铅酸蓄电池的工作原理维护方法
- 格式:docx
- 大小:29.42 KB
- 文档页数:4
铅酸蓄电池的工作原理铅酸蓄电池是一种常见的电池类型,广泛应用于各种交通工具、电力系统和备用电源等领域。
本文将详细介绍铅酸蓄电池的工作原理,从化学反应、电化学过程、充放电特性以及常见问题等方面进行分析。
一、化学反应过程铅酸蓄电池的核心化学反应是氧化还原反应,其基本反应方程式如下:负极反应:Pb + HSO4- → PbSO4 + H+ + 2e-正极反应:PbO2 + HSO4- + 3H+ + 2e- → PbSO4 + 2H2O综合反应:Pb + PbO2 + 2HSO4- + 2 H+ → 2PbSO4 + 2H2O其中,负极是由纯铅(Pb)构成,正极则是由氧化铅(PbO2)构成,而电解液则是由硫酸(HSO4-)溶解在水中形成。
二、电化学过程铅酸蓄电池中的电化学过程主要是指充电和放电过程。
1. 充电过程:当外部电源连接到电池时,电流从外部电源进入电池,推动反应物发生化学反应。
在充电过程中,正极的PbO2会释放出电子,电子在外部电路中流动,从而进一步推动负极上的Pb发生氧化还原反应。
同时,此时负极上的PbSO4会回溶到电解液中,正极的PbSO4则会形成。
2. 放电过程:放电过程是充电过程的逆反应,也是电池提供电能的过程。
当外部电路连接到电池并消耗电流时,正极上的PbSO4会溶解回到电解液中,负极上的PbSO4则会形成。
这个过程伴随着电子从负极流向正极,推动外部电路中的电流流动,从而提供能量。
三、充放电特性铅酸蓄电池具有几个典型的充放电特性:1. 自放电:铅酸蓄电池自放电是指在无负载情况下,电池内部的化学反应仍然会导致电容的减小。
这是由于内部的化学反应会导致极板的腐蚀和电解液的损失。
为了防止自放电,可以采用定期充电来保持电池的容量。
2. 循环寿命:铅酸蓄电池的充放电循环次数有限,一般在300-500次左右。
在每次循环中,电池容量会逐渐减小,电动力也会下降。
这是由于铅酸蓄电池的化学反应过程中不可逆反应的存在。
简述铅酸蓄电池的工作原理
铅酸蓄电池是一种广泛应用于供电领域的充电蓄电池,其工作原理是经过充电给电解液中的正负极材料进行充电,使之产生电势差引起铅酸电解质进行电解,使正极材料充满氧气,形成金属铅,而负极材料则充满氢气,经过去电过程即可以达到充电的效果。
铅酸蓄电池的放电原理与充电原理相反,也即在放电过程中,铅酸电解质发生反电解,正极材料释出氧气,负极材料释出氢气(也即发生氧化还原反应),当负极材料对正极材料释出的氧气进行氧化,产生正极电势,正极向外侧释放能量,从而达到放电的效果。
铅酸蓄电池具有良好的低温性能和环境友好性,可靠性高等特点,是将电能效率转换为热能效率最理想的能源转换器。
无论是车用蓄电池、照明蓄电池,还是发电机发电设备和各种运动器件,都必不可少地使用铅酸蓄电池。
铅酸电池能源释放多样化,电压比较稳定,不受外界环境变化影响,运行成本低等优点,广受电子设备、自动控制和运动领域的青睐。
总之,铅酸蓄电池是一种经济、安全、高效率、节能环保的蓄电池,在现代社会的生活和工作中发挥着重要的作用。
铅酸电池的工作原理与操作铅酸电池是最常见的一种蓄电池,它的应用范围非常广,常见于汽车、UPS电源、太阳能发电系统等。
那么,铅酸电池的工作原理是什么,它需要注意哪些操作呢?下面就来详细了解一下。
一、铅酸电池的工作原理1.化学反应铅酸电池的工作原理是在电极之间采用化学反应来产生电力,具体而言就是在电池中,正电极和负电极之间通过化学反应把化学能转变成了电能。
在铅酸电池中,正极为一块铅二氧化物(PbO2)电极,负极为一块铅电极(Pb),中间是硫酸电解质溶液。
当负极上接电子时,硫酸电解质就会析氢,而在正极,铅二氧化物接受电子,与负极中的氢离子和硫酸根离子反应生成水,同时自己被还原为PbSO4,这就是反应的化学方程式:负极:Pb + HSO4^- + e^- → PbSO4 + H2正极:PbO2 + 3H+ + HSO4^- + 2e^- → PbSO4 + 2H2O2.电位差铅酸电池发出的电能是由正、负极之间的电位差来驱动的。
正极的电位高,负极电位低,它们之间的电位差就是电池的电动势。
在负电极上有积聚的氢离子(H+),它们去除了电子,成为了氢原子,最后融合成了氢气分子(H2),释放出来的电子在正极上汇合,进入了PbO2电极,将它们还原成了PbSO4晶体,同时也产生了一些水分子(H2O)并释放出一些电子。
因此,从化学反应中得到两种反应品后,可以看出铅酸电池的正极和负极之间储存了大量的化学能,使得电池的电动势足够来驱动负载电路。
二、铅酸电池的操作注意点1.避免过度放电铅酸电池的过度放电会导致电池内部电极反应产生过多的针状铅晶,因此当电池电量低于20%时应及时充电。
过度放电也会导致电池的容量和寿命大幅下降。
2.防止过充电过充电会使电解液中的水分电解成氢气和氧气,而氢气是可燃的,极易产生火灾和爆炸。
因此,需要时刻注意电池的充电状态,在电池充电时每隔一段时间就要检查电池电压,不要让电池电量过高。
3.注意保养铅酸电池的使用寿命和电池运行的环境有很大的关系。
铅酸蓄电池的工作原理铅酸蓄电池是一种常见的化学电池,广泛应用于汽车、UPS电源以及太阳能储能系统等领域。
它的工作原理是基于化学反应和电化学原理。
1. 构造和组成铅酸蓄电池由正极、负极、电解液和隔膜组成。
正极由铅二氧化物(PbO2)制成,负极由纯铅(Pb)制成。
电解液是硫酸溶液,隔膜用于隔离正负极。
2. 充电过程当铅酸蓄电池进行充电时,外部电源会提供直流电,使正负极之间形成电势差。
正极上的PbO2会被还原为Pb,负极上的Pb会被氧化为PbO2。
同时,电解液中的硫酸会分解成氢离子(H+)和硫酸根离子(SO4-2)。
氢离子会与负极上的Pb反应生成水,硫酸根离子则会与正极上的PbO2反应生成硫酸。
3. 放电过程当铅酸蓄电池进行放电时,正负极之间的电势差会驱动电子流动,从而产生电流。
正极上的PbO2会与负极上的Pb反应生成PbSO4,同时电解液中的硫酸会被还原成水。
这个过程释放出的电能可以用于驱动电动机、照明等各种电力设备。
4. 反应方程式充电反应方程式:正极:PbO2 + SO4-2 + 4H+ + 2e- → PbSO4 + 2H2O负极:Pb + SO4-2 → PbSO4 + 2e-放电反应方程式:正极:PbO2 + 4H+ + SO4-2 + 2e- → PbSO4 + 2H2O负极:Pb + SO4-2 → PbSO4 + 2e-5. 充放电过程中的化学反应在充电过程中,正极上的PbO2会被还原为PbSO4,负极上的Pb会被氧化为PbSO4。
同时,电解液中的硫酸会被分解成氢离子和硫酸根离子。
在放电过程中,正极上的PbO2会与负极上的PbSO4反应生成PbSO4,同时电解液中的硫酸根离子会被还原成水。
6. 电化学原理铅酸蓄电池的工作原理基于电化学反应。
在充电过程中,外部电源提供的电能使正负极之间的化学反应逆转,将电能转化为化学能。
而在放电过程中,化学能被释放出来,转化为电能供应给外部电路。
7. 电池容量和循环寿命铅酸蓄电池的容量是指电池能够存储和释放的电荷量,通常以安时(Ah)为单位。
学方程式是:综上所述,正极产生的氧气可在负极形成逆反应并还原成水免蓄电池内部能量的损失,所以,为保证上述反应的体系能够充分发挥作用,电池被设计成为密封结构,也就是常说的阀控式密封铅酸蓄(VRLA蓄电池)。
VRLA蓄电池性能分析容量特性VRLA蓄电池的容量标称值以安时数(Ah)表示电池放电到规定终止电压的时间的乘积。
其安时数越大也就越大。
但是对每一块使用中的蓄电池来说,个固定的值,因为标称值是指定在0.1倍标称值(流强度下放电得到的容量值。
例如,100Ah的蓄电池按急剧下降造成的,如图1所示。
图112V VRLA蓄电池放电特性曲线充放电特性及环境因素蓄电池的充、放电也有其自身的规律,仍以某厂家提供的池技术参数进行说明。
25℃时,12V系列蓄电池浮充充电电压为初始充电电流为0.1CA(10A),充电24小时即可充足充电电流值连续3h无变化,表明电池已充足电上次储存的电量完全放光)的蓄电池为例,最初的充电电流规定0.1CA,例如对于100Ah的蓄电池的充电电流为段蓄电池电压逐渐升高,8小时后蓄电池电压基本达到最大时充入的电量还不到80%,想要充满至少还要继续小电流充电如果此后的充电电流不是足够小,极板和电解液之间的表面就会形成高浓度硫酸层,导至蓄电池电压虚高,无法充满,如图2所示图212V VRLA蓄电池充电曲线作者简介:姜俊斐(1983—),男,内蒙古人,中国民用航空呼伦贝尔空中交通管理站工程师,研究方向为民航通导、监视方向。
Science&Technology Vision科技视界姻制度仍然是建立在封建制度基础之上。
312V VRLA 蓄电池不同温度下的放电特性曲线使用寿命蓄电池的使用寿命一般可简单的定义为:蓄电池衰老到原有容量即为寿命终止。
电池维护规程中规定,当电池容量小于额定容,该电池可以申请报废。
否则当电池容量不足对该电池的性能没有明确了解时,一旦交流停电就很容易造成用电系统供电中断的事故。
铅酸蓄电池的结构与维护首先,正极板和负极板是铅酸蓄电池的主要构成部分。
它们通常由铅和铅钙合金制成,通过特殊的工艺加工而成,以增加表面积和改善电化学性能。
正极板上的活性物质为过氧化铅(PbO2),负极板上的活性物质为海绵铅(Pb)。
正极板和负极板之间通过隔板分隔开来,同时可以防止正极材料与负极材料直接接触。
其次,电解液是铅酸蓄电池的另一个重要组成部分。
它通常由硫酸和水组成,起到导电、电解和稳定电池内部化学反应的作用。
电解液被注入蓄电池的外壳中,在正负极板之间形成一个电解液的混合物,从而构成了电池的电化学环境。
此外,铅酸蓄电池的外壳通常由聚丙烯或ABS材料制成,具有良好的耐酸性能和密封性能,以确保电解液不泄漏。
电池的端子用于连接电池与外部电路,通常由铜或铅材料制成。
1.清洁电池:定期清洁电池外壳,确保没有灰尘或污物。
使用温和的肥皂水和软布进行清洁,注意不要让水进入电池内部。
2.检查电池液位:定期检查电池液位,如果液位低于标记线,应及时加入蒸馏水至标记线。
3.充电状态监测:定期测量电池的开路电压,以确定电池的充电状态。
正常情况下,铅酸蓄电池的开路电压应在2.1-2.15V之间。
4.均衡充电:定期进行均衡充电,以确保电池中的每个单元都能得到充分充电,并避免出现电池内部电阻差异导致的不平衡放电。
5.避免过度放电:尽量避免将电池放电至过度放电状态,因为过度放电会对电池造成损害,缩短电池的寿命。
6.控制充电速率:在充电时,控制充电电流,不要使用过大的充电电流,以免对电池产生过多的热量,影响电池寿命。
综上所述,铅酸蓄电池是一种常见且稳定的蓄电池技术,其结构包括正极板、负极板、隔板、电解液、外壳和端子等部分。
为了延长电池的使用寿命,我们应该定期维护和保养电池,包括清洁电池、检查电池液位、充电状态监测、均衡充电、避免过度放电和控制充电速率等。
铅酸蓄电池的工作原理铅酸蓄电池是一种常见的化学电源,广泛应用于汽车、UPS电源、太阳能发电系统等领域。
它的工作原理是通过化学反应将化学能转化为电能。
铅酸蓄电池由正极、负极、电解液和隔膜组成。
正极由一种特殊的铅合金制成,负极由纯铅制成。
电解液是硫酸溶液,起到导电和电化学反应的媒介作用。
隔膜则用于防止正负极直接接触,防止短路。
当铅酸蓄电池处于放电状态时,化学反应开始进行。
正极上的铅酸(PbO2)与负极上的铅(Pb)发生反应,生成二氧化铅(PbO2)和硫酸铅(PbSO4)。
同时,电解液中的硫酸(H2SO4)分解成带有正电荷的氢离子(H+)和硫酸根离子(SO4-2)。
这些反应产生的电子通过外部电路流动,形成电流,从而实现电能输出。
当需要充电时,外部电源将电流反向施加到铅酸蓄电池上。
这时,正极上的二氧化铅(PbO2)和硫酸铅(PbSO4)会还原回铅酸(PbO2),负极上的铅(PbSO4)也会还原回纯铅(Pb)。
同时,电解液中的硫酸根离子(SO4-2)会与带有负电荷的氢离子(H+)结合,形成硫酸(H2SO4)。
这个过程中,电流从外部电源流入铅酸蓄电池,实现电能的储存。
铅酸蓄电池的工作原理可以用化学方程式来表示:放电反应:正极:PbO2 + HSO4- + 3H+ + 2e- → PbSO4 + 2H2O负极:Pb + HSO4- → PbSO4 + H+ + 2e-总反应:PbO2 + Pb + 2HSO4- → 2PbSO4 + 2H2O充电反应:正极:PbSO4 + 2H2O → PbO2 + HSO4- + 3H+ + 2e-负极:PbSO4 + H+ + 2e- → Pb + HSO4-总反应:2PbSO4 + 2H2O → PbO2 + Pb + 2HSO4-铅酸蓄电池的工作原理基于铅的氧化还原反应,这种反应可逆且相对稳定。
然而,长期使用和充放电循环会导致铅极表面的硫酸铅(PbSO4)层积和电解液中的水分损失,从而降低电池容量和性能。
车用铅酸蓄电池的失效分析与正确使用维护针对铅酸蓄电池作为车辆的起动电源应该广泛,易于损坏的特点,介绍了铅酸蓄电池的工作原理,分析了其常见的失效原因,并据此提出了铅酸蓄电池正确使用与维护的原则,为提高铅酸蓄电池电池使用质量,延长其使用寿命提供参考。
标签:铅酸蓄电池;失效分析;正确维护蓄电池是车辆用电设备的动力源,充电时将电能转化为化学能储存在电池内,放电时将电池内存储的化学能转化为电能,车辆使用中为整车用电设备供电,同时在供电系统中还起到稳定电压的作用。
车用蓄电池通常分为铅酸蓄电池和镍碱蓄电池,现代车辆上广泛采用结构简单、内阻小,起动性能较好的铅酸蓄电池。
铅酸蓄电池使用的好坏不仅与电池本身质量有关,正确的使用和维护也能够显著提高蓄电池的使用寿命和效率。
1 铅酸蓄电池的结构和工作原理1.1 铅酸蓄电池的基本结构铅酸蓄电池主要由电池槽、正极板、负极板、隔板、联接条、极桩和电解液组成。
蓄电池的主要电能转换部件是正、负极板和电解液。
正、负极板采用具有较高强度和抗氧化性能的铅锑合金矩形框架,框内布置有纵横交错的金属网格。
正极板由棕色海绵状二氧化铅(PbO2)活性物质填充在网格中,负极板网格由青灰色海绵状纯铅(Pb)填充。
正、负极板相互嵌合,中间为防止短路,插入由塑料或玻璃纤维制成的网状隔板。
电池槽是由耐腐蚀的硬质塑料压铸而成,用来盛装电解液和正、负极板,12V蓄电池电解槽通常由6个单元格串联而成。
蓄电池的电解液是由纯净的蒸馏水和硫酸按照一定的比例配制而成,温度为20℃时,我国南方地区电解液比重γ为1.20~1.25g/cm3,北方地区其比重为1.28~1.30 g/cm3。
1.2 铅酸蓄电池的工作原理铅酸蓄电池工作是电能和化学能反复转换的过程。
蓄电池充电时,在外电场的作用下,在正负极板中的硫酸析出进入电解液,电解液中的硫酸浓度增加,同时正极板主要成分变为PbO2,负极板变为纯Pb。
在放电时,负极板Pb与电解液中的SO42-离子反应生成PbSO4,并释放电子经负载进入正极形成电流,同时正负极PbO2得到电子并与SO42-反应生成PbSO4,其反应可以用下式表示。
阀控式密封铅酸蓄电池的工作原理和维护工作原理:阀控式密封铅酸蓄电池的工作原理基于铅酸电池的化学反应。
在充电状态下,电池内的负极板(铅)上生成二氧化铅,正极板(二氧化铅)还原为铅,同时,在电解液中形成硫酸铅。
而在放电状态下,正负极板之间的化学反应反转,二氧化铅还原为铅,同时电池释放出电能。
然而,阀控式密封铅酸蓄电池与普通铅酸蓄电池的区别在于,它具有自密封的特点。
密封结构可以控制气体的扩散和液体的蒸发,使得电池能够保持足够的电解液,同时阻止外部空气进入电池内部。
这使得阀控式密封铅酸蓄电池具有更长的寿命和更高的安全性能。
维护:1.温度控制:电池的工作温度应在20℃-25℃范围内,避免过高或过低的温度。
高温会加速电解液的蒸发,降低电池的寿命,低温则会降低电池的容量和输出功率。
2.充电状态:尽量保持电池处于充满状态,可以通过定期充电或充电器进行维护充电来实现。
如果长时间不充电,电池内的自放电会导致电池电量逐渐减少。
3.清洁维护:定期检查电池表面的污物,如有必要可以用湿布或软刷进行清洁。
同时检查电池连接器和线缆的接触是否良好,如有松动或腐蚀应及时修复或更换。
4.定期检查电池状态:通过测量电池的开路电压、内阻、容量等参数,可以了解电池的健康状态。
如果发现电池存在异常,如充电时间延长、容量下降等,应及时进行维修或更换。
5.安全措施:在维护电池时应注意安全,及时清理电池周围的杂物和易燃物,避免因外界因素引起的安全问题。
同时,正确使用充电器以防止过度充电或过度放电。
总之,阀控式密封铅酸蓄电池以其自密封、阀控和免维护的特点,成为一种非常理想的蓄电池选择。
通过了解其工作原理和维护要点,可以更好地使用和保护阀控式密封铅酸蓄电池,延长其使用寿命,提高电池系统的可靠性和安全性。
铅酸蓄电池的工作原理铅酸蓄电池是一种常见的蓄电池类型,广泛应用于汽车、UPS电源、太阳能储能等领域。
它的工作原理是通过化学反应将电能转化为化学能,从而实现电能的储存和释放。
本文将详细介绍铅酸蓄电池的工作原理,包括电池构造、充放电过程、内部反应等方面。
一、电池构造1.1 电池正负极板:铅酸蓄电池的正极板通常由氧化铅制成,负极板由纯铅制成。
1.2 电解液:电解液是硫酸溶液,起着导电和传递离子的作用。
1.3 隔板:隔板用于隔离正负极板,防止短路。
二、充电过程2.1 正极反应:在充电过程中,正极板上的氧化铅会被还原成二氧化铅。
2.2 负极反应:负极板上的纯铅会被氧化成铅酸。
2.3 电解液:硫酸溶液中的H+和SO4^2-会参与电化学反应。
三、放电过程3.1 正极反应:在放电过程中,二氧化铅会被氧化成氧化铅。
3.2 负极反应:铅酸会被还原成纯铅。
3.3 电解液:硫酸溶液中的H+和SO4^2-会重新组合成硫酸。
四、内部反应4.1 氧化还原反应:铅酸蓄电池的工作原理是基于正负极板之间的氧化还原反应。
4.2 离子传递:硫酸溶液中的离子在充放电过程中会在正负极板之间传递。
4.3 电解液浓度:电解液浓度的变化会影响电池的性能和寿命。
五、性能特点5.1 电压稳定:铅酸蓄电池的电压稳定性较好,适用于需要稳定电源的场合。
5.2 充放电效率:铅酸蓄电池的充放电效率较高,能够快速实现能量转化。
5.3 寿命长:正确使用和保养下,铅酸蓄电池的寿命可达数年之久。
总之,铅酸蓄电池的工作原理是基于化学反应实现电能的储存和释放,其构造、充放电过程、内部反应等方面都有着独特的特点和机制。
通过深入了解铅酸蓄电池的工作原理,可以更好地应用和维护这种常见的蓄电池类型。
铅酸蓄电池的工作原理维护方法摘要:蓄电池是直流系统中不可替代的重要设备之一,能够为二次设备的正常运行提供直流供电电源.此背景下,本文首先分析了铅酸蓄电池工作原理,其次以阀控式铅酸蓄电池为例,对蓄电池的维护方法进行了详细的阐述,以供参考.关键词:铅酸蓄电池;工作原理;维护方法1铅酸蓄电池电极主要由铅及其氧化物制成,电解液是硫酸溶液的一种蓄电池。
英文名称:Lead-acid battery.放电状态下,正极主要成分为二氧化铅,负极主要成分为铅;充电状态下,正负极的主要成分均为硫酸铅。
分为排气式蓄电池和免维护铅酸电池。
电池主要由管式正极板、负极板、电解液、隔板、电池槽、电池盖、极柱、注液盖等组成。
排气式蓄电池的电极是由铅和铅的氧化物构成,电解液是硫酸的水溶液。
主要优点是电压稳定、价格便宜;缺点是比能低(即每公斤蓄电池存储的电能)、使用寿命短和日常维护频繁。
老式普通蓄电池一般寿命在2年左右,而且需定期检查电解液的高度并添加蒸馏水。
不过随着科技的发展,铅酸蓄电池的寿命变得更长而且维护也更简单了。
铅酸蓄电池最明显的特征是其顶部有可拧开的塑料密封盖,上面还有通气孔。
这些注液盖是用来加注纯水、检查电解液和排放气体之用。
按照理论上说,铅酸蓄电池需要在每次保养时检查电解液的密度和液面高度,如果有缺少需添加蒸馏水。
但随着蓄电池制造技术的升级,铅酸蓄电池发展为铅酸免维护蓄电池和胶体免维护电池,铅酸蓄电池使用中无需添加电解液或蒸馏水。
主要是利用正极产生氧气可在负极吸收达到氧循环,可防止水分减少。
铅酸水电池大多应用在牵引车、三轮车、汽车起动等,而免维护铅酸蓄电池应用范围更广,包括不间断电源、电动车动力、电动自行车电池等。
铅酸蓄电池根据应用需要分为恒流放电(如不间断电源)和瞬间放电(如汽车启动电池)。
2蓄电池的工作原理与充电放电方法蓄电池是由浸渍在电解液中的正极板(二氧化铅Pb02)和负极板(海绵状纯铅Pb)组成的,电解液是硫酸(H2S04)的水溶液。
当蓄电池和负载接通放电时,正极板上的Pb02 和负极板上的Pb都变成PbS04,电解液中的H2S04减少,相对密度下降。
充电时按相反的方向变化,正负极板上的PbS04分别恢复成原来的Pb02和Pb,电解液中的硫酸增加,相对密度变大。
如略去中间的化学反应过程,可用下式表示:Pb02+Pb十2H2S04=2PbS04+2H202.1电势的建立当极板浸入电解液时,在负极板处,金属铅受到两方面的作用,一方面它有溶解于电解液的倾向,因而有少量铅进入溶液,生成Pb2+,在极板上留下两个电子2e,使极板带负电;另一方面,由于正、负电荷的吸引,Pb2+有沉附于极板表面的倾向。
当两者达到平衡时,溶解便停止,此时极板具有负电位,约为-0.1V。
正极板处,少量Pb02溶入电解液,与水生成Pb(OH):,再分离成四价铅离子和氢氧根离子。
即 Pb02+2H20---->Pb(OH)4 Pb(OH)4=Pb4++4(OH)由于Pb4+沉附于极板的倾向,大于溶解的倾向,因而沉附在正极板上,使极板呈正电位。
当达到平衡时,约为+2.0V。
因此,当外电路未接通,反应达到相对平衡状态时,蓄电池的静止电动势约为: E0=2.0-(-0.1)=2.1V2.2铅蓄电池的放电当蓄电池接上负载后,在电动势的作用下,电流从正极经过负载流往负极(即电子从负极到正极),使正极电位降低,负极电位升高,破坏了原有的平衡。
放电时的化学反应过程如图所示。
在正极板处,Pb4+和电子结合,变成二价铅离子Pb2+,Pb2+与电解液中的SO42-结合生成PbS04沉附于极板上。
Pb4++2e----> Pb2+Pb2++ SO42-=PbSO4在负极板处,Pb2+与电解液中的SO42-结合也生成PbS04沉附在负极板上,而极板上的金属铅继续溶解,生成Pb2+和电子。
如果电路不中断,上述化学反应将继续进行,使正极板上的Pb02和负极板上的Pb都逐渐转变为PbS04,电解液中的PbS04逐渐减少而水增多,故电解液相对密度下降。
理论上,放电过程应进行到极板上的活性物质全部变为硫酸铅为止,而实际上是不可能的,因为电解液不能渗透到活性物质的最内层。
使用中,所谓放完电的蓄电池,实际上只有20%~30%的活性物质变成了硫酸铅,因此采用薄型极板,增加多空率,提高极板活性物质的利用率可提高蓄电池的容量,也是蓄电池工业的发展方向。
2.3铅蓄电池的充电充电时,应将蓄电池接直流电源。
当电源电压高于蓄电池电动势时,在直流电源电压作用下,电流从蓄电池正极流人,负极流出(即驱使电子从正极经外电路流人负极)。
这时正负极板发生的反应正好与放电过程相反,其化学反应过程如图。
在负极板处有少量的PbS04进入电解液中,离解为Pb2+和SO42-。
Pb2+在电源的作用下获得两个电子变为金属Pb,沉附在极板上。
而SO42-则与电解液中的H+结合,生成硫酸。
即: PbS04---->Pb2++SO42- Pb2++2e---->Pb SO42-+2H+---->H2S04负极板上总的反应式为: PbS04+2e+2H+---->Pb+H2SO4正极板处,也有少量PbS04进入电解液中,离解为Pb2+和SO42-,Pb2+在电源作用下失去两个电子变为Pb4+,它又和电解液中水离解出来的OH—结合,生成Pb(OH)4,Pb(OH)4又分解为Pb02和H20,而SO42-又与电解液中的H+结合生成硫酸。
其反应式: PbS04----> Pb2++ SO42- Pb2+-2e----> Pb4+ 4H20---->4H++4OH—Pb4++4 OH—---->Pb(OH)4 Pb(OH)4----> Pb02+2H20 2SO42-+4H+----> 2H2S04 正极板上的总反应为: PbS04—2e+2H20+ SO42----->Pb02+2H2S04可见,在充电过程中,正负极板上的PbS04将逐渐恢复为Pb02和Pb,电解液中硫酸成分逐渐增多,水逐渐减少。
充电终期,密度将升到最大值,且会引起水的分解,水分解的化学反应式:2H2S04 ---->4H++ SO42- 负极上:4H++4e---->2H2 正极上:2SO42--4e+2H20---->2H2S04+O2总反应为:2H2S04+2H20---->2H2S04十2H2+O2由上式可见,实际上分解的是水:2H20---->2H2+02 .3电池常见故障与维修 Common faults and maintenance of batteries蓄电池产生故障的原因很多,除制造质量和运输保管影响以外,使用和维护不当也是主要原因之一。
发现故障及时分析原因,尽快采取有效措施进行排除。
蓄电池常见故障的特征、发生的原因和检修的方法如下:3.1电池内部短路 Internal battery shorta、主要特征 Main features内部短路的电池,充电时电压低、放电时容量低;放电时,电压下降很快;充电时,电压、密度上升缓慢,充电到终期气泡冒的很微弱,甚至没有气泡发生;充放电过程中电解液温度高,上升的也很快,自放电严重。
b、故障原因 Malfunction造成电池短路的原因主要有:导电物体落入电池内,使正、负极间搭接形成短路;隔板破损,引起正、负极板间接触;极板产生铅绒,堆积在极群两侧或上部板耳处,使正、负极板间搭桥,造成短路;极板活性物质脱落过多、沉淀物触及到极板底部,使正、负极板间形成短路等。
c、处理方法 Solutions对于短路的电池,应首先检验有无导电物体落入电池内,如果有,则去除引起短路的导电物。
吊出极群,观察是否是铅绒或脱落物质过多形成的短路,如果是,应加以清除并更换新的电解液。
如隔板破损,应将极群分离开,仔细找出破损的隔板,抽出换上新的隔板。
(针对以上问题的电池,客户无法自行处理的,应及时返回生产厂家进行处理)3.2 极板不可逆硫酸盐化 Plate irreversible sulfationa、主要特征 Main features蓄电池放电容量降低,电解液密度低于规定的正常值;在充电过程中,其初期和终期的电压较正常电池偏高;充电时过早地发生气泡,电解液温度上升的快,易超过55℃;放电时电压下降快,过早地降到终止电压。
b、故障原因 Malfunction蓄电池由于经常充电不足、未能及时均衡充电,经常过放电或小电流深放电,长期处于半放电或放电状态中,电解液液面过低、极板上部露出液面等原因,使正、负极板上的部分硫酸铅充电过程中难以转化为活性物质。
c、处理方法 Solutions对已产生极板硫酸盐化的电池,程度轻微者可通过适当的过充电还原,较重者可用小电流充电法,严重者用水疗法进行处理。
为防止硫酸盐化的形成,应按使用维护手册的要求操作,并按时均衡充电,可消除硫酸盐化。
4铅酸蓄电池的环保回收 Environmental recycling(1)蓄电池禁止随意丢弃,否则会对地球环境造成污染!(2)蓄电池中铅、电解液、塑料是可以回收利用的循环再生材料。
(3)蓄电池回收事宜请与经销商或专业制造商联系。
结论蓄电池是直流系统中的一个关键部件,它主要为信号系统提供电源。
在使用过程中蓄电池的低效,损坏现象时有发生。
综合分析可知,蓄电池使用中出现的问题多数是使用者对蓄电池的性能特点了解不够,使用与维护不当所致.本文将维护方法介绍给大家,仅供参考。
参考文献:[1]崔建国, 宁永香. 深度探讨铅酸蓄电池的工作原理及维护技术[J]. 山西电子技术, 2018, 000(006):73-76.[2]邓辛路. 阀控式密封铅酸蓄电池在线监测技术应用与研究[D]. 华南理工大学, 2010.[3]袁剑. 变电站阀控式铅酸蓄电池在线监测与失效机理研究[J]. 科技创新与应用, 2016, 000(022):189-189.。