有理数的乘法.4《有理数的乘除法》教案-(新版)新人教版
- 格式:doc
- 大小:75.50 KB
- 文档页数:3
第一章 有理数1.4 有理数的乘除法1.4.1 有理数的乘法第1课时 有理数的乘法法则学习目标:1.掌握有理数的乘法法则并能进行熟练地运算.2.掌握多个有理数相乘的积的符号法则.重点:有理数的乘法法则,多个数相乘的符号法则.难点:积的符号的确定.一、知识链接 1.计算:(1)777++= ;(2)1212121212++++= .2.将以上两个加法运算用乘法运算表示出来:3.计算:(1)3×2;(2)3×112;(3)3126⨯;(4)320.4⨯ 二、新知预习1.计算:(1)222++=(-)(-)(-) ;(2)99999++++=(-)(-)(-)(-)(-) .2.你能将上面两个算式写成乘法算式吗?3.怎样计算?(1)6×(5);(2)(4)×(5);(3)0×(5).【自主归纳】 有理数的乘法:正数乘正数,积为 数;负数乘负数,积为 数; 负数乘正数,积为 数;正数乘负数,积为 数;零与任何数相乘或任何数与零相乘结果是 .三、自学自测(1)53⨯-() (2)46⨯(-) (3)79-⨯-()()(4)0.98⨯ 2.填空(1)3的倒数是___________;34的倒数是_____________. (2)______的倒数是6;___________的倒数23-. 四、我的疑惑______________________________________________________________________________________________________________________________________________________一、要点探究探究点1:有理数的乘法运算1.如图,一只蜗牛沿直线 l 爬行,它现在的位置在l 上的点O.填一填:(1)如果一只蜗牛向右爬行2cm 记为+2cm ,那么向左爬行 2cm 应记为________;(2)如果3分钟以后记为+3分钟,那么3分钟以前应记为___________.想一想:(1)如果蜗牛一直以每分2cm 的速度向右爬行,3分后它在什么位置? 结果:3分钟后蜗牛在l 上点O____边_____ cm 处.可以表示为: .(2)如果蜗牛一直以每分2cm 的速度向左爬行,3分后它在什么位置?结果:3分钟后蜗牛在l 上点O____边_____ cm 处.可以表示为: .(3)如果蜗牛一直以每分2cm 的速度向右爬行,3分前它在什么位置? 结果:3分钟前蜗牛在l 上点O____边_____ cm 处.可以表示为: .(4)如果蜗牛一直以每分2cm 的速度向左爬行,3分前它在什么位置?结果:3分钟前蜗牛在l 上点O____边_____ cm 处.可以表示为: .(5)原地不动或运动时间为零,结果是什么?结果:仍在原处,即结果都是___________,可以表示为: .根据上面结果可知:______数;负数乘负数积为______数;(同号得正)______数;正数乘负数积为______数;(异号得负)______.______.有理数乘法法则两数相乘,同号得正,异号得负,并把绝对值相乘.任何数同0相乘,都得0.讨论:(1)若a <0,b >0,则ab 0 ;(2)若a <0,b <0,则ab 0 ;(3)若ab >0,则a 、b 应满足什么条件?(4)若ab <0,则a 、b 应满足什么条件?例1 计算:(1)3×(4); (2)(3)×(4).归纳:有理数乘法的求解步骤:先确定积的符号,再确定积的绝对值.例2 计算:(1)(3)×65×(59)×(41);(2)(5)×6×(54)×41 归纳:(1)几个不等于零的数相乘,积的符号由_____________决定.(2)当负因数有______个时,积为负;当负因数有______个时,积为正.(3)几个数相乘,如果其中有因数为0,那么积等于_______.探究点2:倒数例3 计算:(1) 21×2; (2)(21)×(2) . 要点归纳:有理数中仍然有:乘积是1的两个数互为倒数.思考:数a(a ≠0)的倒数是什么?探究点3:有理数的乘法的应用例4 用正负数表示气温的变化量,上升为正,下降为负.登山队攀登一座山峰,每登高1km ,气温的变化量为6℃,攀登3km 后,气温有什么变化?1.计算:(1)566⨯-(-)(); (2)8×(1.25). 2.填空:,一个数的倒数等于这个数本身,则这个数是 .3.已知a 与b 互为倒数,c 与d 互为相反数,m 的绝对值是4,求m ×(c +d )+a ×b -3×m 的值.4.商店降价销售某种商品,每件降5元,售出60件后,与按原价销售同样数量的商品相比,销售额有什么变化?二、课堂小结1.有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘.任何数同0相乘,都得0.2.几个不是零的数相乘,负因数的个数为奇数时积为负数,偶数时积为正数.3.几个数相乘若有因数为零则积为零.4.有理数乘法的求解步骤:有理数相乘,先确定积的符号,再确定积的绝对值.5.乘积是1的两个数互为倒数.2.计算: (1)221×(4); (2)(107)×(215); (3)(10.8)×(275); (4)(321)×0. 3.计算:(1)(125)×2×(8);(2)(32)×(57)×(146)×23; (3)78×(32)×(3.4)×0. 4.气象观测统计资料表明,在一般情况下,高度每上升1km,气温下降6℃.已知甲地现在地面气温为21℃,求甲地上空9km 处的气温大约是多少?参考答案自主学习一、知识链接1.(1)21 (2)602.7×3=21;12×5=60.3.(1)6. (2)92. (3)14. (4)0. 二、新知预习1.(1)6 (2)452.(2)×3=6;(9)×5=45.3.(1)30. (2)20. (3)0.【自主归纳】正 正 负 负 零三、自学自测1.(1)原式=15. (2)原式=24. (3)原式=63. (4)原式=7.2.2.(1)13 43 (2)16 32课堂探究一、要点探究填一填:(1)2cm (2)3分钟想一想:(1)右 6 (+2)×(+3)= 6 (2)左 6 (2)×(+3)= 6(3)左 6 (+2)×(3)= 6 (4)右 6 (2)×(3)=6(5)0 0×3=0;0×(-3)=0;2×0=0;(-2)×0=01.正 正2.负 负3.乘积4.零(1)< (2)> (3)a ,b 同号 (4)a ,b 异号解:(1)原式=12. (2)原式=12.解:(1)原式=89. (2)原式=6.归纳:(1)负因数的个数 (2)奇数 偶数 (3)0解:(1)原式=1. (2)原式=1.解:(6)×3=18(℃). 答:气温下降18℃.【针对训练】1. 解:(1)原式=5. (2)原式=10.2. 2 1,13.解:m×(c+d)+a×b-3×m=0+13m=13m.因为m的绝对值是4,所以m=4或4.则原式=11或13.4.解:(5)×60=300(元). 答:销售额减少300元.当堂检测1. + 90 90 + 180 180 100 1002.3.4. 解:(6)×9=54(℃);21+(54)=33(℃).答:甲地上空9km处的气温大约为33℃.第一章有理数1.4 有理数的乘除法1.4.1 有理数的乘法第2课时有理数乘法的运算律及运用学习目标:1.掌握乘法的分配律,并能灵活的运用.2.掌握有理数乘法的运算律,并能利用运算律简化乘法运算.重点:有理数的乘法运算律及其应用.难点:分配律的运用.一、知识链接1.有理数的乘法法则:两数相乘,同号________,异号_______,并把_________相乘.一个数同0相乘,仍得________.2.进行有理数乘法运算的步骤:(1)确定_____________;(2)计算____________.3.小学学过的乘法运算律:(1)___________________________________.(2)___________________________________.(3)___________________________________.二、新知预习1.填空(1) (2)×4=_______ , 4×(2)=________.(2) [(2)×(3)]×(4)=_____×(4)=______ , (2)×[(3)×(4)]=(2)×_____=_______.(3) (6)×[4+(9)]=(6)×______=_______, (6)×4+(6)×(9)=____+____=_______;2.观察上述三组式子,你有什么发现?【自主归纳】 在有理数的范围内,乘法的交换律和结合律,以及乘法对加法的分配律仍然适用.(1)乘法交换律:两个有理数相乘,交换因数的位置,积不变.用字母表示为:ab ba =.(2)乘法结合律:对于三个有理数相乘,可以先把前面两个数相乘,再把结果与第三个数相乘;或者先把后两个数相乘,再把第一个数与所得结果相乘,积不变.用字母表示为:()()ab c a bc =.(3)乘法对加法的分配律:一个有理数与两个有理数的和相乘,等于把这个数分别与这两个数相乘,再把积相加.三、自学自测计算:(1)44258⨯⨯(-)(-1.)(-); (2)151⨯⨯(-2)(-);(3)31()4085-⨯. 四、我的疑惑______________________________________________________________________________________________________________________________________________________二、要点探究探究点1:有理数乘法的运算律第一组:(1) 2×3=6 3×2=62×3 = 3×2(2) (3×4)×0.25=3 3×(4×0.25)=3(3×4)×0.25= 3×(4×0.25)(3) 2×(3+4)=14 2×3+2×4=142×(3+4)=2×3+2×4思考:上面每小组运算分别体现了什么运算律?第二组:(1) 5×(-6) = 30 (-6 )×5=305× (-6) = (-6) ×5(2) [3×(-4)]×(- 5)=(-12)×(-5) =603×[(-4)×(-5)]=3×20=60(3) 5×[3+(-7 )]=5×(4)=20 5×3+5×(-7 )=1535=205×[3+(-7 )] = 5×3+5×(-7 )结论:(1)第一组式子中数的范围是________;(2)第二组式子中数的范围是________;(3)比较第一组和第二组中的算式,可以发现____________________________.归纳总结1.乘法交换律:ab =ba2.乘法结合律:(ab)c = a(bc)3.乘法分配律:a(b +c)=ab +ac ,a(b +c +d )=ab +ac +ad例1 用两种方法计算:(41+6121)×12. 练一练: 计算:① (-8)×(-12)×(-0.125)×(-31 )×(-0.1) ② 60×(1- 21-31-41) ③ (-43)×(8-131 -4 ) ④ (-11)×(-52)+(-11)×2 53 +(-11)×(-51 ) 例2 下面的计算有错吗?错在哪里?(-24)×(31 - 43 + 61 - 85 ) 解:原式=-24×31-24×43+24×61-24×85 =818+415=41+4=37易错提醒:1.不要漏掉符号;2.不要漏乘.:(1) 60×(1-21-31- 41) ; (2)5(8)(7.2)( 2.5)12-⨯-⨯-⨯. (1)(-426)×251-426×749; (2)95×(-38)-95×88-95×(-26).1.计算(2)×(312),用分配律计算过程正确的是( )A.(2)×3+(2)×(12) B.(2)×3(2)×(12)C.2×3(2)×(12) D.(2)×3+2×(12)2.计算:3.计算:参考答案自主学习一、知识链接1.得正得负绝对值02.(1)运算顺序(2)得出结果3. (1)乘法交换律ab=ba (2)乘法结合律(ab)c=a(bc) (3)乘法分配律(a+b)c=ac+bc二、新知预习1.(1)8 8 (2)6 24 12 24 (3)(5)30 24 54 302.每组式子的两个结果都相同.三、自学自测(1)原式=440. (2)原式=30. (3)原式=7.课堂探究一、要点探究思考:(1)乘法交换律(2)乘法结合律(3)分配律结论:(1)正数(2)有理数(3)各运算律在有理数范围内仍然适用解:原式=1.练一练:①原式=0.4. ②原式=5. ③原式=2. ④原式=22.解:有错.正确解法为:原式=(-24)×13+(-24)×(-34)+(-24)×16+(-24)×(-58)= -8+18-4+15=21.【针对训练】1. 解:(1)原式=5. (2)原式=60.2.解:(1)原式=426000. (2)原式=9500.二、课堂小结ab=ba (ab)c=a(bc) (a+b)c=ac+bc负因数的个数奇数负偶数正0当堂检测1. A2. 解:(1)原式=8500. (2)原式=25. (3)原式=15. (4)原式=6.3. 解:(1)原式=1700. (2)原式=0. (3)原式=4.97. (4)原式=90.。
人教版七年级上册1.4有理数的乘除法教学设计一、教学目标通过本节课的学习,学生将掌握有理数的乘除法运算规律,能够灵活应用有理数的乘除法,提高有理数的运算能力。
二、教学重点和难点教学重点1.掌握有理数的乘法运算法则;2.掌握有理数的除法运算法则;3.能够适当运用知识,解决实际问题。
教学难点如何将乘除法运算规律结合实际问题进行教学,使学生能够深刻理解有理数的乘除法运算。
三、教学方法本课以示例教学为主,引导学生探究有理数的乘除法运算规律。
四、教学步骤1. 概念讲解首先讲解有理数的乘除法运算规律:两个有理数相乘,符号相同为正,符号不同为负;两个有理数相除,分子符号不变,分母相反数。
2. 案例分析接着,引导学生通过案例分析进行实际训练。
2.1 例1小明去购物需要花费-35元,他手里有3张10元的纸币和一张5元的纸币,问小明需要找回多少钱?通过讲解和引导,学生可以得出以下公式:-35 = 10 × (-3) + 5同时也可以得出结果:小明需要找回5元。
2.2 例2小王要将一根长度为3/4米的木板剪成5段,每段长度相等,问每段木板的长度应该为多少?通过讲解和引导,学生可以得出以下公式:(3/4) ÷ 5 = 3/20同时也可以得出结果:小王应该将木板剪成5段,每段长度为3/20米。
2.3 例3小李看到一个价值为-120元的物品打折40%,问小李买下这个物品需要花费多少钱?通过讲解和引导,学生可以得出以下公式:-120 × 0.4 = -48同时也可以得出结果:小李可以以-48元的价格购买这个物品。
3. 练习与展示接着,让学生用自己的笔记本或工具进行练习,并在黑板上展示自己的答案和思路。
4. 总结回顾最后,对本节课学习内容进行总结回顾,再次强调有理数的乘除法运算的规律和方法,并鼓励学生在日常生活中运用所学知识。
五、教学评价教师可以通过课堂练习,作业,小组讨论和自主探究等方式对学生进行教学评价。
《有理数的乘除法》教案一、教学目标:1. 让学生掌握有理数的乘法法则,包括同号相乘、异号相乘和零乘以任何数的结果。
2. 让学生理解有理数的除法实质,即乘以倒数,并掌握除法法则。
3. 培养学生运用有理数乘除法解决实际问题的能力。
二、教学内容:1. 有理数的乘法法则:同号相乘得正,异号相乘得负,零乘以任何数得零。
2. 有理数的除法实质:乘以倒数。
3. 除法法则:同号相除得正,异号相除得负。
三、教学重点与难点:1. 教学重点:有理数的乘法法则和除法法则。
2. 教学难点:理解有理数除法实质,掌握除法法则。
四、教学方法:1. 采用讲解法,讲解有理数的乘法法则和除法法则。
2. 采用例题法,通过例题讲解和练习,使学生掌握乘除法运算。
3. 采用提问法,引导学生思考和探讨有理数乘除法的实质。
五、教学过程:1. 导入新课:复习有理数的基本概念,引导学生进入有理数的乘除法学习。
2. 讲解有理数的乘法法则,通过PPT展示公式和例题,让学生理解和掌握乘法法则。
3. 讲解有理数的除法实质,让学生明白除以一个数等于乘以它的倒数。
4. 讲解除法法则,通过PPT展示公式和例题,让学生理解和掌握除法法则。
5. 课堂练习:布置一些乘除法的练习题,让学生运用所学知识解决问题,巩固所学内容。
6. 总结与反思:对本节课的内容进行总结,引导学生思考乘除法在实际生活中的应用。
六、教学评估:1. 课堂练习:通过课堂练习题,评估学生对有理数乘除法法则的掌握情况。
2. 课后作业:布置相关的课后作业,进一步巩固学生的乘除法运算能力。
3. 小组讨论:组织学生进行小组讨论,评估学生对有理数乘除法在实际问题中应用的理解程度。
七、教学反馈与调整:1. 根据学生的课堂表现和作业完成情况,及时给予反馈,鼓励学生的正确做法,指出并纠正错误。
2. 针对学生的薄弱环节,进行有针对性的辅导,帮助学生克服困难。
3. 调整教学方法和节奏,确保学生能够扎实掌握有理数乘除法知识。
1.4 有理数的乘除法(7课时)1.4.1有理数的乘法(4课时)课程目标:一、知识与技能目标1、在理解有理数乘法意义的基础上,掌握有有理数乘法法则,并初步了解有理数乘法法则的合理性.2、能够熟练地进行有理数的乘法运算.3、会用计算器进行有理数的乘法运算.4、掌握有理数乘法的运算律,能应用运算律使运算简便,能熟练地进行加、减、乘混合运算.二、过程与方法目标结合在一条直线上运动的实例,归纳有理数乘法法则;接下来归纳出多个有理数相乘积的符号与各因数的符号的关系;最后得出乘法交换律、结合律和乘法对加法的分配律在有理数范围内也使用.用计算器对有理数进行乘法运算的使用.三、情感态度与价值观目标1、鼓励学生积极参与课堂各个教学环节,探究有理数乘法法则,并从中获得成就感,获得学习数学的经验.2、培养学生有创意的想法,鼓励学生独立思考、实践,再与他人交流的学习方法,并从中产生对数学的兴趣和战胜困难的勇气.教学重点:乘法法则中积的符号与各因数的符号关系的推导.教学难点:几个有理数相乘,积的符号的确定和能灵活运用运算律简便运算.设计思路:通过三节课新课的教学,第1课时完成对乘法法则的推导和应用,第2课时则重点在灵活运用乘法的运算律简化运算,第3课时则是分配律的运用(去括号、合并)课时安排:4课时教学准备:投影片、三角板、小黑板、计算器教学过程:第19课时1.4.1有理数的乘法(第1课时)一、创设情境,导入新课师:前面学习了有理数的加减法,接下来就应该学习有理数的乘除法,请看下面问题:1、2×3等于多少?表示什么?答案:2×3=6,表示3个2相加,即2+2+2.2、(-2)+(-2)+(-2)写成乘法算式是什么?答案:(-2)×3师:2×3是小学学过的乘法.(-2)×3如何计算呢?这就是我们这节课要研究的有理数的乘法.板书:1.4.1有理数的乘法.二、师生互动,课堂探究(一)提出问题,引发讨论师:在数轴上,若向右运动2尺记作2尺,向左运动2尺记作什么?生:记作-2尺.师:(1)2×3,其中2看作向右运动,每步为2尺,×3看作沿原方向走3步.用数轴表示:结果怎样呢?(结果向右运动6尺)即2×3=6 (2)(-2)×3,其中-2看作向左运动,每步为2尺,×3看作沿原方向走3步.用数轴表示:结果怎样呢?(结果向在运动6尺)即(-2)×3=-6(3)2×(-3)其中2看作向右运动,每步为2尺,×(-3)看作沿反方向走3步.用数轴表示:结果怎样呢?(结果向左运动6尺)即2×(-3)=-6 (4)(-2)×(-3),其中-2看作向左运动,每步为2尺,×(-3)看作沿反方向走3步.用数轴表示:结果怎样呢?(结果向右运动6尺)即(-2)×(-3)=6师:从上面(1)—(4)通过思考、讨论、探究两个有理数相乘的结果的规律,填空:正数乘正数积为____数,负数乘正数积为___数,正数乘负数积为___数,负数乘负数积为______数,乘积的绝对值等于各乘数绝对值的_____.(二)导入知识,解释疑难1、有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘.任何数同0相乘,都得0. 例:(-5)×(-3)………同号两数相乘 (-7)×4………________(-5)×(-3)=+( )……得正 (-7)×4=-( )……_____ 5×3=15………把绝对值相乘 7×4=28………__________ ∴(-5)×(-3)=15. ∴(-7)×4=-28 2、例题分析:例1:计算:(1)(-3)×9 (2)(-21)×(-2)有理数中仍然有:乘积是1的两个数互为倒数.如(-21)×(-2)=1.注意:0没有倒数.例2:用正负数表示气温的变化量,上升为正,下降为负.登山队攀登一座山峰,每登高1km 气温的变化量为-6℃,攀登3km 后,气温有什么变化?解:(-6)×3=-18 答:气温下降18℃.从乘法法则看出,有理数的乘法,关键是确定积的符号,多个有理数相乘,可以把它们按顺序依次相乘.那么,几个不是0的数相乘.如何确定其符号呢?下列各式的积是正的还是负的?(1)2×3×4×(-5) (2)2×3×(-4)×(-5) (3)2×(-3)×(-4)×(-5) (3)(-2)×(-3)×(-4)×(-5) 根据上式计算,探究下列问题,并填空:几个不是0的数相乘,积的符号与负因数的个数之间有什么关系?几个不是0的有理数相乘,负因数的个数是______时,积是正数;负因数的个数是____时,积是负数.例3:计算:(1)(-3)×65×(-59)×(-41) (2)(-5)×6×(-54)×41 (3)(-5)×8×(-541)×(-1.25) (4)(-125)×158×211×(-31)你能看出下列各式的结果吗?如果能,请说明理由.(1)7.8×(-8.1)×0×(-19.6) (2)2002×(-2003)×(-2004)×0几个数相乘,如果其中有因数为0,积等于_____. (三)、归纳总结,知识回顾1、有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘.任何数同0相乘,都得0.2、几个不是0的有理数相乘,积的符号由负因数的个数决定,负因数的个数是偶数时,积是正数;负因数的个数是奇数时,积是负数.3、几个数相乘,如果其中有因数为0,积等于0.4、有理数乘法运算步骤:(1)先确定积的符号;(2)求出各因数绝对值的积.(四)作业:P40 1,2 (五)板书设计1.4.1有理数的乘法(第1课时)1、有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘.任何数同0相乘,都得0.有理数中仍然有:乘积是1的两个数互为倒数.2、几个不是0的有理数相乘,积的符号由负因数的个数决定,负因数的个数是偶数时,积是正数;负因数的个数是奇数时,积是负数.3、几个数相乘,如果其中有因数为0,积等于0.4、有理数乘法运算步骤:(1)先确定积的符号;(2)求出各因数绝对值的积.第20课时1.4.1 有理数的乘法(第2课时)一、创设情境,导入新课1、有理数的乘法法则是什么?根据乘法法则计算: (1)5×(-6) (-6)× 5(2)[3×(-4)]×(-5) 3×[(-4)×(-5)] 2、小学学过哪些运算律(五种)小学学过的加法交换律、结合律,前面我们在有理数的加法中已知道在有理数的范围内也适用,那么小学学过的乘法交换律、乘法结合律、分配律在有理数的范围内是否仍然适用呢?这就是我们这节课探究的问题.板书:有理数乘法的运算律和用计算器进行乘法运算. 二、师生互动,课堂探究 (一)提出问题,引发讨论 (1)5×(-6)=(-6)× 5(2)[3×(-4)]×(-5)=3×[(-4)×(-5)] 根据上式探究有理数乘法的运算律(二)导入知识,解释疑难 1、乘法交换律:ab =ba 乘法结合律:(ab )c =a (bc )2、分配律在有理数范围内是否仍然适用: 计算 5×[3+(-7)] 5×3+5×(-7) 而5×[3+(-7)] =5×3+5×(-7) 分配律:a (b+c )=ab+ac3、例题分析:例1:用两种方法计算 (41+61-121)×12解法1:(41+61-121)×12=(123+122-121)×12=-121×12=1解法2:(41+61-121)×12=41×12+61×12-121×12=3+2-6=1思考:比较上面两种解法,它们在运算顺序上有什么区别?解法2运用了什么运算律?哪种解法运算量小?例2:计算:19189×(-15)解:19189×(-15)=(10-191)×(-15)=10×(-15)-191×(-15)=-150+1915=-1941494、用计算器进行有理数乘法运算 计算:(-51)×(-14)按键顺序,显示:-51)×-14=714也可以只用计算器算乘积的绝对值,然后再加符号. 例3:写出算式:-5-6×2.5+(-9)的按键顺序. (三)、归纳总结,知识回顾1、本节课主要学习了有理数乘法的交换律、乘法结合律、分配律,在计算过程中,灵活运用运算律可使运算简便.2、用计算器进行有理数的加、减、乘运算,可以为学生掌握有理数的运算服务.(四)作业: 习题1.4 7(3)(4)(五)板书设计1.4.1 有理数的乘法(第2课时)有理数乘法的运算律: 1、乘法交换律:ab =ba乘法结合律:(ab )c =a (bc ) 2、分配律:a (b+c )=ab+ac例1:用两种方法计算 (41+61-121)×12解法1:(41+61-121)×12=(123+122-121)×12=-121×12=1解法2:(41+61-121)×12=41×12+61×12-121×12=3+2-6=1 用计算器进行乘法运算:第21课时1.4.1 有理数的乘法(练习课)教学目的:加强学生对已学乘法运算及运算律的掌握. 教学准备:小黑板、练习资料 教学过程: 练习题: 1、计算:(1)(-3)×(-5) (2)-21×(-31) (3)52×(-0.2)分析:有理数乘法的运算步骤:先确定积的符号,再确定积的绝对值. 2、计算:(1)(-5)×8×(-7)×(-0.25) (2)(-125)×158×21×(-32)(3)(-1)×21×(-20012000)×0×(-1)分析:先根据负因数的个数确定积的符号,然后把绝对值相乘作为积的绝对值;(3)中有一个因数是0,所以积为0.3、简便运算:(1)(-3)×(-57)×(-31)×74(2)(-41+31-125)×(-24) (3)4×(-3)+3×(-3)-2×(-3)+7×(-3) (4)(-1.2)×0.75×(-1.25)分析:运用乘法运算律使计算简便.(1)运用乘法交换律和结合律;(2)应用乘法的分配律;(3)逆用乘法的分配律.(4)先将小数化为分数,再约分相乘,可使计算简便.第22课时1.4.1 有理数的乘法(第4课时)一、创设情境,导入新课师:上节课的练习中有这样一道题:4×(-3)+3×(-3)-2×(-3)+7×(-3),我们如何进行简便计算的呢?生:将乘法分配律反过来利用.4×(-3)+3×(-3)-2×(-3)+7×(-3) =(4+3-2+7)×(-3) =12×(-3) =-36二、师生互动,课堂探究 (一)提出问题,引发讨论 类似地,(-23)×25-6×25+18×25+25,如何进行简便运算呢? (二)导入知识,解释疑难1、我们用字母χ表示任意一个有理数,2与χ的乘积记为2χ,3与χ的乘积记为3χ,则式子2χ+3χ是2χ与3χ的和,2χ与3χ叫做这个式子的项,2与3分别是这两项的系数.含有相同字母因数的这两项可以合并,将分配律反过来利用,可得2χ+3χ=(2+3)χ=5χ得出归纳:P41a χ+b χ=(a+b )χ2、课本例6计算:(1)-2y+0.5y ; (2)-3x+x-21x 分析:式子中含有相同字母因数,合并它们的方法是合并系数,再乘字母因数.练一练:P42 练习 计算: 3、考虑去括号的问题:先考虑一个正数与一个括号相乘,如5乘(x -2y =3),利用分配律,可以将式子中的括号去掉,得5(x -2y =3)=5x+5·(-2y )+5×3=5x-10y+15 再考虑一个负数与一个括号相乘,如-5乘(x -2y =3),利用分配律,可以将式子中的括号去掉,得-5(x -2y =3)=-5x+(-5)·(-2y )+(-5)×3=-5x+10y-15可发现:P43 去括号的规律. 例7 计算:(1)-3(2x-3) (2)3x-(2x-4)+(2x-1) 解:(1)-3(2x-3)=-6x+9 (2)3x-(2x-4)+(2x-1) =3x-2x+4+2x-1 =3x-2x+2x+4-1 =3x +3练一练:P43 练习 计算: (三)、归纳总结,知识回顾本节课主要学习利用乘法分配律进行去括号,合并含相同字母因数的项. (四)作业:P48 9 (五)板书设计1.4.1 有理数的乘法(第4课时)1、合并含有相同字母因数的项:ax+bx =(a+b )x例6计算:(1)-2y+0.5y ; (2)-3x+x-21x2、利用乘法分配律去括号: 例7 计算:(1)-3(2x-3) (2)3x-(2x-4)+(2x-1) 解:(1)-3(2x-3)=-6x+9 (2)原式=3x-2x+4+2x-1 =3x-2x+2x+4-1 =3x +31.4.2 有理数的除法(3课时)课程目标:一、知识与技能目标1、在理解有理数除法意义的基础上,掌握有理数除法法则,并初步了解有理数法则的合理性及倒数的意义.2、能够熟练地进行有理数的乘、除混合运算.3、会用计算器进行有理数的除法运算.4、会解有关除法运算的应用题. 二、过程与方法目标教材通过除法意义计算一个实例,得出法则可以利用乘法来进行的结论,得出除法与乘法类似的法则,最后通过几个例题的教学说明有理数除法的另一种形式,也指出有理数除法与分数互换的关系.三、情感态度与价值观目标1、通过有理数除法法则的导出及运用,让学生体会转化思想.2、通过学习有理数除法法则,感知数学具有普遍联系性,相互转化性.3、通过用计算器进行有理数除法运算,让学生体会类比的数学思想. 教学重点:学习有理数除法法则中学生对商的符号的确定. 教学难点:乘除混合运算中的运算顺序和运算技巧的应用. 设计思路:第1课时通过实例引入导出有理数除法法则,接着实际例题综合应用;第2课时主要在于加减、乘除的混合运算.课时安排:3课时教学准备:投影片、计算器 教学过程:第23课时1.4.2 有理数的除法(第1课时)一、创设情境,导入新课师:在小学,我们学过除法,如8÷4=8×41=2.那么8÷(-4)又会等于多少呢?这就是我们要研究的问题.板书:1.4.2 有理数的除法二、师生互动,课堂探究 (一)提出问题,引发讨论怎样计算8÷(-4)呢?要求一个数,使它与-4相乘得8. ∵(-2)×(-4)=8 ∴8÷(-4)=-2 ①又∵8×(-41)=-2 ②∴8÷(-4)=8×(-41) ③③式表明,一个数除以-4可以转化为乘-41来进行,即一个数除以-4,等于乘-4的倒数-41.(二)导入知识,解释疑难在尝试:(-8)÷(-4)=? (-8)×(-41)=?1、有理数除法法则:除以一个不等于0的数,等于乘这个数的倒数.a ÷b =a ·b1(b ≠0)提出问题:(1)两数相除,商的符号如何确定?商的绝对值呢? (2)0不能做除数,0作被除数时商是多少? 从有理数除法法则得出另一种说法:2、两数相除,同号得正,异号得负,并把绝对值相除. 0除以如何一个不等于0的数,都得0.说明:两数相除,在能整除的情况下,可用法则2,在确定符号后往往采用直接除;在不能整除的情况下,特别是当除数是分数时,可用法则1,把除法转化为乘法比较方便.3、例题分析:例1:计算:(1)(-36)÷9 (2)(-2512)÷(-53)解:(1)用法则2 (2)用法则1 例2:化简下列分数:(1)312 (2)1245--解:(1)312- =(-12)÷3=-4 (2)1245--=(-45)÷(-12)=415例3:计算:(1)(-75125)÷(-5) (2)-2.5÷85×(-41)解:(1)利用乘法分配律 原式=75125×51=125×51+75×51=25+71=7125 (2)原式=25×58×41=1例4:计算(1)(-29)÷3×31 (2)(-43)×(-211)÷(-412)(3)-6÷(-0.25)×1411 (4)(-3)÷[(-52)÷(-41)]解:(1)原式=-29×31×31=-929(2)原式=-43×23×49=-21(三)、归纳总结,知识回顾 1、除法的两种法则的恰当应用.2、乘除混合运算往往先将除法化为乘法,在确定积的符号,最后求出结果. (四)作业:P48 7 (4)(5)(6) (五)板书设计1.4.2 有理数的除法(第1课时)1、有理数除法法则:除以一个不等于0的数,等于乘这个数的倒数.a ÷b =a ·b1(b ≠0)2、两数相除,同号得正,异号得负,并把绝对值相除. 0除以如何一个不等于0的数,都得0.例1:计算:(1)(-36)÷9 (2)(-2512)÷(-53)解:(1)用法则2 (2)用法则1 例2:化简下列分数:(1)312- (2)1245--第24课时1.4.2 有理数的除法(第2课时)一、创设情境,导入新课师:前面学习了有理数的加减、乘除运算,通常情况下,是将减法转化为加法,将除法转化为乘法,然后进行计算.那么混合运算的顺序是怎样的呢?板书:有理数的加减乘除混合运算二、师生互动,课堂探究 (一)提出问题,引发讨论先乘除后加减,如果有括号,先算括号里面的.(运算顺序) (二)导入知识,解释疑难 例1:计算(1)(-7624)÷(-6)-3.5÷87×(-43)(2)1÷(-1)+0÷(-5.6)-(-4.2)×(-1)例2:一天,小江和小利利用温差测量山峰的高度,小江在山顶测得温度是-1℃,小利在山脚测得是5℃.已知该地区高度每增加100米,气温大约降低0.8℃,这个山峰的高度大约是多少米?解:依题意得[5-(-1)]÷0.8×100=750(米) 答:(略)例3:P45 例10例4:用计算器计算(-0.056)÷(-1.4) (三)、归纳总结,知识回顾 1、有理数加减乘除混合运算. 2、有关有理数运算的应用题. 3、使用计算器的方法. (四)作业:(1)-1+5÷(-41)×(-4) (2)-8+4÷(-2)(3)(-7)×(-5)-90÷(-15) (五)板书设计1.4.2 有理数的除法(第2课时)有理数的加减乘除混合运算:先乘除后加减,如果有括号,先算括号里面的.(运算顺序) 例1:计算(1)(-7624)÷(-6)-3.5÷87×(-43)(2)1÷(-1)+0÷(-5.6)-(-4.2)×(-1)例2:一天,小江和小利利用温差测量山峰的高度,小江在山顶测得温度是-1℃,小利在山脚测得是5℃.已知该地区高度每增加100米,气温大约降低0.8℃,这个山峰的高度大约是多少米?解:依题意得[5-(-1)]÷0.8×100=750(米)答:(略)第25课时1.4.2 有理数的除法(练习课)教学目的:巩固有理数除法法则及加减乘除混合运算的方法.教学准备:小黑板,练习资料教学过程:教材内容剖析讲解点1:有理数除法的意义及法则.有理数除法法则:1、有理数除法法则:除以一个不等于0的数,等于乘这个数的倒数.a ÷b =a ·b 1(b ≠0) 2、两数相除,同号得正,异号得负,并把绝对值相除.0除以如何一个不等于0的数,都得0.练习1、计算:(1)(-40)÷8 (2)(+871)÷(-87) (3)(-0.25)÷83 (4)(-125)÷(-25)÷(-6) (5)(-49)÷(312)÷37÷(-3) 分析:一般在不能整除的情况下用第一个法则,如(2)(3)(4)(5);在能整除的情况下用第二个法则.注意小数可化为分数也可不化为分数,但带分数一定要化成假分数,在进行计算.讲解点2:有理数的乘除混合运算.注意:①符号的确定;②运算顺序自左向右依次计算.练习2、计算:(1)(-65)÷(-32)×(-23) (2)(-53)×(-213)÷(-411)÷3(3)(-11936)÷9 分析:按照运算顺序,自左向右.乘除混合运算时,注意乘法不动,将除法转化为乘法.讲解点3:有括号的先算括号内的,无括号先乘除后加减.练习3:计算:(1)3÷2×(-21) (2)1.6+5.9-25.8+12.8-7.4 (3)23×(-5)-(-3)÷1283 (4)511×(31-21)×113÷45 (5)-3-[-5+(1-0.2×53)÷(-2)] (6)(97-65+183)×18-1.45×6+3.95×6 解:(1)3÷2×(-21)=-(3×21×21)=-43 (2)1.6+5.9-25.8+12.8-7.4=(1.6+5.9-7.4)+(-25.8+12.8)=0.1-13=-12.9(3)23×(-5)-(-3)÷1283=-115+3×3128=-115+128=13 (4)511×(31-21)×113÷45=511×(-61)×113×54=-252 (5)-3-[-5+(1-0.2×53)÷(-2)] (6)(97-65+183)×18-1.45×6+3.95×6=(97×18-65×18+183×18)+6×(-1.45+3.95)=(14-15+3)+6×2.5=2+15=17。
1.4 有理数的乘除法教案一、教学目标1.理解有理数的乘法和除法定义;2.掌握有理数的乘法和除法运算规则;3.能够运用有理数的乘除法解决实际问题。
二、教学内容1.有理数的乘法定义和性质;2.有理数的除法定义和性质;3.有理数乘法和除法的运算规则;4.有理数乘除法的综合应用。
三、教学步骤步骤一:引入1.引导学生回顾前面学过的有理数的加法和减法知识,并与乘法和除法进行对比。
步骤二:有理数的乘法定义和性质1.介绍有理数的乘法定义:有理数a和a相乘得到的数仍为有理数,记作a×a。
2.解释乘法的交换律、结合律和分配律,并通过例题让学生理解和运用。
步骤三:有理数的除法定义和性质1.介绍有理数的除法定义:有理数a除以非零有理数a得到的数仍为有理数,记作a÷a。
2.解释除法的相关性质,并通过例题让学生理解和运用。
步骤四:有理数乘法和除法的运算规则1.通过练习题和实例,让学生掌握有理数的乘法和除法运算规则。
步骤五:有理数乘除法的综合应用1.给学生提供一些实际问题,让他们运用所学的有理数乘除法知识解决问题。
2.通过讨论和分享,培养学生的解决问题的能力和思维方式。
四、教学重点1.有理数的乘法和除法的定义;2.有理数乘法和除法的运算规则。
五、教学拓展1.鼓励学生在日常生活中发现并解决有理数乘除法相关的实际问题;2.提供更多有理数运算的练习题,提高学生的运算能力。
六、教学评价1.课堂练习情况观察;2.学生对乘除法知识的掌握情况评估;3.学生解决实际问题的能力评价。
七、教学资源1.课本:人教版数学七年级上册;2.练习题。
八、教学延伸1.学生可使用计算器进行乘除法运算的练习;2.推荐一些在线数学学习网站,供学生自主学习和拓展知识。
以上是关于1.4有理数的乘除法的教案,希望能对您有所帮助。
有理数的乘除法教案一、教学目标1、知识目标:(1)掌握有理数的乘法和除法运算法则;(2)了解有理数的乘法和除法运算在实际生活中的应用。
2、能力目标:(1)能够熟练地进行有理数的乘法和除法运算;(2)能够运用所学的有理数乘除法知识解决实际问题。
二、教学重难点1、整数与分数的相乘相除性质;2、有理数乘除法运算应用问题的解决方法。
三、教学方法1、讲述法;2、举例法;3、讨论法;4、演示法。
四、教学过程1、教师在黑板上给出幻灯片,简单讲解有理数乘除法的基本知识。
2、举例进行操作,以小数乘法为例进行讲解。
3. 小学生分组两人进行练习,有老师巡回指导。
4. 大肆回答有理数乘法和除法的基本问题。
5. 提高高学校生的能力并试图解决一些问题。
6. 整合前几个步骤的内容进行结论。
7. 带领学生进行一些习题与实践运用。
五、教学模式采用传统的、开放式的教学模式,采用多种教学方法,充分调动师生共同建构新知识的积极性。
六、教学工具1. 电脑;2. 电子白板;3. 教学参考书。
七、教学评价1、完成教学任务的情况,并达到目标要求的情况;2、学生掌握情况的追踪评价;3、教学过程中,让学生参与到课堂教学中去,及时发现学生存在的问题,及时进行纠正和拾遗补漏。
八、教学思考有理数是我们数学学习中不可缺少的重要基础,有理数的乘法和除法运算是数学中的基本运算,掌握有理数的乘法和除法运算是我们学习其他知识的重要前提。
在有理数乘除法的教学中,教师应该采取多种教学方法,使学生能够理解和掌握有理数乘除法的基本规则和应用,进一步提高他们的数学能力。
《有理数的乘除法》教案一、教学目标:1. 让学生掌握有理数的乘法法则,包括同号相乘、异号相乘以及零的乘法。
2. 让学生理解有理数的除法实质,即乘法的逆运算,并能熟练运用除法法则进行计算。
3. 培养学生解决实际问题的能力,能够运用有理数的乘除法解决生活中的问题。
二、教学内容:1. 有理数的乘法法则:同号相乘、异号相乘、零的乘法。
2. 有理数的除法实质:乘法的逆运算。
3. 除法法则的应用:熟练运用除法法则进行计算。
三、教学重点与难点:1. 教学重点:有理数的乘法法则,除法法则的应用。
2. 教学难点:理解有理数乘除法的实质,熟练运用除法法则进行计算。
四、教学方法:1. 采用讲授法,讲解有理数的乘除法法则及应用。
2. 利用例题演示,让学生通过观察、分析、归纳,理解有理数乘除法的实质。
3. 开展小组讨论,让学生互相交流学习心得,提高解题能力。
4. 布置适量练习题,巩固所学知识。
五、教学过程:1. 导入新课:通过复习加减法,引出乘除法,激发学生的学习兴趣。
2. 讲解有理数的乘法法则,通过例题演示,让学生理解并掌握同号相乘、异号相乘以及零的乘法。
3. 讲解有理数的除法实质,引导学生理解除法是乘法的逆运算。
4. 教授除法法则,让学生熟练运用除法法则进行计算。
5. 开展小组讨论,让学生互相交流学习心得,提高解题能力。
6. 布置课堂练习题,巩固所学知识。
7. 总结本节课所学内容,强调重点、难点。
8. 课后作业:布置适量练习题,让学生巩固所学知识。
9. 课后反思:根据学生课堂表现和练习情况,对教学方法进行调整,以提高教学效果。
10. 下一节课内容预告:将有理数的乘除法应用于实际问题解决。
六、教学评价:1. 评价学生对有理数乘法法则的掌握情况,通过课堂提问、练习题等方式进行。
2. 评价学生对有理数除法实质的理解,以及运用除法法则进行计算的能力。
3. 结合学生课堂表现、练习情况,对教学效果进行评价。
七、教学反思:1. 针对学生在学习过程中遇到的问题,分析原因,调整教学方法。
1.4有理数的乘除法——有理数的乘法一、教学目标1、 进一步熟悉有理数的乘法运算并能用乘法运算律简化运算。
2、 让学生通过观察、思考、探究、讨论,主动地学习3、 培养学生语言表达能力以及与他人沟通、交往能力,使其逐渐热爱数学这门课程。
二、重点与难点1、教学重点:用运算律简化运算2、教学难点:正确运用运算律,使运算简化。
三、教学流程1、 复习引入(1)、 在小学我们学过一些乘法的交换律、乘法的结合律以及分配律,谁能给大家介绍一下?(2)、小学学习过的有关乘法的运算律,对所有的有理数都还适用吗?2、探求验证计算下列各题,并比较它们的结果。
第一组(1)、(-7 )× 8 =8 ×(-7 )= ___________(2)、[(-4-)×(-6)]×5=____________(-4-)×[ (-6)×5]=____________(3)、(-2)×[(-3)+(23-)]=____________ (-2)×(-3)+(-2)(23-)=________________ 第二组(1)、(35-)×(109-)=_______________ (109-)×(35-)=_______________ (2)、[21×(37-)]×(-4)=_____________ 21×[(37-)]×(-4)]=_____________(3)、5×[(-7)+( 54-)]=__________________ 5×(-7)+5×( 54-)]=______________ 让学生自由选择其中的一组问题进行计算,然后在组内交流,验证答案的正确性。
3、交流合作,形成结论提问:以上各组题的运算结果有什么特点? 各组题的运算形式,与乘法的运算律的结构特征对比,你发现了什么?(通过讨论、交流,让学生用自己的语言来描述三个运算律并引导学生用字母来表示三个运算律)4、应用新知,体验成功例1、用两种方法计算(41+61-21)×12 通过本例让学生更深刻地体验到运用运算律可简化运算例2、计算下列各题1)、6×(-10)×0.1×31 2)、711615×(-8) 3)、(+371)×(371-731)×227×2221 通过本例让学生学会选用运算律来简化运算。
人教版七年级上册1.4有理数的乘除法课程设计一、课程目标1.理解有理数的乘法和除法的含义及运算法则。
2.熟练掌握有理数的乘法和除法的计算步骤。
3.能够运用乘法和除法解决生活实际问题。
4.意识到有理数运算存在的应用意义。
二、教学重难点1.教学重点:有理数的乘法和除法的计算方法。
2.教学难点:解决生活实际问题时的思维转换。
三、教学内容及教学方法1. 有理数的乘法教学内容:1.有理数的乘法表达式;2.有理数的乘法运算法则;3.有理数乘以正数的运算法则;4.有理数乘以负数的运算法则。
教学方法:讲解和练习相结合的方式。
2. 有理数的除法教学内容:1.有理数的除法表达式;2.有理数的除法运算法则;3.正数除以有理数和有理数除以正数的运算法则;4.负数除以有理数和有理数除以负数的运算法则。
教学方法:讲解和练习相结合的方式。
3. 数学模型与实际应用教学内容:1.数学模型的概念;2.数学模型在有理数乘除法中的应用;3.将数学模型应用到实际问题中;4.解决生活实际问题时的思路转换。
教学方法:讲解和案例分析相结合的方式。
四、教学过程时间内容方法课堂导入引入数学模型的概念,激发学生学习的兴趣10分钟有理数的乘法讲解乘法表达式、运算法则及乘法练习20分钟有理数的除法讲解除法表达式、运算法则及除法练习20分钟时间内容方法30分钟数学模型与实际应用分析有理数乘除法的实际应用,并解决相应的生活问题10分钟课堂小结总结课堂内容及要点,强调注意事项五、教学评估通过以下形式对学生进行教学评估:•练习题评估:教师出若干练习题,检测学生对于乘除法的掌握情况;•作业评估:布置符合实际应用的习题,检测学生运用乘除法解决生活实际问题的能力;•课堂参与评估:观察学生课堂参与情况,对积极参与的学生给予表扬。
六、教材选择本课程以人教版七年级上册有理数第一章第四节的有理数的乘法和除法为教学依据。
七、教学手段课件、白板,其他教学辅助工具视具体情况而定。
有理数的乘法
教学目标
1.知识目标:掌握有理数的乘法法则进行熟练的运算并联系实际解决简单的的实际问题,能利用乘法运算律简化运算.
2.能力目标:培养学生的发展、观察、归纳、猜想、验证等能力.
3.情感态度:经历探索有理数乘法法则及运算律的过程.
重点:有理数的乘法法则.
难点:有理数的乘法法则的理解及应用.
学情分析:本节课特别注重过程教学,有利于培养学生的分析归纳能力。
教学效果令人比较满意学生从“小虫爬行“的例子中发现有理数乘法区别,自主归纳出法则。
对有理数相乘法则的探究过程中,运用了分类的数学思想和方法,体现了数学建摸的过程和数学与生活的密切关系,兼顾思想、方法和趣味。
例题,练习以及思考探究题目的选择,兼顾了不同层次学生的思维水平,学生在讨论发言中的各种灵活方式成为课堂上的亮点。
教学准备
本节课采用多媒体教学,能引起学生的兴趣,产生“要学的强烈愿望.教学设计的思路清晰、符合教学规律,学生在乐趣中学会了有理数的乘法.
本节课采用这种教学设计对学生理解和消化当堂课的知识点,起到了良好的教学效果.通过观察、实验、比较、概括,对提高学生分析问题和解决问题的能力有很大的突破.促进了学生自主学习的良好习惯和不断探究的思维空间.
运用现代化的教学手段,把图形的“静”变“动”,增强了直观性,初步培养想象能力,同时提高课堂教学的效率.这里,数形结合这一重要数学思想方法的应用起到变抽象为直观和化难为易的作用,对今后的数学学习有深远的影响.
教学过程:
一.情景导入、提出问题.
问题1:水库水位的变化
甲水库的水位每天升高3cm ,乙水库的水位每天下降 3cm,4 天后,甲、乙水库水位的总变化,量是多少?如果用正号表示水位的上升、用负号表示水位的下降。
那么,4 天后,如果用正号表示水位的上升、用负号表示水位的下降。
那么,4 天后,
乙水库水位的总变化量是(-3)+(-3)+(-3)+(-3) = (-3)×4 = -12 (cm) ;
甲水库水位的总变化量是3+3+3+3 = 3×4 = 12 (cm) ;(课件演示)
3×4是小学学过的乘法,(-3)×4如何计算呢?这就是将要学习的有理数的乘法.
二.分析探索、问题解决
1
比较3×2=6,(-3)×2=-6这两个算式,有什么发现?
把一个因数换成它的相反数,所得的积是原来的积的相反数.
观察算式找(−3)×4 = −12
(−3)×3 =
规律
同学们觉得两个有理数相乘的结果有没有规律呢?你能通过思考发它们的规律吗?
学生活动:同桌之间,前后桌之间互相讨论.(学生不可能很圆满的把法则总结全面,此时应尽可能的让学生互相补充,相互修正让学生自己来完成.
教师引导学生思考5×0,-5×0,0×(-2)的结果是多少?
三.知识理顺、得出结论.
教师出示有理数乘法法则(板书):
两数相乘,同号得正,异号得负,并把绝对值相乘;任何数与零相乘,都得零.
师:在进行有理数乘法运算时,要注意两个方面的问题:一.确定积的符号,二.积的绝对值是两个因数绝对值的积.
教法说明:教师提出尝试性问题,引导学生思考----有理数乘法的运算规律,学生通过特殊问题归纳出一般性的结论,既训练学生归纳总结能力和口头表达能力,又使学生法则记得牢,领会的深刻.
四.应用反思、拓展创新
练习:
1.确定下列两数的积的符号:
(1)5×(-3);(2)(-4)×6 ;
(3)(-7)×(-9);(4)0.5×0.7 .
2.计算:
(1)6×(-9);(2)(-6)×(-9);
(3)(-6)×9 ;(4) 6×(-9);
(5)(-6)×0 ;(6) 0×(-6).
教法说明:有理数的乘法,关键是确定积的符号.为此,先编排1题进行练习,2题的目的是巩固有理数的乘法法则.
例1 计算:
(1)(-1/2)×1/4;
(2)(-0.3)×10/7;
(3)3/2×(-2/3).
教法说明师生共同完成例题,教师板书再做示范,从总培养学生良好的学习习惯和严2
谨的作风.
同学们自己编两道有理数乘法的题目,同桌交换解答.
教法说明自编题活跃了课堂气氛,以便掌握学生获取知识的反馈信息,对存在问题及时补救.此外,通过自编题,来培养学生的发展思维能力,以及独立思考勇于创新的良好习惯.
五、回顾交流、纳入体系学生交流总结以后,教师提出以下问题:
想一想:
(1)三个或三个以上不等于零的有理数相乘时,积的符号如何决定?
(2)在有理数运算中,乘法的交换律、结合率以及分配率还成立吗?
做一做:课本30页(随堂练习).
六、布置作业:课本30页习题1
3。