【精选七套中考模拟卷】2019中考二轮专题复习《三角形中线等分面积问题的教学思考》
- 格式:doc
- 大小:2.33 MB
- 文档页数:61
专题复习(六) 几何综合题1.(2016·德州)我们给出如下定义:顺次连接任意一个四边形各边中点所得的四边形叫做中点四边形.(1)如图1、四边形ABCD 中、点E 、F 、G 、H 分别为边AB 、BC 、CD 、DA 的中点.求证:中点四边形EFGH 是平行四边形;(2)如图2、点P 是四边形ABCD 内一点、且满足PA =PB 、PC =PD 、∠APB =∠CPD.点E 、F 、G 、H 分别为边AB 、BC 、CD 、DA 的中点.猜想中点四边形EFGH 的形状、并证明你的猜想;(3)若改变(2)中的条件、使∠APB=∠CPD=90°、其他条件不变、直接写出中点四边形EFGH 的形状.(不必证明)图1 图2解:(1)证明:连接BD.∵E 、H 分别是AB 、AD 的中点、 ∴EH =12BD 、EH ∥BD.∵F 、G 分别是BC 、CD 的中点、 ∴FG =12BD 、FG ∥BD.∴EH =FG 、EH ∥FG.∴中点四边形EFGH 是平行四边形. (2)中点四边形EFGH 是菱形. 证明:连接AC 、BD.∵∠APB =∠CPD、∴∠APB +∠AP D =∠CPD+∠APD、即∠BPD=∠APC. 又∵PA=PB 、PC =PD 、∴△APC ≌△BPD(SAS ).∴AC=BD.∵点E 、F 、G 分别为边AB 、BC 、CD 的中点、 ∴EF =12AC 、FG =12BD.∴EF=FG.又∵四边形EFGH 是平行四边形、∴中点四边形EFGH 是菱形.图3(3)当∠APB=∠CPD=90°时、如图3、AC 与BD 交于点O 、BD 与EF 、AP 分别交于点M 、Q 、中点四边形EFGH 是正方形.理由如下:由(2)知:△APC≌△BPD、∴∠PAC =∠PBD. 又∵∠AQO=∠BQP、∴∠AOQ =∠APB =90°. 又∵EF∥AC、∴∠OMF =∠AOQ=90°. 又∵EH∥BD、∴∠HEF =∠OMF=90°. 又∵四边形EFGH 是菱形、∴中点四边形EFGH 是正方形.2.(2016·菏泽)如图、△ACB 和△DCE 均为等腰三角形、点A 、D 、E 在同一直线上、连接BE. (1)如图1、若∠CAB=∠CBA=∠CDE=∠CED=50°. ①求证:AD =BE ; ②求∠AEB 的度数;(2)如图2、若∠ACB=∠DCE=120°、CM 为△DCE 中DE 边上的高、BN 为△ABE 中AE 边上的高、试证明:AE =23CM +233BN.图1 图2解:(1)①证明:∵∠CAB=∠CBA=∠CDE=∠CED、∴AC =BC 、CD =CE. ∵∠CAB =∠CBA=∠CDE=∠CED、 ∴∠ACB =∠DCE.∴∠ACD=∠BCE. ∴△ACD ≌△BCE(SAS ).∴AD=BE. ②由①得△ACD≌△BCE、∴∠ADC =∠BEC=180°-∠CDE=130°.∴∠AEB =∠BEC-∠CED=130°-50°=80°.(2)证明:在等腰△DCE 中、∵CD =CE 、∠DCE =120°、CM ⊥DE 、 ∴∠DCM =12∠DCE=60°、DM =EM.在Rt △CDM 中、DM =CM·tan ∠DCM =CM·tan 60°=3CM 、∴DE =23CM. 由(1)、得∠ADC =∠BEC=150°、AD =BE 、 ∴∠AEB =∠BEC-∠CED=120°. ∴∠BEN =60°. 在Rt △BEN 中、BE =BN sin 60°=233BN.∴AD =BE =233BN.又∵AE=DE +AD 、∴AE =23CM +233BN.3.(2016·东营)如图1、△ABC 是等腰直角三角形、∠BAC =90°、AB =AC 、四边形ADEF 是正方形、点B 、C 分别在边AD 、AF 上、此时BD =CF 、BD ⊥CF 成立.(1)当△ABC 绕点A 逆时针旋转θ(0°<θ<90°)时、如图2、BD =CF 成立吗?若成立、请证明;若不成立、请说明理由.(2)当△ABC 绕点A 逆时针旋转45°时、如图3、延长DB 交CF 于点H 、交AF 于点N. ①求证:BD⊥CF;②当AB =2、AD =32时、求线段DH 的长.图1 图2 图3解:(1)BD =CF 成立.证明:∵AB=AC 、∠BAD =∠CAF=θ、AD =AF 、 ∴△ABD ≌△ACF(SAS ).∴BD =CF.(2)①证明:由(1)得、△ABD ≌△ACF 、 ∴∠HFN =∠ADN. 又∵∠HNF=∠AND、 ∴∠NHF =∠NAD=90°. ∴HD ⊥HF 、即BD⊥CF.②连接DF 、延长AB 交DF 于点M.在△MAD 中、∵∠MAD =∠MDA=45°、 ∴∠BMD =90°.∵AD =32、四边形ADEF 是正方形、 ∴MA =MD =322=3、FD =6.∴MB =3-2=1、DB =12+32=10. 在Rt △BMD 和Rt △FHD 中、 ∵∠MDB =∠HDF、 ∴△BMD ∽△FHD. ∴MD HD =BD FD 、即3HD =106.∴DH=9105.4.(2016·宁夏)在矩形ABCD 中、AB =3、AD =4、动点Q 从点A 出发、以每秒1个单位的速度、沿AB 向点B 移动;同时点P 从点B 出发、仍以每秒1个单位的速度、沿BC 向点C 移动、连接QP 、QD 、PD.若两个点同时运动的时间为x 秒(0<x≤3)、解答下列问题:(1)设△QPD 的面积为S 、用含x 的函数关系式表示S ;当x 为何值时、S 有最大值?并求出最小值; (2)是否存在x 的值、使得QP⊥DP?试说明理由.解:(1)∵四边形ABCD 为矩形、∴BC =AD =4、CD =AB =3. 当运动x 秒时、则AQ =x 、BP =x 、∴BQ =AB -AQ =3-x 、CP =BC -BP =4-x. ∴S △ADQ =12AD ·AQ=12×4x=2x 、S △BPQ =12BQ·BP=12(3-x)x =32x -12x 2、S △PCD =12PC·CD=12·(4-x)×3=6-32x.又S 矩形ABCD =AB·BC=3×4=12、∴S =S 矩形ABCD -S △ADQ -S △BPQ -S △PCD =12-2x -(32x -12x 2)-(6-32x)=12x 2-2x +6=12(x -2)2+4、即S =12(x -2)2+4.∴S 为开口向上的二次函数、且对称轴为直线x =2.∴当0<x≤2时、S 随x 的增大而减小; 当2<x≤3时、S 随x 的增大而增大、 又当x =0时、S =6、当S =3时、S =92.但x 的范围内取不到x =0、∴S 不存在最大值. 当x =2时、S 有最小值、最小值为4.(2)存在、理由:由(1)可知BQ =3-x 、BP =x 、CP =4-x. 当QP⊥DP 时、则∠BPQ+∠DPC=∠DPC+∠PDC、 ∴∠BPQ =∠PDC.又∵∠B=∠C、 ∴△BPQ ∽△CDP. ∴BQ PC =BP CD 、即3-x 4-x =x 3、解得x =7+132(舍去)或x =7-132. ∴当x =7-132时、QP ⊥DP.5.(2016·泰安)(1)已知:△ABC 是等腰三角形、其底边是BC 、点D 在线段AB 上、E 是直线BC 上一点、且∠DEC =∠DCE、若∠A=60°(如图1)、求证:EB =AD ;(2)若将(1)中的“点D 在线段AB 上”改为“点D 在线段AB 的延长线上”、其他条件不变(如图2)、(1)的结论是否成立、并说明理由;(3)若将(1)中的“若∠A=60°”改为“∠A=90°”、其他条件不变、则EBAD 的值是多少?(直接写出结论、不要求写解答过程)图1 图2解:(1)证明:过D 点作BC 的平行线交AC 于点F. ∵△ABC 是等腰三角形、∠A =60°、 ∴△ABC 是等边三角形.∴∠ABC=60°. ∵DF ∥BC 、∴∠ADF =∠ABC=60°. ∴△ADF 是等边三角形. ∴AD =DF 、∠AFD =60°.∴∠DFC =180°-60°=120°.∵∠DBE =180°-60°=120°、∴∠DFC =∠DBE. 又∵∠FDC=∠DCE、∠DCE =∠DEC、 ∴∠FDC =∠DEC、ED =CD. ∴△DBE ≌△CFD(AAS ). ∴EB =DF.∴EB=AD.(2)EB =AD 成立.理由如下:过D 点作BC 的平行线交AC 的延长线于点F. 同(1)可证△ADF 是等边三角形、 ∴AD =DF 、∠AFD =60°.∵∠DBE =∠ABC=60°、∴∠DBE =∠AFD. ∵∠FDC =∠D CE 、∠DCE =∠DEC、 ∴∠FDC =∠DEC、ED =CD. ∴△DBE ≌△CFD(AAS ). ∴EB =DF.∴EB=AD. (3)EBAD= 2.理由如下: 如图3、过D 点作BC 的平行线交AC 于点G.图3∵△ABC 是等腰三角形、∠A =90°、 ∴∠ABC =∠ACB=45°、∴∠DBE =180°-45°=135°. ∵DG ∥BC 、∴∠GDC =∠DCE、∠DGC =180°-45°=135°. ∴∠DBE =∠DGC. ∵∠DCE =∠DEC、∴ED =CD 、∠DEC =∠GDC.∴△DBE ≌△CGD(AAS ).∴BE=GD. ∵∠ADG =∠ABC=45°、∠A =90°、 ∴△ADG 是等腰直角三角形. ∴DG =2AD.∴BE=2AD.∴EBAD = 2.6.(2016·烟台)【探究证明】(1)在矩形ABCD 中、EF ⊥GH 、EF 分别交AB 、CD 于点E 、F 、GH 分别交AD 、BC 于点G 、H.求证:EF GH =ADAB ;【结论应用】(2)如图2、在满足(1)的条件下、又AM⊥BN、点M 、N 分别在边BC 、CD 上.若EF GH =1115、则BNAM 的值为________;【联系拓展】(3)如图3、四边形ABCD 中、∠ABC =90°、AB =AD =10、BC =CD =5、AM ⊥DN 、点M 、N 分别在边BC 、AB 上、求DNAM 的值.图1 图2 图3解:(1)证明:过点A 作AP∥EF、交CD 于点P 、过点B 作BQ∥GH、交AD 于点Q. ∵四边形ABCD 是矩形、∴AB ∥DC 、AD ∥BC.∴四边形AEFP 、四边形BHGQ 都是平行四边形.∴AP=EF 、GH =BQ. 又∵GH⊥EF、∴AP ⊥BQ.∴∠QAP +∠AQB=90°.∵四边形ABCD 是矩形、∴∠DAB =∠D=90°. ∴∠DAP +∠DPA=90°.∴∠AQB =∠DPA. ∴△PDA ∽△QAB.∴AP BQ =AD AB .∴EF GH =ADAB .(2)∵EF⊥GH、AM ⊥BN 、∴由(1)中的结论可得EF GH =AD AB 、BN AM =ADAB、∴BN AM =EF GH =1115.故答案为1115. (3)连接AC 、过点D 作AB 的平行线交BC 的延长线于点E 、作AF⊥AB 交直线DE 于点F. ∵∠BAF =∠B=∠E=90°、 ∴四边形ABEF 是矩形.易证△ADC≌△ABC、∴∠ADC =∠ABC=90°. ∴∠FDA +∠EDC=90°.又∵∠EDC+∠ECD=90°、∴∠FDA =∠ECD. 又∵∠E=∠F、 ∴△ADF ∽△DCE. ∴DE AF =DC AD =510=12. 设DE =x 、则AF =2x 、DF =10-x.在Rt △ADF 中、AF 2+DF 2=AD 2、即(2x)2+(10-x)2=100、解得x 1=4、x 2=0(舍去). ∴AF =2x =8.∴DN AM =AF AB =810=45.7.(2016·武汉)在△ABC 中、P 为边AB 上一点.(1)如图1、若∠ACP=∠B、求证:AC 2=AP·AB; (2)若M 为CP 的中点、AC =2.①如图2、若∠PBM=∠ACP、AB =3、求BP 的长;②如图3、若∠ABC=45°、∠A =∠BMP=60°、直接写出BP 的长.图1 图2 图3解:(1)证明:∵∠ACP=∠B、∠CAP =∠BAC、 ∴△ACP ∽△ABC. ∴AC AB =AP AC、即AC 2=AP·AB. (2)①作CQ∥BM 交AB 的延长线于点Q 、则∠PBM=∠Q. ∵∠PBM =∠ACP、∴∠ACP =∠Q. 又∠PAC=∠CAQ、∴△APC ∽△ACQ. ∴AC AQ =AP AC、即AC 2=AP·AQ. 又∵M 为PC 的中点、BM ∥CQ 、∴设BP =x 、则BQ =x.∴AP=3-x 、AQ =3+x. ∴22=(3-x)(3+x)、解得x 1=5、x 2=-5(不合题意、舍去). ∴BP = 5. ②BP =7-1.作CQ⊥AB 于点Q 、作CP 0=CP 交AB 于点P 0. ∵AC =2、∴AQ =1、CQ =BQ = 3.设AP 0=x 、则P 0Q =PQ =1-x 、BP =3-1+x 、 ∵∠BPM =∠CP 0A 、∠BMP =∠CAP 0、 ∴△AP 0C ∽△MPB 、∴AP 0MP =P 0CBP.解得x =7-3或x =-7-3(舍去).∴BP =3-1+7-3=7-1.8.(2016·岳阳)数学活动——旋转变换(1)如图1、在△ABC 中、∠ABC =130°、将△ABC 绕点C 逆时针旋转50°得到△A′B′C、连接B B′.求∠A′B′B 的大小; (2)如图2、在△ABC 中、∠ABC =150°、AB =3、BC =5、将△ABC 绕点C 逆时针旋转60°得到△A ′B ′C 、连接BB′.以A′为圆心、A ′B ′长为半径作圆.①猜想:直线BB′与⊙A′的位置关系、并证明你的结论; ②连接A′B、求线段A′B 的长度;(3)如图3、在△ABC 中、∠ABC =α(90°<α<180°)、AB =m 、BC =n 、将△ABC 绕点C 逆时针旋转2β角度(0°<2β<180°)得到△A′B′C、连接A′B 和BB′.以A′为圆心、A ′B ′长为半径作圆.问:角α与角β满足什么条件时、直线BB′与⊙A′相切、请说明理由.并求此条件下线段A′B 的长度.(结果用角α或角β的三角函数及字母m 、n 所组成的式子表示)图1 图2 图3解:(1)由旋转得:∠A′B′C=∠ABC=130°、CB =CB′、∠BCB ′=50°、 ∴∠BB ′C =12(180°-∠BCB′)=65°.∴∠A ′B ′B =∠A′B′C-∠BB′C=130°-65°=65°. (2)①猜想:直线BB′与⊙A′相切.证明:由旋转得:∠A′B′C=∠ABC=150°、CB =CB′、∠BCB ′=60°、 ∴∠BB ′C =12(180°-∠BCB′)=60°.∴∠A ′B ′B =∠A′B′C-∠BB′C=150°-60°=90°、即B′B⊥A′B′. 又A′B′为半径、∴直线BB′与⊙A′相切.②由旋转得:A′B′=AB =3、B ′C =BC =5、∠BCB ′=60°、 ∴△BCB ′为等边三角形.∴BB′=BC =5.在Rt △A ′B ′B 中、A ′B =(A′B′)2+(BB′)2=32+52=34. (3)满足的条件:α+β=180°.理由:在△BB′C 中、∠BB ′C =180°-2β2=90°-β、∴∠A ′B ′B =α-∠BB′C=α-(90°-β)=α+β-90°.∵α+β=180°、∴∠A ′B ′B =α+β-90°=180°-90°=90°、即B′B⊥A′B′. ∴直线BB′与⊙A′相切. 过点C 作CD⊥BB′于点D. ∴∠B ′CD =12∠BCB′=β.在Rt △B ′CD 中、B ′D =B′C·s in β=BC·sin β=n sin β、∴BB ′=2B′D=2n sin β. 由α+β=180°得到△A′B′B 为直角三角形、9.(2016·宜昌)在△ABC 中、AB =6、AC =8、BC =10.D 是△ABC 内部或BC 边上的一个动点(与B 、C 不重合).以D 为顶点作△DEF、使△DEF∽△ABC(相似比k>1)、EF ∥BC. (1)求∠D 的度数;(2)若两三角形重叠部分的形状始终是四边形AGDH.①连接GH 、AD 、当GH⊥AD 时、请判断四边形AGDH 的形状、并证明;②当四边形AGDH 的面积最大时、过A 作AP⊥EF 于P 、且AP =AD 、求k 的值.解:(1)∵AB 2+AC 2=62+82=102=BC 2、 ∴∠BAC =90°.又∵△DEF∽△ABC、∴∠D =∠BAC =90°. (2)①四边形AGDH 是正方形.证明:延长ED 、FD 分别交BC 于点M 、N. ∵△DEF ∽△ABC 、∴∠E =∠B. 又∵EF∥BC、∴∠E =∠EMC.∴∠B=∠EMC.∴ED∥BA. 同理FD∥AC.∴四边形AGDH 是平行四边形.又∵∠FDE=90°、∴四边形AGDH 是矩形. 又∵AD⊥GH、∴四边形AGDH 是正方形.②当D 点在△ABC 内部时、四边形AGDH 的面积不可能最大.其理由是:如图1、点D 在内部时、延长GD 到D′、过D′作MD′⊥AC 于点M 、则四边形GD′MA 的面积大于矩形AGDH 的面积、∴当点D 在△ABC 内部时、四边形AGDH 的面积不可能最大. 按上述理由、只有当D 点在BC 边上时、面积才有可能最大.图1 图2如图2、D 在BC 上时、易证明DG∥AC、 ∴△GDB ∽△ACB. ∴BG BA =GD AC 、即BA -AG BA =AH AC . ∴6-AG 6=AH 8、即AH =8-43AG. ∴S 矩形AGDH =AG·AH=AG×(8-43AG)=-43AG 2+8AG =-43(AG -3)2+12.当AG =3时、S 矩形AGDH 最大、此时DG =AH =4.即当AG =3、AH =4、S 矩形AG DH 最大.在Rt △BGD 中、BD =BG 2+DG 2=5、则DC =BC -BD =5. 即D 为B C 上的中点时、S 矩形AGDH 最大.∴在Rt △ABC 中、AD =BC2=5、∴PA =AD =5.延长PA 交BC 于点Q 、∵EF ∥BC 、QP ⊥EF 、 ∴QP ⊥BC.∴QP 是EF 、BC 之间的距离. ∴D 到EF 的距离为PQ 的长. 在Rt △ABC 中、12AB·AC=12BC·AQ、∴AQ =4.8.又∵△DEF∽△ABC、∴k =PQ AQ =PA +AQ AQ =5+4.84.8=4924.10.(2016·河南)(1)发现如图1、点A 为线段BC 外一动点、且BC =a 、AB =b.填空:当点A 位于CB 延长线上时、线段AC 的长取得最大值、且最大值为a +b .(用含a 、b 的式子表示)图1(2)应用点A 为线段BC 外一动点、且BC =3、AB =1.如图2所示、分别以AB 、AC 为边、作等边三角形ABD 和等边三角形ACE 、连接CD 、BE.①请找出图中与BE 相等的线段、并说明理由; ②直接写出线段BE 长的最大值. (3)拓展如图3、在平面直角坐标系中、点A 的坐标为(2、0)、点B 的坐标为(5、0)、点P 为线段AB 外一动点、且PA =2、PM =PB 、∠BPM =90°.请直接写出线段AM 长的最大值及此时点P 的坐标.图2 图3 备用图解:(2)①DC=BE.理由如下: ∵△ABD 和△ACE 为等边三角形、∴AD =AB 、AC =AE 、∠BAD =∠CA E =60°.∴∠BAD +∠BAC=∠CAE+∠BAC、即∠CAD=∠EAB. ∴△CAD ≌△EAB.∴DC =BE. ②BE 长的最大值是4.(3)AM 的最大值为3+22、点P 的坐标为(2-2、2).提示:如图3、构造△BNP≌△MAP、则NB =AM 、易得△APN 是等腰直角三角形、AP =2、∴AN =2 2.由(1)知、当点N 在BA 的延长线上时、NB 有最大值(如备用图).∴AM=NB =AB +AN =3+2 2. 过点P 作PE⊥x 轴于点E 、PE =AE = 2. 又∵A(2、0)、∴P(2-2、2).。
2019年中考数学二轮复习几何探究题(压轴题)综合练习1. (1)阅读理解:如图①,在△ABC中,若AB=10,AC=6,求BC边上的中线AD的取值范围.解决此问题可以用如下方法:延长AD到点E使DE=AD,再连接BE(或将△ACD绕着点D逆时针旋转180°得到△EBD).把AB,AC,2AD集中在△ABE中,利用三角形三边的关系即可判断.中线AD的取值范围是________;(2)问题解决:如图②,在△ABC中,D是BC边上的中点,DE⊥DF于点D,DE交AB于点E,DF交AC于点F,连接EF.求证:BE+CF>EF;(3)问题拓展:如图③,在四边形ABCD中,∠B+∠D=180°,CB=CD,∠BCD=140°,以C为顶点作一个70°角,角的两边分别交AB,AD于E,F两点,连接EF,探索线段BE,DF,EF之间的数量关系,并加以证明.2.如图①,②,③分别以△ABC的AB和AC为边向△ABC外作正三角形(等边三角形)、正四边形(正方形)、正五边形,BE和CD相交于点O.(1)在图①中,求证:△ABE≌△ADC.(2)由(1)证得△ABE≌△ADC,由此可推得在图①中∠BOC=120°,请你探索在图②中∠BOC的度数,并说明理由或写出证明过程.(4)由此推广到一般情形(如图④),分别以△ABC 的AB 和AC 为边向△ABC 外作正n 边形,BE 和CD 仍相交于点O ,猜想∠BOC 的度数为____________________(用含n 的式子表示).图① 图② 图③ 图④3.已知正方形ABCD 的边长为1,点P 为正方形内一动点,若点M 在AB 上,且满足△PBC ∽△PAM ,延长BP 交AD 于点N ,连接CM.(1)如图①,若点M 在线段AB 上,求证:AP ⊥BN ;AM =AN.(2)①如图②,在点P 运动过程中,满足△PBC ∽△PAM 的点M 在AB 的延长线上时,AP ⊥BN 和AM =AN 是否成立(不需说明理由)?②是否存在满足条件的点P ,使得PC =12?请说明理由.4. 如图①,△ABC是等腰直角三角形,∠BAC=90°,AB=AC,四边形ADEF是正方形,点B、C分别在边AD、AF上,此时BD=CF,BD⊥CF成立.(1)当△ABC绕点A逆时针旋转θ(0°<θ<90°)时,如图②,BD=CF成立吗?若成立,请证明;若不成立,请说明理由.(2)当△ABC绕点A逆时针旋转45°时,如图③,延长DB交CF于点H.①求证:BD⊥CF;②当AB=2,AD=32时,求线段DH的长.图①图②图③5. 已知矩形ABCD中AD=8,将矩形ABCD折叠,使得顶点B落在CD边上的P点处.(1)如图①,已知折痕与边BC交于点O,连接AP、OP、OA,若△OCP与△PDA的面积比为1∶ 4,求边CD的长;(2)如图②,在(1)的条件下擦去AO、OP,连接BP,动点M在线段AP上(点M不与点P、A重合),动点N在线段AB的延长线上,且BN=PM,连接MN交PB于点F,作ME⊥BP于点E,试问当点M、N在移动过程中,线段EF的长度是否发生变化?若变化,说明变化规律,若不变,求出线段EF的长度.图①图②6. 如图①,矩形ABCD 中,AB =2,BC =5,BP =1,∠MPN =90°,将∠MPN 绕点P 从PB 处开始按顺时针方向旋转,PM 交边AB(或AD)于点E ,PN 交边AD(或CD)于点F ,当PN 旋转至PC 处时,∠MPN 的旋转随即停止.(1)特殊情形:如图②,发现当PM 过点A 时,PN 也恰好过点D , 此时,△ABP________△PCD(填“≌”或“∽”);(2)类比探究:如图③,在旋转过程中,PEPF 的值是否为定值?若是,请求出该定值;若不是,请说明理由;(3)拓展延伸:设AE =t ,△EPF 的面积为S ,试确定S 关于t 的函数关系式;当S =4.2时,求所对应的t 值.7. 阅读理解:我们知道,四边形具有不稳定性,容易变形.如图①,一个矩形发生变形后成为一个平行四边形,设这个平行四边形相邻两个内角中较小的一个内角为α,我们把1sinα的值叫做这个平行四边形的变形度.(1)若矩形发生形变后的平行四边形有一个内角是120°,则这个平行四边形的变形度是________;猜想证明:(2)设矩形的面积为S1,其变形后的平行四边形面积为S2,试猜想S1,S2,1sinα之间的数量关系,并说明理由;拓展探究:(3)如图②,在矩形ABCD中,E是AD边上的一点,且AB2=AE·AD,这个矩形发生变形后为平行四边形A1B1C1D1,E1为E的对应点,连接B1E1,B1D1,若矩形ABCD的面积为4m(m>0),平行四边形A1B1C1D1的面积为2m(m>0),试求∠A1E1B1+∠A1D1B1的度数.8. 如图,在Rt△ABC中,∠ACB=90°,AC=5 cm,∠BAC=60°,动点M从点B出发,在BA边上以每秒2 cm的速度向点A匀速运动,同时动点N从点C出发,在CB边上以每秒 3 cm的速度向点B匀速运动,设运动时间为t秒(0≤t≤5),连接MN.(1)若BM=BN,求t的值;(2)若△MBN与△ABC相似,求t的值;(3)当t为何值时,四边形ACNM的面积最小?并求出最小值.9. 已知:如图,在矩形ABCD中,AB=6 cm,BC=8 cm.对角线AC,BD交于点O,点P从点A出发,沿AD方向匀速运动,速度为1 cm/s;同时,点Q从点D出发,沿DC方向匀速运动,速度为1 cm/s;当一个点停止运动时,另一个点也停止运动.连接PO并延长,交BC于点E,过点Q作QF∥AC,交BD 于点F.设运动时间为t(s)(0<t<6),解答下列问题:(2)设五边形OECQF 的面积为S(cm 2),试确定S 与t 的函数关系式;(3)在运动过程中,是否存在某一时刻t ,使S 五边形OECQF ∶S △ACD =9∶16?若存在,求出t 的值;若不存在,请说明理由;(4)在运动过程中,是否存在某一时刻t ,使OD 平分∠COP ?若存在,求出t 值;若不存在,请说明理由.10. 如图,已知一个直角三角形纸片ACB ,其中∠ACB =90°,AC =4,BC =3,E 、F 分别是AC 、AB 边上的点,连接EF.(1)如图①,若将纸片ACB 的一角沿EF 折叠,折叠后点A 落在AB 边上的点D 处,且使S 四边形ECBF =3S △EDF ,求AE 的长;(2)如图②,若将纸片ACB 的一角沿EF 折叠,折叠后点A 落在BC 边上的点M 处,且使MF ∥CA. ①试判断四边形AEMF 的形状,并证明你的结论; ②求EF 的长;(3)如图③,若FE 的延长线与BC 的延长线交于点N ,CN =1,CE =47,求AFBF的值.11. 已知AC ,EC 分别为四边形ABCD 和EFCG 的对角线,点E 在△ABC 内,∠CAE +∠CBE =90°. (1)如图①,当四边形ABCD 和EFCG 均为正方形时,连接BF. ①求证:△CAE ∽△CBF ;②若BE =1,AE =2,求CE 的长;(2)如图②,当四边形ABCD 和EFCG 均为矩形,且AB BC =EFFC =k 时,若BE =1,AE =2,CE =3,求k 的值;(3)如图③,当四边形ABCD 和EFCG 均为菱形,且∠DAB =∠GEF =45°时,设BE =m ,AE =n ,CE =p ,试探究m ,n ,p 三者之间满足的等量关系(直接写出结果,不必写出解答过程).12. 如图①,菱形ABCD 中,已知∠BAD =120°,∠EGF =60°,∠EGF 的顶点G 在菱形对角线AC 上运动,角的两边分别交边BC 、CD 于点E 、F.图①(1)如图②,当顶点G 运动到与点A 重合时,求证:EC +CF =BC ; (2)知识探究:①如图③,当顶点G 运动到AC 中点时,探究线段EC 、CF 与BC 的数量关系;②在顶点G 的运动过程中,若ACCG =t ,请直接写出线段EC 、CF 与BC 的数量关系(不需要写出证明过程);(3)问题解决:如图④,已知菱形边长为8,BG =7,CF =65,当t >2时,求EC 的长度.13.某数学兴趣小组在数学课外活动中,研究三角形和正方形的性质时,做了如下探究:在△ABC 中,∠BAC =90°,AB =AC ,点D 为直线BC 上一动点(点D 不与B ,C 重合),以AD 为边在AD 右侧作正方形ADEF ,连接CF.(1)观察猜想如图①,当点D 在线段BC 上时,①BC 与CF 的位置关系为:____________. ②BC ,CD ,CF 之间的数量关系为:____________(将结论直接写在横线上).(2)数学思考如图②,当点D 在线段CB 的延长线上时,结论①,②是否仍然成立?若成立,请给予证明;若不成立,请你写出正确结论再给予证明. (3)拓展延伸如图③,当点D 在线段BC 的延长线上时,延长BA 交CF 于点G ,连接GE.若已知AB =22,CD =14BC ,请求出GE 的长.14. 在△ABC中,AB=6,AC=BC=5,将△ABC绕点A按顺时针方向旋转,得到△ADE,旋转角为α(0°<α<180°),点B的对应点为点D,点C的对应点为点E,连接BD,BE.(1)如图,当α=60°时,延长BE交AD于点F.①求证:△ABD是等边三角形;②求证:BF⊥AD,AF=DF;③请直接..写出BE的长;(2)在旋转过程中,过点D作DG垂直于直线AB,垂足为点G,连接CE,当∠DAG=∠ACB,且线段DG与线段AE无公共点时,请直接..写出BE+CE的值.温馨提示:考生可以根据题意,在备用图中补充图形,以便作答.备用图15.问题情境在综合与实践课上,老师让同学们以“菱形纸片的剪拼”为主题开展数学活动.如图①,将一张菱形纸片ABCD(∠BAD>90°)沿对角线AC剪开,得到△ABC和△ACD.操作发现(1)将图①中的△ACD以A为旋转中心,按逆时针方向旋转角α,使α=∠BAC,得到如图②所示的△AC′D,分别延长BC和DC′交于点E,则四边形ACEC′的形状是________;(2)创新小组将图①中的△ACD以A为旋转中心,按逆时针方向旋转角α,使α=2∠BAC,得到如图③所示的△AC′D,连接DB、C′C,得到四边形BCC′D,发现它是矩形.请你证明这个结论;实践探究(3)缜密小组在创新小组发现结论的基础上,量得图③中BC=13 cm,AC=10 cm,然后提出一个问题:将△AC′D沿着射线DB方向平移a cm,得到△A′C″D′,连接BD′,CC″,使四边形BCC″D′恰好为正方形,求a的值.请你解答此问题;(4)请你参照以上操作,将图①中的△ACD在同一平面内进行一次平移,得到△A′C′D,在图④中画出平移后构造出的新图形,标明字母,说明平移及构图方法,写出你发现的结论,不必证明.CB 上,且CD ∶DB =2∶1,OB 交AD 于点E ,平行于x 轴的直线l 从原点O 出发,以每秒1个单位长度的速度沿y 轴向上平移,到C 点时停止;l 与线段OB ,AD 分别相交于M ,N 两点,以MN 为边作等边△MNP(点P 在线段MN 的下方),设直线l 的运动时间为t(秒),△MNP 与△OAB 重叠部分的面积为S(平方单位). (1)直接写出点E 的坐标; (2)求S 与t 的函数关系式;(3)是否存在某一时刻t ,使得S =12S △ABD 成立?若存在,请求出此时t 的值;若不存在,请说明理由.备用图17. 已知点O 是△ABC 内任意一点,连接OA 并延长到E ,使得AE =OA ,以OB ,OC 为邻边作▱OBFC ,连接OF ,与BC 交于点H ,再连接EF.(1)如图①,若△ABC 为等边三角形,求证:①EF ⊥BC ;②EF =3BC ;(2)如图②,若△ABC 为等腰直角三角形(BC 为斜边),猜想(1)中的两个结论是否成立?若成立,直接写出结论即可;若不成立,请你直接写出你的猜想结果;18. 如图①,在△ABC中,∠ACB=90°,∠B=30°,AC=1,D为AB的中点,EF为△ACD的中位线,四边形EFGH为△ACD的内接矩形(矩形的四个顶点均在△ACD的边上).(1)计算矩形EFGH的面积;(2)将矩形EFGH沿AB向右平移,F落在BC上时停止移动.在平移过程中,当矩形与△CBD重叠部分的面积为316时,求矩形平移的距离;(3)如图③,将(2)中矩形平移停止时所得的矩形记为矩形E1F1G1H1,将矩形E1F1G1H1绕G1点按顺时针方向旋转,当H1落在CD上时停止转动,旋转后的矩形记为矩形E2F2G1H2,设旋转角为α,求cosα的值.参考答案1. (1)解:如图①中,∵AB=10,AC=6,AD是BC边上中线,由旋转性质知,BE=AC=6,AD=DE.∴在△ABE中,10-6<AE<10+6,即4<2AD<16,∴2<AD<8;(2)证明:延长FD至M,使FD =MD ,连接ME ,MB.如图①所示. ∵ED ⊥FM ,FD =DM , ∴ME =EF.∵CD =BD ,∠CDF =∠BDM , ∴△CDF ≌△BDM(SAS ), ∴CF =BM.∵BM +BE>ME ,∴BE +CF>EF;(3)解:BE +DF =EF. 理由:延长EB 至点N ,使BN =DF ,图②连接CN ,如图②所示.∵∠EBC +∠D =180°,∠EBC +∠CBN =180° ∴∠D =∠CBN ,∴在△CDF 和△CBN 中, ⎩⎪⎨⎪⎧DF =BN ∠D =∠CBN DC =BC, ∴△CDF ≌△CBN(SAS ),∴CF =CN.∵∠BCD =140°,∠ECF =70°, ∴∠DCF +∠BCE =70°,∴∠BCN +∠BCE =70°,即∠NCE =70°, ∴在△ECF 和△ECN 中, ⎩⎪⎨⎪⎧CF =CN ∠ECF =∠ECN CE =CE, ∴△ECF ≌△ECN(SAS ), ∴EF =EN.∵EB +BN =EN ,∴BE +DF =EF.2. (1)证明:∵△ABD 、△ACE 是等边三角形, ∴AB =AD ,AC =AE ,∠CAE =∠DAB =60°,∴∠CAE +∠BAC =∠DAB +∠BAC ,即∠BAE =∠DAC , 在△ABE 和△ADC 中, ⎩⎪⎨⎪⎧AB =AD ∠BAE =∠DAC AE =AC,(2)解:∠BOC =90°.理由如下: 由(1)得△ABE ≌△ADC ,∴∠EBA =∠CDA.∵∠FBA +∠FDA =180°,∴∠FBA -∠EBA +∠FDA +∠CDA =180°, 即∠FBO +∠FDO =180°.在四边形FBOD 中,∠F =90°,∴∠DOB =360°-∠F -(∠FBO +∠FDO)=90°, ∴∠BOC =90°. (3)解:72°.【解法提示】∠BOC =180°-108°=72°. (4)解:180°-180°·(n -2)n. 【解法提示】由(3)可知,∠BOC 度数应为180°减去正多边形内角度数. 3. (1)证明:∵△PBC ∽△PAM , ∴∠PBC =∠PAM.∵四边形ABCD 是正方形,∴∠PBC +∠PBA =∠CBA =90°, ∴∠PAM +∠PBA =90°, ∴∠APN =90°,即AP ⊥BN , ∴∠BPA =∠BAN =90°. ∵∠ABP =∠NBA ,∴△ABP ∽△NBA ,PB AB =PAAN , ∴AN AB =PA PB .又∵△PAM ∽△PBC , ∴PA PB =AM BC , 故AN AB =AM BC . 又∵AB =BC ,∴AM =AN ;(2)解:①点M 在AB 的延长线上时,AP ⊥BN 和AM =AN 仍然成立;②不存在,理由如下:选择图②,如图,以AB 为直径,作半圆O ,连接OC ,OP ,∵BC =1,OB =12, ∴OC =52.∵由①知,AP ⊥BN ,∴点P 一定在以点O 为圆心、半径长为12的半圆上(A ,B 两点除外). 如果存在点P ,那么OP +PC ≥OC ,则PC ≥5-12.∵5-12>12,故不存在满足条件的点P ,使得PC =12.4. (1)解:BD =CF 成立.理由如下:∵AC =AB ,∠CAF =∠BAD =θ,AF =AD , ∴△ACF ≌△ABD ,∴CF =BD.(2)①证明:由(1)得,△ACF ≌△ABD , ∴∠HFN =∠ADN , 在△HFN 与△ADN 中,∵∠HFN =∠ADN ,∠HNF =∠AND , ∴∠NHF =∠NAD =90°, ∴HD ⊥HF ,即BD ⊥CF.②解:如图,连接DF ,延长AB ,与DF 交于点M , 在△MAD 中,∵∠MAD =∠MDA =45°, ∴∠BMD =90°.在Rt △BMD 与Rt △FHD 中, ∵∠MDB =∠HDF , ∴△BMD ∽△FHD.∵AB =2,AD =32,四边形ADEF 是正方形, ∴MA =MD =322=3,∴MB =MA -AB =3-2=1,BD =MB 2+MD 2=12+32=10, 又∵MD HD =BD FD ,即3HD =106, ∴DH =9105.5. 解:(1)由矩形性质与折叠可知,∠APO =∠B =∠C =∠D =90°, ∴∠CPO +∠DPA =∠DPA +∠DAP =90°, ∴∠DAP =∠CPO , ∴△OCP ∽△PDA , ∴S △OCP S △PDA=(CP DA )2,即14=(CP8)2, ∴CP =4,∵AP 2-DP 2=AD 2, ∴x 2-(x -4)2=82, 解得x =10, 故CD =10.(2)线段EF 的长度始终不发生变化,为2 5.证明:如图,过点N 作NG ⊥PB ,与PB 的延长线相交于点G , ∵AB =AP ,∴∠APB =∠ABP =∠GBN , 在△PME 和△BNG 中, ⎩⎪⎨⎪⎧∠MEP =∠NGB =90°∠MPE =∠NBG MP =NB, ∴△PME ≌△BNG(AAS ), ∴ME =NG ,PE =BG , 在△FME 和△FNG 中, ⎩⎪⎨⎪⎧∠MEF =∠NGF ∠MFE =∠NFG ME =NG, ∴△FME ≌△FNG(AAS ), ∴EF =GF , ∴EF =12EG ,∵BP =BE +EP =BE +GB =EG , ∴EF =12BP ,∵BP =BC 2+CP 2=82+42=45, ∴EF =12BP =2 5.6. 解:(1)△ABP ∽△PCD.【解法提示】∵∠MPN =90°, ∴∠APB +∠DPC =90°, ∵∠B =90°,∴∠APB +∠BAP =90°, ∴∠DPC =∠BAP , 又∵∠B =∠C =90°, ∴△ABP ∽△PCD.(2)在旋转过程中,PE的值为定值.如图,过点F 作FG ⊥BC ,垂足为G.类比(1)可得:△EBP ∽△PGF , ∴EP PF =PB FG ,∵∠A =∠B =∠FGB =90°, ∴四边形ABGF 是矩形, ∴FG =AB =2, ∵BP =1, ∴PE PF =12,即在旋转过程中,PE PF 的值为定值12. (3)由(2)知△EBP ∽△PGF , ∴EB PG =BP GF =12,又∵AE =t , ∴BE =2-t ,∴PG =2(2-t)=4-2t ,∴AF =BG =BP +PG =1+(4-2t)=5-2t , ∴S =S 矩形ABGF -S △AEF -S △BEP -S △PFG=2(5-2t)-12t(5-2t)-12×1×(2-t)-12×2×(4-2t) =t 2-4t +5,即S =t 2-4t +5(0≤t ≤2), 当S =4.2时,4.2=t 2-4t +5,解得:t 1=2-455,t 2=2+455(不合题意,舍去). ∴t 的值是2-45 5. 7. 解:(1)233.【解法提示】sin 120°=32,故这个平行四边形的变形度是233. (2)1sin α=S 1S 2,理由如下: 如图,设矩形的长和宽分别为a ,b ,其变形后的平行四边形的高为h ,则S 1=ab ,S 2=ah ,sin α=hb ,∴S 1S 2=ab ah =b h ,又∵1sin α=b h ,∴1sin α=S 1S 2. (3)由AB 2=AE·AD ,可得A 1B 21=A 1E 1·A 1D 1,即A 1B 1A 1D 1=A 1E 1A 1B 1. 又∵∠B 1A 1E 1=∠D 1A 1B 1, ∴△B 1A 1E 1∽△D 1A 1B 1, ∴∠A 1B 1E 1=∠A 1D 1B 1, ∵A 1D 1∥B 1C 1,∴∠A 1E 1B 1=∠C 1B 1E 1,∴∠A 1E 1B 1+∠A 1D 1B 1=∠C 1B 1E 1+∠A 1B 1E 1=∠A 1B 1C 1. 由(2)结论1sin α=S 1S 2,可得1sin ∠A 1B 1C 1=4m2m=2,∴sin ∠A 1B 1C 1=12, ∴∠A 1B 1C 1=30°, ∴∠A 1E 1B 1+∠A 1D 1B 1=30°.8. 解:(1)根据题意BM =2t ,BN =BC -3t , 而BC =5×tan 60°=5 3.∴当BM =BN 时,2t =53-3t ,解得t =103-15. (2)分类讨论:①当∠BMN =∠ACB =90°时,如图①, △NBM ∽△ABC ,cos B =cos 30°=BMBN , ∴2t 53-3t=32,解得t =157.②当∠BNM =∠ACB =90°时,如图②, △MBN ∽△ABC ,cos B =cos 30°=BNBM , ∴53-3t 2t =32,解得t =52.因此当运动时间是157秒或52秒时,△MBN 与△ABC 相似.(3)由于△ABC 面积是定值,∴当四边形ACNM 面积最小时,△MBN 面积最大,而△MBN 的面积是S =12BM ×BN ×sin B =12×2t ×(53-3t)×12=-32t 2+532t , 由于a =-32<0,∴当t =-5322×(-32)=52时,△MBN 面积最大,最大值是-32×(52)2+532×52=2538,因此四边形ACNM 面积最小值是12×5×53-2538=7538. 9. (1)分三种情况: ①若AP =AO ,在矩形ABCD 中,∵AB =6,BC =8, ∴AC =10, ∴AO =CO =5, ∴AP =5, ∴t =5,②若AP =PO =t , 在矩形ABCD 中, ∵AD ∥BC ,∴∠PAO =∠OCE ,∠APO =∠OEC , 又∵OA =OC , ∴△APO ≌△CEO ,∴PO =OE =t.作AG ∥PE 交BC 于点G ,则四边形APEG 是平行四边形, ∴AG =PE =2t ,GE =AP =t. 又∵EC =AP =t ,∴BG =8-2t.在Rt △ABG 中,根据勾股定理知62+(8-2t)2=(2t)2, 解得t =258.③若OP =AO =5,则t =0或t =8,不合题意,舍去. 综上可知,当t =5或t =258时,△AOP 是等腰三角形. (2)如解图②,作OM ⊥BC ,垂足是M ,作ON ⊥CD ,垂足是N.图②则OM =12AB =3,ON =12BC =4,∴S △OEC =12·CE·OM =12·t·3=32t , S △OCD =12·CD·ON =12·6·4=12. ∵QF ∥AC ,∴△DFQ ∽△DOC , ∴S △DFQ S △DOC=(DQ DC )2,即S △DFQ 12=(t6)2, ∴S △DFQ =13t 2, ∴S 四边形OFQC =12-13t 2,∴S 五边形OECQF =S 四边形OFQC +S △OEC =12-13t 2+32t , 即S =-13t 2+32t +12(0<t <6).(3)存在.理由如下:要使S 五边形OECQF :S △ACD =9∶16, 即(-13t 2+32t +12)∶(12×6×8)=9∶16,解得t 1=3,t 2=1.5,两个解都符合题意,∴存在两个t 值,使S 五边形OECQF ∶S △ACD =9∶16,此时t 1=3,t 2=1.5; (4)存在.理由如下:如解图③,作DI ⊥OP ,垂足是I ,DJ ⊥OC ,垂足是J ,图③作AG ∥PE 交BC 于点G.∵S △OCD =12·OC·DJ =12·5·DJ ,且由(2)知,S △OCD =12, ∴DJ =245.∵OD 平分∠POC ,DI ⊥OP ,DJ ⊥OC , ∴DI =DJ =245=4.8. ∵AG ∥PE , ∴∠DPI =∠DAG. ∵AD ∥BC ,∴∠DAG =∠AGB , ∴∠DPI =∠AGB ,∴Rt △ABG ∽Rt △DIP .由(1)知,在Rt △ABG 中,BG =8-2t , ∴AB DI =BG IP ,∴64.8=8-2t IP , ∴IP =45(8-2t).在Rt △DPI 中,根据勾股定理得 (245)2+[45(8-2t)]2=(8-t)2, 解得t =11239.(t =0不合题意,舍去)10. 解:(1)∵折叠后点A 落在AB 边上的点D 处, ∴EF ⊥AB ,△AEF ≌△DEF , ∴S △AEF =S △DEF .∵S 四边形ECBF =3S △EDF ,∴S 四边形ECBF =3S △AEF .∵S △ACB =S △AEF +S 四边形ECBF ,∴S △ACB =S △AEF +3S △AEF =4S △AEF , ∴S △AEF S △ACB =14. ∵∠EAF =∠BAC ,∠AFE =∠ACB =90°, ∴△AEF ∽△ABC , ∴S △AEF S △ABC =(AE AB )2, ∴(AE AB )2=14. 在Rt △ACB 中,∵∠ACB =90°,AC =4,BC =3, ∴AB =42+32=5, ∴(AE 5)2=14,∴AE =52.(2)图①①四边形AEMF 是菱形.证明:如解图①,∵折叠后点A 落在BC 边上的点M 处, ∴∠CAB =∠EMF ,AE =ME , 又∵MF ∥CA ,∴∠CEM =∠EMF , ∴∠CAB =∠CEM , ∴EM ∥AF ,∴四边形AEMF 是平行四边形.又∵AE =ME ,∴四边形AEMF 是菱形.②如解图①,连接AM ,AM 与EF 交于点O ,设AE =x ,则ME =AE =x ,EC =4-x. ∵∠CEM =∠CAB ,∠ECM =∠ACB =90°, ∴△ECM ∽△ACB. ∴EC AC =EMAB , ∵AB =5,AC =4, ∴4-x 4=x5, 解得x =209,∴AE =ME =209,EC =169.在Rt △ECM 中,∵∠ECM =90°,∴CM 2=EM 2-EC 2, 即CM =EM 2-EC 2=(209)2-(169)2=43. ∵四边形AEMF 是菱形,∴OE =OF ,OA =OM ,AM ⊥EF , ∴S 菱形AEMF =4S △AOE =2OE·AO. 在Rt △AOE 和Rt △ACM 中, ∵tan ∠EAO =tan ∠MAC , ∴OE AO =CM AC. ∵CM =43,AC =4,∴AO =3OE ,∴S 菱形AEMF =6OE 2. 又∵S 菱形AEMF =AE·CM , ∴6OE 2=209×43,∴OE =2109,∴EF =4109. (3)如图②,图②过点F 作FH ⊥CB 于点H ,在Rt △NCE 和Rt △NHF 中, ∵tan ∠ENC =tan ∠FNH ,∴EC NC =FH NH, ∵NC =1,EC =47,∴FH NH =47, 设FH =x ,则NH =74x ,∴CH =NH -NC =74x -1.∵BC =3,∴BH =BC -CH =3-(74x -1)=4-74x.在Rt △BHF 和Rt △BCA 中,∵tan ∠FBH =tan ∠ABC , ∴HF BH =CA BC , ∴x4-74x =43, 解得x =85,∴HF =85.∵∠B =∠B ,∠BHF =∠BCA =90°, ∴△BHF ∽△BCA , ∴HF CA =BFBA,即HF·BA =CA·BF , ∴85×5=4BF , ∴BF =2,∴AF =AB -BF =3, ∴AF BF =32. 11. (1)①证明:如图①, ∵∠ACE +∠ECB =45°,∠BCF +∠ECB =45°,图①∴∠ACE =∠BCF ,又∵四边形ABCD 和EFCG 是正方形, ∴AC BC =CECF=2, ∴△CAE ∽△CBF.②解:∵AE BF =ACBC =2,AE =2,∴BF =AE2=2,由△CAE ∽△CBF 可得∠CAE =∠CBF , 又∵∠CAE +∠CBE =90°, ∴∠CBF +∠CBE =90°,即∠EBF =90°, 由CE 2=2EF 2=2(BE 2+BF 2)=6,图② 解得CE = 6.(2)解:连接BF ,如图②,同(1)证△CAE ∽△CBF ,可得∠EBF =90°,AC BC =AE BF, 由AB BC =EFFC=k ,可得BC ∶AB ∶AC =1∶k ∶k 2+1, CF ∶EF ∶EC =1∶k ∶k 2+1,∴CE EF =ACAB =k 2+1k ,AE BF =AC BC=k 2+1, ∴EF =kCE k 2+1,EF 2=k 2CE 2k 2+1,BF =AE k 2+1,BF 2=AE 2k 2+1,∴CE 2=k 2+1k 2×EF 2=k 2+1k2(BE 2+BF 2), ∴32=k 2+1k 2(12+22k 2+1), 解得k =104. (3)解:p 2-n 2=(2+2)m 2.【解法提示】如图③,连接BF ,同(1)证△CAE ∽△CBF ,可得∠EBF =90°, 过点C 作CH ⊥AB 交AB 延长线于点H , 类比第(2)问得AB 2∶BC 2∶AC 2=1∶1∶(2+2),图③EF 2∶FC 2∶EC 2=1∶1∶(2+2), ∴p 2=(2+2)EF 2 =(2+2)(BE 2+BF 2)=(2+2)(m 2+n 22+2)=(2+2)m 2+n 2,∴p 2-n 2=(2+2)m 2.12. (1)证明:∵四边形ABCD 是菱形,∠BAD =120°,∴∠BAC =60°,∠B =∠ACF =60°,AB =BC , ∴AB =AC ,∵∠BAE +∠EAC =∠EAC +∠CAF =60°, ∴∠BAE =∠CAF , 在△BAE 和△CAF 中, ⎩⎪⎨⎪⎧∠BAE =∠CAF AB =AC ∠B =∠ACF, ∴△BAE ≌△CAF(ASA ), ∴BE =CF ,∴EC +CF =EC +BE =BC , 即EC +CF =BC ;(2)解:①线段EC ,CF 与BC 的数量关系为:EC +CF =12BC.理由如下:如图①,过点A 作AE′∥EG ,AF ′∥GF ,分别交BC 、CD 于E′、F′.图①类比(1)可得:E′C +CF′=BC , ∵G 为AC 中点,AE ′∥EG , ∴CE CE′=CG AC =12, ∴CE =12CE′,同理可得:CF =12CF′,∴CE +CF =12CE′+12CF′=12(CE′+CF′)=12BC ,即CE +CF =12BC ;②CE +CF =1tBC ;【解法提示】类比(1)可得:E′C +CF′=BC , ∵AE ′∥EG ,ACCG =t ,∴CE CE′=CG AC =1t, ∴CE =1t CE′,同理可得:CF =1tCF′,∴CE +CF =1t CE′+1t CF′=1t (CE′+CF′)=1t BC ,即CE +CF =1tBC.(3)解:如图②,连接BD 与AC 交于点H.图②在Rt △ABH 中,∵AB =8,∠BAC =60°, ∴BH =AB·sin 60°=8×32=43, AH =CH =AB·cos 60°=8×12=4,∴GH =BG 2-BH 2=72-(43)2=1, ∴CG =4-1=3, ∴CG AC =38, ∴t =83(t >2),由(2)②得:CE +CF =1t BC ,∴CE =1t BC -CF =38×8-65=95.∴EC 的长度为95.13. (1)解:①BC ⊥CF ;②BC =CD +CF. 【解法提示】①∵∠BAC =∠DAF =90°, ∴∠BAD =∠CAF ,又∵AB =AC ,AD =AF , ∴△ABD ≌△ACF , ∴∠ACF =∠ABC =45°, ∵∠ACB =45°, ∴∠BCF =90°,即BC ⊥CF ; ②∵△ABD ≌△ACF , ∴BD =CF ,∵BC =CD +BD ,∴BC =CD +CF.(2)解:结论①仍然成立,②不成立. ①证明:∵∠BAC =∠DAF =90°, ∴∠BAD =∠CAF ,又∵AB =AC ,AD =AF , ∴△ABD ≌△ACF ,∴∠ACF =∠ABD =180°-45°=135°, ∵∠ACB =45°, ∴∠BCF =90°,即BC ⊥CF ; ②结论为:BC =CD -CF. 证明:∵△ABD ≌△ACF , ∴BD =CF ,∵BC =CD -BD ,∴BC =CD -CF.(3)解:如图,过点E 作EM ⊥CF 于M ,作EN ⊥BD 于点N ,过点A 作AH ⊥BD 于点H. ∵AB =AC =22,∴BC =4,AH =12BC =2,∵CD =14BC ,∴CD =1,∵∠BAC =∠DAF =90°, ∴∠BAD =∠CAF ,又∵AB =AC ,AD =AF , ∴△ABD ≌△ACF , ∴∠ACF =∠ABC =45°, ∵∠ACB =45°, ∴∠BCF =90°,∴CN =ME ,CM =EN , ∴∠AGC =∠ABC =45°, ∴CG =BC =4, ∵∠ADE =90°,∴∠ADH +∠EDN =∠EDN +∠DEN =90°, ∴∠ADH =∠DEN ,又∵∠AHC =∠DNE =90°,AD =DE , ∴△AHD ≌△DNE ,∴DN =AH =2,EN =DH =3, ∴CM =EN =3,ME =CN =3, 则GM =CG -CM =4-3=1,∴EG =EM 2+GM 2=10.14. (1)①证明:∵△ABC 绕点A 顺时针方向旋转60°得到△ADE , ∴AB =AD ,∠BAD =60°, ∴△ABD 是等边三角形;②证明:由①得△ABD 是等边三角形, ∴AB =BD ,∵△ABC 绕点A 顺时针方向旋转60°得到△ADE , ∴AC =AE ,BC =DE ,∴EA =ED ,∴点B ,E 在AD 的中垂线上, ∴BE 是AD 的中垂线, ∵点F 在BE 的延长线上, ∴BF ⊥AD ,AF =DF ; ③解:BE 的长为33-4;【解法提示】由②知AF =12AD =12AB =3,AE =AC =5,BF ⊥AD ,由勾股定理得EF =AE 2-AF 2=4.在等边△ABD 中,AB =6,BF ⊥AD , ∴BF =32AB =33,∴BE =33-4. (2)解:BE +CE 的值为13;【解法提示】如图, ∵∠DAG =∠ACB ,∴∠DAB =2∠CAB. ∵∠DAE =∠CAB , ∴∠BAE =∠CAB , ∴∠BAE =∠CBA , ∴AE ∥BC ,∵AE =AC =BC ,∴四边形ACBE 是菱形,∴CE 垂直平分AB ,BE =AC =5.设CE 交AB 于M ,则CM ⊥AB ,CM =EM ,AM =BM , ∴在Rt △ACM 中,AC =5,AM =3, 由勾股定理得CM =4, ∴CE =8,∴CE +BE =13. 15. (1)解:菱形.(2)证明:如解图①,作AE ⊥CC′于点E , 由旋转得AC′=AC ,∴∠CAE =∠C′AE =12α=∠BAC ,图①∴BA =BC ,BC =DC′, ∴∠BCA =∠BAC , ∴∠CAE =∠BCA , ∴AE ∥BC , 同理AE ∥DC′, ∴BC ∥DC ′,∴四边形BCC′D 是平行四边形, 又∵AE ∥BC ,∠CEA =90°, ∴∠BCC ′=180°-∠CEA =90°,∴四边形BCC′D 是矩形.(3)解:如解图①,过点B 作BF ⊥AC 于点F , ∵BA =BC ,∴CF =AF =12AC =12×10=5.在Rt △BCF 中,BF =BC 2-CF 2=132-52=12. 在△ACE 和△CBF 中,∵∠CAE =∠BCF ,∠CEA =∠BFC =90°, ∴△ACE ∽△CBF , ∴CE BF =AC BC ,即CE 12=1013, 解得CE =12013.∵AC =AC′,AE ⊥CC ′, ∴CC′=2CE =2×12013=24013.当四边形BCC″D′恰好为正方形时,分两种情况: ①点C″在边CC′上,a =CC′-13=24013-13=7113,②点C″在边C′C 的延长线上,a =CC′+13=24013+13=40913.综上所述,a 的值为7113或40913.图②(4)解:答案不唯一,例:画出正确图形如图②所示.平移及构图方法:将△ACD 沿着射线CA 方向平移,平移距离为12AC 的长度,得到△A′C′D ,连接A′B ,DC.结论:四边形A′BCD 是平行四边形. 16. 解:(1)点E 的坐标是(33,3). 【解法提示】如∵OA ∥BC ,∴△DEB ∽△AEO , ∴OE EB =OA BD =BC BD =BD +CD BD =1+CD BD=1+2=3, ∵∠EHO =∠BAO =90°, ∴EH ∥AB ,∴△OEH ∽△OBA , ∴OE OB =EH AB =OH OA =34, ∵AB =4,OA =43, ∴EH =3,OH =33, ∴点E 的坐标是(33,3).(2)如解图①,在矩形OABC 中,∵CD ∶DB =2∶1,点B 的坐标为(43,4), ∴点A 的坐标为(43,0),点D 的坐标为(833,4),可得直线OB 的解析式为y 1=33x , 直线AD 的解析式为y 2=-3x +12.当y 1=y 2=t 时,可得点M ,N 的横坐标分别为: x M =3t ,x N =43-33t , 则MN =|x N -x M |=|43-433t|(0≤t ≤4).当点P 运动到x 轴上时(如图②),图①∵△MNP 为等边三角形, ∴MN ·sin 60°=t ,即(43-433t)·32=t , 解得t =2.讨论:分三种情况:①当0≤t <2时(如图①), 设PM ,PN 分别交x 轴于点F ,G ,则△PFG 的边长为PF =MP -MF =MN -MF =43-433t -233t =43-23t , ∵MN =x N -x M =43-433t ,图②∴S =S 梯形FGNM =(43-23t +43-433t)t ×12=-533t 2+43t. ②当2≤t ≤3时(如图②),此时等边△MNP 整体落在△OAB 内, ∴S =S △PMN =34(43-433t)2=433t 2-83t +12 3. ③当3<t ≤4时(如图③), 在Rt △OAB 中,tan ∠AOB =AB AO =33, ∴∠AOB =30°,∠NME =30°,图③∴△MNE 和△MPE 关于直线OB 对称. ∵MN =|x N -x M |=433t -43, ∴S =12S △PMN =233t 2-43t +6 3.(3)存在t ,使S =12S △ABD 成立.∵S △ABD =12×4×433=833,若S =12S △ABD 成立,则:①当0≤t <2时,-533t 2+43t =433,解得t 1=2(舍去),t 2=25.②当2≤t ≤3时,433t 2-83t +123=433,解得t 3=2,t 4=4.(舍去)③当3<t ≤4时,233t 2-43t +63=433,得t 5=3+2(舍去),t 6=3-2(舍去). 综上所述,符合条件的t 的值有25或2.17. 证明:(1)①连接AH ,如图①,连接AH.图①∴BH =HC =12BC ,OH =HF ,∵△ABC 是等边三角形, ∴AB =BC ,AH ⊥BC ,在Rt △ABH 中,AH 2=AB 2-BH 2, ∴AH =BC 2-(12BC )2=32BC ,∵OA =AE ,OH =HF ,∴AH 是△OEF 的中位线, ∴AH =12EF ,AH ∥EF ,∴EF ⊥BC. ②由①得AH =32BC , AH =12EF∴32BC =12EF , ∴EF =3BC.(2)EF ⊥AB 仍然成立,EF =BC.图②【解法提示】如解图②,连接AH , ∵四边形OBFC 是平行四边形, ∴BH =HC =12BC ,OH =HF ,∵△ABC 是等腰直角三角形, ∴AH ⊥BC ,在Rt △ABH 中,AH 2=AB 2-BH 2= (2BH)2-BH 2=BH 2, ∴AH =BH =12BC ,∵OA =AE ,OH =HF , ∴AH 是△OEF 的中位线, ∴AH =12EF ,AH ∥EF ,∴EF ⊥BC ,EF =2AH =BC.(3)EF =4k 2-1 BC.【解法提示】如解图③,连接AH , ∵四边形OBFC 是平行四边形, ∴BH =HC =12BC ,OH =HF ,∵△ABC 是等腰三角形,AB =kBC ,∴AH ⊥BC ,在Rt △ABH 中,AH 2=AB 2-BH 2=(kBC)2-(12BC)2=(k 2-14)BC 2,∴AH =124k 2-1 BC ,∵OA =AE ,OH =HF , ∴AH 是△OEF 的中位线, ∴AH =12EF ,AH ∥EF ,∴EF ⊥BC ,124k 2-1 BC =12EF ,∴EF =4k 2-1 BC.18. 解:(1)如图①,在△ABC 中, ∵∠ACB =90°,∠B =30°,AC =1, ∴AB =2,又∵D 是AB 的中点,图①∴AD =1,CD =12AB =1,又∵EF 是△ACD 的中位线,∴EF =DF =12,在△ACD 中,AD =CD ,∠A =60°,∴△ACD 为等边三角形, ∴∠ADC =60°, 在△FGD 中,GF =DF·sin 60°=34, ∴矩形EFGH 的面积S =EF·GF =12×34=38.(2)如图②,设矩形移动的距离为x ,则0<x ≤12,①当矩形与△CBD 重叠部分为三角形时,则0<x ≤14,重叠部分的面积S =12x·3x =316,∴x =24>14(舍去), ②当矩形与△CBD 重叠部分为直角梯形时,则14<x ≤12,重叠部分的面积S =34x -12×14×34=316, ∴x =38,即矩形移动的距离为38时,矩形与△CBD 重叠部分的面积是316.图③(3)如图③,作H 2Q ⊥AB 于Q , 设DQ =m ,则H 2Q =3m , 又DG 1=14,H 2G 1=12,在Rt △H 2QG 1中, (3m)2+(m +14)2=(12)2,解得m 1=-1+1316,m 2=-1-1316<0(舍去),∴cos α=QG 1F 1G 1=-1+1316+1412=3+138.。
备考2019中考数学高频考点剖析专题十九平面几何之直角三角形问题考点扫描☆聚焦中考直角三角形问题,是每年中考的必考重点内容之一,考查的知识点包括直角三角形的性质、勾股定理和解直角三角形三方面,总体來看,难度系数低,以选择填空为主。
关于解直角三角形主要是解析题。
解析题主要以计算为主。
结合2018年全国各地中考的实例,我们从三方血进行直角三角形问题的探讨:(1)直角三角形的性质;(2)勾股定理;(3)解直角三角形.考点剖析☆典型例题頑(2018・玉林)如图,在四边形ABCD中,ZB二ZD二90° , ZA=60° , AB二4,则AD的取值范围是2<AD<8・【分析】如图,延长BC交AD的延长线于E,作BF丄AD于F.解直角三角形求出AE、AF即可判断;【解答】解:如图,延长BC交AD的延长线于E,作BF丄AD于F.在RtAABE 中,VZE=30° , AB=4,AAE=2AB=8,在RtAABF 中,AF二寺AB二2,AAD的取值范围为2<AD<8,故答案为2<AD<8.例2| (2018・盐城)如图,在直角△ABC 中,ZC 二90° , AC 二6, BC 二8, P 、Q 分别为边BC 、AB 上的两个动点,若要使AAPQ 是等腰三角形且Z\BPQ 是直角三角形,则AQ 二 芈或孕. 【分析】分两种情形分别求解:①如图1屮,当AQ 二PQ, ZQPB=90°时,②当AQ 二PQ, ZPQB=90° 时;【解答】解:①如图1中,当AQ=PQ, ZQPB 二90°时,设AQ 二PQ 二x,・.・PQ 〃AC,AABPQ^ABCA,.BQ_PQ・ 10-x = x10 ~_6,・15 rAAQ~. 4②当 AQ 二PQ, ZPQB=90° 时,设 AQ 二PQ 二y.VABQP^ABCA,• PQ.BQ•• A L BC '■ y,10-y飞8 例3| (2018・黄冈)如图,圆柱形玻璃杯高为14cm,底面周长为32cm,在杯内壁离杯底5cm 的点B 处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿3cm 与蜂蜜相对的点A 处,则 蚂蚁从外壁A 处到内壁B 处的最短距离为20 cm (杯壁厚度不计).・・x 二 图1 图?蚂蚁月【分析】将杯子侧面展开,建立A关于EF的对称点A',根据两点之间线段最短可知“ B的长度即为所求.:【解答】解:如图连接A' B,则A' B 即为最短距离,A' B=A/A^D^+BD^A/162+1 2 2=20 (cm).故答案为20.^H| (2018*杭州)如图,在中,ZACB=90°,以点B为圆心,BC长为半径画弧,交线段AB于点D;以点A为圆心,八D长为半径画弧,交线段AC于点E,连结CD.(1)若ZA=28° ,求ZACD的度数.(2)设BC=a, AC二b.①线段AD的长是方程x2+2ax・b2=0的一个根吗?说明理由.②若AD=EC,求学的值.B【分析】(1)根据三角形内角和定理求出ZB,根据等腰三角形的性质求出ZBCD,计算即可;(2)①根据勾股定理求岀AD,利用求根公式解方程,比较即可;②根据勾股定理列出算式,计算即可.【解答】解:(1) V ZACB=90° , ZA=28° ,.\ZB=62° ,VBD=BC,・・・ZBCD二ZBDC二59° ,・・・ZACD二90° - ZBCD二31°;(2)①由勾股定理得,A B R AC J BC S/ai2 + b2,AD=Va2 + b2 - a,解方程x2+2ax - b~0 得,x^~2a± V4a2+4b2^ 土需盯予-a,2・・・线段AD的长是方程x2+2ax - b2=0的一个根;② VAD=AE,AAE=EC=4,2 由勾股定理得,a2+b2=(寺b+a)2, 整理得,竿导.b 4巫(2018-遵义)如图,吊车在水平地血上吊起货物时,吊绳BC与地血保持垂直,吊臂AB与水平线的夹角为64。
几何综合专题 【2019东城二模】27.如图,△ABC 为等边三角形,点P 是线段AC 上一动点(点P 不与A,C 重合),连接BP , 过点A 作直线BP 的垂线段,垂足为点D ,将线段AD 绕点A 逆时针旋转60︒得到线段AE,连接DE,CE .(1)求证:BD=CE ;(2)延长ED 交BC 于点F ,求证:F 为BC 的中点; (3)若△ABC 的边长为1,直接写出EF 的最大值.27.(1)∵线段AD 绕点A 逆时针旋转60︒得到线段AE,∴△ADE 是等边三角形. 在等边△ABC 和等边△ADE 中 AB =ACAD =AE∠BAC =∠DAE =60°∴∠BAD =∠CAE ……………………………………………………1分 在△BAD 和△CAE 中AB AC BAD CAE AD AE =⎧⎪∠=∠⎨⎪=⎩∴△BAD ≌△CAE (SAS )……………………………2分 ∴BD=CE ……………………………………3分(2)如图,过点C 作CG ∥BP 交DF 的延长线于点G ∴∠G =∠BDF∵∠ADE =60°,∠ADB =90° ∴∠BDF =30°∴∠G =30°……………………………………………………4分 由(1)可知,BD =CE ,∠CEA =∠BDA∵AD ⊥BP∴∠BDA =90°∴∠CEA =90° ∵∠AED =60°, ∴∠CED =30°=∠G ,∴CE =CG∴BD =CG ……………………………………………………5分 在△BDF 和△CGF 中 BDF G BFD CFG BD CG ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△BDF ≌△CGF (AAS ) ∴BF =FC即F 为BC 的中点.……………………………………………………6分 (3)1……………………………………………………7分【2019西城二模】27. 如图,在正方形ABCD 中,E 是边AB 上的一动点,点F 在边BC 的延长线上,且CF =AE ,连接DE ,DF ,EF . FH 平分∠EFB 交BD 于点H . (1)求证:DE ⊥DF ; (2)求证:DH =DF :(3)过点H 作HM ⊥EF 于点M ,用等式表示线段AB ,HM 与EF 之间的数量关系,并证明.EBAE【2019海淀二模】27.已知C 为线段AB 中点,ACM α∠=.Q 为线段BC 上一动点(不与点B 重合),点P 在射线CM 上,连接PA ,PQ ,记BQ kCP =. (1)若60α=︒,1k =,①如图1,当Q 为BC 中点时, 求PAC ∠的度数; ②直接写出PA 、PQ 的数量关系;(2)如图2,当45α=︒时.探究是否存在常数k ,使得②中的结论仍成立?若存在,写出k 的值并证明;若不存在,请说明理由.图1 图2 27.(本小题满分7分)(1)①解:在CM 上取点D ,使得CD =CA ,连接AD .∵ 60ACM ∠=︒, ∴△ADC 为等边三角形. ∴60DAC ∠=︒.∵C 为AB 的中点,Q 为BC 的中点, ∴AC =BC=2BQ . ∵BQ =CP ,∴AC =BC=CD =2CP . ∴AP 平分∠DAC . ∴∠PAC =∠PAD =30°. ② PA =PQ .(2)存在k =. 证明:过点P 作PC 的垂线交AC 于点D . ∵45ACM ∠=︒,∴ ∠PDC =∠PCD =45°. ∴PC =PD ,∠PDA =∠PCQ =135°.M∵CD=,BQ=,∴CD= BQ.∵AC=BC,∴AD= CQ.∴△PAD≌△PQC.∴PA=PQ.【2019朝阳二模】27.∠MON=45°,点P在射线OM上,点A,B在射线ON上(点B与点O在点A的两侧),且AB=1,以点P为旋转中心,将线段AB逆时针旋转90°,得到线段CD(点C与点A对应,点D与点B对应).(1)如图,若OA=1,OP,依题意补全图形;(2)若OP AB在射线ON上运动时,线段CD与射线OM有公共点,求OA 的取值范围;(3)一条线段上所有的点都在一个圆的圆内或圆上,称这个圆为这条线段的覆盖圆.若OA=1,当点P在射线OM上运动时,以射线OM上一点Q为圆心作线段CD的覆盖圆,直接写出当线段CD的覆盖圆的直径取得最小值时OP和OQ的长度.【2019丰台二模】27. 如图,在正方形ABCD中, E为BC边上一动点(不与点B,C重合),延长AE到点F,连接BF,且∠AFB=45°.G为DC边上一点,且DG =BE,连接DF.点F关于直线AB的对称点为M,连接AM,BM.(1)依据题意,补全图形;(2)求证:∠DAG =∠MAB;(3)用等式表示线段BM,DF与AD的数量关系,并证明.27. 解:(1)略;.........................1分(2)∵四边形ABCD是正方形,∴AB=AD, ∠ABC =∠BAD=∠ADG=90°.∵BE=DG,∴△ABE≌△ADG.∴∠BAE=∠DAG.∵点F关于直线AB的对称点为M,∴∠BAE=∠MAB.∴∠DAG=∠MAB. ......................3分(3)222BM DF AD+=. ......................4分2证明:连接BD.延长MB交AG的延长线于点N.∵∠BAD=90°, ∠DAG=∠MAB,∴∠MAN=90°.由对称性可知∠M=∠AFB=45°,∴∠N=45°.∴∠M=∠N.∴AM=AN.∵AF=AM,∴AF=AN.∵∠BAN=∠DAF,∴△BAN≌△DAF.∴∠N=∠AFD=45°.∴∠BFD=90°.∴222+=.BF DF BD∵2=, BM=BF,BD AD∴222+=. .........................7分2BM DF AD【2019石景山二模】27.如图,在△ABC中,∠ACB=90°,AC=BC,E为外角∠BCD平分线上一动点(不与点C重合),点E关于直线BC的对称点为F,连接BE,连接AF并延长交直线BE于点G.(1)求证:AF=BE;(2)用等式表示线段FG,EG与CE的数量关系,并证明.C【2019门头沟二模】27.如图,在等边三角形ABC 中,点D 为BC 边上的一点,点D 关于直线AB 的对称点为点E ,连接AD 、DE ,在AD 上取点F ,使得∠EFD = 60°,射线EF 与AC 交于点G . (1)设∠BAD = α,求∠AGE 的度数(用含α的代数式表示); (2)用等式表示线段CG 与BD 之间的数量关系,并证明.AB CD EFG【2019房山二模】27. 如图,在△ABC中,∠ACB=90°,∠B=4∠BAC. 延长BC到点D,使CD=CB,连接AD,过点D作DE⊥AB于点E,交AC于点F.(1) 依题意补全图形;(2) 求证:∠B=2∠BAD;(3) 用等式表示线段EA,EB和DB之间的数量关系,并证明.A B。
第5讲例说三角形中线等分面积的应用如图1,线段AD 是△ABC 的中线,过点A 作AE ⊥BC ,垂足为E ,则S △ABD =12BD ·AE ,S △ADC =12DC ·AE ,因为BD =DC ,所以S △ABD =S △ADC 。
因此,三角形的中线把△ABC 分成两个面积相等的三角形.利用这一性质,可以解决许多有关面积的问题。
一、求图形的面积例1、如图2,长方形ABCD 的长为a ,宽为b ,E 、F 分别是BC 和CD 的中点,DE 、BF 交于点G ,求四边形ABGD 的面积.分析:因为E 、F 分别是BC 和CD 的中点,则连接CG 后,可知GF 、GE 分别是△DGC 、△BGC 的中线,而由S △BCF=S △DCE=4ab,可得S △BEG=S △DFG,所以△DGF 、△CFG 、△CEG 、△BEG 的面积相等,问题得解。
解:连接CG ,由E 、F 分别是BC 和CD 的中点,所以S △BCF=S △DCE=4ab,从而得S △BEG=S △DFG,可得△DGF 、△CFG 、△CEG 、△BEG 的面积相等且等于31×4ab =12ab ,因此S 四边形ABGD=ab -4×12ab =32ab。
例2、在如图3至图5中,△ABC 的面积为a .(1)如图2, 延长△ABC 的边BC 到点D ,使CD =BC ,连结DA .若△ACD 的面积为S 1,则S 1=________(用含a 的代数式表示);(2)如图3,延长△ABC 的边BC 到点D ,延长边CA 到点E ,使CD =BC ,AE =CA ,连结DE .若△DEC 的面积为S 2,则S 2=__________(用含a 的代数式表示),并写出理由;(3)在图4的基础上延长AB 到点F ,使BF =AB ,连结FD ,FE ,得到△DEF (如图6).若阴影部分的面积为S 3,则S 3=__________(用含a 的代数式表示).发现:像上面那样,将△ABC 各边均顺次延长一倍,连结所得端点,得到△DEF (如图6),此时,我们称△ABC 向外扩展了一次.可以发现,扩展一次后得到的△DEF 的面积是原来△ABC 面积的_______倍.图1图2图4F 图5图3应用:去年在面积为10m 2的△ABC 空地上栽种了某种花卉.今年准备扩大种植规模,把△ABC 向外进行两次扩展,第一次由△ABC 扩展成△DEF ,第二次由△DEF 扩展成△MGH (如图5).求这两次扩展的区域(即阴影部分)面积共为多少m 2?分析:从第1个图可以发现AC 就是△ABD 的中线,第2个图通过连接DA ,可得到△ECD 的中线DA ,后面扩展的部分都可以通过这样的方法得到三角形的中线,从而求出扩展部分的面积,发现规律。
备考2023年中考数学二轮复习-图形的性质_三角形_三角形的面积-填空题专训及答案三角形的面积填空题专训1、(2019绍兴.中考模拟) 如图,A.B是反比例函数y= 图象上关于原点O对称的两点,BC⊥x轴,垂足为C,连线AC过点D(0,﹣1.5).若△ABC的面积为7,则点B的坐标为________.2、(2019宁波.中考模拟) 如图,在菱形ABCD中,∠B=60°,对角线AC平分角∠BAD,点P是△ABC内一点,连接PA、PB、PC,若PA=6,PB=8,PC=10,则菱形ABCD 的面积等于________.3、(2018青岛.中考模拟) 如图,以边长为20cm的正三角形纸板的各顶点为端点,在各边上分别截取4cm长的六条线段,过截得的六个端点作所在边的垂线,形成三个有两个直角的四边形.把它们沿图中虛线剪掉,用剩下的纸板折成一个底为正三角形的无盖柱形盒子,则它的容积为________cm3.4、(2017历下.中考模拟) 如图,已知点A1、A2、A3、…、An在x轴上,且OA1=A1A2=A2A3═An﹣1An=1,分别过点A1、A2、A3、…、An作x轴的垂线,交反比例函数y= (x>0)的图象于点B1、B2、B3、…、Bn,过点B2作B2P1⊥A1B1于点P1,过点B3作B3P2⊥A2B2于点P2,…,若记△B1P1B2的面积为S1,△B2P2B3的面积为S2,…,△BnPnBn+1的面积为Sn ,则S1+S2+…+S2017=________.5、(2019河南.中考模拟) 如图,正方形ABCD中,AB=2,将线段CD绕点C顺时针旋转90°得到线段CE,线段BD绕点B顺时针旋转90°得到线段BF,连接EF,则图中阴影部分的面积是________.6、(2017三门峡.中考模拟) 如图,矩形OABC的边OA、OC分别在x轴、y轴上,点B的坐标为(7,3),点E在边AB上,且AE=1,已知点P为y轴上一动点,连接EP,过点O作直线EP的垂线段,垂足为点H,在点P从点F(0,)运动到原点O的过程中,点H的运动路径长为________.7、(2018深圳.中考模拟) 如图,在正方形ABCD中,AD= ,把边BC绕点B逆时针旋转30°得到线段BP,连接AP并延长交CD于点E,连接PC,则三角形PCE 的面积为________.8、(2018潮南.中考模拟) 如图,梯形ABCD的两条对角线交于点E,图中面积相等的三角形共有________对.9、(2021深圳.中考模拟) 如图,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,AD平分∠CAB交BC于D点,E,F分别是AD,AC上的动点,则CE+EF的最小值为________10、(2018成都.中考模拟) 如图,E、F分别是矩形ABCD的边AB、BC的中点,连AF,CE,AF、CE交于G,则四边形BEGF与四边形ADCG的面积的比值为________11、(2019巴中.中考真卷) 如图,反比例函数经过A、B两点,过点A 作轴于点C,过点B作轴于点D,过点B作轴于点E,连结AD,已知、、.则=________.12、(2019凤翔.中考模拟) 如图,四边形ABCD,四边形EBFG,四边形HMPN均是正方形,点E、F、P、N分别在边AB、BC、CD、AD上,点H、G、M在AC上,阴影部分的面积依次记为S1, S2,则S1:S2等于________.13、(2020乌鲁木齐.中考模拟) 如图,在矩形中,. 若将绕点旋转后,点落在延长线上的点处,点经过的路径为,则图中阴影部分的面积为________.14、(2019城.中考模拟) 如图,点、是函数上两点,点为一动点,作轴,轴,下列结论:① ≌ ;② ;③若,则平分;④若,则.其中正确序号是________(把你认为正确都填上).15、(2020长兴.中考模拟) 如图,P是▱ABCD内一点,连结P与▱ABCD各顶点,▱EFGH 各顶点分别在线段BP,CP,DP,AP上,若2BE=3PE,且EF∥BC,图中阴影部分的面积为2,则▱ABCD的面积为________.16、(2020如皋.中考模拟) 如图,在△ABC中,∠BAC=45°,AD⊥BC于点D,若BD =3,CD=2.则△ABC的面积为________.17、(2020滨州.中考模拟) 如图,两个反比例函数和的图像分别是 l1和l2.设点P在 l1上,PC⊥x轴,交 l2于点A。
中考数学复习考点知识专题讲解中考数学复习考点知识专题讲解三角形的综合问题专题10三角形的综合问题】方法指导】【方法指导1.全等三角形解决问题的常见技巧:(1)全等三角形的判定方法有SSS、SAS、ASA、AAS、HL(适用于直角三角形).(2)作辅助线构造全等三角形①把三角形一边的中线延长,把分散条件集中到同一个三角形中是解决中线问题的基本规律.②证明一条线段等于两条线段的和,可采用“截长法”或“补短法”,这些问题经常用到全等三角形来证明.2.等腰三角形解题技巧:(1)等腰三角形提供了好多相等的线段和相等的角,判定三角形是等腰三角形是证明线段相等、角相等的重要手段.(2)在等腰三角形有关问题中,会遇到一些添加辅助线的问题,其顶角平分线、底边上的高、底边上的中线是常见的辅助线,虽然“三线合一”,但添加辅助线时,有时作哪条线都可以,有时不同的做法引起解决问题的复杂程度不同,需要具体问题具体分析.3.等边三角形常用方法与思路:(1)等边三角形是一个非常特殊的几何图形,它的角的特殊性给有关角的计算奠定了基础,它的边角性质为证明线段、角相等提供了便利条件.同是等边三角形又是特殊的等腰三角形,同样具备三线合一的性质,解题时要善于挖掘图形中的隐含条件广泛应用.(2)等边三角形的特性如:三边相等、有三条对称轴、一边上的高可以把等边三角形分成含有30°角的直角三角形、连接三边中点可以把等边三角形分成四个全等的小等边三角形等.(3)等边三角形判定最复杂,在应用时要抓住已知条件的特点,选取恰当的判定方法,一般地,若从一般三角形出发可以通过三条边相等判定、通过三个角相等判定;若从等腰三角形出发,则想法获取一个60°的角判定.【题型剖析题型剖析】】【类型1】三角形有关角的综合计算三角形有关角的综合计算【例1】(2019•泉山区模拟)如图,点A 、B 分别在射线OM 、ON 上运动(不与点O 重合).(1)如图1,若90MON ∠=°,OBA ∠、OAB ∠的平分线交于点C ,则ACB ∠= °;(2)如图2,若MON n ∠=°,OBA ∠、OAB ∠的平分线交于点C ,求ACB ∠的度数;(3)如图2,若MON n ∠=°,AOB ∆的外角ABN ∠、BAM ∠的平分线交于点D ,求ACB ∠与ADB ∠之间的数量关系,并求出ADB ∠的度数;(4)如图3,若80MON ∠=°,BC 是ABN ∠的平分线,BC 的反向延长线与OAB ∠的平分线交于点E .试问:随着点A 、B 的运动,E ∠的大小会变吗?如果不会,求E ∠的度数;如果会,请说明理由.【变式1-1】(2019•沭阳县模拟)探究与发现: 如图1所示的图形,像我们常见的学习用品−−圆规.我们不妨把这样图形叫做“规形图”,那么在这一个简单的图形中,到底隐藏了哪些数学知识呢?下面就请你发挥你的聪明才智,解决以下问题:(1)观察“规形图”,试探究BDC ∠与A ∠、B ∠、C ∠之间的关系,并说明理由;(2)请你直接利用以上结论,解决以下三个问题:①如图2,把一块三角尺XYZ 放置在ABC ∆上,使三角尺的两条直角边XY 、XZ 恰好经过点B 、C ,若50A ∠=°,则ABX ACX ∠+∠= 40 °;②如图3,DC 平分ADB ∠,EC 平分AEB ∠,若50DAE ∠=°,130DBE ∠=°,求DCE ∠的度数; ③如图4,ABD ∠,ACD ∠的10等分线相交于点1G 、2G …、9G ,若140BDC ∠=°,177BG C ∠=°,求A ∠的度数.【变式1-2】(2019春•海安市期末)如图,已知BE 是ABC ∆的角平分线,CP 是ABC ∆的外角ACD ∠的平分线.延长BE ,BA 分别交CP 于点F ,P(1)求证:12BFC BAC ∠=∠;(2)小智同学探究后提出等式:BAC ABC P ∠=∠+∠.请通过推理演算判断“小智发现”是否正确?(3)若2180BEC P ∠−∠=°,求ACB ∠的度数.【变式1-3】(2019春•高淳区校级模拟)ABC ∆中,三个内角的平分线交于点O ,过点O 作OD OB ⊥,交边AB 于点D .(1)如图1,①若40ABC ∠=°,则AOC ∠= ,ADO ∠= ;②猜想AOC ∠与ADO ∠的关系,并说明你的理由;(2)如图2,作ABC ∠外角ABE ∠的平分线交CO 的延长线于点F .若105AOC ∠=°,32F ∠=°,则AOD ∠= _______°.【类型2】全等三角形的判定与性质全等三角形的判定与性质【例2】(2019•如皋市一模)如图,A 、B 、C 是直线l 上的三个点,DAB DBE ECB a ∠=∠=∠=,且BD BE =.(1)求证:AC AD CE =+;(2)若120a =°,点F 在直线l 的上方,BEF ∆为等边三角形,补全图形,请判断ACF ∆的形状,并说明理由.【变式2-1】(2019•碑林区校级模拟)如图,四边形ABCD 中,//AD BC ,90A ∠=°,CE BD ⊥,垂足为E ,BE DA =.(1)求证:ABD ECB ∆≅∆;(2)若45DBC ∠=°,1BE =,求DE 的长(结果精确到0.01, 1.414≈ 1.732)≈【变式2-2】(2019•灌南县校级模拟)如图,在四边形ABCD 中,//AD BC ,AD BC =,点F 是AB 的中点,点E 是BC 边上的点,DE AD BE =+,DEF ∆的周长为l .(1)求证:DF 平分ADE ∠;(2)若FD FC =,2AB =,3AD =,求l 的值.【类型3】等腰三角形的有关计算与证明等腰三角形的有关计算与证明【例3】(2018秋•灌云县期末)如图,已知D 是ABC ∆的边BC 上的一点,CD AB =,(1)若BDA BAD ∠=∠,60B ∠=°,求C ∠的大小;(2)若AE 既是ABD ∆的高又是角平分线,54B ∠=°,求C ∠的大小.【变式3-1】(2018秋•泗阳县期末)已知,在ABC ∆中,点D 在BC 上,点E 在BC 的延长线上,且BD BA =,CE CA =.(1)如图1,若90BAC ∠=°,45B ∠=°,试求DAE ∠的度数;(2)若90BAC ∠=°,60B ∠=°,则DAE ∠的度数为 (直接写出结果);(3)如图2,若90BAC ∠>°,其余条件不变,探究DAE ∠与BAC ∠之间有怎样的数量关系?【变式3-2】(2018秋•秦淮区期末)如图,在ABC ∆中,AB AD =,CB CE =.(1)当90ABC ∠=°时(如图①),EBD ∠= °;(2)当(90)ABC n n ∠=°≠时(如图②),求EBD ∠的度数(用含n 的式子表示).【类型4】等边三角形的有关计算与证明等边三角形的有关计算与证明【例4】(2019春•鼓楼区校级模拟)已知,ABC ∆为等边三角形,点D 为AC 上的一个动点,点E 为BC 延长线上一点,且BD DE =.(1)如图1,若点D 在边AC 上,猜想线段AD 与CE 之间的关系,并说明理由;(2)如图2,若点D 在AC 的延长线上,(1)中的结论是否成立,请说明理由.【变式4-1】(2018秋•泰兴市月考)如图,ABC ∆是等边三角形,BD 是中线,延长BC 至点E ,使CE CD =.取BE 中点F ,连接DF .(1)求证:BD DE =;(2)延长ED 交边AB 于点G ,试说明:DG DF =.【变式4-2】(2019•淮阴区模拟)如图,ABC ∆中,90ACB ∠=°,以AC 为边在ABC ∆外作等边三角形ACD ,过点D 作AC 的垂线,垂足为F ,与AB 相交于点E ,连接CE .(1)说明:AE CE BE ==;(2)若15AB cm =,P 是直线DE 上的一点.则当P 在何处时,PB PC +最小,并求出此时PB PC +的值.【类型5】直角三角形的综合问题直角三角形的综合问题【例5】(2019 •溧水校级模拟)已知ABC ∆中,90A ∠=°,AB AC =,D 为BC 的中点. (1)如图,若E 、F 分别是AB 、AC 上的点,且BE AF =.求证:DEF ∆为等腰直角三角形;(2)若E ,F 分别为AB ,CA 延长线上的点,仍有BE AF =,其他条件不变,那么DEF ∆是否仍为等腰直角三角形?证明你的结论.【变式5-1】(2018秋•常熟市期末)如图,在Rt ABC ∆中,90ACB ∠=°,AC BC =.点D 是边AC 上一点,DE AB ⊥,垂足为E .点F 是BD 的中点,连接CF ,EF .(1)求证:CF EF =;(2)判断CF 与EF 的位置关系,并说明理由;(3)若30DBE ∠=°,连接AF ,求AFE ∠的度数.【变式5-2】(2019•江都区校级模拟)如图所示,已知ABC ∆是等腰直角三角形,90ABC ∠=°,10AB =,D 为ABC ∆外的一点,连结AD 、BD ,过D 作DH AB ⊥,垂足为H ,DH 的延长线交AC 于E .(1)如图1,若BD AB =,且34HB HD =,求AD 的长; (2)如图2,若ABD ∆是等边三角形,求DE 的长.【达标检测达标检测】】一.选择题选择题((共4小题小题))1.(2019•徐州)下列长度的三条线段,能组成三角形的是( )A.2,2,4 B.5,6,12 C.5,7,2 D.6,8,102.(2019•扬州)已知n是正整数,若一个三角形的3边长分别是n+2、n+8、3n,则满足条件的n的值有( )A.4个B.5个C.6个D.7个3.(2019•盐城)如图,点D、E分别是△ABC边BA、BC的中点,AC=3,则DE的长为( )A.2 B.C.3 D.4.(2018•南通)如图,Rt△ABC中,∠ACB=90°,CD平分∠ACB交AB于点D,按下列步骤作图:步骤1:分别以点C和点D为圆心,大于CD的长为半径作弧,两弧相交于M,N两点;步骤2:作直线MN,分别交AC,BC于点E,F;步骤3:连接DE,DF.若AC=4,BC=2,则线段DE的长为( )A.B.C.D.)小题)二.填空题(共4小题填空题(5.(2019•南通)如图,△ABC中,AB=BC,∠ABC=90°,F为AB延长线上一点,点E 在BC上,且AE=CF,若∠BAE=25°,则∠ACF= 度.6.(2019•苏州)如图,扇形OAB中,∠AOB=90°.P为弧AB上的一点,过点P作PC⊥OA,垂足为C,PC与AB交于点D.若PD=2,CD=1,则该扇形的半径长为 .7.(2019•南京)在△ABC中,AB=4,∠C=60°,∠A>∠B,则BC的长的取值范围是 .8.(2019•南京)无盖圆柱形杯子的展开图如图所示.将一根长为20cm的细木筷斜放在该杯子内,木筷露在杯子外面的部分至少有 cm.)小题)(共8小题三.解答题解答题(9.(2019•南通)如图,有一池塘,要测池塘两端A,B的距离,可先在平地上取一个点C,从点C不经过池塘可以直接到达点A和B.连接AC并延长到点D,使CD=CA.连接BC 并延长到点E,使CE=CB.连接DE,那么量出DE的长就是A,B的距离.为什么?10.(2019•镇江)如图,四边形ABCD中,AD∥BC,点E、F分别在AD、BC上,AE=CF,过点A、C分别作EF的垂线,垂足为G、H.(1)求证:△AGE≌△CHF;(2)连接AC,线段GH与AC是否互相平分?请说明理由.11.(2019•无锡)如图,在△ABC中,AB=AC,点D、E分别在AB、AC上,BD=CE,BE、CD相交于点O.(1)求证:△DBC≌△ECB;(2)求证:OB=OC.12.(2018•无锡)如图,在△ABC中,∠ACB=90°,AC=m,BC=n,m>n,点P是边AB上一点,连结CP,将△ACP沿CP翻折得到△QCP.(1)若m=4,n=3,且PQ⊥AB,求BP的长;(2)连结BQ,若四边形BCPQ是平行四边形,求m与n之间的关系式.13.(2018•徐州)如图,将等腰直角三角形纸片ABC对折,折痕为CD.展平后,再将点B 折叠在边AC上(不与A、C重合),折痕为EF,点B在AC上的对应点为M,设CD与EM交于点P,连接PF.已知BC=4.(1)若M为AC的中点,求CF的长;(2)随着点M在边AC上取不同的位置,①△PFM的形状是否发生变化?请说明理由;②求△PFM的周长的取值范围.14.(2019•扬州)如图,平面内的两条直线l1、l2,点A,B在直线l1上,点C、D在直线l2上,过A、B两点分别作直线l2的垂线,垂足分別为A1,B1,我们把线段A1B1叫做线段AB在直线l 2上的正投影,其长度可记作T(AB,CD)或T,特别地线段AC在直线l2上的正投影就是线段A1C.请依据上述定义解决如下问题:=3,则T(BC,AB)= ;(1)如图1,在锐角△ABC中,AB=5,T(AC,AB)=4,T(BC,AB)═9,求△ABC的面(2)如图2,在Rt△ABC中,∠ACB=90°,T(AC,AB)积;(3)如图3,在钝角△ABC中,∠A=60°,点D在AB边上,∠ACD=90°,T(AD,AC)=6,求T(BC,CD),=2,T(BC,AB)。
2019年中考数学二轮专题复习几何部分一、选择题:1、下图中几何体的左视图是()A. B. C. D.2、下列四个生活、生产现象:①用两个钉子就可以把木条固定在墙上;②植树时,只要定出两棵树的位置,就能确定同一行树所在的直线;③从A地到B地架设电线,总是尽可能沿着线段AB架设;④把弯曲的公路改直,就能缩短路程,其中可用公理“两点之间,线段最短”来解释的现象有( )A.①②B.①③C.②④D.③④3、点P为直线MN外一点,点A、B、C为直线MN上三点,PA=4厘米,PB=5厘米,PC=2厘米,则P到直线MN的距离为()A.4厘米B.2厘米C.小于2厘米D.不大于2厘米4、如图将一直角三角板与两边平行的纸条如图所示放置,下列结论:(1)∠1=∠2;(2)∠3=∠4;(3)∠2+∠4=90°;(4)∠4+∠5=180°,其中正确的个数是()A.1B.2C.3D.45、为了测量河两岸相对点A,B的距离,小明先在AB的垂线BF上取两点C,D,使CD=BC,再定出BF的垂线D E,使A,C,E在同一条直线上(如图所示),可以证明△EDC≌△A BC,得ED=AB,因此测得ED的长就是AB的长,判定△EDC≌△ABC的理由是( ).A.SASB.ASAC.SSSD.HL6、如图,下列4个三角形中,均有AB=AC,则经过三角形的一个顶点的一条直线能够将这个三角形分成两个小等腰三角形的是()A.①③B.①②④C.①③④D.①②③④7、如图,已知直线AB、CD被直线AC所截,AB∥CD,E是平面内任意一点(点E不在直线AB、CD、AC上),设∠BAE=α,∠DCE=β.下列各式:①α+β,②α﹣β,③β﹣α,④360°﹣α﹣β,∠AEC的度数可能是()A.①②③B.①②④C.①③④D.①②③④8、已知等腰三角形的两边长是4和10,则它的周长是()A.18B.24C.18或24D.149、一个多边形的内角和是外角和的4倍,则这个多边形的边数为( )A.6B.8C.10D.1210、如图,在△ABC中,AB=AC,点D,E分别在边BC和AC上,若AD=AE,则下列结论错误的是()A.∠ADB=∠ACB+∠CADB.∠ADE=∠AEDC.∠B=∠CD.∠BAD=∠BDA11、如图,△ABC的周长为26,点D,E都在边BC上,∠ABC的平分线垂直于AE,垂足为Q,∠ACB的平分线垂直于AD,垂足为P,若BC=10,则PQ的长为( )A.4B.3C.2.5D.1.512、如图,在△ABC中,AB=AC,AD、CE是△ABC的两条中线,P是AD上一个动点,则下列线段的长度等于BP+EP最小值的是()A.BCB.CEC.ADD.AC13、如图:在△ABC中,CE平分∠ACB,CF平分∠ACD,且EF∥BC交AC于M,若CM=5,则CE2+CF2等于()A.75B.100C.120D.12514、如图,在菱形ABCD中,∠BAD=84°,AB的垂直平分线交对角线AC于点F,垂足为E,连接DF,则∠CDF等于()A.64°B.54°C.60°D.84°15、如图,四边形ABCD内接于⊙O,E为CD延长线上一点,若∠ADE=110°,则∠AOC的度数是()A.70°B.110°C.140°D.160°16、如图,⊙O是△ABC的内切圆,切点分别是D、E、F,已知∠A=100°,∠C=30°,则∠DFE的度数是()A.55°B.60°C.65°D.70°17、如图,边长为3的正方形绕点逆时针旋转到正方形,图中阴影部分的面积为()A. B. C. D.18、如图,正方形ABCD中,点E、F分别在BC、CD上,△AEF是等边三角形,连接AC交EF于G,下列结论:①BE=DF,②∠DAF=15°,③AC垂直平分EF,④BE+DF=EF,⑤S△CEF=2S△ABE.其中正确结论有()个.A.4B.3C.2D.119、如图,正方形ABCD的边长为2,以BC为直径的半圆与对角线AC相交于点E,则图中阴影部分的面积为()A. B. C. D.20、如图已知在△ABC中,AB=AC,∠BAC=90°,直角∠EPF的顶点P是BC的中点,两边PE、PF分别交AB 和AC于点E、F,给出以下五个结论正确的个数有()①AE=CF;②∠APE=∠CPF;③△BEP≌△AFP;④△EPF是等腰直角三角形;⑤当∠EPF在△ABC内绕顶点P 旋转时(点E不与A、B重合),S四边形AEPF=S△ABC.A.2B.3C.4D.5二、填空题:21、如图,将Rt△ABC绕点A逆时针旋转40°,得到Rt△AB'C',点C'恰好落在斜边AB上,连接BB',则∠BB'C'=_______.22、如图,正六边形ABCDEF内接于半径为3的⊙O,则劣弧AB的长度为 .23、如图,AB是⊙O的直径,AC、BC是⊙O的弦,直径DE⊥AC于点P.若点D在优弧上,AB=8,BC=3,则DP= .24、如图,△ABC是等边三角形,∠CBD=90°,BD=BC,连接AD交BC于点E,则∠AEC的度数是 .25、如图,在直角坐标系中,有两点A(6,3)、B(6,0).以原点O为位似中心,相似比为,在第一象限内把线段AB缩小后得到线段CD,则点C的坐标为.26、两个完全相同的正五边形都有一边在直线l上,且有一个公共顶点O,其摆放方式如图所示,则∠AOB 等于____度.27、如图,把△ABC沿EF对折,折叠后的图形如图所示.若∠A=60°,∠1=96°,则∠2的度数为.28、如图,正五边形ABCDE和正三角形AMN都是⊙O的内接多边形,则∠BOM= .29、如图,6个形状、大小完全相同的菱形组成网格,菱形的顶点称为格点.已知菱形的一个角(∠O)为60°,A,B,C都在格点上,则tan∠ABC的值是.30、如图,△ABC是一个边长为2的等边三角形,AD0⊥BC,垂足为点D0.过点D0作D0D1⊥AB,垂足为点D1;再过点D1作D1D2⊥AD0,垂足为点D2;又过点D2作D2D3⊥AB,垂足为点D3;…;这样一直作下去,得到一组线段:D0D1,D1D2,D2D3,…,则线段D1D2的长为,线段D n﹣1D n的长为(n为正整数).三、解答题:31、如图,DE⊥AB于E,DF⊥AC于F,若BD=CD、BE=CF,(1)求证:AD平分∠BAC;(2)已知AC=20, BE=4,求AB的长.32、如图,P是正三角形ABC内的一点,且PA=6,PB=8,PC=10.若将△PAC绕点A逆时针旋转后,得到△P′AB.(1)求点P与点P′之间的距离;(2)求∠APB的度数.33、如图,在矩形ABCD中,∠ADC的平分线交BC于点E、交AB延长线于点F,G是EF中点,连接AG、CG. (1)求证:BE=BF;(2)请判断△AGC的形状,并说明理由.34、如图,在△ABC,AB=AC,以AB为直径的⊙O分别交AC、BC于点D、E,点F在AC的延长线上,且∠CBF=∠CAB.(1)求证:直线BF是⊙O的切线;(2)若AB=5,sin∠CBF=,求BC和BF的长.35、如图,在平面直角坐标系中,矩形OABC的边OA=4,OC=3,且顶点A、C均在坐标轴上,动点M从点A 出发,以每秒1个单位长度的速度沿AO向终点O移动;点N从点C出发沿CB向终点B以同样的速度移动,当两个动点运动了x秒(0<x<4)时,过点N作NP⊥BC交BO于点P,连接MP.(1)直接写出点B的坐标,并求出点P的坐标(用含x的式子表示);(2)设△OMP的面积为S,求S与x之间的函数表达式;若存在最大值,求出S的最大值;(3)在两个动点运动的过程中,是否存在某一时刻,使△OMP是等腰三角形?若存在,求出x的值;若不存在,请说明理由.。
三角形专题讲座一三角形的中线与图形面积一、回顾复习:例1、如图,、如图,AD AD 是BC 边上的中线,则BD=BC BC,△,△,△ABD ABD 的面积的面积=_____=_____=_____的面积.的面积.【小结】三角形的中线不仅平分对边,还平分三角形的面积。
二、变式提高例1、如图,在△、如图,在△ABC ABC 中,中,D D 、E 分别是BC BC、、AD 的中点,S △ABC =4cm 2,求S △ABE .巩固练习:1.如图所示,在△ABC 中,已知点D 、E 、F 分别为边BC 、AD 、CE 的中点,且S △ABC =4cm 2,则S 阴影等于( ) A.2cm 2B.1cm 2C.12cm 2D.14cm 2 例2、在△、在△ABC ABC 中,D 是BC 上的点上的点,,且BD:DC=2:1,S △ACD =12,=12,那么那么S △ABC 等于等于( ) ( )A.30B.36C.72D.24巩固练习:1.如图,在△ABC 中E 是BC 上的一点,EC=2BE ,点D 是AC 的中点,设△ABC 、△ADF 、△BEF 的面积分别为S △ABC ,S △ADF ,S △BEF ,且S △ABC =12,则S △ADF -S △BEF =_________.2. 2. 如图如图如图,,四边形ABCD 的两条对角线AC AC、、BD 交于点E ,延长AC 到点G ,使CG=AE CG=AE,延长,延长DB 到点F ,使BF=DE BF=DE。
S ΔEBC =6cm 2,S 四边形ABCD =103S ΔEBC ,求S ΔEFG 。
AB CE FDFE D C B A三角形专题讲座一三角形专题讲座一三、拓展延伸:1.如图,小李承包了一块植草的三角形草地,他把草地分成东、南、西、北四块,一段时间后,他发现东边的草可牧5只羊,南边的草可牧10只羊,西边的草可牧8只羊。
问:在北边草地可牧几只羊?只羊。
全等三角形1已知:AB=4,AC=2,D 是BC 中点,AD 是整数,求AD2已知:BC=DE ,∠B=∠E ,∠C=∠D ,F 是CD 中点,求证:∠1=∠23已知:∠1=∠2,CD=DE ,EF//AB ,求证:EF=AC4已知:AD 平分∠BAC ,AC=AB+BD ,求证:∠B=2∠C5已知:AC 平分∠BAD ,CE ⊥AB ,∠B+∠D=180°,求证:AE=AD+BE CDBA BC DEF 2 1ADB CAB ACDF2 1 E6 如图,四边形ABCD 中,AB ∥DC ,BE 、CE 分别平分∠ABC 、∠BCD ,且点E 在AD 上。
求证:BC=AB+DC 。
7已知:AB=CD ,∠A=∠D ,求证:∠B=∠C8.P 是∠BAC 平分线AD 上一点,AC>AB ,求证:PC-PB<AC-AB9已知,E 是AB 中点,AF=BD ,BD=5,AC=7,求DCABCDP DAC B10.如图,已知AD ∥BC ,∠PAB 的平分线与∠CBA 的平分线相交于E ,CE 的连线交AP 于D .求证:AD+BC=AB .11如图,△ABC 中,AD 是∠CAB 的平分线,且AB=AC+CD ,求证:∠C=2∠B12如图:AE 、BC 交于点M ,F 点在AM 上,BE ∥CF ,BE=CF 。
求证:AM 是△ABC 的中线。
13已知:如图,AB=AC ,BD ⊥AC ,CE ⊥AB ,垂足分别为D 、E ,BD 、CE 相交于点F 。
求证:BE=CD . PEDCBA D CBAMFECBACD F14在△ABC中,︒=∠90ACB,BCAC=,直线MN经过点C,且MNAD⊥于D,MNBE⊥于E.(1)当直线MN绕点C旋转到图1的位置时,求证:①ADC∆≌CEB∆;②BEADDE+=;(2)当直线MN绕点C旋转到图2的位置时,(1)中的结论还成立吗?若成立,请给出证明;若不成立,说明理由.15如图所示,已知AE⊥AB,AF⊥AC,AE=AB,AF=AC。
去伪存真,探求问题本质 —三角形中线等分面积问题的教学思考
三角形中线等分面积是义务教育教科书(苏科版)七年级下册数学一认识三角形专题中重要问题,它既是对三角形三边,三线(中线,角平分线,高线)关系的应用,同时也为后续三角形全等,相似等知识作铺垫.笔者在此以练习课的一道习题为例,通过两次解题教学的研究,谈谈自己在实践中一些体会与思考. 一、习题呈现
如图1,已知ABC,,,DEF分别是,BCAD和EC的中点,ABC的面积为16,求BEF的面积.
二、第一次教学 1.看似很简单,学生为什么不会做
首先回顾三角形中线等分面积的性质,借助于图象直观讲解如图2,以点,,DEF为中点为例,探究:
,,ABDEBDADFSSS与ABCS的关系.学生较容易掌握到中线等分面积的结论.通过引导,图
114EBDEDCABCSSS,由BF是EC的中线,得出18EBFABCSS.运用三次中线等分面积的性质进行求解,学生看似将问题理解透彻了,笔者一周后又以相同问题做了一次反馈调查,能正确求解的同学不足三分之一,教学效果引起笔者深思. 2.反思失败之因 问题根源:学生没有领悟中线等分面积问题的实质,三角形的中线为何能等分面积?多数同学无法从复杂的图形中分离出简单图形的模型.七年级下学期,刚刚涉及到几何,大多数学生对于几何图形的辨析能力比较薄弱.在第一次教学中,学生缺乏理解与参与思考的立足点,整个教学过程是老师领着学生的思维在走,学生并没能形成有效的启发与思考,因而不能形成有效的教学. 三、第二次教学 3. 1教学更注重从形式到思想的点拨 提问1 从三角形的面积公式入手(学生容易得出三角形的面积大小是通过底和高这两个量决定的,为下面研究中线等分面积作铺垫)
提问2 如图3 , ABD与ABC面积有怎样的联系?取AD中点E,如何比较BEDS与CEDS的大小,并说明它们与ABCS有怎样的关系?(说明中线等分面积的实质) 提问3 在图4中,进一步,取EC中点F,连接BF探求EBDS与ABCS的关系(通过图形分离,层层推进,训练他们几何的逻辑思维) 3. 2 进一步探究
如图5, ABC的面积为,,SDE分别是,BCAC中点,连接,ADBE相交于点O,试比较的ABOS与
ODECS四边形的大小. 解法点拨 仍从两条中线,ADBE入手,由这两条中线可以得到哪些三角形的面积?学生经过思考后得知,ABOS、ODECS四边形与ABCS并无明显数量关系,无法直接求解.但它们都可作为是ABD与BEC的一部分,引导学生“整体”中分离出“部分”,进而求解.
3. 3题型拓展 在上题的基础上,再取AB的中点F,连接FC如图6所示.(1)比较OFBS与OECS的大小.(2)你还能在图中找出哪些三角形面积相等. 解析 点拨(1)有了上题从“整体”到部分的经验,学生很快得出OFBOECSS.对于问题(2),学生
们能列举出,,OFAOFBOAEOBCOBDODCSSSSSS,进一步得出 ,OFAODCOEAOBDSSSS……细心观察的同学不难发现,ABC三条中线把三角形分成的六个小部分
的面积都相等. 3. 4模型应用
如图7 , ABC中,,,DEF分别是,CEAF与BD的中点,己知DEF的面积为1,求ABC的面积. 解法分析 此题难点在于由题中三个中点,在ABC中无法找到相应的中线,无从寻求DEF与ABC的面积关系.如何让,,DEF转化为相对应的中线是关键,连接,,ADBECF使其转化成三角形的
中线,添加辅助线构造三个三角形.
由图8所示,学生们很快能够表示出,,ABFDBCAECSSS,从而求出ABCS. 从复杂图形中分离出简单模型,从“整体”到“部分”对研究对象求解,学生理解更为流畅自然此时,他们不仅收获了这一类题的通法内涵,更为重要的是他们在思想层面上的领悟以及带来的自信与快乐,这是弥足珍贵的.从师生再到生生之间的交流,课堂中的灵动表现产生彼此信任不正是为师者不懈追求吗? 中考数学模拟试卷
一、选择题(本大题共10小题,每小题4分,满分40分) 1.计算(-2)2-3的值是 ( ) A.1 B.2 C.-1 D.-2 【解析】选A.(-2)2-3=4-3=1. 2.计算(-ab2)3÷(-ab)2的结果是 ( ) A.ab4 B.-ab4 C.ab3 D.-ab3 【解析】选B.(-ab2)3÷(-ab)2 =-a3b6÷a2b2 =-ab4. 3.如图,是由两个相同的小正方体和一个圆锥体组成的立体图形,其俯视图是 ( )
【解析】选C.从上面看,圆锥看见的是:圆和点,两个正方体看见的是两个正方形. 4.下列因式分解正确的是 ( ) A.x2+9=(x+3)2 B.a2+2a+4=(a+2)2 C.a3-4a2=a2(a-4) D.1-4x2=(1+4x)(1-4x) 【解析】选C.A、原式不能分解,错误; B、原式不能分解,错误; C、原式=a2(a-4),正确; D、原式=(1+2x)(1-2x),错误. 5.某校对初中学生开展的四项课外活动进行了一次抽样调查(每人只参加其中的一项活动),调查结果如图所示,根据图形所提供的样本数据,可得学生参加科技活动的频率是 ( ) A.0.15 B.0.2 C.0.25 D.0.3 【解析】选B.读图可知:共有(15+30+20+35)=100人,参加科技活动的频数是20.故参加科技活动的频率是0.2.
6.已知a,b为两个连续的整数,且a 【解析】选A.∵9<11<16,∴3<<4. 又∵a<7.已知a-2b=-2,则4-2a+4b的值是 ( ) A.0 B.2 C.4 D.8 【解析】选D.a-2b=-2,代入4-2a+4b得,4-2(a-2b)=4-2×(-2)=8. 8.如图,在△ABC中,AD是BC边的中线,∠ADC=30°,将△ADC沿AD折叠,使C点落在C′的位置,若BC=4,则BC′的长为 ( ) A.2 B.2 C.4 D.3 【解析】选A.∵BD=DC=2,∠ADC=30°, ∴∠C′DA=∠ADC=30°, ∴∠BDC′=120°,BD=DC′=2. ∴BC′=2=2. 9.如图,菱形ABCD的边长为2,∠B=30°.动点P从点B出发,沿B-C-D的路线向点D运动.设△ABP的面积为y(B,P两点重合时,△ABP的面积可以看做0),点P运动的路程为x,则y与x之间函数关系的图象大致为 ( ) 【解析】选C.当点P在BC上运动时,如图1,△ABP的高PE=BPsinB=xsin30°=x,∴△ABP的面积y=·AB·PE=·2·x=x. 图1 当点P在CD上运动时,如图2,△ABP的高CF= BCsinB=1, ∴△ABP的面积y=·AB·CF=·2·1=1. 因此,观察所给选项,只有C符合,故选C. 10.如图所示,正方形ABCD的面积为12,△ABE是等边三角形,点E在正方形ABCD内,在对角线AC上有一点P,使PD+PE的和最小,则这个最小值为 ( ) A.2 B.2 C.3 D. 【解析】选A.∵正方形的对角线互相垂直平分,∴点D和点B关于AC对称,连接BE交AC于点P,P即为所 求作的点,PD+PE的最小值即是BE的长.∵正方形的面积为12,∴正方形的边长是2,∴PD+PE的最小值是2. 二、填空题(本大题共4小题,每小题5分,满分20分) 11.今年我市初中毕业暨升学统一考试的考生约有35300人,该数据用科学记数法表示为________人. 【解析】35300=3.53×104. 答案:3.53×104 12.出售某种手工艺品,若每个获利x元,一天可售出(8-x)个,则当x=________元,一天出售该种手工艺品的总利润y最大. 【解析】∵出售某种手工艺品,若每个获利x元,一天可售出(8-x)个, ∴y=(8-x)x,即y=-x2+8x, ∴当x=-=-=4时,y取得最大值. 答案:4 13.分式方程-1=的解是x=________. 【解析】去分母得:6-x2+9=-x2-3x, 解得:x=-5, 经检验x=-5是分式方程的解. 答案:-5 14.如图,AD是△ABC的角平分线,DE,DF分别是△ABD和△ACD的高,得到下面四个结论: ①OA=OD; ②AD⊥EF; ③当∠A=90°时,四边形AEDF是正方形; ④AE2+DF2=AF2+DE2.其中正确的是________.(把所有正确结论的序号都填在横线上) 【解析】∵AD是△ABC的角平分线,DE,DF分别是△ABD和△ACD的高,∴DE=DF, ∴Rt△AED≌Rt△AFD, ∴AE=AF,∴△AEO≌△AFO, ∴OE=OF,∠AOE=∠AOF,∴AD⊥EF,②对 当∠A=90°时,四边形AEDF为矩形,则AD=EF, 又AD⊥EF,∴四边形AEDF为正方形,③对; ∵DE=DF,∴AE2+DF2=AE2+DE2=AD2, AF2+DE2=AF2+DF2=AD2,