与圆的位置关系.设直线l :0=++c by ax ,圆C :022=++++F Ey Dx y x ,圆的半径为r ,圆心)2,2(E D --到直线的距离为d ,则判别直线与圆的位置关系的依据有以下几点: (1)当r d >时,直线l 与圆C 相离;(2)当r d =时,直线l 与圆C 相切;(3)当r d <时,直线l 与圆C 相交;直线、圆的位置关系注意:1.直线与圆的位置关系直线与圆相交,有两个公共点d R ⇔<⇔方程组有两组不同实数解(0)∆>直线与圆相切,只有一个公共点d R ⇔=⇔方程组有唯一实数解(0)∆=直线与圆相离,没有公共点d R ⇔>⇔方程组无实数解(0)∆<2.求两圆公共弦所在直线方程的方法:将两圆方程相减。
3.求经过两圆交点的圆系方程:2222111222()0x y D x E y F x y D x E y F λ+++++++++=4.2.2 圆与圆的位置关系两圆的位置关系.设两圆的连心线长为l ,则判别圆与圆的位置关系的依据有以下几点:(1)当21r r l +>时,圆1C 与圆2C 相离;(2)当21r r l +=时,圆1C 与圆2C 外切;(3)当<-||21r r 21r r l +<时,圆1C 与圆2C 相交;(4)当||21r r l -=时,圆1C 与圆2C 内切;(5)当||21r r l -<时,圆1C 与圆2C 内含;常考题:一.选择题(共25小题)1.已知圆x 2+y 2+2x ﹣2y +a=0截直线x +y +2=0所得弦的长度为4,则实数a 的值是( )A .﹣2B .﹣4C .﹣6D .﹣82.一条光线从点(﹣2,﹣3)射出,经y 轴反射后与圆(x +3)2+(y ﹣2)2=1相切,则反射光线所在直线的斜率为( )A .﹣或﹣B .﹣或﹣C .﹣或﹣D .﹣或﹣3.圆x 2+y 2﹣2x ﹣8y +13=0的圆心到直线ax +y ﹣1=0的距离为1,则a=( )A .﹣B .﹣C .D .24.平行于直线2x +y +1=0且与圆x 2+y 2=5相切的直线的方程是( )A .2x +y +5=0或2x +y ﹣5=0B .2x +y +=0或2x +y ﹣=0C .2x ﹣y +5=0或2x ﹣y ﹣5=0D .2x ﹣y +=0或2x ﹣y ﹣=05.直线x +y=1与圆x 2+y 2﹣2ay=0(a >0)没有公共点,则a 的取值范围是( )A .(0,)B .(,)C .(,)D .(0,)6.圆x 2+y 2=1上的点到直线3x +4y ﹣25=0的距离的最小值是( )A .6B .4C .5D .17.已知圆M :x 2+y 2﹣2ay=0(a >0)截直线x +y=0所得线段的长度是2,则圆M 与圆N :(x ﹣1)2+(y ﹣1)2=1的位置关系是( )A .内切B .相交C .外切D .相离8.已知三点A (1,0),B (0,),C (2,)则△ABC 外接圆的圆心到原点的距离为()A.B.C.D.9.设两圆C1、C2都和两坐标轴相切,且都过点(4,1),则两圆心的距离|C1C2|=()A.4 B.C.8 D.10.圆(x﹣1)2+(y﹣2)2=1关于直线y=x对称的圆的方程为()A.(x﹣2)2+(y﹣1)2=1 B.(x+1)2+(y﹣2)2=1 C.(x+2)2+(y﹣1)2=1 D.(x﹣1)2+(y+2)2=111.若圆C1:x2+y2=1与圆C2:x2+y2﹣6x﹣8y+m=0外切,则m=()A.21 B.19 C.9 D.﹣1112.过点P(﹣,﹣1)的直线l与圆x2+y2=1有公共点,则直线l的倾斜角的取值范围是()A.(0,]B.(0,]C.[0,]D.[0,]13.如果实数x,y满足(x﹣2)2+y2=3,那么的最大值是()A. B.C.D.14.设点M(x0,1),若在圆O:x2+y2=1上存在点N,使得∠OMN=45°,则x0的取值范围是()A.[﹣1,1]B.[﹣,]C.[﹣,]D.[﹣,]15.已知圆C:(x﹣3)2+(y﹣4)2=1和两点A(﹣m,0),B(m,0)(m>0),若圆C上存在点P,使得∠APB=90°,则m的最大值为()A.7 B.6 C.5 D.416.从圆x2﹣2x+y2﹣2y+1=0外一点P(3,2)向这个圆作两条切线,则两切线夹角的余弦值为()A.B.C.D.017.已知两点P(4,0),Q(0,2),则以线段PQ为直径的圆的方程是()A.(x+2)2+(y+1)2=5 B.(x﹣2)2+(y﹣1)2=10 C.(x﹣2)2+(y﹣1)2=5 D.(x+2)2+(y+1)2=1018.已知圆C1:(x﹣2)2+(y﹣3)2=1,圆C2:(x﹣3)2+(y﹣4)2=9,M,N 分别是圆C1,C2上的动点,P为x轴上的动点,则|PM|+|PN|的最小值为()A.﹣1 B.5﹣4 C.6﹣2 D.19.设m,n∈R,若直线(m+1)x+(n+1)y﹣2=0与圆(x﹣1)2+(y﹣1)2=1相切,则m+n的取值范围是()A.[1﹣,1+]B.(﹣∞,1﹣]∪[1+,+∞)C.[2﹣2,2+2]D.(﹣∞,2﹣2]∪[2+2,+∞)20.在平面直角坐标系中,A,B分别是x轴和y轴上的动点,若以AB为直径的圆C与直线2x+y﹣4=0相切,则圆C面积的最小值为()A.πB.πC.(6﹣2)πD.π21.若圆C:x2+y2+2x﹣4y+3=0关于直线2ax+by+6=0对称,则由点(a,b)向圆C所作切线长的最小值是()A.2 B.3 C.4 D.622.过点(3,1)作圆(x﹣1)2+y2=r2的切线有且只有一条,则该切线的方程为()A.2x+y﹣5=0 B.2x+y﹣7=0 C.x﹣2y﹣5=0 D.x﹣2y﹣7=023.若直线y=k(x﹣4)与曲线y=有公共点,则()A.k有最大值,最小值﹣B.k有最大值,最小值﹣C.k有最大值0,最小值﹣D..k有最大值0,最小值﹣24.若圆x2+y2﹣4x﹣4y﹣10=0上至少有三个不同的点到直线l:ax+by=0的距离为,则直线l的倾斜角的取值范围是()A. B.C. D.25.已知圆的方程为x2+y2﹣6x﹣8y=0,设该圆过点(3,5)的最长弦和最短弦分别为AC和BD,则四边形ABCD的面积为()A.10B.20C.30D.40二.填空题(共8小题)26.在平面直角坐标系xOy中,以点(1,0)为圆心且与直线mx﹣y﹣2m﹣1=0(m∈R)相切的所有圆中,半径最大的圆的标准方程为.27.若直线3x﹣4y+5=0与圆x2+y2=r2(r>0)相交于A,B两点,且∠AOB=120°,(O为坐标原点),则r=.28.已知a∈R,方程a2x2+(a+2)y2+4x+8y+5a=0表示圆,则圆心坐标是,半径是.29.已知直线l:mx+y+3m﹣=0与圆x2+y2=12交于A,B两点,过A,B分别作l的垂线与x轴交于C,D两点,若|AB|=2,则|CD|=.30.动点P在平面区域C1:x2+y2≤2(|x|+|y|)内,动点Q在曲线C2:(x﹣4)2+(y﹣4)2=1上,则平面区域C的面积为;|PQ|的最小值为.131.点P是直线x+y﹣2=0上的动点,点Q是圆x2+y2=1上的动点,则线段PQ 长的最小值为.32.若实数x,y满足x2+x+y2+y=0,则x+y的范围是.33.在平面直角坐标系xOy中,圆C1:(x+1)2+(y﹣6)2=25,圆C2:(x﹣17)2+(y﹣30)2=r2.若圆C上存在一点P,使得过点P可作一条射线与圆C1依次2交于点A、B,满足PA=2AB,则半径r的取值范围是.三.解答题(共17小题)34.已知过点A(0,1)且斜率为k的直线l与圆C:(x﹣2)2+(y﹣3)2=1交于点M、N两点.(1)求k的取值范围;(2)若•=12,其中O为坐标原点,求|MN|.35.已知过原点的动直线l与圆C1:x2+y2﹣6x+5=0相交于不同的两点A,B.(1)求圆C1的圆心坐标;(2)求线段AB 的中点M的轨迹C的方程;(3)是否存在实数k,使得直线L:y=k(x﹣4)与曲线C只有一个交点?若存在,求出k的取值范围;若不存在,说明理由.36.已知点P(2,2),圆C:x2+y2﹣8y=0,过点P的动直线l与圆C交于A,B 两点,线段AB的中点为M,O为坐标原点.(1)求M的轨迹方程;(2)当|OP|=|OM|时,求l的方程及△POM的面积.37.已知,圆C:x2+y2﹣8y+12=0,直线l:ax+y+2a=0.(1)当a为何值时,直线l与圆C相切;(2)当直线l与圆C相交于A、B两点,且AB=2时,求直线l的方程.38.在平面直角坐标系xOy中,曲线y=x2﹣6x+1与坐标轴的交点都在圆C上.(Ⅰ)求圆C的方程;(Ⅱ)若圆C与直线x﹣y+a=0交与A,B两点,且OA⊥OB,求a的值.39.已知圆M过C(1,﹣1),D(﹣1,1)两点,且圆心M在x+y﹣2=0上.(Ⅰ)求圆M的方程;(Ⅱ)设P是直线3x+4y+8=0上的动点,PA,PB是圆M的两条切线,A,B为切点,求四边形PAMB面积的最小值.40.已知圆C:x2+y2+2x﹣3=0.(1)求圆的圆心C的坐标和半径长;(2)直线l经过坐标原点且不与y轴重合,l与圆C相交于A(x1,y1)、B(x2,y2)两点,求证:为定值;(3)斜率为1的直线m与圆C相交于D、E两点,求直线m的方程,使△CDE 的面积最大.41.如图,在平面直角坐标系xOy中,已知以M为圆心的圆M:x2+y2﹣12x﹣14y+60=0及其上一点A(2,4).(1)设圆N与x轴相切,与圆M外切,且圆心N在直线x=6上,求圆N的标准方程;(2)设平行于OA的直线l与圆M相交于B、C两点,且BC=OA,求直线l的方程;(3)设点T(t,0)满足:存在圆M上的两点P和Q,使得+=,求实数t的取值范围.42.已知圆C的方程为x2+(y﹣4)2=4,点O是坐标原点.直线l:y=kx与圆C 交于M,N两点.(Ⅰ)求k的取值范围;(Ⅱ)设Q(m,n)是线段MN上的点,且.请将n表示为m的函数.43.已知圆C:x2+(y﹣2)2=5,直线l:mx﹣y+1=0.(1)求证:对m∈R,直线l与圆C总有两个不同交点;(2)若圆C与直线相交于点A和点B,求弦AB的中点M的轨迹方程.44.在平面直角坐标系xoy中,已知圆C1:(x+3)2+(y﹣1)2=4和圆C2:(x ﹣4)2+(y﹣5)2=4(1)若直线l过点A(4,0),且被圆C1截得的弦长为2,求直线l的方程(2)设P为平面上的点,满足:存在过点P的无穷多对互相垂直的直线l1和l2,它们分别与圆C1和C2相交,且直线l1被圆C1截得的弦长与直线l2被圆C2截得的弦长相等,求所有满足条件的点P的坐标.45.已知圆满足:①截y轴所得弦长为2;②被x轴分成两段圆弧,其弧长的比为3:1;③圆心到直线l:x﹣2y=0的距离为.求该圆的方程.46.已知点G(5,4),圆C1:(x﹣1)2+(y﹣4)2=25,过点G的动直线l与圆C1相交于E、F两点,线段EF的中点为C.(1)求点C的轨迹C2的方程;(2)若过点A(1,0)的直线l1与C2相交于P、Q两点,线段PQ的中点为M;又l1与l2:x+2y+2=0的交点为N,求证|AM|•|AN|为定值.47.已知圆C的圆心在坐标原点,且与直线l1:x﹣y﹣2=0相切,点R(1,﹣1).(Ⅰ)过点G(1,3)作两条与圆C相切的直线,切点分别为M,N,求直线MN的方程;(Ⅱ)若与直线l1垂直的直线l与圆C交于不同的两点P,Q,且∠PRQ为钝角,求直线l的纵截距的取值范围.48.已知圆C的圆心在直线y=x﹣2上(Ⅰ)若圆经过A(3,﹣2)和B(0,﹣5)两点.(i)求圆C的方程;(ii)设圆C与y轴另一交点为P,直线l过点P且与圆C相切.设D是圆C上异于P,B的动点,直线BD与直线l交于点R.试判断以PR为直径的圆与直线CD的位置关系,并说明理由;(Ⅱ)设点M(0,3),若圆C半径为3,且圆C上存在点N,使|MN|=2|NO|,求圆心C的横坐标的取值范围.49.在以O为原点的直角坐标系中,点A(4,﹣3)为△OAB的直角顶点.已知|AB|=2|OA|,且点B的纵坐标大于零.(1)求向量的坐标;(2)求圆x2﹣6x+y2+2y=0关于直线OB对称的圆的方程;(3)是否存在实数a,使抛物线y=ax2﹣1上总有关于直线OB对称的两个点?若不存在,说明理由:若存在,求a的取值范围.50.已知直线l:y=x+2被圆C:(x﹣3)2+(y﹣2)2=r2(r>0)截得的弦AB的长等于该圆的半径.(1)求圆C的方程;(2)已知直线m:y=x+n被圆C:(x﹣3)2+(y﹣2)2=r2(r>0)截得的弦与圆心构成三角形CDE.若△CDE的面积有最大值,求出直线m:y=x+n的方程;若△CDE的面积没有最大值,说明理由.必修二第四章圆与方程知识点与常考题(附解析)参考答案与试题解析一.选择题(共25小题)1.已知圆x2+y2+2x﹣2y+a=0截直线x+y+2=0所得弦的长度为4,则实数a的值是()A.﹣2 B.﹣4 C.﹣6 D.﹣8【解答】解:圆x2+y2+2x﹣2y+a=0 即(x+1)2+(y﹣1)2=2﹣a,故弦心距d==.再由弦长公式可得2﹣a=2+4,∴a=﹣4,故选:B.2.一条光线从点(﹣2,﹣3)射出,经y轴反射后与圆(x+3)2+(y﹣2)2=1相切,则反射光线所在直线的斜率为()A.﹣或﹣B.﹣或﹣C.﹣或﹣D.﹣或﹣【解答】解:点A(﹣2,﹣3)关于y轴的对称点为A′(2,﹣3),故可设反射光线所在直线的方程为:y+3=k(x﹣2),化为kx﹣y﹣2k﹣3=0.∵反射光线与圆(x+3)2+(y﹣2)2=1相切,∴圆心(﹣3,2)到直线的距离d==1,化为24k2+50k+24=0,∴k=或﹣.故选:D.3.圆x2+y2﹣2x﹣8y+13=0的圆心到直线ax+y﹣1=0的距离为1,则a=()A.﹣B.﹣C.D.2【解答】解:圆x2+y2﹣2x﹣8y+13=0的圆心坐标为:(1,4),故圆心到直线ax+y﹣1=0的距离d==1,解得:a=,故选:A.4.平行于直线2x+y+1=0且与圆x2+y2=5相切的直线的方程是()A.2x+y+5=0或2x+y﹣5=0 B.2x+y+=0或2x+y﹣=0C.2x﹣y+5=0或2x﹣y﹣5=0 D.2x﹣y+=0或2x﹣y﹣=0【解答】解:设所求直线方程为2x+y+b=0,则,所以=,所以b=±5,所以所求直线方程为:2x+y+5=0或2x+y﹣5=0故选:A.5.直线x+y=1与圆x2+y2﹣2ay=0(a>0)没有公共点,则a的取值范围是()A.(0,)B.(,)C.(,)D.(0,)【解答】解:把圆x2+y2﹣2ay=0(a>0)化为标准方程为x2+(y﹣a)2=a2,所以圆心(0,a),半径r=a,由直线与圆没有公共点得到:圆心(0,a)到直线x+y=1的距离d=>r=a,当a﹣1>0即a>1时,化简为a﹣1>a,即a(1﹣)>1,因为a>0,无解;当a﹣1<0即0<a<1时,化简为﹣a+1>a,即(+1)a<1,a<=﹣1,所以a的范围是(0,﹣1)故选:A.6.圆x2+y2=1上的点到直线3x+4y﹣25=0的距离的最小值是()A.6 B.4 C.5 D.1【解答】解:圆的圆心坐标(0,0),到直线3x+4y﹣25=0的距离是,所以圆x2+y2=1上的点到直线3x+4y﹣25=0的距离的最小值是5﹣1=4故选:B.7.已知圆M:x2+y2﹣2ay=0(a>0)截直线x+y=0所得线段的长度是2,则圆M与圆N:(x﹣1)2+(y﹣1)2=1的位置关系是()A.内切B.相交C.外切D.相离【解答】解:圆的标准方程为M:x2+(y﹣a)2=a2 (a>0),则圆心为(0,a),半径R=a,圆心到直线x+y=0的距离d=,∵圆M:x2+y2﹣2ay=0(a>0)截直线x+y=0所得线段的长度是2,∴2=2=2=2,即=,即a2=4,a=2,则圆心为M(0,2),半径R=2,圆N:(x﹣1)2+(y﹣1)2=1的圆心为N(1,1),半径r=1,则MN==,∵R+r=3,R﹣r=1,∴R﹣r<MN<R+r,即两个圆相交.故选:B.8.已知三点A(1,0),B(0,),C(2,)则△ABC外接圆的圆心到原点的距离为()A.B.C.D.【解答】解:因为△ABC外接圆的圆心在直线BC垂直平分线上,即直线x=1上,可设圆心P(1,p),由PA=PB得|p|=,得p=圆心坐标为P(1,),所以圆心到原点的距离|OP|===,故选:B.9.设两圆C1、C2都和两坐标轴相切,且都过点(4,1),则两圆心的距离|C1C2|=()A.4 B.C.8 D.【解答】解:∵两圆C1、C2都和两坐标轴相切,且都过点(4,1),故圆在第一象限内,设两个圆的圆心的坐标分别为(a,a),(b,b),由于两圆都过点(4,1),则有=|a|,|=|b|,故a和b分别为(x﹣4)2+(x﹣1)2=x2的两个实数根,即a和b分别为x2﹣10x+17=0 的两个实数根,∴a+b=10,ab=17,∴(a﹣b)2=(a+b)2﹣4ab=32,∴两圆心的距离|C1C2|=•=8,故选:C.10.圆(x﹣1)2+(y﹣2)2=1关于直线y=x对称的圆的方程为()A.(x﹣2)2+(y﹣1)2=1 B.(x+1)2+(y﹣2)2=1 C.(x+2)2+(y﹣1)2=1 D.(x﹣1)2+(y+2)2=1【解答】解:∵点P(x,y)关于直线y=x对称的点为P'(y,x),∴(1,2)关于直线y=x对称的点为(2,1),∴圆(x﹣1)2+(y﹣2)2=1关于直线y=x对称的圆的方程为(x﹣2)2+(y﹣1)2=1.故选:A.11.若圆C1:x2+y2=1与圆C2:x2+y2﹣6x﹣8y+m=0外切,则m=()A.21 B.19 C.9 D.﹣11【解答】解:由C1:x2+y2=1,得圆心C1(0,0),半径为1,由圆C2:x2+y2﹣6x﹣8y+m=0,得(x﹣3)2+(y﹣4)2=25﹣m,∴圆心C2(3,4),半径为.∵圆C1与圆C2外切,∴,解得:m=9.故选:C.12.过点P(﹣,﹣1)的直线l与圆x2+y2=1有公共点,则直线l的倾斜角的取值范围是()A.(0,]B.(0,]C.[0,]D.[0,]【解答】解:由题意可得点P(﹣,﹣1)在圆x2+y2=1的外部,故要求的直线的斜率一定存在,设为k,则直线方程为y+1=k(x+),即kx﹣y+k﹣1=0.根据直线和圆有交点、圆心到直线的距离小于或等于半径可得≤1,即3k2﹣2k+1≤k2+1,解得0≤k≤,故直线l的倾斜角的取值范围是[0,],故选:D.13.如果实数x,y满足(x﹣2)2+y2=3,那么的最大值是()A. B.C.D.【解答】解:设=k,则y=kx表示经过原点的直线,k为直线的斜率.所以求的最大值就等价于求同时经过原点和圆上的点的直线中斜率的最大值.从图中可知,斜率取最大值时对应的直线斜率为正且与圆相切,此时的斜率就是其倾斜角∠EOC的正切值.易得|OC|=2,|CE|=,可由勾股定理求得|OE|=1,于是可得到k==,即为的最大值.故选:C.14.设点M(x0,1),若在圆O:x2+y2=1上存在点N,使得∠OMN=45°,则x0的取值范围是()A.[﹣1,1]B.[﹣,]C.[﹣,]D.[﹣,]【解答】解:由题意画出图形如图:点M(x0,1),要使圆O:x2+y2=1上存在点N,使得∠OMN=45°,则∠OMN的最大值大于或等于45°时一定存在点N,使得∠OMN=45°,而当MN与圆相切时∠OMN取得最大值,此时MN=1,图中只有M′到M″之间的区域满足MN=1,∴x0的取值范围是[﹣1,1].故选:A.15.已知圆C:(x﹣3)2+(y﹣4)2=1和两点A(﹣m,0),B(m,0)(m>0),若圆C上存在点P,使得∠APB=90°,则m的最大值为()A.7 B.6 C.5 D.4【解答】解:圆C:(x﹣3)2+(y﹣4)2=1的圆心C(3,4),半径为1,∵圆心C到O(0,0)的距离为5,∴圆C上的点到点O的距离的最大值为6.再由∠APB=90°可得,以AB为直径的圆和圆C有交点,可得PO=AB=m,故有m≤6,故选:B.16.从圆x2﹣2x+y2﹣2y+1=0外一点P(3,2)向这个圆作两条切线,则两切线夹角的余弦值为()A.B.C.D.0【解答】解:圆x2﹣2x+y2﹣2y+1=0的圆心为M(1,1),半径为1,从外一点P (3,2)向这个圆作两条切线,则点P到圆心M的距离等于,每条切线与PM的夹角的正切值等于,所以两切线夹角的正切值为,该角的余弦值等于,故选:B.17.已知两点P(4,0),Q(0,2),则以线段PQ为直径的圆的方程是()A.(x+2)2+(y+1)2=5 B.(x﹣2)2+(y﹣1)2=10 C.(x﹣2)2+(y﹣1)2=5 D.(x+2)2+(y+1)2=10【解答】解:∵圆的直径为线段PQ,∴圆心坐标为(2,1)半径r===∴圆的方程为(x﹣2)2+(y﹣1)2=5.故选:C.18.已知圆C1:(x﹣2)2+(y﹣3)2=1,圆C2:(x﹣3)2+(y﹣4)2=9,M,N 分别是圆C1,C2上的动点,P为x轴上的动点,则|PM|+|PN|的最小值为()A.﹣1 B.5﹣4 C.6﹣2 D.【解答】解:如图圆C1关于x轴的对称圆的圆心坐标A(2,﹣3),半径为1,圆C2的圆心坐标(3,4),半径为3,由图象可知当P,M,N,三点共线时,|PM|+|PN|取得最小值,|PM|+|PN|的最小值为圆C3与圆C2的圆心距减去两个圆的半径和,即:|AC2|﹣3﹣1=﹣4=﹣4=5﹣4.故选:B.19.设m,n∈R,若直线(m+1)x+(n+1)y﹣2=0与圆(x﹣1)2+(y﹣1)2=1相切,则m+n的取值范围是()A.[1﹣,1+]B.(﹣∞,1﹣]∪[1+,+∞)C.[2﹣2,2+2]D.(﹣∞,2﹣2]∪[2+2,+∞)【解答】解:由圆的方程(x﹣1)2+(y﹣1)2=1,得到圆心坐标为(1,1),半径r=1,∵直线(m+1)x+(n+1)y﹣2=0与圆相切,∴圆心到直线的距离d==1,整理得:m+n+1=mn≤,设m+n=x,则有x+1≤,即x2﹣4x﹣4≥0,∵x2﹣4x﹣4=0的解为:x1=2+2,x2=2﹣2,∴不等式变形得:(x﹣2﹣2)(x﹣2+2)≥0,解得:x≥2+2或x≤2﹣2,则m+n的取值范围为(﹣∞,2﹣2]∪[2+2,+∞).故选:D.20.在平面直角坐标系中,A,B分别是x轴和y轴上的动点,若以AB为直径的圆C与直线2x+y﹣4=0相切,则圆C面积的最小值为()A.πB.πC.(6﹣2)πD.π【解答】解:如图,设AB的中点为C,坐标原点为O,圆半径为r,由已知得|OC|=|CE|=r,过点O作直线2x+y﹣4=0的垂直线段OF,交AB于D,交直线2x+y﹣4=0于F,则当D恰为OF中点时,圆C的半径最小,即面积最小此时圆的直径为O(0,0)到直线2x+y﹣4=0的距离为:d==,此时r=∴圆C的面积的最小值为:S min=π×()2=.故选:A.21.若圆C:x2+y2+2x﹣4y+3=0关于直线2ax+by+6=0对称,则由点(a,b)向圆C所作切线长的最小值是()A.2 B.3 C.4 D.6【解答】解:圆C:x2+y2+2x﹣4y+3=0化为(x+1)2+(y﹣2)2=2,圆的圆心坐标为(﹣1,2)半径为.圆C:x2+y2+2x﹣4y+3=0关于直线2ax+by+6=0对称,所以(﹣1,2)在直线上,可得﹣2a+2b+6=0,即a=b+3.点(a,b)与圆心的距离,,所以点(a,b)向圆C所作切线长:==≥4,当且仅当b=﹣1时弦长最小,为4.故选:C.22.过点(3,1)作圆(x﹣1)2+y2=r2的切线有且只有一条,则该切线的方程为()A.2x+y﹣5=0 B.2x+y﹣7=0 C.x﹣2y﹣5=0 D.x﹣2y﹣7=0【解答】解:如图,∵过点(3,1)作圆(x﹣1)2+y2=r2的切线有且只有一条,∴点(3,1)在圆(x﹣1)2+y2=r2上,连接圆心与切点连线的斜率为k=,∴切线的斜率为﹣2,则圆的切线方程为y﹣1=﹣2(x﹣3),即2x+y﹣7=0.故选:B.23.若直线y=k(x﹣4)与曲线y=有公共点,则()A.k有最大值,最小值﹣B.k有最大值,最小值﹣C.k有最大值0,最小值﹣D..k有最大值0,最小值﹣【解答】解:由题意,直线y=k(x﹣4)与曲线y=相切时,=2,即k=﹣时,k取到最小值;当k=0时,直线方程为y=0,此时k取到最大值故选:C.24.若圆x2+y2﹣4x﹣4y﹣10=0上至少有三个不同的点到直线l:ax+by=0的距离为,则直线l的倾斜角的取值范围是()A. B.C. D.【解答】解:圆x2+y2﹣4x﹣4y﹣10=0整理为,∴圆心坐标为(2,2),半径为3,要求圆上至少有三个不同的点到直线l:ax+by=0的距离为,则圆心到直线的距离应小于等于,∴,∴,∴,,∴,直线l的倾斜角的取值范围是,故选:B.25.已知圆的方程为x2+y2﹣6x﹣8y=0,设该圆过点(3,5)的最长弦和最短弦分别为AC和BD,则四边形ABCD的面积为()A.10B.20C.30D.40【解答】解:圆的标准方程为(x﹣3)2+(y﹣4)2=52,由题意得最长的弦|AC|=2×5=10,根据勾股定理得最短的弦|BD|=2=4,且AC⊥BD,四边形ABCD的面积S=|AC|•|BD|=×10×4=20.故选:B.二.填空题(共8小题)26.在平面直角坐标系xOy中,以点(1,0)为圆心且与直线mx﹣y﹣2m﹣1=0(m∈R)相切的所有圆中,半径最大的圆的标准方程为(x﹣1)2+y2=2.【解答】解:圆心到直线的距离d==≤,∴m=1时,圆的半径最大为,∴所求圆的标准方程为(x﹣1)2+y2=2.故答案为:(x﹣1)2+y2=2.27.若直线3x﹣4y+5=0与圆x2+y2=r2(r>0)相交于A,B两点,且∠AOB=120°,(O为坐标原点),则r=2.【解答】解:若直线3x﹣4y+5=0与圆x2+y2=r2(r>0)交于A、B两点,O为坐标原点,且∠AOB=120°,则圆心(0,0)到直线3x﹣4y+5=0的距离d=rcos=r,即=r,解得r=2,故答案为:2.28.已知a∈R,方程a2x2+(a+2)y2+4x+8y+5a=0表示圆,则圆心坐标是(﹣2,﹣4),半径是5.【解答】解:∵方程a2x2+(a+2)y2+4x+8y+5a=0表示圆,∴a2=a+2≠0,解得a=﹣1或a=2.当a=﹣1时,方程化为x2+y2+4x+8y﹣5=0,配方得(x+2)2+(y+4)2=25,所得圆的圆心坐标为(﹣2,﹣4),半径为5;当a=2时,方程化为,此时,方程不表示圆,故答案为:(﹣2,﹣4),5.29.已知直线l:mx+y+3m﹣=0与圆x2+y2=12交于A,B两点,过A,B分别作l的垂线与x轴交于C,D两点,若|AB|=2,则|CD|=4.【解答】解:由题意,|AB|=2,∴圆心到直线的距离d=3,∴=3,∴m=﹣∴直线l的倾斜角为30°,∵过A,B分别作l的垂线与x轴交于C,D两点,∴|CD|==4.故答案为:4.30.动点P在平面区域C1:x2+y2≤2(|x|+|y|)内,动点Q在曲线C2:(x﹣4)2+(y﹣4)2=1上,则平面区域C1的面积为8+4π;|PQ|的最小值为.【解答】解:C1:由x2+y2﹣2|x|﹣2|y|≤0,得,或,或,或.∴C1面积为=8+4π.AB=,∴PQ最小值为.故答案为:8+4π,2.31.点P是直线x+y﹣2=0上的动点,点Q是圆x2+y2=1上的动点,则线段PQ长的最小值为.【解答】解:圆心(0,0)到直线x+y﹣2=0的距离d==.再由d﹣r=﹣1,知最小距离为1.故答案为:.32.若实数x,y满足x2+x+y2+y=0,则x+y的范围是[﹣2,0] .【解答】解:∵实数x,y满足x2+x+y2+y=0,∴(x+)2+(y+)2=,即2(x+)2+2(y+)2=1,令(x+)=cosθ,(y+)=sinθ,∴x=,y=,x+y==sin()﹣1∈[﹣2,0],故x+y的范围是[﹣2,0],故答案为:[﹣2,0]33.在平面直角坐标系xOy中,圆C1:(x+1)2+(y﹣6)2=25,圆C2:(x﹣17)2+(y﹣30)2=r2.若圆C上存在一点P,使得过点P可作一条射线与圆C1依次2交于点A、B,满足PA=2AB,则半径r的取值范围是[5,55] .【解答】解:圆C1:(x+1)2+(y﹣6)2=25,圆心(﹣1,6);半径为:5.圆C2:(x﹣17)2+(y﹣30)2=r2.圆心(17,30);半径为:r.两圆圆心距为:=30.如图:PA=2AB,可得AB的最大值为直径,此时C2A=20,r>0.当半径扩大到55时,此时圆C2上只有一点到C1的距离为25,而且是最小值,半径再大,没有点满足PA=2AB.r∈[5,55].故答案为:[5,55].三.解答题(共17小题)34.已知过点A(0,1)且斜率为k的直线l与圆C:(x﹣2)2+(y﹣3)2=1交于点M、N两点.(1)求k的取值范围;(2)若•=12,其中O为坐标原点,求|MN|.【解答】(1)由题意可得,直线l的斜率存在,设过点A(0,1)的直线方程:y=kx+1,即:kx﹣y+1=0.由已知可得圆C的圆心C的坐标(2,3),半径R=1.故由<1,故当<k<,过点A(0,1)的直线与圆C:(x﹣2)2+(y﹣3)2=1相交于M,N两点.(2)设M(x1,y1);N(x2,y2),由题意可得,经过点M、N、A的直线方程为y=kx+1,代入圆C的方程(x﹣2)2+(y﹣3)2=1,可得(1+k2)x2﹣4(k+1)x+7=0,∴x1+x2=,x1•x2=,∴y1•y2=(kx1+1)(kx2+1)=k2x1x2+k(x1+x2)+1=•k2+k•+1=,由•=x1•x2+y1•y2==12,解得k=1,故直线l的方程为y=x+1,即x﹣y+1=0.圆心C在直线l上,MN长即为圆的直径.所以|MN|=2.35.已知过原点的动直线l与圆C1:x2+y2﹣6x+5=0相交于不同的两点A,B.(1)求圆C1的圆心坐标;(2)求线段AB 的中点M的轨迹C的方程;(3)是否存在实数k,使得直线L:y=k(x﹣4)与曲线C只有一个交点?若存在,求出k的取值范围;若不存在,说明理由.【解答】解:(1)∵圆C1:x2+y2﹣6x+5=0,整理,得其标准方程为:(x﹣3)2+y2=4,∴圆C1的圆心坐标为(3,0);(2)设当直线l的方程为y=kx、A(x1,y1)、B(x2,y2),联立方程组,消去y可得:(1+k2)x2﹣6x+5=0,由△=36﹣4(1+k2)×5>0,可得k2<由韦达定理,可得x1+x2=,∴线段AB的中点M的轨迹C的参数方程为,其中﹣<k<,∴线段AB的中点M的轨迹C的方程为:(x﹣)2+y2=,其中<x≤3;(3)结论:当k∈(﹣,)∪{﹣,}时,直线L:y=k(x﹣4)与曲线C只有一个交点.理由如下:联立方程组,消去y,可得:(1+k2)x2﹣(3+8k2)x+16k2=0,令△=(3+8k2)2﹣4(1+k2)•16k2=0,解得k=±,又∵轨迹C的端点(,±)与点(4,0)决定的直线斜率为±,∴当直线L:y=k(x﹣4)与曲线C只有一个交点时,k的取值范围为[﹣,]∪{﹣,}.36.已知点P(2,2),圆C:x2+y2﹣8y=0,过点P的动直线l与圆C交于A,B 两点,线段AB的中点为M,O为坐标原点.(1)求M的轨迹方程;(2)当|OP|=|OM|时,求l的方程及△POM的面积.【解答】解:(1)由圆C:x2+y2﹣8y=0,得x2+(y﹣4)2=16,∴圆C的圆心坐标为(0,4),半径为4.设M(x,y),则,.由题意可得:.即x(2﹣x)+(y﹣4)(2﹣y)=0.整理得:(x﹣1)2+(y﹣3)2=2.∴M的轨迹方程是(x﹣1)2+(y﹣3)2=2.(2)由(1)知M的轨迹是以点N(1,3)为圆心,为半径的圆,由于|OP|=|OM|,故O在线段PM的垂直平分线上,又P在圆N上,从而ON⊥PM.∵k ON=3,∴直线l的斜率为﹣.∴直线PM的方程为,即x+3y﹣8=0.则O到直线l的距离为.又N到l的距离为,∴|PM|==.∴.37.已知,圆C:x2+y2﹣8y+12=0,直线l:ax+y+2a=0.(1)当a为何值时,直线l与圆C相切;(2)当直线l与圆C相交于A、B两点,且AB=2时,求直线l的方程.【解答】解:将圆C的方程x2+y2﹣8y+12=0配方得标准方程为x2+(y﹣4)2=4,则此圆的圆心为(0,4),半径为2.(1)若直线l与圆C相切,则有.解得.(2)联立方程并消去y,得(a2+1)x2+4(a2+2a)x+4(a2+4a+3)=0.设此方程的两根分别为x1、x2,所以x1+x2=﹣,x1x2=则AB===2两边平方并代入解得:a=﹣7或a=﹣1,∴直线l的方程是7x﹣y+14=0和x﹣y+2=0.另解:圆心到直线的距离为d=,AB=2=2,可得d=,解方程可得a=﹣7或a=﹣1,∴直线l的方程是7x﹣y+14=0和x﹣y+2=0.38.在平面直角坐标系xOy 中,曲线y=x 2﹣6x +1与坐标轴的交点都在圆C 上. (Ⅰ)求圆C 的方程;(Ⅱ)若圆C 与直线x ﹣y +a=0交与A ,B 两点,且OA ⊥OB ,求a 的值.【解答】解:(Ⅰ)法一:曲线y=x 2﹣6x +1与y 轴的交点为(0,1),与x 轴的交点为(3+2,0),(3﹣2,0).可知圆心在直线x=3上,故可设该圆的圆心C 为(3,t ),则有32+(t ﹣1)2=(2)2+t 2,解得t=1,故圆C 的半径为,所以圆C 的方程为(x ﹣3)2+(y ﹣1)2=9.法二:圆x 2+y 2+Dx +Ey +F=0x=0,y=1有1+E +F=0y=0,x 2 ﹣6x +1=0与x 2+Dx +F=0是同一方程,故有D=﹣6,F=1,E=﹣2, 即圆方程为x 2+y 2﹣6x ﹣2y +1=0(Ⅱ)设A (x 1,y 1),B (x 2,y 2),其坐标满足方程组,消去y ,得到方程2x 2+(2a ﹣8)x +a 2﹣2a +1=0,由已知可得判别式△=56﹣16a ﹣4a 2>0.在此条件下利用根与系数的关系得到x 1+x 2=4﹣a ,x 1x 2=①,由于OA ⊥OB 可得x 1x 2+y 1y2=0,又y 1=x 1+a ,y 2=x 2+a ,所以可得2x 1x 2+a (x 1+x 2)+a 2=0②由①②可得a=﹣1,满足△=56﹣16a ﹣4a 2>0.故a=﹣1.39.已知圆M 过C (1,﹣1),D (﹣1,1)两点,且圆心M 在x +y ﹣2=0上. (Ⅰ)求圆M 的方程;(Ⅱ)设P 是直线3x +4y +8=0上的动点,PA ,PB 是圆M 的两条切线,A ,B 为切点,求四边形PAMB 面积的最小值.【解答】解:(1)设圆M 的方程为:(x ﹣a )2+(y ﹣b )2=r 2(r >0), 根据题意得,解得:a=b=1,r=2,故所求圆M 的方程为:(x ﹣1)2+(y ﹣1)2=4;(2)由题知,四边形PAMB 的面积为S=S△PAM +S △PBM =(|AM ||PA |+|BM ||PB |).又|AM |=|BM |=2,|PA |=|PB |,所以S=2|PA |,而|PA |2=|PM |2﹣|AM |2=|PM |2﹣4,即S=2. 因此要求S 的最小值,只需求|PM |的最小值即可,即在直线3x +4y +8=0上找一点P ,使得|PM |的值最小,所以|PM|min==3,所以四边形PAMB面积的最小值为2=2.40.已知圆C:x2+y2+2x﹣3=0.(1)求圆的圆心C的坐标和半径长;(2)直线l经过坐标原点且不与y轴重合,l与圆C相交于A(x1,y1)、B(x2,y2)两点,求证:为定值;(3)斜率为1的直线m与圆C相交于D、E两点,求直线m的方程,使△CDE 的面积最大.【解答】解:(1)圆C:x2+y2+2x﹣3=0,配方得(x+1)2+y2=4,则圆心C的坐标为(﹣1,0),圆的半径长为2;(2)设直线l的方程为y=kx,联立方程组,消去y得(1+k2)x2+2x﹣3=0,则有:;所以为定值;(3)解法一:设直线m的方程为y=kx+b,则圆心C到直线m的距离,所以,≤,当且仅当,即时,△CDE的面积最大,从而,解之得b=3或b=﹣1,故所求直线方程为x﹣y+3=0或x﹣y﹣1=0.解法二:由(1)知|CD|=|CE|=R=2,所以≤2,当且仅当CD⊥CE时,△CDE的面积最大,此时;设直线m的方程为y=x+b,则圆心C到直线m的距离,由,得,由,得b=3或b=﹣1,故所求直线方程为x﹣y+3=0或x﹣y﹣1=0.41.如图,在平面直角坐标系xOy中,已知以M为圆心的圆M:x2+y2﹣12x﹣14y+60=0及其上一点A(2,4).(1)设圆N与x轴相切,与圆M外切,且圆心N在直线x=6上,求圆N的标准方程;(2)设平行于OA的直线l与圆M相交于B、C两点,且BC=OA,求直线l的方程;(3)设点T(t,0)满足:存在圆M上的两点P和Q,使得+=,求实数t的取值范围.【解答】解:(1)∵N在直线x=6上,∴设N(6,n),∵圆N与x轴相切,∴圆N为:(x﹣6)2+(y﹣n)2=n2,n>0,又圆N与圆M外切,圆M:x2+y2﹣12x﹣14y+60=0,即圆M:(x﹣6)2+(x﹣7)2=25,∴|7﹣n|=|n|+5,解得n=1,∴圆N的标准方程为(x﹣6)2+(y﹣1)2=1.(2)由题意得OA=2,k OA=2,设l:y=2x+b,则圆心M到直线l的距离:d==,则|BC|=2=2,BC=2,即2=2,解得b=5或b=﹣15,∴直线l的方程为:y=2x+5或y=2x﹣15.(3)设P(x1,y1),Q(x2,y2),∵A(2,4),T(t,0),,∴,①∵点Q在圆M上,∴(x2﹣6)2+(y2﹣7)2=25,②将①代入②,得(x1﹣t﹣4)2+(y1﹣3)2=25,∴点P(x1,y1)即在圆M上,又在圆[x﹣(t+4)]2+(y﹣3)2=25上,从而圆(x﹣6)2+(y﹣7)2=25与圆[x﹣(t+4)]2+(y﹣3)2=25有公共点,∴5﹣5≤≤5+5.解得2﹣2≤t,∴实数t的取值范围是[2﹣2,2+2].42.已知圆C的方程为x2+(y﹣4)2=4,点O是坐标原点.直线l:y=kx与圆C 交于M,N两点.(Ⅰ)求k的取值范围;(Ⅱ)设Q(m,n)是线段MN上的点,且.请将n表示为m的函数.【解答】解:(Ⅰ)将y=kx代入x2+(y﹣4)2=4中,得:(1+k2)x2﹣8kx+12=0(*),根据题意得:△=(﹣8k)2﹣4(1+k2)×12>0,即k2>3,则k的取值范围为(﹣∞,﹣)∪(,+∞);(Ⅱ)由M、N、Q在直线l上,可设M、N坐标分别为(x1,kx1),(x2,kx2),∴|OM|2=(1+k2)x12,|ON|2=(1+k2)x22,|OQ|2=m2+n2=(1+k2)m2,代入=+得:=+,即=+=,由(*)得到x1+x2=,x1x2=,代入得:=,即m2=,∵点Q在直线y=kx上,∴n=km,即k=,代入m2=,化简得5n2﹣3m2=36,由m2=及k2>3,得到0<m2<3,即m∈(﹣,0)∪(0,),根据题意得点Q在圆内,即n>0,∴n==,则n与m的函数关系式为n=(m∈(﹣,0)∪(0,)).43.已知圆C:x2+(y﹣2)2=5,直线l:mx﹣y+1=0.(1)求证:对m∈R,直线l与圆C总有两个不同交点;(2)若圆C与直线相交于点A和点B,求弦AB的中点M的轨迹方程.【解答】解:(1)证明:∵直线l:mx﹣y+1=0经过定点D(0,1),点D到圆心(0,2)的距离等于1 小于圆的半径,故定点(0,1)在圆的内部,故直线l与圆C总有两个不同交点.(2)设中点M的坐标为(x,y),则由直线和圆相交的性质可得AB⊥CM.由于定点D(0,1)、圆心C、点M 构成直角三角形,由勾股定理得CM2+DM2=CD2,∴x2+(y﹣2)2+x2+(y﹣1)2=(2﹣1)2,2x2+2y2﹣6y+4=0,即x2+=,由于直线l的斜率一定存在,故排除圆上的点(0,2).此圆在圆C:x2+(y﹣2)2=5 的内部,故点M的轨迹方程为:x2+=,除去点(0,2).44.在平面直角坐标系xoy中,已知圆C1:(x+3)2+(y﹣1)2=4和圆C2:(x ﹣4)2+(y﹣5)2=4(1)若直线l过点A(4,0),且被圆C1截得的弦长为2,求直线l的方程(2)设P为平面上的点,满足:存在过点P的无穷多对互相垂直的直线l1和l2,它们分别与圆C1和C2相交,且直线l1被圆C1截得的弦长与直线l2被圆C2截得的弦长相等,求所有满足条件的点P的坐标.【解答】解:(1)由于直线x=4与圆C1不相交;∴直线l的斜率存在,设l方程为:y=k(x﹣4)(1分)圆C1的圆心到直线l的距离为d,∵l被⊙C1截得的弦长为2∴d==1(2分)d=从而k(24k+7)=0即k=0或k=﹣∴直线l的方程为:y=0或7x+24y﹣28=0(5分)(2)设点P(a,b)满足条件,由题意分析可得直线l1、l2的斜率均存在且不为0,不妨设直线l1的方程为y﹣b=k(x﹣a),k≠0则直线l2方程为:y﹣b=﹣(x﹣a)(6分)∵⊙C1和⊙C2的半径相等,及直线l1被圆C1截得的弦长与直线l2被圆C2截得的弦长相等,∴⊙C1的圆心到直线l1的距离和圆C2的圆心到直线l2的距离相等即=(8分)整理得|1+3k+ak﹣b|=|5k+4﹣a﹣bk|∴1+3k+ak﹣b=±(5k+4﹣a﹣bk)即(a+b﹣2)k=b﹣a+3或(a﹣b+8)k=a+b﹣5因k的取值有无穷多个,所以或(10分)解得或这样的点只可能是点P1(,﹣)或点P2(﹣,)(12分)45.已知圆满足:①截y轴所得弦长为2;②被x轴分成两段圆弧,其弧长的比为3:1;③圆心到直线l:x﹣2y=0的距离为.求该圆的方程.【解答】解:设圆P的圆心为P(a,b),半径为r,则点P到x轴,y轴的距离分别为|b|,|a|.由题设知圆P截x轴所得劣弧对的圆心角为90°,知圆P截x轴所得的弦长为.故r2=2b2又圆P被y轴所截得的弦长为2,所以有r2=a2+1.从而得2b2﹣a2=1;又因为P(a,b)到直线x﹣2y=0的距离为,所以=,即有a ﹣2b=±1,由此有或解方程组得或,于是r2=2b2=2,所求圆的方程是:(x+1)2+(y+1)2=2,或(x﹣1)2+(y﹣1)2=2.46.已知点G(5,4),圆C1:(x﹣1)2+(y﹣4)2=25,过点G的动直线l与圆C1相交于E、F两点,线段EF的中点为C.(1)求点C的轨迹C2的方程;(2)若过点A(1,0)的直线l1与C2相交于P、Q两点,线段PQ的中点为M;又l1与l2:x+2y+2=0的交点为N,求证|AM|•|AN|为定值.【解答】(1)解:圆C1:(x﹣1)2+(y﹣4)2=25,圆心C1(1,4),半径为5,设C(x,y),则=(x﹣1,y﹣4),=(5﹣x,4﹣y),∵•=0,。