2016年河南省洛阳市高二下学期理科人教A版数学期末考试试卷
- 格式:docx
- 大小:222.59 KB
- 文档页数:11
2015-2016学年某某省某某市高二(下)期末数学试卷(理科)一、选择题:每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知复数z=(1+i)(a+2i)(i为虚数单位)是纯虚数,则实数a等于()A.﹣2 B.﹣1 C.0 D.22.双曲线x2﹣=1的一个顶点到一条渐近线的距离是()A.B.C.D.3.已知随机变量X服从正态分布N(1,4),P(﹣1<X<3)=0.6826,则下列结论正确的是()A.P(X<﹣1)=0.6587 B.P(X>3)=0.1587C.P(﹣1<X<1)=0.3174 D.P(1<X<3)=0.18264.已知函数f(x)的导函数是f′(x),且满足f(x)=2xf′(e)﹣lnx,则f′(e)等于()A.1 B.﹣1 C.e D.5.由曲线y=,直线y=x及x=3所围成的图形的面积是()A.4﹣ln3 B.8﹣ln3 C.4+ln3 D.8+ln36.三棱柱ABC﹣A1B1C1中,△ABC是等边三角形,AA1⊥底面ABC,AB=2,AA1=,则异面直线AC1与B1C所成的角的大小是()A.30° B.60° C.90° D.120°7.假设有两个分类变量X和Y的2×2列联表为:Yy1y2总计Xx1 a 10 a+10x2 c 50 c+50总计40 60 100对同一样本,以下数据能说明X与Y有关系的可能性最大的一组是()A.a=10,c=30 B.a=15,c=25 C.a=20,c=20 D.a=30,c=108.甲、乙、丙、丁四个人去旅游,可供选择的景点有3个,每人只能选择一个景点且甲、乙不能同去一个景点,则不同的选择方案的种数是()A.54 B.36 C.27 D.249.“m<1”是“函数y=x2+在[1,+∞)单调递增”的()A.充分不必要条件B.必要不充分条件C.充要条件 D.既不充分也不必要条件10.甲、乙、丙三人,一人在看书,一人在画画,一人在听音乐.已知:①甲不看书;②若丙不画画,则乙不听音乐;③若乙在看书,则丙不听音乐.则()A.甲一定在画画 B.甲一定在听音乐C.乙一定不看书 D.丙一定不画画11.函数f(x)=e|x|cosx的图象大致是()A. B.C.D.12.已知中心在坐标原点的椭圆与双曲线有公共焦点,且左、右焦点分别是F1、F2,这两条曲线在第一象限的交点为P,△PF1F2是以PF1为底边的等腰三角形,若|PF1|=8,椭圆与双曲线的离心率分别为e1,e2,则+的取值X围是()A.(1,+∞)B.(1,4)C.(2,4)D.(4,8)二、填空题:每小题5分,共20分.13.(2x+)n的二项式系数的和是32,则该二项展开式中x3的系数是(用数字填写答案).14.已知m∈R,p:方程+=1表示焦点在y轴上的椭圆;q:在复平面内,复数z=1+(m ﹣3)i对应的点在第四象限.若p∧q为真,则m的取值X围是.15.抛物线y2=4x的焦点为F,A为抛物线上在第一象限内的一点,以点F为圆心,1为半径的圆与线段AF的交点为B,点A在y轴上的射影为点N,且|ON|=2,则线段NB的长度是.16.设函数f(x)在R上的导函数是f′(x),对∀x∈R,f′(x)<x.若f(1﹣a)﹣f (a)≤﹣a,则实数a的取值X围是.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.17.某工厂为了增加其产品的销售量,调查了该产品投入的广告费用x与销售量y的数据,如表:广告费用x(万元) 2 3 4 5 6销售量y(万件) 5 7 8 9 11由散点图知可以用回归直线=x+来近似刻画它们之间的关系.(Ⅰ)求回归直线方程=x+;(Ⅱ)在(Ⅰ)的回归方程模型中,请用相关指数R2说明,广告费用解释了百分之多少的销售量变化?参考公式: =, =﹣;R2=1﹣.18.函数f(x)=x3+ax2+bx﹣在x=2处的切线方程为x+y﹣2=0.(Ⅰ)某某数a,b的值;(Ⅱ)求函数f(x)的极值.19.如图,已知四棱锥P﹣ABCD的底面为菱形,且∠ABC=60°,AB=PC=2,AP=BP=.(Ⅰ)求证:平面PAB⊥平面ABCD;(Ⅱ)求二面角A﹣PC﹣D的平面角的余弦值.20.某工厂有甲乙两个车间,每个车间各有3台机器.甲车间每台机器每天发生故障的概率均为,乙车间3台机器每天发生故障的概率分别为,,.若一天内同一车间的机器都不发生故障可获利2万元,恰有一台机器发生故障仍可获利1万元,恰有两台机器发生故障的利润为0万元,三台机器发生故障要亏损3万元.(Ⅰ)求乙车间每天机器发生故障的台数的分布列;(Ⅱ)由于节能减排,甲乙两个车间必须停产一个.以工厂获得利润的期望值为决策依据,你认为哪个车间停产比较合理.21.已知圆C1:x2+y2=4与x轴左右交点分别为A1、A2,过点A1的直线l1与过点A2的直线l2相交于点D,且l1与l2斜率的乘积为﹣.(Ⅰ)求点D的轨迹C2方程;(Ⅱ)若直线l:y=kx+m不过A1、A2且与轨迹C2仅有一个公共点,且直线l与圆C1交于P、Q 两点.求△POA1与△QOA2的面积之和的最大值.22.已知函数f(x)=lnx﹣cx2(c∈R).(Ⅰ)讨论函数f(x)的零点个数;(Ⅱ)当函数f(x)有两个零点x1,x2时,求证:x1•x2>e.2015-2016学年某某省某某市高二(下)期末数学试卷(理科)参考答案与试题解析一、选择题:每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知复数z=(1+i)(a+2i)(i为虚数单位)是纯虚数,则实数a等于()A.﹣2 B.﹣1 C.0 D.2【考点】复数代数形式的乘除运算.【分析】直接由复数代数形式的乘法运算化简复数z,又已知复数z是纯虚数,得到,求解即可得答案.【解答】解:复数z=(1+i)(a+2i)=(a﹣2)+(a+2)i,又∵复数z是纯虚数,∴,解得a=2.故选:D.2.双曲线x2﹣=1的一个顶点到一条渐近线的距离是()A.B.C.D.【考点】双曲线的简单性质.【分析】根据双曲线的方程求出一个顶点和渐近线,利用点到直线的距离公式进行求解即可.【解答】解:由双曲线的方程得a=1,b=,双曲线的渐近线为y=x,设双曲线的一个顶点为A(1,0),渐近线为y=x,即x﹣y=0,则顶点到一条渐近线的距离d==,故选:C.3.已知随机变量X服从正态分布N(1,4),P(﹣1<X<3)=0.6826,则下列结论正确的是()A.P(X<﹣1)=0.6587 B.P(X>3)=0.1587C.P(﹣1<X<1)=0.3174 D.P(1<X<3)=0.1826【考点】正态分布曲线的特点及曲线所表示的意义.【分析】根据对称性,由P(﹣1<X<3)可求出P(X>3).【解答】解:∵随机变量X服从正态分布N(1,4),∴曲线关于x=1对称,∵P(﹣1<X<3)=0.6826,∴P(X>3)=0.5﹣0.3413=0.1587.故选:B.4.已知函数f(x)的导函数是f′(x),且满足f(x)=2xf′(e)﹣lnx,则f′(e)等于()A.1 B.﹣1 C.e D.【考点】导数的运算.【分析】求函数的导数,直接令x=e进行求解即可.【解答】解:∵f(x)=2xf′(e)﹣lnx,∴函数的导数f′(x)=2f′(e)﹣,令x=e,则f′(e)=2f′(e)﹣,即f′(e)=,故选:D5.由曲线y=,直线y=x及x=3所围成的图形的面积是()A.4﹣ln3 B.8﹣ln3 C.4+ln3 D.8+ln3【考点】定积分在求面积中的应用.【分析】作出对应的图象,确定积分的上限和下限,利用积分的应用求面积即可.【解答】解:作出对应的图象,由得x=1,则阴影部分的面积S=∫(x﹣)dx=(x2﹣lnx)|=(﹣ln3)﹣(﹣ln1)=4﹣ln3,故选:A6.三棱柱ABC﹣A1B1C1中,△ABC是等边三角形,AA1⊥底面ABC,AB=2,AA1=,则异面直线AC1与B1C所成的角的大小是()A.30° B.60° C.90° D.120°【考点】异面直线及其所成的角.【分析】取中点连接,由异面直线所成角的概念得到异面直线AC1与B1C所成的角,求解直角三角形得到三角形边长,再由余弦定理得答案.【解答】解:如图,分别取AC、B1C1、CC1、BC的中点E、F、G、K,连接EF、EG、FG、EK、FK,EK=,FK=,则EF=,EG=,.在△EFG中,cos∠EGF=.∴异面直线AC1与B1C所成的角的大小是90°.故选:C.7.假设有两个分类变量X和Y的2×2列联表为:Yy1y2总计Xx1 a 10 a+10x2 c 50 c+50总计40 60 100对同一样本,以下数据能说明X与Y有关系的可能性最大的一组是()A.a=10,c=30 B.a=15,c=25 C.a=20,c=20 D.a=30,c=10【考点】独立性检验的应用.【分析】当ad与bc差距越大,两个变量有关的可能性就越大,检验四个选项中所给的ad与bc的差距,前三个选项都一样,只有第四个选项差距大,得到结果.【解答】解:根据观测值求解的公式可以知道,当ad与bc差距越大,两个变量有关的可能性就越大,选项A,|ad﹣bc|=200,选项B,|ad﹣bc|=500,选项C,|ad﹣bc|=800,选项D,|ad﹣bc|=1400,故选D8.甲、乙、丙、丁四个人去旅游,可供选择的景点有3个,每人只能选择一个景点且甲、乙不能同去一个景点,则不同的选择方案的种数是()A.54 B.36 C.27 D.24【考点】排列、组合及简单计数问题.【分析】间接法:先求所有可能分派方法,先求所有可能的分派方法,甲、乙、丙、丁四个人去旅游,可供选择的景点有3个,共有34=81种情况,甲、乙同去一个景点有33=27种情况,相减可得结论.【解答】解:间接法:先求所有可能的分派方法,甲、乙、丙、丁四个人去旅游,可供选择的景点有3个,共有34=81种情况,甲、乙同去一个景点有33=27种情况,∴不同的选择方案的种数是81﹣27=54.故选:A9.“m<1”是“函数y=x2+在[1,+∞)单调递增”的()A.充分不必要条件B.必要不充分条件C.充要条件 D.既不充分也不必要条件【考点】充要条件;函数的单调性与导数的关系.【分析】若函数y=x2+在[1,+∞)单调递增,则y′=2x﹣≥0在[1,+∞)上恒成立,求出m的X围,进而根据充要条件的定义,可得答案.【解答】解:∵函数y=x2+在[1,+∞)单调递增,∴y′=2x﹣≥0在[1,+∞)上恒成立,即m≤2,故“m<1”是“函数y=x2+在[1,+∞)单调递增”的充分不必要条件,故选:A.10.甲、乙、丙三人,一人在看书,一人在画画,一人在听音乐.已知:①甲不看书;②若丙不画画,则乙不听音乐;③若乙在看书,则丙不听音乐.则()A.甲一定在画画 B.甲一定在听音乐C.乙一定不看书 D.丙一定不画画【考点】进行简单的合情推理.【分析】由①开始,进行逐个判断,采用排除法,即可得到答案.【解答】解:由①可知:甲可能在画画或在听音乐,由③可知,乙在看书,丙在画画,甲只能在听音乐,由②丙可以听音乐或看书,乙只能看书或画画,结合①③可知:甲听音乐,乙画画,丙看书,所以甲一定在听音乐,故选:B.11.函数f(x)=e|x|cosx的图象大致是()A.B.C.D.【考点】函数的图象.【分析】根据函数的奇偶性,排除B;根据函数在(0,)上,为增函数,在(,)上,为减函数,排除A;再根据在(,)上,为增函数,f()>f(),排除C,可得结论.【解答】解:由于函数函数f(x)=e|x|cosx为偶函数,它的图象关于y轴对称,故排除B.当x>0时,f(x)=e x•cosx,f′(x)=e x•cosx﹣e x•sinx=2x(cosx﹣sinx),故函数在(0,)上,f′(x)>0,f(x)为增函数;在(,)上,f′(x)<0,f(x)为减函数,故排除A.在(,)上,f′(x)>0,f(x)为增函数,且f()>f(),故排除C,只有D满足条件,故选:D.12.已知中心在坐标原点的椭圆与双曲线有公共焦点,且左、右焦点分别是F1、F2,这两条曲线在第一象限的交点为P,△PF1F2是以PF1为底边的等腰三角形,若|PF1|=8,椭圆与双曲线的离心率分别为e1,e2,则+的取值X围是()A.(1,+∞)B.(1,4)C.(2,4)D.(4,8)【考点】双曲线的简单性质.【分析】利用待定系数法设出双曲线和椭圆的方程,根据双曲线和椭圆的定义得到a1=4+c,a2=4﹣c,然后利用离心率的公式进行转化求解即可.【解答】解:设椭圆与双曲线的标准方程分别为:,.(a1,a2,b1,b2>0,a1>b1)∵△PF1F2是以PF1为底边的等腰三角形,|PF1|=8,∴8+2c=2a1,8﹣2c=2a2,即有a1=4+c,a2=4﹣c,(c<4),再由三角形的两边之和大于第三边,可得2c+2c>8,可得c>2,即有2<c<4.由离心率公式可得+====,∵2<c<4,∴<<,则2<<4,即2<+<4,故+的取值X围是(2,4),故选:C二、填空题:每小题5分,共20分.13.(2x+)n的二项式系数的和是32,则该二项展开式中x3的系数是80 (用数字填写答案).【考点】二项式系数的性质.【分析】由题意可得:2n=32,解得n.再利用其通项公式即可得出.【解答】解:由题意可得:2n=32,解得n=5.∴的通项公式T r+1=(2x)5﹣r=25﹣r x5﹣2r,令5﹣2r=3,解得r=1.∴该二项展开式中x3的系数=24=80.故答案为:80.14.已知m∈R,p:方程+=1表示焦点在y轴上的椭圆;q:在复平面内,复数z=1+(m﹣3)i对应的点在第四象限.若p∧q为真,则m的取值X围是(2,3).【考点】复合命题的真假.【分析】利用椭圆的标准方程、复数的几何意义、复合命题的真假的判定方法即可得出.【解答】解:p:方程+=1表示焦点在y轴上的椭圆,则m>2;q:在复平面内,复数z=1+(m﹣3)i对应的点在第四象限,∴m﹣3<0,解得m<3.∵p∧q为真,∴p与q都为真命题.∴2<m<3.则m的取值X围是(2,3).故答案为:(2,3).15.抛物线y2=4x的焦点为F,A为抛物线上在第一象限内的一点,以点F为圆心,1为半径的圆与线段AF的交点为B,点A在y轴上的射影为点N,且|ON|=2,则线段NB的长度是 3 .【考点】抛物线的简单性质.【分析】求出N,B的坐标,利用两点间的距离公式,即可得出结论.【解答】解:由题意,A(3,2),N(0,2),以点F为圆心,1为半径的圆的方程为(x﹣1)2+y2=1,直线AF的方程为y=(x﹣1)联立直线与圆的方程可得(x﹣1)2=,∴x=或,∴B(,),∴|NB|==3故答案为:3.16.设函数f(x)在R上的导函数是f′(x),对∀x∈R,f′(x)<x.若f(1﹣a)﹣f (a)≤﹣a,则实数a的取值X围是a≤.【考点】利用导数研究函数的单调性.【分析】令g(x)=f(x)﹣x2,求出g(x)的单调性,问题等价于f(1﹣a)﹣(1﹣a)2≤f(a)﹣a2,根据函数的单调性得到关于a的不等式,解出即可.【解答】解:令g(x)=f(x)﹣x2,则g′(x)=f′(x)﹣x,而f′(x)<x,∴g′(x)=f′(x)﹣x<0,故函数g(x)在R递减,∴f(1﹣a)﹣f(a)≤﹣a等价于f(1﹣a)﹣(1﹣a)2≤f(a)﹣a2,即g(1﹣a)≤g(a),∴1﹣a≥a,解得a≤,故答案为:a≤.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.17.某工厂为了增加其产品的销售量,调查了该产品投入的广告费用x与销售量y的数据,如表:广告费用x(万元) 2 3 4 5 6销售量y(万件) 5 7 8 9 11由散点图知可以用回归直线=x+来近似刻画它们之间的关系.(Ⅰ)求回归直线方程=x+;(Ⅱ)在(Ⅰ)的回归方程模型中,请用相关指数R2说明,广告费用解释了百分之多少的销售量变化?参考公式: =, =﹣;R2=1﹣.【考点】线性回归方程.【分析】(Ⅰ)由数据求得样本中心点,利用最小二乘法求得系数,由线性回归方程过样本中心点,代入即可求得,即可求得回归直线方程;(Ⅱ)分别求得1, 2…,5,根据相关指数公式求得相关指数R2,即可求得广告费用解释了百分之多少的销售量变化.【解答】解:(Ⅰ) =×(2+3+4+5+6)=5, =×(5+7+8+9+11)=11,==1.4,=﹣=8﹣1.4×4=2.4,∴回归直线方程=1.4x+2.4;(Ⅱ)由(Ⅰ)可知:=1.4×2+2.4=5.2;1=1.4×3+2.4=6.6;2=1.4×4+2.4=8;3=1.4×5+2.4=9.4;4=1.4×6+2.4=10.8;5R2=1﹣=0.98,∴广告费用解释了98%的销售量变化.18.函数f(x)=x3+ax2+bx﹣在x=2处的切线方程为x+y﹣2=0.(Ⅰ)某某数a,b的值;(Ⅱ)求函数f(x)的极值.【考点】利用导数研究函数的极值;利用导数研究曲线上某点切线方程.【分析】(Ⅰ)求导数得到f′(x)=x2+2ax+b,这样根据函数在切点处导数和切线斜率的关系以及切点在函数图象上便可得出关于a,b的方程组,解出a,b即可;(Ⅱ)上面已求出a,b,从而可以得出导函数f′(x),这样判断导数的符号,从而便可得出函数f(x)的极值.【解答】解:(Ⅰ)f′(x)=x2+2ax+b;由题意可得,切点为(2,0),切线斜率为k=﹣1;∴;解得;(Ⅱ)由上面得,f′(x)=x2﹣4x+3=(x﹣1)(x﹣3);∴x<1时,f′(x)>0,1<x<3时,f′(x)<0,x>3时,f′(x)>0;∴x=1时,f(x)取极大值,x=3时,f(x)取极小值.19.如图,已知四棱锥P﹣ABCD的底面为菱形,且∠ABC=60°,AB=PC=2,AP=BP=.(Ⅰ)求证:平面PAB⊥平面ABCD;(Ⅱ)求二面角A﹣PC﹣D的平面角的余弦值.【考点】用空间向量求平面间的夹角;平面与平面垂直的判定;二面角的平面角及求法.【分析】(I)取AB中点E,连PE、CE,由等腰三角形的性质可得PE⊥AB.再利用勾股定理的逆定理可得PE⊥CE.利用线面垂直的判定定理可得PE⊥平面ABCD.再利用面面垂直的判定定理即可证明.(II)建立如图所示的空间直角坐标系.利用两个平面的法向量的夹角即可得到二面角.【解答】(Ⅰ)证明:如图1所示,取AB中点E,连PE、CE.则PE是等腰△PAB的底边上的中线,∴PE⊥AB.∵PE=1,CE=,PC=2,即PE2+CE2=PC2.由勾股定理的逆定理可得,PE⊥CE.又∵AB⊂平面ABCD,CE⊂平面ABCD,且AB∩CE=E,∴PE⊥平面ABCD.而PE⊂平面PAB,∴平面PAB⊥平面ABCD.(Ⅱ)以AB中点E为坐标原点,EC所在直线为x轴,EB所在直线为y轴,EP所在直线为z 轴,建立如图所示的空间直角坐标系.则A(0,﹣1,0),C(,0,0),D(,﹣2,0),P(0,0,1),=(,1,0),=(,0,﹣1),=(0,2,0).设是平面PAC的一个法向量,则,即.取x1=1,可得,.设是平面PCD的一个法向量,则,即.取x2=1,可得,.故,即二面角A﹣PC﹣D的平面角的余弦值是.20.某工厂有甲乙两个车间,每个车间各有3台机器.甲车间每台机器每天发生故障的概率均为,乙车间3台机器每天发生故障的概率分别为,,.若一天内同一车间的机器都不发生故障可获利2万元,恰有一台机器发生故障仍可获利1万元,恰有两台机器发生故障的利润为0万元,三台机器发生故障要亏损3万元.(Ⅰ)求乙车间每天机器发生故障的台数的分布列;(Ⅱ)由于节能减排,甲乙两个车间必须停产一个.以工厂获得利润的期望值为决策依据,你认为哪个车间停产比较合理.【考点】离散型随机变量的期望与方差;离散型随机变量及其分布列.【分析】(Ⅰ)乙车间每天机器发生故障的台数ξ,可以取0,1,2,3,求出相应的概率,即可求乙车间每天机器发生故障的台数的分布列;(Ⅱ)设甲车间每台机器每天发生故障的台数η,获得的利润为X,则η~B(3,),求出甲乙的期望,比较,即可得出结论.【解答】解:(Ⅰ)乙车间每天机器发生故障的台数ξ,可以取0,1,2,3,P(ξ=0)=(1﹣)×(1﹣)×(1﹣)=,P(ξ=1)=C21××((1﹣)×(1﹣)2+(1﹣)×=,P(ξ=2)=C21××((1﹣)×+()2×(1﹣)=,P(ξ=3)=××=,∴乙车间每天机器发生故障的台数ξ的分布列;ξ0 1 2 3P(Ⅱ)设甲车间每台机器每天发生故障的台数η,获得的利润为X,则η~B(3,),P(η=k)=(k=0,1,2,3),∴EX=2P(η=0)+1×P(η=1)+0×P(η=2)﹣3×P(η=3)=,由(Ⅰ)得EY=2P(ξ=0)+1×P(ξ=1)+0×P(ξ=2)﹣3×P(ξ=3)=,∵EX<EY,∴甲车间停产比较合理.21.已知圆C1:x2+y2=4与x轴左右交点分别为A1、A2,过点A1的直线l1与过点A2的直线l2相交于点D,且l1与l2斜率的乘积为﹣.(Ⅰ)求点D的轨迹C2方程;(Ⅱ)若直线l:y=kx+m不过A1、A2且与轨迹C2仅有一个公共点,且直线l与圆C1交于P、Q 两点.求△POA1与△QOA2的面积之和的最大值.【考点】直线与圆的位置关系.【分析】(Ⅰ)设点D的坐标为(x,y),求出A1、A2的坐标,由题意和斜率公式列出方程化简,可得点D的轨迹C2的方程;(Ⅱ)设P(x1,y1),Q(x2,y2),联立直线方程和C2的方程消去y,由条件可得△=0并化简,联立直线l与圆C1的方程消去x,利用韦达定理写出表达式,由图象和三角形的面积公式表示出,化简后利用基本不等式求出△POA1与△QOA2的面积之和的最大值.【解答】解:(Ⅰ)设点D的坐标为(x,y),∵圆C1:x2+y2=4与x轴左右交点分别为点A1(﹣2,0),A2(2,0),且l1与l2斜率的乘积为﹣,∴,化简得,∴点D的轨迹C2方程是;(Ⅱ)设P(x1,y1),Q(x2,y2),联立得,(1+4k2)x2+8kmx+4m2﹣4=0,由题意得,△=64k2+16﹣16m2=0,化简得,m2=4k2+1,联立消去x得,(1+k2)y2﹣2my+1=0,∴△=4m2﹣4(1+k2)=12k2>0,y1+y2=,>0,则y1,y2同号,由r=2得,+=+====≤=,当且仅当3=1+4k2,即k=时取等号,∴的最大值是.22.已知函数f(x)=lnx﹣cx2(c∈R).(Ⅰ)讨论函数f(x)的零点个数;(Ⅱ)当函数f(x)有两个零点x1,x2时,求证:x1•x2>e.【考点】利用导数研究函数的单调性;函数零点的判定定理.【分析】(Ⅰ)求出函数的定义域,函数的导数,通过a≤0时,f'(x)>0,f(x)在(0,+∞)上单调递增;a>0时,求出极值点,然后通过导数的符号,判断函数的单调性,从而求出函数的零点的个数;(Ⅱ)设x1>x2,求出关于c的表达式,利用分析法证明x1x2>e,转化为证明ln>(x1>x2>0),令=t,则t>1,设g(t)=lnt﹣=lnt+﹣1(t>1),利用函数的导数求解函数的最小值利用单调性证明即可.【解答】解:(Ⅰ)定义域为(0,+∞),f′(x)=﹣2cx=,当c≤0时,f'(x)>0,f(x)在(0,+∞)上单调递增,x→0时,f(x)→﹣∞,x→+∞时,f(x)→+∞,f(x)有且只有1个零点;当c>0时,由f'(x)=0,得x=,当0<x<时,f'(x)>0,f(x)单调递增,当x>时,f'(x)<0,f(x)单调递减,∴f(x)最大值=f()=ln﹣,令ln﹣>0,解得:c>,∴c>时,f(x)有2个零点,c=时,f(x)有1个零点,0<c<时,f(x)没有零点,综上:c≤0或c=时,f(x)有1个零点,0<c<时,f(x)没有零点,c>时,f(x)有2个零点.(Ⅱ)证明:设x1>x2,∵lnx1﹣cx12=0,lnx2﹣cx22=0,∴lnx1+lnx2=cx12+cx22,lnx1﹣lnx2=cx12﹣cx22,则c=,欲证明x1x2>e,即证lnx1+lnx2>1,因为lnx1+lnx2=c(x12+x22),∴即证c>,∴原命题等价于证明>,即证:ln>(x1>x2>0),令=t,则t>1,设g(t)=lnt﹣=lnt+﹣1(t>1),∴g′(t)=≥0,∴g(t)在(1,+∞)单调递增,又因为g(1)=0,∴g(t)>g(1)=0,∴lnt>,所以x1x2>e.。
人教A 版数学高二弧度制精选试卷练习(含答案) 学校:___________姓名:___________班级:___________考号:___________一、单选题1.设扇形的周长为4cm ,面积为21cm ,则扇形的圆心角的弧度数是 ( ) A .1 B .2 C .3 D .4【来源】黑龙江省鹤岗市第一中学2018-2019学年高一12月月考数学(理)试题【答案】B 2.已知扇形的面积为,扇形圆心角的弧度数是,则扇形的周长为( ) A . B . C . D .【来源】同步君人教A 版必修4第一章1.1.2弧度制【答案】C3.扇形圆心角为3π,半径为a ,则扇形内切圆的圆面积与扇形面积之比为( ) A .1:3B .2:3C .4:3D .4:9【来源】2012人教A 版高中数学必修四1.1任意角和弧度制练习题(二)(带解析)【答案】B4.已知扇形的圆心角为2弧度,弧长为4cm , 则这个扇形的面积是( ) A .21cm B .22cm C .24cm D .24cm π【来源】陕西省渭南市临渭区2018—2019学年高一第二学期期末数学试题【答案】C5.若扇形的面积为38π、半径为1,则扇形的圆心角为( ) A .32π B .34π C .38π D .316π 【来源】浙江省杭州第二中学三角函数 单元测试题【答案】B 6.一场考试需要2小时,在这场考试中钟表的时针转过的弧度数为( ) A .3π B .3π- C .23π D .23π-【来源】浙江省台州市2019-2020学年高一上学期期末数学试题【答案】B7.实践课上小华制作了一副弓箭,如图所示的是弓形,弓臂BAC 是圆弧形,A 是弧BAC 的中点,D 是弦BC 的中点,测得10AD =,60BC =(单位:cm ),设弧AB 所对的圆心角为θ(单位:弧度),则弧BAC 的长为( )A .30θB .40θC .100θD .120θ【来源】安徽省池州市2019-2020学年高一上学期期末数学试题【答案】C8.已知扇形AOB 的半径为r ,弧长为l ,且212l r =-,若扇形AOB 的面积为8,则该扇形的圆心角的弧度数是( )A .14B .12或2C .1D .14或1 【来源】广西贵港市桂平市2019-2020学年高一上学期期末数学试题【答案】D9.已知扇形的圆心角为150︒,弧长为()5rad π,则扇形的半径为( )A .7B .6C .5D .4【来源】安徽省六安市六安二中、霍邱一中、金寨一中2018-2019学年高二下学期期末联考数学(文)试题【答案】B10.已知扇形AOB ∆的周长为4,当扇形的面积取得最大值时,扇形的弦长AB 等于( )A .2B .sin1C .2sin1D .2cos1【来源】湖北省宜昌市一中、恩施高中2018-2019学年高一上学期末联考数学试题【答案】C11.“圆材埋壁”是《九章算术》中的一个问题:“今有圆材,埋在壁中,不知大小,以锯锯之,学会一寸,锯道长一尺,问径几何?”其意为:今有一圆柱形木材,埋在墙壁中,不知道大小,用锯取锯它,锯口深一寸,锯道长一尺,问这块圆柱形木材的直径是多少?现有圆柱形木材一部分埋在墙壁中,截面如图所示,已知弦1AB =尺,弓形高1CD =寸,则阴影部分面积约为(注: 3.14π≈,5sin 22.513︒≈,1尺=10寸)( )A .6.33平方寸B .6.35平方寸C .6.37平方寸D .6.39平方寸【来源】山东省潍坊市2018-2019学年高一下学期期中考试数学试题【答案】A12.已知扇形OAB 的面积为1,周长为4,则弦AB 的长度为( ) A .2 B .2/sin 1 C .2sin 1 D .sin 2【来源】黑龙江省部分重点高中2019-2020学年高一上学期期中联考数学试题【答案】C13.已知扇形OAB 的面积为4,圆心角为2弧度,则»AB 的长为( ) A .2 B .4 C .2π D .4π【来源】江苏省南京市2019-2020学年高一上学期期末数学试题【答案】B14.已知α 为第三象限角,则2α所在的象限是( ). A .第一或第二象限B .第二或第三象限C .第一或第三象限D .第二或第四象限【来源】四川省南充高级中学2016-2017学年高一4月检测考试数学试题【答案】D15.若扇形的面积为216cm ,圆心角为2rad ,则该扇形的弧长为( )cm . A .4 B .8 C .12 D .16【来源】江苏省盐城市大丰区新丰中学2019-2020学年高一上学期期末数学试题【答案】B16.周长为6,圆心角弧度为1的扇形面积等于( )A .1B .32πC .D .2【来源】河北省邯郸市魏县第五中学2019-2020学年高一上学期第二次月考数学试题【答案】D17.已知一个扇形弧长为6,扇形圆心角为2rad ,则扇形的面积为 ( )A .2B .3C .6D .9【来源】2013-2014学年辽宁省实验中学分校高二下学期期末考试文科数学试卷(带解析)【答案】D18.集合{|,}42k k k Z ππαπαπ+≤≤+∈中角所表示的范围(阴影部分)是( ) A . B . C .D .【来源】2015高考数学理一轮配套特训:3-1任意角弧度制及任意角的三角函数(带解析)【答案】C19.已知⊙O 的半径为1,A ,B 为圆上两点,且劣弧AB 的长为1,则弦AB 与劣弧AB 所围成图形的面积为( )A .1122-sin 1B .1122-cos 1C .1122-sin 12D .1122-cos 12【来源】河北省衡水中学2019-2020学年高三第一次联合考试数学文科试卷【答案】A20.已知一个扇形的圆心角为56π,半径为3.则它的弧长为( ) A .53π B .23π C .52π D .2π 【来源】河南省新乡市2018-2019学年高一下学期期末数学试题【答案】C21.中国传统扇文化有着极其深厚的底蕴. 一般情况下,折扇可看作是从一个圆面中剪下的扇形制作而成,设扇形的面积为1S ,圆面中剩余部分的面积为2S ,当1S 与2S 的比值为12时,扇面看上去形状较为美观,那么此时扇形的圆心角的弧度数为( )A .(3π-B .1)πC .1)πD .2)π【来源】吉林省长春市2019-2020学年上学期高三数学(理)试题【答案】A22.《九章算术》是中国古代第一部数学专著,成于公元一世纪左右,系统总结了战国、秦、汉时期的数学成就,其中《方田》一章中记载了计算弧田(弧田就是由圆弧和其所对弦所围成弓形)的面积所用的经验公式:弧田面积=12(弦⨯矢+矢⨯矢),公式中“弦”指圆弧所对弦长,“矢”等于半径长与圆心到弦的距离之差,按照上述经验公式计算所得弧田面积与其实际面积之间存在误差,现有圆心角为23π,弦长为实际面积与按照上述经验公式计算出弧田的面积之间的误差为( )平方米(其中3π≈ 1.73≈)A .14B .16C .18D .20【来源】上海市实验学校2018-2019学年高一下学期期末数学试题【答案】B23.已知某扇形的面积为22.5cm ,若该扇形的半径r ,弧长l 满足27cm r l +=,则该扇形圆心角大小的弧度数是()A .45B .5C .12D .45或5 【来源】安徽省阜阳市太和县2019-2020学年高三上学期10月质量诊断考试数学(文)试题【答案】D24.已知一个扇形的圆心角为3弧度,半径为4,则这个扇形的面积等于( ). A .48 B .24 C .12 D .6【来源】湖南师范大学附属中学2016-2017学年高一下学期期中考试数学试题【答案】B25.已知扇形的圆心角23απ=,所对的弦长为 ) A .43π B .53π C .73π D .83π 【来源】河南省新乡市辉县市一中2018-2019高一下学期第一阶段考试数学试题【答案】D26.如果2弧度的圆心角所对的弦长为4,那么这个圆心所对的弧长为( ) A .2 B .2sin1 C .2sin1 D .4sin1【来源】黑龙江省大兴安岭漠河一中2019-2020学年高一上学期11月月考数学试题【答案】D27.若α是第一象限角,则下列各角中属于第四象限角的是( )A .90α︒-B .90α︒+C .360α︒-D .180α︒+【来源】福建省厦门双十中学2017-2018学年高一下学期第二次月考数学试题【答案】C28.已知扇形的半径为2,面积为4,则这个扇形圆心角的弧度数为( )A B .2 C . D .【来源】河南省南阳市2016—2017学年下期高一期终质量评估数学试题【答案】B二、填空题29.已知大小为3π的圆心角所对的弦长为2,则这个圆心角所夹扇形的面积为______. 【来源】安徽省马鞍山市第二中学2018-2019学年高一下学期开学考试数学试题【答案】23π. 30.135-=o ________弧度,它是第________象限角.【来源】浙江省杭州市七县市2019-2020学年高一上学期期末数学试题【答案】34π- 三 31.设扇形的半径长为8cm ,面积为24cm ,则扇形的圆心角的弧度数是【来源】2011-2012学年安徽省亳州一中高一下学期期中考试数学试卷(带解析)【答案】32.在北纬60o 圈上有甲、乙两地,若它们在纬度圈上的弧长等于2R π(R 为地球半径),则这两地间的球面距离为_______ . 【来源】上海市浦东新区川沙中学2018-2019学年高二下学期期末数学试题 【答案】3R π 33.已知一个扇形的弧长等于其所在圆半径的2倍,则该扇形圆心角的弧度数为________,若该扇形的半径为1,则该扇形的面积为________.【来源】浙江省宁波市2019-2020学年高一上学期期末数学试题【答案】2 134.设O 为坐标原点,若直线l :102y -=与曲线τ0y =相交于A 、B 点,则扇形AOB 的面积为______.【来源】上海市普陀区2016届高三上学期12月调研(文科)数学试题 【答案】3π 35.已知扇形的圆心角为12π,面积为6π,则该扇形的弧长为_______; 【来源】福建省漳州市2019-2020学年学年高一上学期期末数学试题 【答案】6π 36.在半径为5的圆中,5π的圆心角所对的扇形的面积为_______. 【来源】福建省福州市八县一中2019-2020学年高一上学期期末联考数学试题 【答案】52π37.已知集合M ={(x ,y )|x ﹣3≤y ≤x ﹣1},N ={P |PA PB ,A (﹣1,0),B (1,0)},则表示M ∩N 的图形面积为__.【来源】上海市复兴高级中学2015-2016学年高二上学期期末数学试题【答案】4338.圆心角为2弧度的扇形的周长为3,则此扇形的面积为 _____ .【来源】山东省泰安市2019届高三上学期期中考试数学(文)试题 【答案】91639.已知圆心角是2弧度的扇形面积为216cm ,则扇形的周长为________【来源】上海市向明中学2018-2019学年高三上学期第一次月考数学试题【答案】16cm40.扇形的圆心角为3π,其内切圆的面积1S 与扇形的面积2S 的比值12S S =______. 【来源】上海市七宝中学2015-2016学年高一下学期期中数学试题 【答案】2341.已知扇形的半径为6,圆心角为3π,则扇形的面积为__________. 【来源】江苏省苏州市2019届高三上学期期中调研考试数学试题【答案】6π42.若扇形的圆心角120α=o ,弦长12AB cm =,则弧长l =__________ cm .【来源】黑龙江省齐齐哈尔八中2018届高三8月月考数学(文)试卷43.已知扇形的周长为8cm ,圆心角为2弧度,则该扇形的半径是______cm ,面积是______2cm .【来源】浙江省杭州市西湖高级中学2019-2020学年高一上学期12月月考数学试题【答案】2 444.已知扇形的弧长是半径的4倍,扇形的面积为8,则该扇形的半径为_________【来源】江西省宜春市上高县第二中学2019-2020学年高一上学期第三次月考数学(理)试题【答案】2.45.已知点P(tan α,cos α)在第三象限,则角α的终边在第________象限.【来源】[同步]2014年湘教版必修二 3.1 弧度制与任意角练习卷1(带解析)【答案】二三、解答题46.已知角920α=-︒.(Ⅰ)把角α写成2k πβ+(02,k Z βπ≤<∈)的形式,并确定角α所在的象限;(Ⅱ)若角γ与α的终边相同,且(4,3)γππ∈--,求角γ.【来源】安徽省合肥市巢湖市2019-2020学年高一上学期期末数学试题【答案】(Ⅰ)α=8(3)29ππ-⨯+,第二象限角;(Ⅱ)289πγ=- 47.已知一扇形的圆心角为α,半径为R ,弧长为l .(1)若60α=︒,10cm R =,求扇形的弧长l ;(2)若扇形周长为20cm ,当扇形的圆心角α为多少弧度时,这个扇形的面积最大?【来源】山东省济南市外国语学校三箭分校2018-2019学年高一下学期期中数学试题【答案】(1)()10cm 3π(2)2α= 48.已知一扇形的圆心角为60α=o ,所在圆的半径为6cm ,求扇形的周长及该弧所在的弓形的面积.【来源】江西省南昌市新建一中2019-2020学年高一上学期期末(共建部)数学试题【答案】2π+12,6π﹣49.已知一扇形的周长为4,当它的半径与圆心角取何值时,扇形的面积最大?最大值是多少?【来源】宁夏大学附中2019-2020学年高一上学期第一次月考数学试题【答案】半径为1,圆心角为2,扇形的面积最大,最大值是2.50.已知扇形的圆心角为α(0α>),半径为R .(1)若60α=o ,10cm R =,求圆心角α所对的弧长;(2)若扇形的周长是8cm ,面积是24cm ,求α和R .【来源】安徽省阜阳市颍上二中2019-2020学年高一上学期第二次段考数学试题【答案】(1)10cm 3π(2)2α=,2cm R =。
洛阳市2016-2017学年高二年级质量检测数学试卷(理)第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若i 为虚数单位,,a b R ,且2a i b i i,则复数a bi 的模等于( )23 5 62.命题“若a b ,则ac bc ”的逆否命题是( ) A.若a b ,则ac bc B.若ac bc ,则a b C.若ac bc ,则a bD.若a b ,则ac bc 3.设0x ,由不等式12x x,243xx ,3274xx ,…,类比推广到1na xn x ,则a ( )A.2nB.2nC.2nD.n n4.设随机变量21N ~,,若3P m ,则13P 等于( )A.122m B.1mC.12mD.12m 5.抛掷一枚质地均匀的骰子两次,记事件{A 两次的点数均为奇数},{B 两次的点数之和小于7},则|P B A ( ) A.13B.49C.59D.236.用数学归纳法证明“1111232nF n …”时,由n k 不等式成立,证明1n k 时,左边应增加的项数是( ) A.12kB.21kC.2kD.21k7.学生会为了调查学生对2018年俄罗斯世界杯的关注是否与性别有关,抽样调查100人,得到如下数据: 不关注 关注 总计 男生 30 15 45 女生 45 10 55 总计7525100根据表中数据,通过计算统计量2n ad bc Ka b c da cb d,并参考以下临界数据:20P K k 0.500.40 0.25 0.15 0.10 0.05 0.025 0.010 0.005 0.001 0k0.4550.7081.3232.0722.7063.845.0246.6357.87910.828A.0.10B.0.05C.0.025D.0.018.某教师有相同的语文参考书3本,相同的数学参考书4本,从中取出4本赠送给4位学生,每位学生1本,则不同的赠送方法共有( ) A.20种B.15种C.10种D.4种9.设随机变量2,X B p ~,随机变量3,Y B p ~,若519P X ,则31D Y ( )A.2B.3C.6D.710.已知抛物线243y x 的焦点为F ,A ,B 为抛物线上两点,若3AFFB ,O 为坐标原点,则AOB △的面积为( ) A.83B.3C.23311.设等差数列n a 满足5100810081201611a a ,5100910091201611a a ,数列n a 的前n 项和记为S ,则( ) A.20162016S ,10081009a a B.20162016S ,10081009a a C.20162016S ,10081009a aD.20162016S ,10081009a a12.设函数2ln ,021,0x x f xxx x ,若f a f b f c f d ,其中,,,a b c d 互不相等,则对于命题:0,1p abcd 和命题122:2,2q a b c de e e e 真假的判断,正确的是( )A.p 假q 真B.p 假q 假C.p 真q 真D.p 真q 假第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.设函数3,01,1x x f xx x ,则定积分20f x dx .14.某工厂为了对新研发的一种产品进行合理定价,将该产品按事先拟定的价格进行试销,得到如下数据: 单价x (元) 8 8.28.48.68.89 销量y (件)9084 83 80 7568由表中的数据得线性回归方程为y bx a ,其中20b ,预测当产品价格定为9.5(元)时,销量约为件.15.已知,x y 满足约束条件0,2323x x yx y,若y x 的最大值是a ,则二项式61ax x的展开式中的常数项为 .(数字作答) 16.若函数320h x ax bx cx d a图象的对称中心为00,M x h x ,记函数h x 的导函数为g x ,则有0'0g x ,设函数3232f xx x ,则12403240332017201720172017fff f … .三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.已知ABC △的三个内角,,A B C 所对应的边分别为,,a b c ,且满足1cos 2b Cc a . (1)求ABC △的内角B 的大小; (2)若ABC △的面积234Sb ,试判断ABC △的形状. 18.已知正项数列n a 的首项11a ,且221110n n n nn a a a na 对*n N 都成立.(1)求n a 的通项公式; (2)记2121nn n b a a ,数列n b 的前n 项和为n T ,证明:12nT . 19.第35届牡丹花会期间,我班有5名学生参加志愿者服务,服务场所是王城公园和牡丹公园. (1)若学生甲和乙必须在同一个公园,且甲和丙不能在同一个公园,则共有多少种不同的分配方案? (2)每名学生都被随机分配到其中的一个公园,设,X Y 分别表示5名学生分配到王城公园和牡丹公园的人数,记X Y ,求随机变量的分布列和数学期望E .20.如图,已知矩形11BB C C 所在平面与底面1ABB N 垂直,在直角梯形1ABB N 中,1AN BB ∥,AB AN ,112CBBAANBB .(1)求证:BN平面11C B N ;(2)求二面角1C C NB 的大小.21.已知椭圆C 的方程为222210x y a b ab ,双曲线22221x y a b 的一条渐近线与x 轴所成的夹角为30°,且双曲线的焦距为42.(1)求椭圆C 的方程;(2)设12,F F 分别为椭圆C 的左,右焦点,过2F 作直线l (与x 轴不重合)交椭圆于A ,B 两点,线段AB 的中点为E ,记直线1F E 的斜率为k ,求k 的取值范围. 22.设函数ln f xx x ax ,a R .(1)当1a 时,求曲线yf x 在点1,1f 处的切线方程;f x b a x b恒成立,求整数b的最大值.(2)若对1x,1洛阳市2016-2017学年高二年级质量检测数学试卷参考答案(理)一、选择题1-5:CBDCD 6-10:CABAB 11、12:CA二、填空题13.7414.60 15.540 16.0 三、解答题17.(1)由正弦定理及已知得1sin sin sin sin sin 2B C C A B C , ∴1cos sin sin 2B CC ,由于sin 0C ,∴1cos 2B. 0,B ,所以3B . (2)由ABC △的面积213sin 234S ac b ,得2b ac ,由余弦定理得,2222cos b a c ac B ac ,所以20a c ,所以a c ,此时有22b ac a ,∴a b c ,所以ABC △为等边三角形.18.(1)由221110n n n nn a a a na 可得1110nn nna a n a na ,∵0n a ,∴11nn n a na , 从而11211121n n nn a na n a a a …,所以1na n. (2)由(1)知212111111212122121n n n b a a n n n n ,∴12111111123352121nnT b b b n n ……11112212n . 19.(1)依题意甲,乙,丙三人的分配方法有2种,其余二人的分配方法有22种,故共有2228种不同的分配方案.(2)设5名学生中恰有i 名被分到王城公园的事件为0,1,2,3,4,5i A i ,的所有可能取值是1,3,5.2332535223235551228C C C CP P A A P A P A,11115451141455532216C C C CP P A A P A P A ,055555050555152216C C CP P A A P A P A,则随机变量的分布列为1 3 5P 58516116故随机变量的数学期望55115135816168E.20.(1)证明:∵矩形11BB CC所在平面与底面1ABB N垂直,则CB底面1ABB N.∵1AN BB∥,AB AN,则1AB BB,如图,以B为坐标原点,以BA,1BB,BC为坐标轴,建立空间直角坐标系,不妨设14BB,则2,2,0N,10,4,2C,10,4,0B,,0,0,2C,∵1440B N BN,则1B N BN,11BN B C,且1111B N BC B,则BN平面11C B N.(2)设平面1C BN的一个法向量为,,m x y z,由于2,2,0BN,12,2,2C N,由1n BNn C N,得x yx y z,令1x得1,1,2m.同理求得平面1C CN的一个法向量为1,0,1n.设二面角1C C N B的平面角为,则3cos2m nm n.又二面角1C C N B为锐二面角,所以二面角1C C N B的大小是30°.21.(1)一条渐近线与x轴所成的夹角为30°知3tan303ba°,即223a b,又22c,所以228a b,解得26a,22b,所以椭圆C的方程为22162x y.(2)由(1)知22,0F ,设11,A x y ,22,B x y ,设直线AB 的方程为2x ty . 联立221622x y x ty 得223420t y ty , 由12243ty y t 得122123x x t ,∴2262,33tEt t ,又12,0F ,所以直线1F E 的斜率222236623tt t kt t .①当0t 时,0k ; ②当0t时,2116266t kttt,即60,12k . 综合①②可知,直线1F E 的斜率k 的取值范围是66,1212. 22.(1)由ln f x x x ax 得'ln 1f x x a , 当1a 时,'ln 2f x x ,11f ,'12f ,求得切线方程为21y x .(2)若对1x ,1f x b a x b 恒成立等价于ln 1x x xbx 对1x 恒成立,设函数ln 1x x xg xx ,则2ln 2'1x x g x x ,再设函数ln 2h x x x ,则1'1h x x. ∵1x ,'0h x ,即h x 在1,上为增函数,又31ln 30h ,42ln 40h ,所以存在03,4x ,使得00h x ,∴当01,x x 时,0h x ,即'0g x ,故g x 在01,x 上递减; 当0,xx 时,0h x,即'0g x,故g x 在0,x 上递增.∴g x 的最小值为00000ln 1x x x g x x .由000ln 20h x x x 得00ln 2x x .所以000021x x x g x x x ,所以0b x ,又03,4x ,故整数b 的最大值为3.。
洛阳市2016-2017学年高二年级质量检测数学试卷(理)第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若i 为虚数单位,,a b R ,且2a i b i i,则复数a bi 的模等于( )2.命题“若a b ,则ac bc ”的逆否命题是( ) A.若a b ,则acbcB.若ac bc ,则a bC.若ac bc ,则a bD.若a b ,则acbc3.设0x ,由不等式12x x,243xx ,3274x x ,…,类比推广到1na xn x ,则a ( )A.2nB.2nC.2nD.n n4.设随机变量21N ~,,若3P m ,则13P 等于( )A.122m B.1mC.12mD.12m 5.抛掷一枚质地均匀的骰子两次,记事件{A 两次的点数均为奇数},{B 两次的点数之和小于7},则|P B A ( ) A.13B.49C.59D.236.用数学归纳法证明“1111232nF n …”时,由n k 不等式成立,证明1n k 时,左边应增加的项数是( ) A.12kB.21kC.2kD.21k7.学生会为了调查学生对2018年俄罗斯世界杯的关注是否与性别有关,抽样调查100人,得到如下数据:根据表中数据,通过计算统计量22n ad bc Ka b c da cb d,并参考以下临界数据:0.455若由此认为“学生对2018年俄罗斯世界杯的关注与性别有关”,则此结论出错的概率不超过( ) A.0.10B.0.05C.0.025D.0.018.某教师有相同的语文参考书3本,相同的数学参考书4本,从中取出4本赠送给4位学生,每位学生1本,则不同的赠送方法共有( ) A.20种B.15种C.10种D.4种9.设随机变量2,X B p ~,随机变量3,Y B p ~,若519P X ,则1D ( )A.2B.3C.6D.710.已知抛物线243y x 的焦点为F ,A ,B 为抛物线上两点,若3AFFB ,O 为坐标原点,则AOB △的面积为( )A.B.C.11.设等差数列n a 满足5100810081201611a a ,5100910091201611a a ,数列n a 的前n 项和记为S ,则( ) A.20162016S ,10081009a a B.20162016S ,10081009a a C.20162016S ,10081009a aD.20162016S ,10081009a a12.设函数2ln ,021,0x x f x xx x ,若f a f b f c f d ,其中,,,a b c d 互不相等,则对于命题:0,1p abcd 和命题122:2,2q a b c d e e e e 真假的判断,正确的是( ) A.p 假q 真B.p 假q 假C.p 真q 真D.p 真q 假第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.设函数3,01,1x x f xx x ,则定积分20f xdx .14.某工厂为了对新研发的一种产品进行合理定价,将该产品按事先拟定的价格进行试销,得到如下数据:由表中的数据得线性回归方程为y bx a ,其中20b ,预测当产品价格定为9.5(元)时,销量约为 件. 15.已知,x y 满足约束条件0,2323x x yx y,若y x 的最大值是a ,则二项式61ax x的展开式中的常数项为 .(数字作答) 16.若函数320h xax bx cx d a图象的对称中心为00,M x h x ,记函数h x 的导函数为g x ,则有0'0g x ,设函数3232f xx x ,则12403240332017201720172017f f ff ….三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.已知ABC △的三个内角,,A B C 所对应的边分别为,,a b c ,且满足1cos 2b Cc a . (1)求ABC △的内角B 的大小; (2)若ABC △的面积23Sb ,试判断ABC △的形状. 18.已知正项数列n a 的首项11a ,且221110n n n n n a a a na 对*n N 都成立.(1)求n a 的通项公式; (2)记2121nn n b a a ,数列n b 的前n 项和为n T ,证明:12nT . 19.第35届牡丹花会期间,我班有5名学生参加志愿者服务,服务场所是王城公园和牡丹公园.(1)若学生甲和乙必须在同一个公园,且甲和丙不能在同一个公园,则共有多少种不同的分配方案?(2)每名学生都被随机分配到其中的一个公园,设,X Y 分别表示5名学生分配到王城公园和牡丹公园的人数,记X Y ,求随机变量的分布列和数学期望E .20.如图,已知矩形11BB C C 所在平面与底面1ABB N 垂直,在直角梯形1ABB N 中,1AN BB ∥,ABAN ,112CBBA ANBB .(1)求证:BN平面11C B N ;(2)求二面角1C C N B 的大小.21.已知椭圆C 的方程为222210x y a b a b ,双曲线22221x y a b 的一条渐近线与x 轴所成的夹角为30°,且双曲线的焦距为42.(1)求椭圆C 的方程;(2)设12,F F 分别为椭圆C 的左,右焦点,过2F 作直线l (与x 轴不重合)交椭圆于A ,B 两点,线段AB 的中点为E ,记直线1F E 的斜率为k ,求k 的取值范围. 22.设函数ln f xx x ax ,a R .(1)当1a 时,求曲线y f x 在点1,1f 处的切线方程; (2)若对1x ,1f xb a x b 恒成立,求整数b 的最大值.洛阳市2016-2017学年高二年级质量检测数学试卷参考答案(理)一、选择题1-5CBDCD 6-10CABAB 11、12:CA二、填空题13.7414.60 15.540 16.0 三、解答题17.(1)由正弦定理及已知得1sin sin sin sin sin 2B C C A B C , ∴1cos sin sin 2B CC ,由于sin 0C ,∴1cos 2B. 0,B ,所以3B . (2)由ABC △的面积213sin 234S ac b ,得2b ac ,由余弦定理得,2222cos b a c ac Bac ,所以20a c ,所以a c , 此时有22b aca ,∴abc ,所以ABC △为等边三角形.18.(1)由221110n n n n n a a a na 可得1110n n n na a n a na ,∵0n a ,∴11n n n a na ,从而11211121n n n n a na n a a a …,所以1na n. (2)由(1)知212111111212122121n n nb a a n n n n , ∴12111111123352121n nT b b b n n ……11112212n . 19.(1)依题意甲,乙,丙三人的分配方法有2种,其余二人的分配方法有22种,故共有2228种不同的分配方案.(2)设5名学生中恰有i 名被分到王城公园的事件为0,1,2,3,4,5i A i ,的所有可能取值是1,3,5. 2332535223235551228C C C C PP A A P A P A , 11115451141455532216C C C C P P A A P A P A , 055555050555152216C C C P P A A P A P A , 则随机变量的分布列为1 3 5 P58516116故随机变量的数学期望55115135816168E. 20.(1)证明:∵矩形11BB CC 所在平面与底面1ABB N 垂直,则CB 底面1ABB N .∵1AN BB ∥,ABAN ,则1ABBB ,如图,以B 为坐标原点,以BA ,1BB ,BC 为坐标轴,建立空间直角坐标系,不妨设14BB ,则2,2,0N ,10,4,2C ,10,4,0B ,,0,0,2C , ∵1440B N BN ,则1B N BN ,11BNB C ,且1111B NB C B ,则BN平面11C B N .(2)设平面1C BN 的一个法向量为,,mx y z ,由于2,2,0BN,12,2,2C N,由100n BN n C N,得00x y xy z,令1x 得1,1,2m .同理求得平面1C CN 的一个法向量为1,0,1n .设二面角1C C N B 的平面角为, 则3cos2m n m n. 又二面角1C C N B 为锐二面角,所以二面角1C C N B 的大小是30°. 21.(1)一条渐近线与x 轴所成的夹角为30°知3tan 30b a°,即223a b ,又22c ,所以228a b ,解得26a ,22b ,所以椭圆C 的方程为22162x y .(2)由(1)知22,0F ,设11,A x y ,22,B x y ,设直线AB 的方程为2x ty . 联立221622x y x ty 得223420t y ty , 由12243ty y t 得122123x x t ,∴2262,33tEt t ,又12,0F ,所以直线1F E 的斜率222236623tt t kt t .①当0t 时,0k ;②当0t时,216266t kttt,即60,k . 综合①②可知,直线1F E 的斜率k的取值范围是66,. 22.(1)由ln f xx x ax 得'ln 1f x x a ,当1a 时,'ln 2f x x ,11f ,'12f ,求得切线方程为21yx .(2)若对1x ,1f xb a x b 恒成立等价于ln 1x x xbx 对1x 恒成立,设函数ln 1x x xg xx ,则2ln 2'1x x g x x ,再设函数ln 2h x x x ,则1'1h x x. ∵1x ,'0h x ,即h x 在1,上为增函数,又31ln30h ,42ln 40h ,所以存在03,4x ,使得00h x ,∴当01,x x 时,0h x,即'0g x,故g x 在01,x 上递减;当0,xx 时,0h x ,即'0g x,故g x 在0,x 上递增.∴g x 的最小值为00000ln 1x x x g x x .由000ln 20h x x x 得0ln 2x x .所以0000021x x x g x x x ,所以0b x ,又03,4x ,故整数b 的最大值为3.。
抚顺市协作校高二年级下学期期末考试高二数学(理)命题人:杨树泉校对人:郑林峰本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分,考试时间为120分钟,满分150分。
第I 卷(60分)一、 选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知复数1z i =-,则21z z =-() A.2B.-2C.2i D.-2i2.用数学归纳法证明1+a +2a +…+1n a +=-211n a a+--(a ≠1,n ∈N *),在验证n =1成立时,左边的项是( ) A .1B .1+aC .1+a +2aD .1+a +2a +4a3.已知随机变量X 服从正态分布N (3,1),且P (2≤X ≤4)=0.6826,则P (X >4)等于( )A .0.1588B .0.1587C .0.1586D .0.15854.某中学从4名男生和3名女生中推荐4人参加某高校自主招生考试,若这4人中必须既有男生又有女生,则不同的选法共有( ) A .140种B .120种C .35种D .34种5.有两排座位,前排11个座位,后排12个座位,现安排2人就座,规定前排中间的3个座位不能坐,并且这2人不.左右相邻,那么不同排法的种数是 A.234B.346 C.350 D.3636.已知2=x 是函数23)(3+-=ax x x f 的极小值点,那么函数)(x f 的极大值为A.15B.16C.17D.18 7.若ln (),xf x e b a x=<<,则 A.()()f a f b > B.()()f a f b < C.()()f a f b = D.()()1f a f b >8.若S 1=⎠⎛12x 2d x ,S 2=⎠⎛121x d x ,S 3=⎠⎛12e x d x ,则S 1,S 2,S 3的大小关系为( ) A .S 1<S 2<S 3 B .S 2<S 1<S 3 C .S 2<S 3<S 1D .S 3<S 2<S 19.四位外宾参观某场馆需配备两名安保人员.六人依次进入校门,为安全起见,首尾一定是两名安保人员,外宾甲乙要排在一起,则六人的入门顺序的总数是 A .12B .24 C .36 D .4810.若22nx x ⎛⎫+ ⎪⎝⎭展开式中只有第六项的二项式系数最大,则展开式中的常数项是A .180B .120C .90D .4511.设()10102210102x a x a x a a x+⋅⋅⋅+++=-,则293121020)()(a a a a a a +++-+++ΛΛ的值为()A .0B .-1C .1D .12.已知函数3211()322m nf x x mx x +=++的两个极值点分别为12,x x ,且1201x x <<<,点(,)P m n 表示的平面区域内存在点00(,)x y 满足00log (4)a y x =+,则实数a 的取值范围是()A.1(0,)(1,3)2UB.(0,1)(1,3)UC.]1(,1)(1,32U D .[(0,1)3,)+∞U第Ⅱ卷(90分)二、填空题:本大题共4小题,每小题5分13.已知复数z =3+i(1-3i )2,则|z |=________.14.圆222r y x =+在点()00,y x 处的切线方程为200r y y x x =+,类似地,可以求得椭圆183222=+y x 在()2,4处的切线方程为________. 15.已知5)1)(1(x ax ++的展开式中2x 的系数为5,则=a .16.若1a >,函数2()22f x x x a =++与()1g x x x a =-++有相同的最小值,则1()af x dx =⎰.三、解答题:解答应写出文字说明,证明过程或演算步骤。
河南省洛阳市高三“一练”数学试卷(理科)参考答案与试题解析一、选择题:本题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一个是符合题目要求的.1.(5分)(•洛阳模拟)设复数z=﹣1﹣i(i为虚数单位),z 的共轭复数为=()A.B.2C.D.1考点:复数代数形式的乘除运算;复数求模.专题:计算题.分析:给出z=﹣1﹣i ,则,代入整理后直接求模.解答:解:由z=﹣1﹣i ,则,所以=.故选A.点评:本题考查了复数代数形式的乘除运算,考查了复数的模,考查了学生的运算能力,此题是基础题.2.(5分)(•洛阳模拟)已知集合,则满足条件A⊆C⊆B的集合C的个数为()A.1B.2C.4D.8考点:集合的包含关系判断及应用;其他不等式的解法.专题:不等式的解法及应用.分析:通过解分式不等式求出好A,无理不等式求出集合B,通过满足条件A⊆C⊆B的集合C的个数即可.解答:解:∵={1,2}={0,1,2,3,4},因为A⊆C⊆B,所以C中元素个数至少有1,2;至多为:0,1,2,3,4;所以集合C的个数为{0,3,4}子集的个数:23=8.故选D.点评:本题考查分式不等式与无理不等式的求法,集合的子集的求解,考查计算能力,转化思想.3.(5分)(•洛阳模拟)如果函数y=3sin(2x﹣φ)(φ>0)的图象关于直线对称,则φ的最小值为()A.B.C.D.考点:正弦函数的对称性.专题:计算题;三角函数的图像与性质.分析:根据正弦函数图象对称轴方程的公式,建立关于φ的等式,化简可得﹣φ=+kπ(k∈Z),取k=﹣1得φ=,即为正数φ的最小值.解答:解:∵函数y=3sin(2x ﹣φ)的图象关于直线对称,∴当x=时,函数达到最大或最小值由此可得:2﹣φ=+kπ(k∈Z)∴﹣φ=+kπ(k∈Z),取k=﹣1,得φ=因此,φ的最小值为故选:C点评:本题给出三角函数图象的一条对称轴方程,求参数φ的最小值,着重考查了三角函数和图象与性质和正弦函数图象的对称性等知识,属于基础题.4.(5分)(•揭阳一模)如图,阅读程序框图,任意输入一次x(0≤x≤1)与y(0≤y≤1),则能输出数对(x,y)的概率为()A.B.C.D.考点:几何概型.专题:计算题.分析:据程序框图得到事件“能输出数对(x,y)”满足的条件,求出所有基本事件构成的区域面积;利用定积分求出事件A构成的区域面积,据几何概型求出事件的概率.解答:解:是几何概型所有的基本事件Ω=设能输出数对(x,y)为事件A,则A=S(Ω)=1S(A)=∫01x2dx==故选A点评:本题考查程序框图与概率结合,由程序框图得到事件满足的条件、考查利用定积分求曲边图象的面积;利用几何概型概率公式求出事件的概率.5.(5分)(•洛阳模拟)若函数为常数)在定义域内为奇函数,则k的值为()A.1B.﹣1 C.±1D.0考点:函数奇偶性的判断.专题:计算题;函数的性质及应用.分析:由奇函数定义知f(﹣x)=﹣f(x)恒成立,进行化简整理即可求得k值.解答:解:因为f(x)为定义域内的奇函数,所以f(﹣x)=﹣f(x),即=﹣,所以(2﹣x﹣k•2x)(2x+k•2﹣x)=﹣(2x﹣k•2﹣x)(2﹣x+k•2x),所以2﹣x•2x+k•2﹣2x﹣k•22x﹣k2•2x•2﹣x=﹣2x•2﹣x﹣k•22x+•k•2﹣2x+k2•2﹣x•2x,即1﹣k2=﹣1+k2,解得k=±1,故选C.点评:本题考查函数的奇偶性,考查指数幂的运算法则,考查学生的运算能力,属中档题.6.(5分)(•洛阳模拟)在△ABC中,D为BC 边上的点,的最大值为()A.1B.C.D.考点:基本不等式.专题:计算题.分析:在△ABC中,D为BC边的点,由D,B,C三点共线可知λ+μ=1,(λ、μ>0),利用基本不等式即可求得λμ的最大值.解答:解:∵在△ABC中,D为BC边的点,∴D,B,C三点共线且D在B,C之间,∴λ+μ=1,(λ>0,μ>0)∴λμ≤==(当且仅当λ=μ时取“=”).∴λμ的最大值为.故选D.点评:本题考查基本不等式,求得λ+μ=1,(λ>0,μ>0)是关键,属于中档题.7.(5分)(•洛阳模拟)如图是某几何体的三视图,则该几何体的体积为()A.64+32πB.64+64πC.256+64πD.256+128π考点:由三视图求面积、体积.专题:计算题.分析:由三视图可知:该几何体是由上下两部分组成的,上面是一个圆柱,底面直径为8,高为4;下面是一个长宽高分别为8,8,4的长方体.据此即可计算出.解答:解:由三视图可知:该几何体是由上下两部分组成的,上面是一个圆柱,底面直径为8,高为4;下面是一个长宽高分别为8,8,4的长方体.∴该几何体的体积V=8×8×4+π×42×4=256+64π.故选C.点评:由三视图正确恢复原几何体是解题的关键.8.(5分)(•洛阳模拟)已知F是抛物线y2=4x的焦点,过点F1的直线与抛物线交于A,B两点,且|AF|=3|BF|,则线段AB的中点到该抛物线准线的距离为()A.B.C.D.10考点:抛物线的简单性质.专题:计算题;圆锥曲线的定义、性质与方程.分析:根据抛物线的方程求出准线方程,利用抛物线的定义即条件,求出A,B的中点横坐标,即可求出线段AB的中点到抛物线准线的距离.解答:解:抛物线y2=4x的焦点坐标为(1,0),准线方程为x=﹣1设A(x1,y1),B(x2,y2),则∵|AF|=3|BF|,∴x1+1=3(x2+1),∴x1=3x2+2∵|y1|=3|y2|,∴x1=9x2,∴x1=3,x2=∴线段AB 的中点到该抛物线准线的距离为[(x1+1)+(x2+1)]=故选B.点评:本题考查解决抛物线上的点到焦点的距离问题,利用抛物线的定义将到焦点的距离转化为到准线的距离是关键.9.(5分)(•洛阳模拟)函数的最大值为()A.2B.3C.D.考点:二倍角的余弦;两角和与差的正弦函数;正弦函数的单调性.专题:计算题.分析:函数解析式第一项利用二倍角的余弦函数公式化简,整理后利用两角和与差的正弦函数公式化为一个角的正弦函数,由正弦函数的值域,即可确定出f(x)的最大值.解答:解:f(x)=1﹣cos (+2x )﹣cos2x=1+(sin2x ﹣cos2x)=1+2sin(2x ﹣),∵≤x≤,∴≤2x﹣≤,∵≤sin(2x ﹣)≤1,即2≤1+2sin(2x ﹣)≤3,则f(x)的最大值为3.故选B点评:此题考查了二倍角的余弦函数公式,两角和与差的正弦函数公式,以及正弦函数的定义域与值域,熟练掌握公式是解本题的关键.10.(5分)(•洛阳模拟)已知三棱锥S﹣ABC的所有顶点都在球O的球面上,SA⊥平面ABC ,,AB=1,AC=2,∠BAC=60°,则球O的表面积为()A.4πB.12πC.16πD.64π考点:球的体积和表面积.专题:计算题;空间位置关系与距离.分析:由三棱锥S﹣ABC的所有顶点都在球O的球面上,SA⊥平面ABC ,,AB=1,AC=2,∠BAC=60°,知BC=,∠ABC=90°.故△ABC截球O所得的圆O′的半径r==1,由此能求出球O的半径,从而能求出球O的表面积.解答:解:如图,三棱锥S﹣ABC的所有顶点都在球O的球面上,∵SA⊥平面ABC ,,AB=1,AC=2,∠BAC=60°,∴BC==,∴∠ABC=90°.∴△ABC截球O所得的圆O′的半径r==1,∴球O的半径R==2,∴球O的表面积S=4πR2=16π.故选C..点评:本题考查球的表面积的求法,合理地作出图形,数形结合求出球半径,是解题时要关键.11.(5分)(•洛阳模拟)已知的两个零点,则()A.B.1<x1x2<e C.1<x1x2<10 D.e<x1x2<10考点:函数的零点.专题:函数的性质及应用.分析:若的两个零点,则x1,x2是函数y=e﹣x和y=|lnx|的图象交点的横坐标,在同一个坐标系中,画函数y=e﹣x和y=|lnx|的图象,利用对数函数的性质,可判断出x1x2的范围.解答:解:若的两个零点,则x1,x2是函数y=e﹣x和y=|lnx|的图象交点的横坐标在同一个坐标系中,画函数y=e﹣x和y=|lnx|的图象如下图所示:由图可得即﹣1<ln(x1•x2)<1即又∵﹣lnx1>lnx2∴ln(x1•x2)<0∴x1•x2<1综上故选A点评:本题考查的知识点是函数的零点,对数函数的图象和性质,其中画出函数的图象,并利用数形结合的办法进行解答是关键.12.(5分)(•洛阳模拟)设F1,F2分别为双曲线的左右焦点,过F1引圆x2+y2=9的切线F1P交双曲线的右支于点P,T为切点,M为线段F1P的中点,O为坐标原点,则|MO|﹣|MT|等于()A.4B.3C.2D.1考点:两点间的距离公式;双曲线的简单性质.专题:计算题;圆锥曲线的定义、性质与方程.分析:由双曲线方程,算出c==5,根据三角形中位线定理和圆的切线的性质,并结合双曲线的定义可得|MO|﹣|MT|=4﹣a=1,得到本题答案.解答:解:∵MO是△PF1F2的中位线,∴|MO|=|PF2|,|MT|=|PF1|﹣|F1T|,根据双曲线的方程得:a=3,b=4,c==5,∴|OF1|=5,∵PF1是圆x2+y2=9的切线,|OT|=3,∴Rt△OTF1中,|FT|==4,∴|MO|﹣|MT|=|=|PF2|﹣(|PF1|﹣|F1T|)=|F1T|﹣(|PF1|﹣|PF2|)=4﹣a=1故选:D点评:本题给出双曲线与圆的方程,求|MO|﹣|MT|的值,着重考查了双曲线的简单性质、三角形中位线定理和直线与圆的位置关系等知识,属于中档题.二、填空题;本题共4小题,每小题5分,共20分.13.(5分)(•洛阳模拟)设变量x,y 满足约束条件:.则目标函数z=2x+3y 的最小值为7 .考点:简单线性规划.专题:数形结合.分析:先根据条件画出可行域,设z=2x+3y,再利用几何意义求最值,将最小值转化为y轴上的截距,只需求出直线z=2x+3y,过可行域内的点B(1,1)时的最小值,从而得到z最小值即可.解答:解:设变量x、y满足约束条件,在坐标系中画出可行域△ABC,A(2,1),B(4,5),C(1,2),当直线过A(2,1)时,目标函数z=2x+3y的最小,最小值为7.故答案为:7.点评:借助于平面区域特性,用几何方法处理代数问题,体现了数形结合思想、化归思想.线性规划中的最优解,通常是利用平移直线法确定.14.(5分)(•洛阳模拟)曲线处的切线方程为x+y﹣2=0 .考点:利用导数研究曲线上某点切线方程.专题:计算题;导数的概念及应用.分析:由y=,知,由此能求出曲线处的切线方程.解答:解:∵y=,∴,∴曲线处的切线方程的斜率k=y′|x=0=﹣1,∴曲线处的切线方程为y﹣2=﹣x,即x+y﹣2=0.故答案为:x+y﹣2=0.点评:本题考查曲线方程在某点处的切线方程的求法,解题时要认真审题,仔细解答,注意导数的几何意义的灵活运用.15.(5分)(•洛阳模拟)的展开式中各项系数之和为729,则该展开式中x2的系数为160 .考点:二项式系数的性质.专题:计算题;概率与统计.分析:由的展开式中各项系数之和为729,知3n=729,解得n=6.再由(2x+)6的通项公式为T r+1==,能求出该展开式中x2的系数.解答:解:∵的展开式中各项系数之和为729,令x=1,得3n=729,解得n=6.∵(2x+)6的通项公式为T r+1==,由6﹣=2,得r=3.∴该展开式中x2的系数为=8×=160.故答案为:160.点评:本题考查二项式系数的性质的应用,解题时要认真审题,仔细解答,注意等价转化思想的合理运用.16.(5分)(•洛阳模拟)在△ABC中,角A,B,C的对边分别为a,b,c,2bcosB=acosC+ccosA,且b2=3ac,则角A 的大小为或.考点:正弦定理.专题:解三角形.分析:由条件利用正弦定理、诱导公式可得sin2B=sin(A+C),得B=60°,A+C=120°.又b2=3ac,即sin2B=3sinAsinC,利用积化和差公式求得cos(A﹣C)=0,得A﹣C=±90°,由此可得A的大小.解答:解:△ABC中,∵2bcosB=acosC+c•cosA,由正弦定理可得2sinBcosB=sinAcosC+sinC•cosA,∴sin2B=sin(A+C).得2B=A+C (如果2B=180°﹣(A+C),结合A+B+C=180°易得B=0°,不合题意).A+B+C=180°=3B,得B=60°,A+C=120°.又b2=3ac,故 sin2B=3sinAsinC,∴=3sinAsinC=3×[cos(A﹣C)﹣cos(A+C)]=(cos(A﹣C)+),解得 cos(A﹣C)=0,故A﹣C=±90°,结合A+C=120°,易得 A=,或A=.故答案为A=,或A=点评:本题主要考查正弦定理、诱导公式、积化和差公式的应用,已知三角函数值求角的大小,属于中档题.三、解答题:本大题共8小题,共70分,解答应写出文字说明、证明过程或演算步骤.17.(12分)(•洛阳模拟)设数列{a n}满足:a1+2a2+3a3+…+na n=2n(n∈N*).(1)求数列{a n}的通项公式;(2)设b n=n2a n,求数列{b n}的前n项和S n.考点:数列递推式;数列的求和.专题:计算题.分析:(1)根据题意,可得a1+2a 2+3a3++(n﹣1)a n﹣1=2n﹣1,两者相减,可得数列{a n}的通项公式.(2)根据题意,求出b n的通项公式,继而求出数列{b n}的前n项和S n.解答:解:(1)∵a1+2a2+3a3+…+na n=2n①,∴n≥2时,a1+2a2+3a3+…+(n﹣1)a n﹣1=2n﹣1②①﹣②得na n=2n﹣1,a n=(n≥2),在①中令n=1得a1=2,∴a n=(2)∵b n=.则当n=1时,S1=2∴当n≥2时,S n=2+2×2+3×22+…+n×2n﹣1则2S n=4+2×22+3×23+…+(n﹣1)•2n﹣1+n•2n相减得S n=n•2n﹣(2+22+23+…+2n﹣1)=(n﹣1)2n+2(n≥2)又S1=2,符合S n的形式,∴S n=(n﹣1)•2n+2(n∈N*)点评:此题主要考查数列通项公式的求解和相关计算.18.(12分)(•洛阳模拟)如图,在四棱锥P﹣ABCD中,平面PAB⊥平面ABCD,AD∥BC,∠ABC=90°,PA=PB=3,BC=1,AB=2,AD=3,O是AB的中点.(1)证明:CD⊥平面POC;(2)求二面角C﹣PD﹣O的余弦值的大小.考点:用空间向量求平面间的夹角;直线与平面垂直的判定;二面角的平面角及求法.专题:空间位置关系与距离;空间向量及应用.分析:(1)利用侧面PAB⊥底面ABCD,可证PO⊥底面ABCD,从而可证PO⊥CD,利用勾股定理,可证OC⊥CD,从而利用线面垂直的判定,可得CD⊥平面POC;(2)建立坐标系,确定平面OPD、平面PCD的一个法向量,利用向量的夹角公式,可求二面角O﹣PD ﹣C的余弦值;解答:证明:(1)∵PA=PB=,O为AB中点,∴PO⊥AB∵侧面PAB⊥底面ABCD,PO⊂侧面PAB,侧面PAB∩底面ABCD=AB,∴PO⊥底面ABCD∵CD⊂底面ABCD,∴PO⊥CD在Rt△OBC中,OC2=OB2+BC2=2在Rt△OAD中,OD2=OA2+AD2=10在直角梯形ABCD中,CD2=AB2+(AD﹣BC)2=8∴OC2+CD2=OD2,∴△ODC是以∠OCD为直角的直角三角形,∴OC⊥CD∵OC,OP是平面POC内的两条相交直线∴CD⊥平面POC…(6分)解:(2)如图建立空间直角坐标系O﹣xyz,则P(0,0,2),D(﹣1,3,0),C(1,1,0)∴=(0,0,2),=(﹣1,3,0),=(﹣1,﹣1,2),=(﹣2,2,0)假设平面OPD 的一个法向量为=(x,y,z),平面PCD 的法向量为=(a,b,c),则由可得,令x=3,得y=1,z=0,则=(3,1,0),由可得,令a=2,得b=2,c=,即=(2,2,)∴cos<,>===故二面角O﹣PD﹣C 的余弦值为.…(12分)点评:本题考查线面垂直,考查面面角,考查向量方法解决空间角问题,正确运用线面垂直的判定是关键.19.(12分)(•洛阳模拟)随着建设资源节约型、环境友好型社会的宣传与实践,低碳绿色的出行方式越来越受到追捧,全国各地兴起了建设公共自行车租赁系统的热潮,据不完全统计,已有北京、株洲、杭州、太原、苏州、深圳等城市建设成公共自行车租赁系统,某市公共自行车实行60分钟内免费租用,60分钟以上至120分钟(含),收取1元租车服务费,120分钟以上至180分钟(含),收取2元租车服务费,超过180分钟以上的时间,按每小时3元计费(不足一小时的按一小时计),租车费用实行分段合计.现有甲,乙两人相互到租车点租车上班(各租一车一次),设甲,乙不超过1小时还车的概率分别为小时以上且不超过2小时还车的概率分别为小时以上且不超过3小时还车的概率分别为,两人租车时间均不会超过4小时.(1)求甲、乙两人所付租车费用相同的概率.(2)设甲一周内有四天(每天租车一次)均租车上班,X表示一周内租车费用不超过2元的次数,求X的分布列与数学期望.考点:离散型随机变量及其分布列;离散型随机变量的期望与方差.专题:计算题.分析:(1)甲、乙两人租车费用相同包括0,1,3,6元,然后利用互斥事件的概率公式分别求出相应的概率,最后求和可求出所求;(2)X的取值可能为0,1,2,3,4,然后利用二项分布的概率公式分别求出相应的概率,列出分布列,最后利用数学期望公式解之即可.解答:解:(1)甲、乙两人租车费用相同包括0,1,3,6元两人都付0元的概率为P1=×=两人都付1元的概率为P2=×=两人都付3元的概率为P3=×=两人都付6元的概率为P4=(1﹣﹣﹣)×(1﹣﹣﹣)=×=则甲,乙两人所付租车费用相同的概率为P=P1+P2+P3+P4=(2)依题意,甲某每天租车费用不超过2元的概率为P=+=则P(X=0)=××=,P(X=1)==P(X=2)==,P(X=3)==P(X=4)==∴X的分布列为X 0 1 2 3 4PX的数学期望为E(X )=1×+2×+3×+4×=3点评:本题主要考查了事件、互斥事件的概率,以及离散型随机变量的分布列和数学期望,同时考查了运算求解的能力,属于中档题.20.(12分)(•洛阳模拟)在平面直角坐标系中xOy中,O为坐标原点,A(﹣2,0),B(2,0),点P为动点,且直线AP与直线BP 的斜率之积为.(1)求动点P的轨迹C的方程;(2)过点D(1,0)的直线l交轨迹C于不同的两点M,N,△MON的面积是否存在最大值?若存在,求出△MON 的面积的最大值及相应的直线方程;若不存在,请说明理由.考点:轨迹方程;直线与圆锥曲线的关系.专题:圆锥曲线的定义、性质与方程.分析:(1)设P点坐标为(x,y)根据直线AP与直线BP 的斜率之积为,代入斜率公式,整理可得动点P的轨迹C的方程;(2)设出交点M,N的坐标及直线l的方程为x=ny+1,联立方程根据韦达定理求出y1+y2,y1•y2的值,根据弦长公式求出MN长,求出△MON的面积的表达式,分析出对应函数的单调性,可得答案.解答:解:设P点的坐标为(x,y)∵A(﹣2,0),B(2,0),直线AP与直线BP 的斜率之积为.∴•=(x≠±2)整理得P 点的轨迹方程为(x≠±2)(2)设直线l的方程为x=ny+1联立方程x=ny+1与(x≠±2)得(3n2+4)y2+6ny﹣9=0设M(x1,y1),N(x2,y2),则y1+y2=,y1•y2=△MON的面积S=•|OP|•|y1﹣y2|====令t=,则t≥1,且y=3t+在[1,+∞)是单调递增∴当t=1时,y=3t+取最小值4此时S 取最大值此时直线的方程为x=1点评:本题考查的知识点是轨迹方程,直线与圆锥曲线的关系,熟练掌握设而不求,联立方程,韦达定理,弦长公式等一系列处理直线与圆锥曲线关系的方法和技巧是解答的关键.21.(12分)(•洛阳模拟)已知函数.(1)当a=2时,求函数f(x)的单调区间;(2)若对任意的,求实数m的取值范围.考点:利用导数研究函数的单调性;导数在最大值、最小值问题中的应用.专题:导数的综合应用.分析:(1)当a=2时,求出f(x),在定义域内解不等式f′(x)>0,f′(x)<0即可;(2)对任意的a∈(1,2),当x0∈[1,2]时,都有f(x0)>m(1﹣a2),等价于f(x0)min>m(1﹣a2),用导数可求f(x0)min,构造函数g(a)=f(x0)min﹣m(1﹣a2)(1<a<2),问题转化为g(a)min>0(1<a<2),分类讨论可求出m的取值范围.解答:解:(1)当a=2时,f(x)=,定义域为(﹣,+∞).f′(x)=2x﹣2+=2x﹣2+=.由f′(x)>0,得,或x >;由f′(x)<0,得0<x <.所以函数f(x )的单调递增区间为(,0),(,+∞),单调递减区间为(0,).(2)y=f(x )的定义域为(﹣,+∞).f′(x)=2x﹣a+=2x﹣a+==.当1<a<2时,﹣1==<0,即,所以当1<x<2时,f′(x)>0,f(x)在[1,2]上单调递增,所以f(x)在[1,2]上的最小值为f(1)=1﹣a+ln ().依题意,对任意的a∈(1,2),当x0∈[1,2]时,都有f(x0)>m(1﹣a2),即可转化为对任意的a∈(1,2),1﹣a+ln ()﹣m(1﹣a2)>0恒成立.设g(a)=1﹣a+ln ()﹣m(1﹣a2)(1<a<2).则g′(a)=﹣1++2ma==,①当m≤0时,2ma﹣(1﹣2m)<0,且>0,所以g′(a)<0,所以g(a)在(1,2)上单调递减,且g(1)=0,则g(a)<0,与g(a)>0矛盾.②当m>0时,g′(a)=,若,则g′(a)<0,g(a)在(1,2)上单调递减,且g(1)=0,g(a)<0,与g(a)>0矛盾;若1<<2,则g(a)在(1,)上单调递减,在(,2)上单调递增,且g(1)=0,g(a)<g(1)=0,与g(a)>0矛盾;若,则g(a)在(1,2)上单调递增,且g(1)=0,则恒有g(a)>g(1)=0,所以,解得m,所以m的取值范围为[,+∞).点评:本题考查综合运用导数求函数的单调区间、最值及函数恒成立问题,考查学生综合运用知识分析问题解决问题的能力,考查分类讨论思想的运用.22.(10分)(•洛阳模拟)选修4﹣1:几何证明选讲如图,已知PE切⊙O于点E,割线PBA交⊙O于A,B两点,∠APE的平分线和AE,BE分别交于点C,D.求证:(1)CE=DE;(2).考点:与圆有关的比例线段;相似三角形的性质.专题:选作题.分析:(1)由弦切角定理是,及PC为∠APE的平分线,可证得∠ECD=∠EDC,进而证得CE=DE (2)先由AA证明出△PBC∽△ECD,进而证得△PBC∽△PEC,可由相似三角形对应边成比例得到结论.解答:解:(1)PE切圆O于点E∴∠A=∠BEP∵PC平分∠APE,∴∠A+∠CPA=∠BEP+∠DPE∵∠ECD=∠A+∠CPA,∠EDC=∠BEP+∠DPE∴∠ECD=∠EDC,∴EC=ED(2)∵∠PDB=∠EDC,∠EDC=∠ECD∴∠PDB=∠PCE∵∠BPD=∠EPC∴△PDB∽△PEC∴=同理△PDE∽△PCA∴=∴=∵DE=CE∴点评:本题考查的往右点是与圆相关的比例线段,相似三角形的性质,熟练掌握弦切角定理及相似三角形的判定及性质是解答的关键.23.(•洛阳模拟)选修4﹣4:坐标系与参数方程在直角坐标系xOy中,直线l经过点P(﹣1,0),其倾斜角为α,以原点O为极点,以x轴非负半轴为极轴,与直角坐标系xOy取相同的长度单位,建立极坐标系.设曲线C的极坐标方程为ρ2﹣6ρcosθ+5=0.(1)若直线l与曲线C有公共点,求α的取值范围;(2)设M(x,y)为曲线C上任意一点,求x+y的取值范围.考点:直线与圆的位置关系;简单曲线的极坐标方程.专题:计算题;直线与圆.分析:(1)先根据极坐标与直角坐标互化的公式,算出曲线C的直角坐标方程,再结合直线l 的参数方程:,联解得到关于参数t的二次方程,运用根的判别式列式并解之,即可得到角α的取值范围;(2)由(1)可得曲线C的参数方程,从而得到x+y=3+2sin (θ+),最后结合正弦函数的值域,即可得到x+y的取值范围.解答:解:(1)将曲线ρ2﹣6ρcosθ+5=0化成直角坐标方程,得圆C:x2+y2﹣6x+5=0直线l 的参数方程为(t为参数)将其代入圆C方程,得(﹣1+tcosα)2+(tsinα)2﹣6tsinα+5=0整理,得t2﹣8tcosα+12=0∵直线l与圆C有公共点,∴△≥0,即64cos2α﹣48≥0,可得cosα≤﹣或cosα≥∵α为直线的倾斜角,得α∈[0,π)∴α的取值范围为[0,]∪[,π)(2)由圆C:x2+y2﹣6x+5=0化成参数方程,得(θ为参数)∵M(x,y)为曲线C上任意一点,∴x+y=3+2cosθ+2sinθ=3+2sin (θ+)∵sin(θ+)∈[﹣1,1]∴2sin (θ+)∈[﹣2,2],可得x+y的取值范围是[3﹣2,3+2].点评:本题给出直线与圆的极坐标方程,要求我们将其化成直角坐标方程并研究直线与圆位置关系.着重考查了直角坐标与极坐标的互化、简单曲线的极坐标方程和直线与圆的位置关系等知识,属于中档题.24.(•洛阳模拟)选修4﹣5:不等式选讲设函数f(x)=|x+1|+|x﹣4|﹣a.(1)当a=1时,求函数f(x)的最小值;(2)若对任意的实数x恒成立,求实数a的取值范围.考点:函数恒成立问题;分段函数的解析式求法及其图象的作法.专题:函数的性质及应用.分析:(1)当a=1时,利用绝对值不等式的性质即可求得最小值;(2)⇔|x+1|+|x﹣4|﹣1≥a+⇔a+≤4,对a进行分类讨论可求a的取值范围.解答:解:(1)当a=1时,f(x)=|x+1|+|x﹣4|﹣1≥|(x+1)﹣(x﹣4)|﹣1=5﹣1=4.所以函数f(x)的最小值为4.(2)对任意的实数x恒成立⇔|x+1|+|x﹣4|﹣1≥a+对任意的实数x恒成立⇔a+≤4对任意实数x恒成立.当a<0时,上式显然成立;当a>0时,a+≥2=4,当且仅当a=即a=2时上式取等号,此时a+≤4成立.综上,实数a的取值范围为(﹣∞,0)∪{2}.点评:本题考查绝对值函数、基本不等式以及恒成立问题,考查分类讨论思想,恒成立问题一般转化为函数最值问题解决,.四、附加题(满分0分,不计入总分)25.(•洛阳模拟)有小于1的n(n≥2)个正数x1,x2,x3,…,x n,且x1+x2+x3+…+x n=1.求证:.考点:不等式的证明.专题:证明题;不等式的解法及应用.分析:由x1,x2,x3,…,x n均为小于1的正数,可得,由均值定理及放缩法,证得成立.解答:证明:∵x1,x2,x3,…,x n均为小于1的正数,∴∴>≥又∵≤=∴≥n∴>n2≥22=4即>4点评:本题考查的知识点是不等式的证明,熟练掌握均值定理及放缩法是解答的关键.。
河南省洛阳市2024小学数学一年级上学期人教版期末考试(备考卷)完整试卷一、填一填(共10小题,28分) (共10题)第(1)题13前面一个数是( ),与17相邻的两个数是( )和( )。
第(2)题由1个十和6个一组成的数是( ),再添上( )个一是20。
第(3)题看图写数。
第(4)题在括号里填上“>”“<”或“=”。
10( )0 4+5( )6 7( )10+49-3( )6+3 8+4( )4+8第(5)题看图写数。
( ) ( ) ( ) ( )第(6)题看图写数。
( ) ( ) ( )第(7)题数一数,填一填。
( )个,( )个,( )个,( )个。
第(8)题按顺序写数。
7812131415第(9)题填一填。
第(10)题在括号里填上合适的数。
6+( )=8 16-( )=6 ( )+4=49-4=( )-5 10-( )=4+( )二、轻松选择(共4题,12分) (共4题)第(1)题如图,与比较,()。
A.多B.少C.与同样多第(2)题从下图的三盒蜡笔中,选两盒发给小朋友,每个小朋友发1支,可以正好发给()个小朋友。
A.13B.11C.10第(3)题由1个十和8个一组成的数是()。
A.9B.8C.18第(4)题和16相邻的两个数是()。
A.16和18B.17和19C.15和17三、算一算(共4题,32分) (共4题)第(1)题列式计算。
9加6的和是多少?第(2)题看图列式计算。
(只)第(3)题看图列式计算。
第(4)题看图列式计算。
(个)四、解答题(共4题,28分) (共4题)第(1)题一共有10盆花,已经浇了3盆,还有多少盆没有浇?()第(2)题为了响应“公筷公勺”行动,豆豆家准备了6双公筷,4把公勺。
豆豆家来客人了,妈妈做了8盘热菜、2盘凉菜和2碗汤,请你帮豆豆算一下,家里还需要再准备几双公筷才够这次使用?(一盘菜配一双公筷,一碗汤配一把公勺)(双)第(3)题明明帮助社区的叔叔布置展板,一共要贴8块,已经贴好了4块,还剩下多少块?(块)第(4)题两个小组一共有多少人?(人)答:两个小组一共有人。
人教A 版数学高二弧度制精选试卷练习(含答案)学校:___________姓名:___________班级:___________考号:___________一、单选题1.已知扇形的周长是5cm ,面积是322cm ,则扇形的中心角的弧度数是( ) A .3B .43C .433或 D .2【来源】江西省九江第一中学2016-2017学年高一下学期期中考试数学(文)试题 【答案】C2.已知扇形的周长为8cm ,圆心角为2,则扇形的面积为( ) A .1B .2C .4D .5【来源】四川省双流中学2017-2018学年高一1月月考数学试题 【答案】C3.《掷铁饼者》 取材于希腊的现实生活中的体育竞技活动,刻画的是一名强健的男子在掷铁饼过程中最具有表现力的瞬间.现在把掷铁饼者张开的双臂近似看成一张拉满弦的“弓”,掷铁饼者的手臂长约为4π米,肩宽约为8π米,“弓”所在圆的半径约为1.25米,你估测一下掷铁饼者双手之间的距离约为( )1.732≈≈)A .1.012米B .1.768米C .2.043米D .2.945米【来源】安徽省五校(怀远一中、蒙城一中、淮南一中、颍上一中、淮南一中、涡阳一中)2019-2020学年高三联考数学(理)试题 【答案】B4.已知扇形的周长为4,圆心角所对的弧长为2,则这个扇形的面积是( ) A .2B .1C .sin 2D .sin1【来源】福建省泉州市南安侨光中学2019-2020学年高一上学期第二次阶段考试数学试题 【答案】B5.已知α是第三象限角,且cos cos22αα=-,则2α是( ) A .第一象限角B .第二象限角C .第三象限角D .第四象限角【来源】2012人教A 版高中数学必修四1.2任意角的三角函数练习题 【答案】B6.如图,2弧度的圆心角所对的弦长为2,这个圆心角所对应的扇形面积是( )A .1sin1B .21sin 1C .21cos 1D .tan1【来源】广西河池市高级中学2017-2018学年高一下学期第二次月考数学试题 【答案】B7.半径为10cm ,面积为2100cm 的扇形中,弧所对的圆心角为( ) A .2 radB .2︒C .2π radD .10 rad【来源】第一章滚动习题(一) 【答案】A8.若一扇形的圆心角为72︒,半径为20cm ,则扇形的面积为( ). A .240πcmB .280πcmC .240cmD .280cm【来源】陕西省西安市长安区第一中学2016-2017学年高一下学期第一次月考数学试题 【答案】D9.如图,把八个等圆按相邻两两外切摆放,其圆心连线构成一个正八边形,设正八边形内侧八个扇形(无阴影部分)面积之和为1S ,正八边形外侧八个扇形(阴影部分)面积之和为2S ,则12S S =( )A .34B .35C .23D .1【来源】广西省南宁市马山县金伦中学、武鸣县华侨中学等四校2017-2018学年高一10月月考数学试题. 【答案】B10.在-360°到0°内与角1250°终边相同的角是( ) . A .170° B .190° C .-190°D .-170°【来源】2012人教A 版高中数学必修四1.1任意角和弧度制练习题(一)(带解析) 【答案】C11.下列各角中,终边相同的角是 ( ) A .23π和240o B .5π-和314oC .79π-和299π D .3和3o【来源】新疆伊西哈拉镇中学2018-2019学年高一上学期第二次月考数学试题 【答案】C12.已知2弧度的圆心角所对的弧长为2,则这个圆心角所对的弦长是( ) A .sin 2B .2sin 2C .sin1D .2sin1【来源】广东省东莞市2018-2019学年高一第二学期期末教学质量检查数学试题 【答案】D13,弧长是半径的3π倍,则扇形的面积等于( ) A .223cm πB .26cm πC .243cm πD .23cm π【来源】河北省隆华存瑞中学(存瑞部)2018-2019学年高一上学期第二次数学试题 【答案】D14.如图所示,用两种方案将一块顶角为120︒,腰长为2的等腰三角形钢板OAB 裁剪成扇形,设方案一、二扇形的面积分别为12S , S ,周长分别为12,l l ,则( )A .12S S =,12l l >B .12S S =,12l l <C .12S S >,12l l =D .12S S <,12l l =【来源】浙江省省丽水市2018-2019学年高一下学期期末数学试题 【答案】A15.已知sin sin αβ>,那么下列命题成立的是( ) A .若,αβ是第一象限角,则cos cos αβ> B .若,αβ是第二象限角,则tan tan αβ> C .若,αβ是第三象限角,则cos cos αβ> D .若,αβ是第四象限角,则tan tan αβ>【来源】正定中学2010高三下学期第一次考试(数学文) 【答案】D16.半径为1cm ,中心角为150°的角所对的弧长为( )cm . A .23B .23π C .56D .56π 【来源】宁夏石嘴山市第三中学2018-2019学年高一5月月考数学试题 【答案】D 17.设5sin 7a π=,2cos 7b π=,2tan 7c π=,则( ) A .a b c <<B .a c b <<C .b c a <<D .b a c <<【来源】2008年高考天津卷文科数学试题 【答案】D18.扇形的中心角为120o )A .πB .45πC D 2【来源】辽宁省大连市第八中学2016-2017学年高一下学期期中考试数学试题【答案】A19.若扇形的周长为8,圆心角为2rad ,则该扇形的面积为( ) A .2B .4C .8D .16【来源】河南省洛阳市2018-2019学年高一下学期期中考试数学试卷 【答案】B20.-300° 化为弧度是( ) A .-43πB .-53πC .-54πD .-76π【来源】2014-2015学年山东省宁阳四中高一下学期期中学分认定考试数学试卷(带解析) 【答案】B21.一个扇形的面积为3π,弧长为2π,则这个扇形的圆心角为( ) A .3π B .4π C .6π D .23π 【来源】湖北省荆门市2017-2018学年高一(上)期末数学试题 【答案】D22.《九章算术》是中国古代第一部数学专著,成于公元一世纪左右,系统总结了战国、秦、汉时期的数学成就.其中《方田》一章中记载了计算弧田(弧田就是由圆弧和其所对弦所围成弓形)的面积所用的经验公式:弧田面积=12(弦×矢+矢×矢),公式中“弦”指圆弧所对弦长,“矢”等于半径长与圆心到弦的距离之差.按照上述经验公式计算所得弧田面积与其实际面积之间存在误差.现有圆心角为23π,弦长为的弧田.其实际面积与按照上述经验公式计算出弧田的面积之间的误差为( )平方米.(其中3π≈,1.73≈)A .15B .16C .17D .18【来源】湖北省2018届高三5月冲刺数学(理)试题 【答案】B23.下列各式不正确的是( ) A .-210°=76π-B .405°=49πC .335°=2312πD .705°=4712π【来源】河南信阳市息县第一高级中学、第二高级中学、息县高中2018-2019学年高一下学期期中联考数学(文)试题 【答案】C24.下列函数中,最小正周期为π2的是( )A .y =sin (2x −π3)B .y =tan (2x −π3)C .y =cos (2x +π6) D .y =tan (4x +π6)【来源】20102011年山西省汾阳中学高一3月月考数学试卷 【答案】B25.已知扇形的周长为12cm ,圆心角为4rad ,则此扇形的弧长为 ( ) A .4cmB .6cmC .8cmD .10cm【来源】江西省玉山县一中2018-2019学年高一(重点班)下学期第一次月考数学(理)试卷 【答案】C二、填空题26.已知扇形的圆心角18πα=,扇形的面积为π,则该扇形的弧长的值是______.【来源】上海市黄浦区2018-2019学年高一下学期期末数学试题 【答案】3π 27.若一个圆锥的侧面展开图是面积为2π的半圆面,则该圆锥的底面半径为_______ . 【来源】上海市浦东新区川沙中学2018-2019学年高二下学期期末数学试题 【答案】128.一个扇形的弧长与面积的数值都是5,则这个扇形中心角的弧度数为__________. 【来源】河南省灵宝市实验高中2017-2018学年高一下学期第一次月考考数学试题 【答案】5229.已知圆锥的侧面展开图是一个扇形,若此扇形的圆心角为65π、面积为15π,则该圆锥的体积为________.【来源】上海市杨浦区2019-2020学年高三上学期期中质量调研数学试题 【答案】12π30.圆O 的半径为1,P 为圆周上一点,现将如图放置的边长为1的正方形(实线所示 ,正方形的顶点A 和点P 重合)沿着圆周顺时针滚动,经过若干次滚动,点A 第一次回到点P 的位置,则点A 走过的路径的长度为 .【来源】2015届山东省日照市高三3月模拟考试理科数学试卷(带解析)31.已知扇形的圆心角为1弧度,扇形半径为2,则此扇形的面积为______. 【来源】上海市复兴高级中学2018-2019学年高一下学期3月份质量检测数学试题 【答案】232.一个球夹在120°的二面角内,且与二面角的两个面都相切,两切点在球面上的最短距离为π,则这个球的半径为_______ .【来源】上海市七宝中学2017-2018学年高二下学期期中数学试题 【答案】333.用半径为,面积为cm 2的扇形铁皮制作一个无盖的圆锥形容器(衔接部分忽略不计), 则该容器盛满水时的体积是 .【来源】2012届江苏省泗阳中学高三上学期第一次调研考试数学试卷(实验班) 【答案】31000cm 3π34.《九章算术》是体现我国古代数学成就的杰出著作,其中(方田)章给出的计算弧田面积的经验公式为:弧田面积12=(弦⨯矢+矢2),弧田(如图阴影部分)由圆弧及其所对的弦围成,公式中“弦”指圆弧所对弦的长,“矢”等于半径长与圆心到弦的距离之差,现有弧长为43π米,半径等于2米的弧田,则弧所对的弦AB 的长是_____米,按照上述经验公式计算得到的弧田面积是___________平方米.【来源】山东省济南市2018-2019学年高一下学期期末学习质量评估数学试题【答案】1235.设扇形的半径长为2cm ,面积为24cm ,则扇形的圆心角的弧度数是 【来源】2013-2014学年山东济南商河弘德中学高一下学期第二次月考数学试卷(带解析) 【答案】236.已知一个圆锥的展开图如图所示,其中扇形的圆心角为120o ,弧长为2π,底面圆的半径为1,则该圆锥的体积为__________.【来源】2018年春高考数学(文)二轮专题复习训练:专题三 立体几何【答案】337.现用一半径为10cm ,面积为280cm π的扇形铁皮制作一个无盖的圆锥形容器(假定衔接部分及铁皮厚度忽略不计,且无损耗),则该容器的容积为__________3cm . 【来源】江苏省苏州市2018届高三调研测试(三)数学试题 【答案】128π38.已知扇形的周长为6,圆心角为1,则扇形的半径为___;扇形的面积为____. 【来源】浙江省宁波市镇海区镇海中学2018-2019学年高一上学期期中数学试题 【答案】2 2 39.给出下列命题:①第二象限角大于第一象限角;②三角形的内角是第一象限角或第二象限角;③不论用角度制还是用弧度制度量一个角,它们与扇形所在半径的大小无关; ④若sin sin αβ=,则α与β的终边相同;⑤若cos 0θ<,则θ是第二或第三象限的角. 其中正确的命题是______.(填序号)【来源】江苏省南通市启东中学2018-2019学年高二5月月考数学(文)试题 【答案】③40.设扇形的周长为4cm ,面积为21cm ,则扇形的圆心角的弧度数是________. 【来源】广东省中山市第一中学2016-2017学年高一下学期第一次段考(3月)数学(理)试题 【答案】2三、解答题41.已知扇形AOB 的周长为8.(1)若这个扇形的面积为3,求其圆心角的大小.(2)求该扇形的面积取得最大时,圆心角的大小和弦长AB .【来源】2015-2016学年四川省雅安市天全中学高一11月月考数学试卷(带解析) 【答案】(1)或;(2);.42.已知一扇形的中心角是120︒,所在圆的半径是10cm ,求: (1)扇形的弧长; (2)该弧所在的弓形的面积【来源】福建省福州市平潭县新世纪学校2019-2020学年高一上学期第二次月考数学试题【答案】(1)203π;(2)1003π-43.某公司拟设计一个扇环形状的花坛(如图所示),该扇环是由以点O 为圆心的两个同心圆弧和延长后通过点AD 的两条线段围成.设圆弧AB 、CD 所在圆的半径分别为()f x 、R 米,圆心角为θ(弧度).(1)若3πθ=,13r =,26=r ,求花坛的面积;(2)设计时需要考虑花坛边缘(实线部分)的装饰问题,已知直线部分的装饰费用为60元/米,弧线部分的装饰费用为90元/米,预算费用总计1200元,问线段AD 的长度为多少时,花坛的面积最大?【来源】江苏省泰州市泰州中学2019~2020学年高一上学期期中数学试题 【答案】(1)292m π(2)当线段AD 的长为5米时,花坛的面积最大44.已知一个扇形的周长为30厘米,求扇形面积S 的最大值,并求此时扇形的半径和圆心角的弧度数.【来源】上海市华东师范大学第二附属中学2018-2019学年高一上学期期末数学试题 【答案】()2rad α= 152r =45.如图所示为圆柱形大型储油罐固定在U 型槽上的横截面图,已知图中ABCD 为等腰梯形(AB ∥DC ),支点A 与B 相距8m ,罐底最低点到地面CD 距离为1m ,设油罐横截面圆心为O ,半径为5m ,56D ∠=︒,求:U 型槽的横截面(阴影部分)的面积.(参考数据:sin530.8︒≈,tan56 1.5︒≈,3π≈,结果保留整数)【来源】上海市闵行区七宝中学2019-2020学年高一上学期9月月考数学试题 【答案】202m46.明朝数学家程大位在他的著作《算法统宗》中写了一首计算秋千绳索长度的词《西江月》:“平地秋千未起,踏板一尺离地,送行二步恰竿齐,五尺板高离地…”某教师根据这首词的思想设计如下图形,已知CE l ⊥,DF l ⊥,CB CD =,AD BC ⊥,5DF =,2BE =,AD =则在扇形BCD 中随机取一点求此点取自阴影部分的概率.【来源】山西省阳泉市2018-2019学年高一第一学期期末考试试题数学试题【答案】1)4(P A π=-47.某企业欲做一个介绍企业发展史的铭牌,铭牌的截面形状是如图所示的扇形环面(由试卷第11页,总11页 扇形OAD 挖去扇形OBC 后构成的).已知10, (0<<10)OA=OB =x x ,线段BA 、CD与弧BC 、弧AD 的长度之和为30米,圆心角为θ弧度.(1)求θ关于x 的函数解析式;(2)记铭牌的截面面积为y ,试问x 取何值时,y 的值最大?并求出最大值.【来源】上海市黄浦区2018届高三4月模拟(二模)数学试题【答案】(1)210(010)10x x x θ+=<<+;(2)当52x =米时铭牌的面积最大,且最大面积为2254平方米. 48.已知一扇形的圆心角为()0αα>,所在圆的半径为R .(1)若90,10R cm α==o ,求扇形的弧长及该弧所在的弓形的面积;(2)若扇形的周长是一定值()0C C >,当α为多少弧度时,该扇形有最大面积?【来源】2019高考备考一轮复习精品资料 专题十五 任意角和弧度制及任意角的三角函数 教学案【答案】(1)2550π-;(2)见解析49.已知在半径为10的圆O 中,弦AB 的长为10.(1)求弦AB 所对的圆心角α(0<α<π)的大小;(2)求圆心角α所在的扇形弧长l 及弧所在的弓形的面积S .【来源】(人教A 版必修四)1.1.2弧度制(第一课时)同步练习02【答案】(1)π3(2)10π3;50(π3−√32) 50.已知在半径为6的圆O 中,弦AB 的长为6,(1)求弦AB 所对圆心角α的大小;(2)求α所在的扇形的弧长l 以及扇形的面积S.【来源】江西省玉山县一中2018-2019学年高一(重点班)下学期第一次月考数学(文)试卷【答案】(1)3π ;(2)2l π= ,6S π=。
2015-2016学年某某省某某市成安一中、永年二中联考高二(下)期末数学试卷(理科)一、选择题(每小题5分,共60分)1.已知集合 M={x|5x﹣x2>0},N={2,3,4,5,6},则M∩N=()A.{2,3,4} B.{2,3,4,5} C.{3,4} D.{5,6}2.复数z=的虚部为()A.2 B.﹣2 C.2i D.﹣2i3.下列函数中,既是偶函数又在区间(0,+∞)上单调递减的是()A.y=x3B.y=ln|x| C.y=sin(﹣x)D.y=﹣x2﹣14.有一段“三段论”推理是这样的:对于可导函数f(x),如果f′(x0)=0,那么x=x0是函数f(x)的极值点,因为函数f(x)=x3在x=0处的导数值f′(0)=0,所以,x=0是函数f(x)=x3的极值点.以上推理中()A.大前提错误B.小前提错误C.推理形式错误 D.结论正确5.函数y=lncosx()的图象是()A.B.C.D.6.从0、2中选一个数字.从1、3、5中选两个数字,组成无重复数字的三位数.其中奇数的个数为()A.24 B.18 C.12 D.67.已知x,y的取值如下表,从散点图可以看出y与x线性相关,且回归方程为=0.95x+a,则a=()x 0 1 3 4y 2.2 4.3 4.8 6.7A.0 B.2.2 C.2.6 D.3.258.已知命题p:“a=1是x>0,x+≥2的充分必要条件”,命题q:“存在x0∈R, +x0﹣2>0”,则下列命题正确的是()A.命题“p∧q”是真命题 B.命题“p∧(¬q)”是真命题C.命题“(¬p)∧q”是真命题D.命题“(¬p)∧(¬q)”是真命题9.若α∈(,π),且5cos2α=sin(﹣α),则tanα等于()A.﹣ B.﹣ C.﹣ D.﹣310.已知f(x)=,则不等式f(2x﹣1)>f(3)的解集为()A.(2,+∞)B.(﹣∞,﹣2)∪(2,+∞) C.(﹣1,2)D.(﹣∞,﹣1)∪(2,+∞)11.如图所示,正弦曲线y=sinx,余弦曲线y=cosx与两直线x=0,x=π所围成的阴影部分的面积为()A.1 B.C.2 D.212.已知函数f(x)=的图象上关于y轴对称的点至少有3对,则实数a的取值X围是()A.B.C.D.二、填空题(每小题5分,共20分)13.已知函数f(x)=那么不等式f(x)≥1的解集为.14.已知(﹣)n的展开式中只有第四项的二项式系数最大,则展开式中的常数项等于.15.在△ABC中,B=,则sinA•sinC的最大值是.16.设曲C的参数方程为(θ为参数),直线l的方程为x﹣3y+2=0,则曲线C上到直线l距离为的点的个数为.三、解答题17.已知a为实数,p:点M(1,1)在圆(x+a)2+(y﹣a)2=4的内部; q:∀x∈R,都有x2+ax+1≥0.(1)若p为真命题,求a的取值X围;(2)若q为假命题,求a的取值X围;(3)若“p且q”为假命题,且“p或q”为真命题,求a的取值X围.18.已知函数y=ax3+bx2,当x=1时,有极大值3(1)求函数的解析式(2)写出它的单调区间(3)求此函数在[﹣2,2]上的最大值和最小值.19.已知函数f(x)=2sinωx(0<ω<1)在[0,]上的最大值为,当把f(x)的图象上的所有点向右平移φ(0<φ<)个单位后,得到图象对应的函数g(x)的图象关于直线x=对称.(1)求函数g(x)的解析式:(2)在△ABC中.一个内角A,B,C所对的边分别是a,b,c.已知g(x)在y轴右侧的第一个零点为C,若c=4,求△ABC的面积S的最大值.20.已知函数为偶函数.(Ⅰ)某某数a的值;(Ⅱ)记集合E={y|y=f(x),x∈{﹣1,1,2}},,判断λ与E的关系;(Ⅲ)当x∈(m>0,n>0)时,若函数f(x)的值域为[2﹣3m,2﹣3n],求m,n的值.21.4月23人是“世界读书日”,某中学在此期间开展了一系列的读书教育活动,为了解本校学生课外阅读情况,学校随机抽取了100名学生对其课外阅读时间进行调查,下面是根据调查结果绘制的学生日均课外阅读时间(单位:分钟)的频率分布直方图,若将日均课外阅读时间不低于60分钟的学生称为“读书谜”,低于60分钟的学生称为“非读书谜”(1)根据已知条件完成下面2×2的列联表,并据此判断是否有99%的把握认为“读书谜”与性别有关?非读书迷读书迷合计男15女45合计(2)将频率视为概率,现在从该校大量学生中,用随机抽样的方法每次抽取1人,共抽取3次,记被抽取的3人中的“读书谜”的人数为X,若每次抽取的结果是相互独立的,求X 的分布列,期望E(X)和方程D(X)附:K2=n=a+b+c+dP(K2≥k0)0.100 0.050 0.025 0.010 0.001k0 2.706 3.841 5.024 6.635 10.828 22.已知函数f(x)=lnx﹣ax2+x,a∈R.(1)令g(x)=f(x)﹣(ax﹣1),求函数g(x)的单调区间;(2)若a=﹣2,正实数x1,x2满足f(x1)+f(x2)+x1x2=0,证明:x1+x2≥.2015-2016学年某某省某某市成安一中、永年二中联考高二(下)期末数学试卷(理科)参考答案与试题解析一、选择题(每小题5分,共60分)1.已知集合 M={x|5x﹣x2>0},N={2,3,4,5,6},则M∩N=()A.{2,3,4} B.{2,3,4,5} C.{3,4} D.{5,6}【考点】交集及其运算.【分析】求出M中不等式的解集确定出M,再由N,求出两集合的交集即可.【解答】解:由M中不等式变形得:x(x﹣5)<0,解得:0<x<5,即M={x|0<x<5},∵N={2,3,4,5,6},∴M∩N={2,3,4},故选:A.2.复数z=的虚部为()A.2 B.﹣2 C.2i D.﹣2i【考点】复数代数形式的乘除运算.【分析】直接由复数代数形式的乘除运算化简后得答案.【解答】解:∵z==,∴复数z=的虚部为﹣2.故选:B.3.下列函数中,既是偶函数又在区间(0,+∞)上单调递减的是()A.y=x3B.y=ln|x| C.y=sin(﹣x)D.y=﹣x2﹣1【考点】函数单调性的判断与证明;函数奇偶性的判断.【分析】根据基本初等函数的图象与性质,对选项中的函数进行判断分析即可.【解答】解:对于A,函数y=x3是定义域R上的奇函数,不满足题意;对于B,函数y=ln|x|是定义域{x|x≠0}上的偶函数,但在区间(0,+∞)上是单调增函数,不满足题意;对于C,函数y=sin(﹣x)=cosx是定义域R上的偶函数,但在区间(0,+∞)上不是单调增函数,不满足题意;对于D,函数y=﹣x2﹣1是定义域R上的偶函数,且在区间(0,+∞)上是单调减函数,满足题意.故选:D.4.有一段“三段论”推理是这样的:对于可导函数f(x),如果f′(x0)=0,那么x=x0是函数f(x)的极值点,因为函数f(x)=x3在x=0处的导数值f′(0)=0,所以,x=0是函数f(x)=x3的极值点.以上推理中()A.大前提错误B.小前提错误C.推理形式错误 D.结论正确【考点】演绎推理的基本方法.【分析】在使用三段论推理证明中,如果命题是错误的,则可能是“大前提”错误,也可能是“小前提”错误,也可能是推理形式错误,我们分析的其大前提的形式:“对于可导函数f(x),如果f'(x0)=0,那么x=x0是函数f(x)的极值点”,不难得到结论.【解答】解:∵大前提是:“对于可导函数f(x),如果f'(x0)=0,那么x=x0是函数f(x)的极值点”,不是真命题,因为对于可导函数f(x),如果f'(x0)=0,且满足当x=x0附近的导函数值异号时,那么x=x0是函数f(x)的极值点,∴大前提错误,故选A.5.函数y=lncosx()的图象是()A.B.C.D.【考点】函数的图象与图象变化.【分析】利用函数的奇偶性可排除一些选项,利用函数的有界性可排除一些个选项.从而得以解决.【解答】解:∵cos(﹣x)=cosx,∴是偶函数,可排除B、D,由cosx≤1⇒lncosx≤0排除C,故选A.6.从0、2中选一个数字.从1、3、5中选两个数字,组成无重复数字的三位数.其中奇数的个数为()A.24 B.18 C.12 D.6【考点】计数原理的应用.【分析】分类讨论:从0、2中选一个数字0,则0只能排在十位;从0、2中选一个数字2,则2排在十位或百位,由此可得结论.【解答】解:从0、2中选一个数字0,则0只能排在十位,从1、3、5中选两个数字排在个位与百位,共有=6种;从0、2中选一个数字2,则2排在十位,从1、3、5中选两个数字排在个位与百位,共有=6种;2排在百位,从1、3、5中选两个数字排在个位与十位,共有=6种;故共有3=18种故选B.7.已知x,y的取值如下表,从散点图可以看出y与x线性相关,且回归方程为=0.95x+a,则a=()x 0 1 3 4y 2.2 4.3 4.8 6.7A.0 B.2.2 C.2.6 D.3.25【考点】线性回归方程.【分析】求出样本中心坐标,代入回归直线方程,即可求出a的值.【解答】解:由题意可得: ==2, ==4.5,回归直线经过样本中心,所以:4.5=0.95×2+a,解得a=2.6.故选:C.8.已知命题p:“a=1是x>0,x+≥2的充分必要条件”,命题q:“存在x0∈R, +x0﹣2>0”,则下列命题正确的是()A.命题“p∧q”是真命题 B.命题“p∧(¬q)”是真命题C.命题“(¬p)∧q”是真命题D.命题“(¬p)∧(¬q)”是真命题【考点】复合命题的真假.【分析】根据基本不等式进行讨论,可得:“a=1是x>0,x+≥2的充分不必要条件”,命题p是假命题.再根据一元二次不等式的解法,得到命题q:“存在x0∈R, +x0﹣2>0”是真命题.由此不难得出正确的答案.【解答】解:对于p,当a=1时,x+≥2=2,在x>0时恒成立,反之,若x>0,x+≥2恒成立,则2≥2,即,可得a≥1因此,“a=1是x>0,x+≥2的充分不必要条件”,命题p是假命题.对于q,∵在x0<﹣1或x0>2时+x0﹣2>0才成立,∴“存在x0∈R, +x0﹣2>0”是真命题,即命题q是真命题.综上,命题p为假命题而命题q为真命题,所以命题“(¬p)∧q”是真命题故选C9.若α∈(,π),且5cos2α=sin(﹣α),则tanα等于()A.﹣ B.﹣ C.﹣ D.﹣3【考点】两角和与差的正弦函数;同角三角函数基本关系的运用;三角函数的化简求值;两角和与差的余弦函数.【分析】利用两角和与差的三角函数以及二倍角公式化简已知条件,然后利用同角三角函数基本关系式求解即可.【解答】解:α∈(,π),且5cos2α=sin(﹣α),可得5(cosα﹣sinα)(cosα+sinα)=(cosα﹣sinα),可得:cosα+sinα=.1+2sinαcosα=.,解得:tanα=.故选:A.10.已知f(x)=,则不等式f(2x﹣1)>f(3)的解集为()A.(2,+∞)B.(﹣∞,﹣2)∪(2,+∞) C.(﹣1,2)D.(﹣∞,﹣1)∪(2,+∞)【考点】分段函数的应用.【分析】根据分段函数的表达式先判断函数f(x)是偶函数,然后判断当x≥0时函数为减函数,利用函数奇偶性和单调性的关系将不等式进行转化求解即可.【解答】解:由分段函数得f(0)=0,若x<0,则﹣x>0,此时f(﹣x)=ln(+x),f(x)=ln(+x),则f(﹣x)=f(x),若x>0,则﹣x<0,此时f(﹣x)=ln(﹣x),f(x)=ln(﹣x),则f(﹣x)=f(x),综上恒有则f(﹣x)=f(x),即函数f(x)是偶函数,当x≥0时,f(x)=ln(﹣x)=ln=﹣ln(+x),∵当x≥0时y=x是增函数,y=是增函数,∴y=ln(+1)是增函数,而y=﹣ln(+1)是减函数,则不等式f(2x﹣1)>f(3)等价为不等式f(|2x﹣1|)>f(3),即|2x﹣1|<3,得﹣3<2x﹣1<3,得﹣1<x<2,即不等式的解集为(﹣1,2),故选:C.11.如图所示,正弦曲线y=sinx,余弦曲线y=cosx与两直线x=0,x=π所围成的阴影部分的面积为()A.1 B.C.2 D.2【考点】定积分的简单应用.【分析】由图形可知,阴影部分的面积等于正弦函数与余弦函数图形到的面积,所以利用此区间的定积分可求.【解答】解:由图形以及定积分的意义,得到所求封闭图形面积等价于;故选:D.12.已知函数f(x)=的图象上关于y轴对称的点至少有3对,则实数a的取值X围是()A.B.C.D.【考点】分段函数的应用.【分析】求出函数f(x)=sin()﹣1,(x<0)关于y轴对称的解析式,利用数形结合即可得到结论.【解答】解:若x>0,则﹣x<0,∵x<0时,f(x)=sin()﹣1,∴f(﹣x)=sin(﹣)﹣1=﹣sin()﹣1,则若f(x)=sin()﹣1,(x<0)关于y轴对称,则f(﹣x)=﹣sin()﹣1=f(x),即y=﹣sin()﹣1,x>0,设g(x)=﹣sin()﹣1,x>0作出函数g(x)的图象,要使y=﹣sin()﹣1,x>0与f(x)=log a x,x>0的图象至少有3个交点,则0<a<1且满足g(5)<f(5),即﹣2<log a5,即log a5>,则5,解得0<a<,故选:A二、填空题(每小题5分,共20分)13.已知函数f(x)=那么不等式f(x)≥1的解集为(﹣∞,0]∪[3,+∞).【考点】函数单调性的性质.【分析】利用特殊函数的单调性,分步讨论【解答】解:∵函数在x>0时为增函数,且故当[3,+∞)时,f(x)≥1∵函数在x≤0时为减函数,又知=1,故当(﹣∞,0]时,f(x)≥1故答案为(﹣∞,0]∪[3,+∞)14.已知(﹣)n的展开式中只有第四项的二项式系数最大,则展开式中的常数项等于15 .【考点】二项式系数的性质.【分析】先利用展开式中只有第四项的二项式系数最大求出n=6,再求出其通项公式,令x 的指数为0,求出r,再代入通项公式即可求出常数项的值.【解答】解:(﹣)n的展开式中只有第四项的二项式系数最大所以n=6.其通项公式T r+1=C6r•(﹣1)r•x,令﹣6=0,求得r=4,可得展开式中的常数项为C64•(﹣1)4=15,故答案为:15.15.在△ABC中,B=,则sinA•sinC的最大值是.【考点】三角函数中的恒等变换应用.【分析】化简可得sinAsinC=sin(2A﹣)+,由0<A<,得﹣<2A﹣<,从而可得sinA•sinC的最大值.【解答】解:sinAsinC=sinAsin(π﹣A﹣B)=sinAsin(﹣A)=sinA(cosA+sinA)=sin2A﹣cos2A+=sin(2A﹣)+∵0<A<∴﹣<2A﹣<∴2A﹣=时,sinAsinC取得最大值.故答案为:.16.设曲C的参数方程为(θ为参数),直线l的方程为x﹣3y+2=0,则曲线C上到直线l距离为的点的个数为 2 .【考点】圆的参数方程;直线与圆的位置关系.【分析】将圆C的方程化为一般方程,可以计算圆心到直线l距离为,结合圆的半径为3,即可得出结论.【解答】解:化曲线C的参数方程为普通方程:(x﹣2)2+(y+1)2=9,∵圆心(2,﹣1)到直线x﹣3y+2=0的距离,∴直线和圆相交,且过圆心和l平行的直线和圆的2个交点符合要求,又∵,∴在直线l的另外一侧没有圆上的点符合要求,故答案为:2.三、解答题17.已知a为实数,p:点M(1,1)在圆(x+a)2+(y﹣a)2=4的内部; q:∀x∈R,都有x2+ax+1≥0.(1)若p为真命题,求a的取值X围;(2)若q为假命题,求a的取值X围;(3)若“p且q”为假命题,且“p或q”为真命题,求a的取值X围.【考点】复合命题的真假;复合命题.【分析】对于命题p为真,要利用点与圆的位置关系;对于命题q为真,要利用一元二次函数图象的特点,最后利用复合命题真假解决.【解答】解:(1)∵p:点M(1,1)在圆(x+a)2+(y﹣a)2=4的内部∴(1+a)2+(1﹣a)2<4,解得﹣1<a<1,故p为真命题时a的取值X围为(﹣1,1).(2)∵q:∀x∈R,都有x2+ax+1≥0∴若q为真命题,则△=a2﹣4≤0,解得﹣2≤a≤2,故q为假命题时a的取值X围(﹣∞,﹣2)∪(2,+∞).(3)∵“p且q”为假命题,且“p或q”为真命题∴p与q一真一假,从而①当p真q假时有,无解;②当p假q真时有,解得﹣2≤a≤﹣1或1≤a≤2.∴实数a的取值X围是[﹣2,﹣1]∪[1,2].18.已知函数y=ax3+bx2,当x=1时,有极大值3(1)求函数的解析式(2)写出它的单调区间(3)求此函数在[﹣2,2]上的最大值和最小值.【考点】利用导数求闭区间上函数的最值;函数解析式的求解及常用方法;利用导数研究函数的单调性.【分析】(1)求出y′,由x=1时,函数有极大值3,所以代入y和y′=0中得到两个关于a、b的方程,求出a、b即可;(2)令y′>0解出得到函数的单调增区间,令y′<0得到函数的单调减区间;(3)由(2)求出函数的极值,再计算出函数在x=﹣2,x=2处的函数值,进行比较,其中最大者即为最大值,最小者即为最小值;【解答】解:(1)y′=3ax2+2bx,当x=1时,y′|x=1=3a+2b=0,y|x=1=a+b=3,即,解得a=﹣6,b=9,所以函数解析式为:y=﹣6x3+9x2.(2)由(1)知y=﹣6x3+9x2,y′=﹣18x2+18x,令y′>0,得0<x<1;令y′<0,得x>1或x<0,所以函数的单调递增区间为(0,1),函数的单调递减区间为(﹣∞,0),(1,+∞).(3)由(2)知:当x=0时函数取得极小值为0,当x=1时函数取得极大值3,又y|x=﹣2=84,y|x=2=﹣12.故函数在[﹣2,2]上的最大值为84,最小值为﹣12.19.已知函数f(x)=2sinωx(0<ω<1)在[0,]上的最大值为,当把f(x)的图象上的所有点向右平移φ(0<φ<)个单位后,得到图象对应的函数g(x)的图象关于直线x=对称.(1)求函数g(x)的解析式:(2)在△ABC中.一个内角A,B,C所对的边分别是a,b,c.已知g(x)在y轴右侧的第一个零点为C,若c=4,求△ABC的面积S的最大值.【考点】由y=Asin(ωx+φ)的部分图象确定其解析式;正弦函数的图象.【分析】(1)由题意可得2sin(ω)=,解得ω,利用平移变换规律可得g(x)=2sin (x﹣φ),利用正弦函数的对称性可得(﹣φ)=kπ+,k∈Z,结合X围0<φ<,可求φ,即可得解函数g(x)的解析式.(2)由题意可得2sin(C﹣)=0,解得C﹣=kπ,k∈Z,由题意可解得C,由余弦定理可得ab≤,利用三角形的面积公式即可得解.【解答】解:(1)∵函数f(x)=2sinωx(0<ω<1)在[0,]上的最大值为,∴2sin(ω)=,解得ω=,把f(x)的图象上所有的点向右平移φ(0<φ<)个单位后,得到的函数g(x)=2sin[(x﹣φ)]=2sin(x﹣φ),∵函数g(x)的图象关于直线x=对称,∴(﹣φ)=kπ+,k∈Z,解得:φ=﹣2kπ,k∈Z,∴由0<φ<,可得:φ=.∴函数g(x)的解析式为:g(x)=2sin[(x﹣)]=2sin(x﹣).(2)∵函数g(x)在y轴右侧的第一个零点恰为C,∴由2sin(C﹣)=0,解得C﹣=kπ,k∈Z,可得:C=2kπ+,k∈Z,令k=0,可得C=.∵c=4,∴由余弦定理可得:16=a2+b2﹣2abcosC=a2+b2﹣ab≥2ab﹣ab,解得:ab≤,∴S△ABC=absinC≤××=8.故△ABC的面积S的最大值为8.20.已知函数为偶函数.(Ⅰ)某某数a的值;(Ⅱ)记集合E={y|y=f(x),x∈{﹣1,1,2}},,判断λ与E的关系;(Ⅲ)当x∈(m>0,n>0)时,若函数f(x)的值域为[2﹣3m,2﹣3n],求m,n的值.【考点】利用导数研究函数的单调性;奇偶性与单调性的综合.【分析】(Ⅰ)根据函数为偶函数f(﹣x)=f(x),构造关于a的方程组,可得a值;(Ⅱ)由(Ⅰ)中函数f(x)的解析式,将x∈{﹣1,1,2}代入求出集合E,利用对数的运算性质求出λ,进而根据元素与集合的关系可得答案(Ⅲ)求出函数f(x)的导函数,判断函数的单调性,进而根据函数f(x)的值域为[2﹣3m,2﹣3n],x∈,m>0,n>0构造关于m,n的方程组,进而得到m,n的值.【解答】解:(Ⅰ)∵函数为偶函数.∴f(﹣x)=f(x)即=∴2(a+1)x=0,∵x为非零实数,∴a+1=0,即a=﹣1(Ⅱ)由(Ⅰ)得∴E={y|y=f(x),x∈{﹣1,1,2}}={0, }而====∴λ∈E(Ⅲ)∵>0恒成立∴在上为增函数又∵函数f(x)的值域为[2﹣3m,2﹣3n],∴f()=1﹣m2=2﹣3m,且f()=1﹣n2=2﹣3n,又∵,m>0,n>0∴m>n>0解得m=,n=21.4月23人是“世界读书日”,某中学在此期间开展了一系列的读书教育活动,为了解本校学生课外阅读情况,学校随机抽取了100名学生对其课外阅读时间进行调查,下面是根据调查结果绘制的学生日均课外阅读时间(单位:分钟)的频率分布直方图,若将日均课外阅读时间不低于60分钟的学生称为“读书谜”,低于60分钟的学生称为“非读书谜”(1)根据已知条件完成下面2×2的列联表,并据此判断是否有99%的把握认为“读书谜”与性别有关?非读书迷读书迷合计男15女45合计(2)将频率视为概率,现在从该校大量学生中,用随机抽样的方法每次抽取1人,共抽取3次,记被抽取的3人中的“读书谜”的人数为X,若每次抽取的结果是相互独立的,求X 的分布列,期望E(X)和方程D(X)附:K2=n=a+b+c+dP(K2≥k0)0.100 0.050 0.025 0.010 0.001k0 2.706 3.841 5.024 6.635 10.828【考点】离散型随机变量的期望与方差;独立性检验.【分析】(1)利用频率分布直方图,直接计算填写表格,然后利用个数求解K2,判断即可.(2)求出概率的分布列,然后利用超几何分布求解期望与方差即可.【解答】解:(1)完成下面的2×2列联表如下非读书迷读书迷合计男40 15 55女20 25 45合计60 40 100…≈8.249VB8.249>6.635,故有99%的把握认为“读书迷”与性别有关…(2)视频率为概率.则从该校学生中任意抽取1名学生恰为读书迷的概率为.由题意可知X~B(3,),P(x=i)=(i=0,1,2,3)…从而分布列为X 0 1 2 3P.…E(x)=np=,D(x)=np(1﹣p)=…22.已知函数f(x)=lnx﹣ax2+x,a∈R.(1)令g(x)=f(x)﹣(ax﹣1),求函数g(x)的单调区间;(2)若a=﹣2,正实数x1,x2满足f(x1)+f(x2)+x1x2=0,证明:x1+x2≥.【考点】利用导数研究函数的单调性.【分析】(1)求导数,然后通过研究不等式的解集确定原函数的单调性;(2)结合已知条件构造函数,然后结合函数单调性得到要证的结论.【解答】解:(1)g(x)=f(x)﹣(ax﹣1)=lnx﹣ax2+(1﹣a)x+1,所以g′(x)=﹣ax+(1﹣a)=,当a≤0时,因为x>0,所以g′(x)>0.所以g(x)在(0,+∞)上是递增函数,当a>0时,g′(x)=,令g′(x)=0,得x=,所以当x∈(0,)时,g′(x)>0;当x∈(,+∞)时,g′(x)<0,因此函数g(x)在x∈(0,)是增函数,在(,+∞)是减函数.综上,当a≤0时,函数g(x)的递增区间是(0,+∞),无递减区间;当a>0时,函数g(x)的递增区间是(0,),递减区间是(,+∞).(2)由x1>0,x2>0,即x1+x2>0.令t=x1x2,则由x1>0,x2>0得,φ′(t)=.t>0可知,φ(t)在区间(0,1)上单调递减,在区间(1,+∞)上单调递增.所以φ(t)≥φ(1)=1,所以(x1+x2)2+(x1+x2)≥1,解得x1+x2≥或x1+x2≤.又因为x1>0,x2>0,因此x1+x2≥成立.。
2015~2016学年度第一学期期末考试试卷 高二(理) 数学 座位号第I 卷(选择题 共60分)一、选择题(本大题共12小题,每小题5分,共60分)1、向量(1,2,2),(2,4,4)a b =-=--,则a b 与 ( ) A 、相交 B 、垂直 C 、平行 D 、以上都不对2、如果双曲线的半实轴长为2,焦距为6,那么该双曲线的离心率是 ( )A 、32B 、62C 、32D 、23、已知命题:,sin 1,p x R x ∀∈≤则p ⌝是 ( ) A 、,sin 1x R x ∃∈≥ B 、,sin 1x R x ∀∈≥ C 、,sin 1x R x ∃∈> D 、,sin 1x R x ∀∈>4、若向量)0,2,1(=a ,)1,0,2(-=b ,则( )A 0120,cos >=<b aB b a ⊥C b a //D ||||b a =5、若原命题“0,0,0a b ab >>>若则”,则其逆命题、否命题、逆否命题中( ) A 、都真 B 、都假 C 、否命题真 D 、逆否命题真6、 “2320x x -+≠”是“1x ≠” 的( )条件 ( ) A 、充分不必要 B 、必要不充分 C 、充要 D 、既不充分也不必要 7、若方程x 225-m +y 2m +9=1表示焦点在y 轴上的椭圆,则实数m 的取值范围是( )A 、-9<m <25B 、8<m <25C 、16<m <25D 、m >88、已知△ABC 的周长为20,且顶点B (0,-4),C (0,4),则顶点A 的轨迹方程是( )A .1203622=+y x (x ≠0)B .1362022=+y x (x ≠0)C .120622=+y x (x ≠0)D .162022=+y x (x ≠0)9、一位运动员投掷铅球的成绩是14m ,当铅球运行的水平距离是6m 时,达到最大高度4m .若铅球运行的路线是抛物线,则铅球出手时距地面的高度是( ) A . 1.75m B . 1.85mC . 2.15mD . 2.25m 10、设a R ∈,则1a >是11a< 的( ) A .充分但不必要条件 B .必要但不充分条件C .充要条件D .既不充分也不必要条件 11.抛物线281x y -=的准线方程是 ( ) A . 321=x B . 2=y C . 321=y D . 2-=y12. 若A )1,2,1(-,B )3,2,4(,C )4,1,6(-,则△ABC 的形状是( ) A .不等边锐角三角形 B .直角三角形C .钝角三角形D .等边三角形第II 卷(非选择题共90分)二、填空题(本大题共4小题,每小题5分,共20分)13、经过点(1,3)A -,并且对称轴都在坐标轴上的等轴双曲线的方程为 。
2016年河南省洛阳市高二下学期理科人教A 版数学期末考试试卷一、选择题(共12小题;共60分)1. 下列选项中,使不等式 x <1x <x 2 成立的 x 的取值范围是 A. −∞,−1 B. −1,0 C. 0,1 D. 1,+∞2. 复数2+3i 1−i在复平面内对应的点落在 A. 第一象限B. 第二象限C. 第三象限D. 第四象限3. 下列叙述正确的个数是 ① 若 a >b ,则 ac 2>bc 2;② 若命题 p 为真命题题,命题 q 为假命题,则 p ∨q 为假命题;③ 若命题 p :∃x 0∈R ,x 02−x 0+1≤0,则 ¬p :∀x ∈R ,x 2−x +1>0.A. 0B. 1C. 2D. 34. 对两个变量 y 和 x 进行回归分析,得到一组样本数据: x 1,y 1 , x 2,y 2 ,⋯, x n ,y n ,则下列说法中不正确的是 A. 由样本数据得到的回归方程 y =b x +a 必过样本中心 x ,yB. 残差平方和越小的模型,拟合的效果越好C. 用相关指数 R 2 来刻画回归效果,R 2 越小,说明模型的拟合效果越好D. 两个随机变量的线性相关性越强,相关系数的绝对值越接近于 15. 已知双曲线x 2a 2−y 2=1 a >0 的离心率为 3,则该双曲线的渐近线方程为 A. y =±12x B. y =±22x C. y =± 2x D. y =±2x6. 已知数列 a n 为等差数列,a 1=1,公差 d ≠0,a 1,a 2,a 5 成等比数列,则 a 2015 的值为A. 4029B. 4031C. 4033D. 40357. 计算:∫−11x 3−1x d x = A. −2B. −23C. 23D. 28. 设 f x 是定义在正整数集上的函数,且 f x 满足“当 f k ≤k 2 成立时,总可推出 f k +1 ≤ k +1 2”成立.那么,下列命题总成立的是 A. 若 f 2 ≤4 成立,则当 k ≥1 时,均有 f k ≤k 2 成立 B. 若 f 4 ≤16 成立,则当 k ≤4 时,均有 f k ≤k 2 成立 C. 若 f 6 >36 成立,则当 k ≥7 时,均有 f k >k 2 成立 D. 若 f 7 =50 成立,则当 k ≤7 时,均有 f k >k 2 成立9. 长方体 ABCD −A 1B 1C 1D 1 中,AB =AA 1=2,AD =1,E 为 CC 1 的中点,则异面直线 BC 1 与 AE 所成角的余弦值为 A. 1010 B. 3010C. 2 1510D. 3 101010. 已知f x=aa−2⋅a x−a−x(a>0且a≠1)是R上的增函数,则实数a的取值范围是 A. 0,1B. 0,1∪2,+∞C. 2,+∞D. 0,1∪2,+∞11. 定义点P到图形C上每一个点的距离的最小值为点P到图形C的距离,那么平面内到定圆C的距离与到定点A(A在圆C内且不与圆心C重合)的距离相等的点的轨迹是 A. 直线B. 圆C. 椭圆D. 双曲线的一支12. 定义在R上的函数f x,fʹx是其导数,且满足f x+fʹx>2,e f1=2e+4,则不等式e xf x>4+2e x(其中e为自然对数的底数)的解集为 A. 1,+∞B. −∞,0∪1,+∞C. −∞,0∪0,+∞D. −∞,1二、填空题(共4小题;共20分)13. 已知随机变量ξ服从正态分布N0,σ2,且P−2≤ξ≤2=0.4,则Pξ>2=.14. 若实数x,y满足条件x+y−2≥0,x−y≤0,y≤3,则z=4x−3y的最大值是.15. ax+1x ⋅2x−1x5的展开式中各项系数的和为2,则该展开式中常数项为(用数字作答).16. 已知a n,b n均为等差数列,它们的前n项和分别为S n,T n,若对任意n∈N∗有S nT n=31n+101 n+3,则使a nb n为整数的正整数n的集合为.三、解答题(共6小题;共78分)17. 在△ABC中,a、b、c分别是角A,B,C的对边,且cos Bcos C =−b2a+c.(1)求角B的大小;(2)若b=13,a+c=4,求△ABC的面积.18. 设数列a n的前n项和为S n,且S n=2a n−3n,n∈N∗.(1)证明数列a n+3为等比数列;(2)求S n的前n项和T n.19. 某中学校本课程开设了A,B,C,D共4门选修课,每个学生必须且只能选修1门选修课,现有该校的甲、乙、丙3名学生.(1)求这3名学生选修课所有选法的总数;(2)求恰有2门选修课没有被这3名学生选择的概率;(3)求 A 选修课被这3名学生选择的人数ξ的分布列及数学期望.20. 在如图的多面体中,EF⊥平面AEB,AE⊥EB,AD∥EF,EF∥BC,BC=2AD=4,EF=3,AE=BE=2,G是BC的中点.(1)求证:AB∥平面DEG;(2)求证:BD⊥EG;(3)求二面角C−DF−E的余弦值.21. 已知点F0,1,直线l:y=−1,P为平面上的动点,过点P作直线l的垂线,垂足为Q,且QP⋅QF=FP⋅FQ.(1)求动点P的轨迹C的方程;(2)已知圆M过定点D0,2,圆心M在轨迹C上运动,且圆M与x轴交于A,B两点,设∣DA∣=l1,∣DB∣=l2,求l1l2+l2l1的最大值.22. 已知函数f x=ln x−a1−1x.(1)若a=1,求f x的单调区间;(2)若f x≥0,对任意的x≥1均成立,求实数a的取值范围;(3)求证:201620151008>e1.答案第一部分 1. A【解析】当 x >0 时,原不等式可化为 x 2<1<x 3,解得 x ∈∅,当 x <0 时,原不等式可化为 x 2>1,x 3<1, 解得 x <−1.2. B【解析】因为2+3i =2+3i 1+i 1−i 1+i=−1+5i 2=−1+5i.所以复数 2+3i1−i 在复平面内对应的点的坐标为 −12,52,落在第二象限. 3. B【解析】①若 a >b ,当 c =0 时,ac 2=bc 2 则 ac 2>bc 2 不成立,故①错误,② 若命题 p为真命题,命题 q 为假命题,则 p ∨q 为真命题;故②错误,③若命题 p :∃x 0∈R ,x 02−x 0+1≤0,则 ¬p :∀x ∈R ,x 2−x +1>0. 故 ③正确. 4. C【解析】由样本数据得到的回归方程 y =b x +a 必过样本中心 x ,y ,正确;残差平方和越小的模型,拟合的效果越好,正确;用相关指数 R 2 来刻画回归效果,R 2 越大,说明模型的拟合效果越好,不正确; 线性相关系数 ∣r ∣ 越大,两个变量的线性相关性越强,故正确. 5. C【解析】因为双曲线 x 2a 2−y 2=1 a >0 的离心率 3,所以 e =ca = 3,即 c 2=3a 2,即 1+a 2=3a 2,得 a 2=12,即 a = 22,则双曲线的渐近线方程为 y =±b a x =±2=± 2x .6. A【解析】在等差数列 a n 中,由 a 1,a 2,a 5 成等比数列得, 1+d 2=1× 1+4d ,解得d =2 d ≠0 ,所以 a 2015=1+2014×2=4029.7. C【解析】∫−11x 3−1x 4 d x=∫−11x 3d x −∫−111x 4d x =−∫−111x d x=13x ∣∣−11=13− −13 =23.8. D【解析】对于A ,当 k =1 时,不一定有 f k ≤k 2 成立;A 命题错误;对于B ,只能得出:对于任意的 k ≥4,均有 f k ≥k 2 成立,不能得出:任意的 k ≤3,均有 f k ≤k 2 成立;B 命题错误;对于C ,根据逆否命题的真假性相同,由 f 6 >36 成立,能推出当 k ≤6 时,均有 f k >k 2 成立;C 命题错误;对于D,根据逆否命题的真假性相同,由f7=50>49,能得出对于任意的k≤7,均有f k>k2成立;D命题正确.9. B 【解析】建立坐标系如图,则A1,0,0,E0,2,1,B1,2,0,C10,2,2.BC1=−1,0,2,AE=−1,2,1,cos⟨BC1,AE⟩=BC1⋅AEBC1 AE =3010.10. B【解析】当0<a<1时,a x−a−x单调递减,aa2−2<0恒成立,因此,f x恒单调递增成立;当a>1时,a x−a−x单调递增,只需aa−2>0,解得a>2;综上可得,实数a的取值范围是0,1∪2,+∞ .11. C【解析】如图,设动点为P,点A在圆内不与圆心C重合,连接CP并延长,交于圆上一点B,由题意知PB=PA,又PB+PC=R,所以PA+PC=R,即P的轨迹为椭圆.12. A 【解析】设g x=e x f x−4−2e x,则e x f x>4+2e x等价于g x>0.因为gʹx=e x f x+e x fʹx−2e x=e x f x+fʹx−2>0,所以g x为R上的增函数.又g1=e f1−4−2e=0,所以g x>g1,所以x>1.第二部分13. 0.3【解析】因为随机变量ξ服从正态分布N0,σ2,P−2≤ξ≤2=0.4,所以Pξ>2=121−P−2≤ξ≤2=0.3.14. 3【解析】不等式组对应的平面区域如图:由z=3x−4y得y=43x−z3,平移直线y=43x−z3,则由图象可知当直线y=43x−z3,当经过点C时,直线的截距最小,此时z最大,由y=3,x−y=0,解得x=3,y=3,即C3,3,此时最大值z=4×3−3×3=3.15. 40【解析】令x=1,可得:a+12−15=2,解得a=1.2x−1x 5的展开式的通项公式:T r+1=C5r2x5−r −1xr=−1r25−r C5r x5−2r,令5−2r=1或−1,分别解得:r=2,3.所以该展开式中常数项为:x⋅C532x2 −1x 3+1x⋅C522x3 −1x2=−40+80=40.16. 1,3【解析】a nb n=2n−1a1+a2n−122n−1b1+b2n−1=S2n−1T2n−1=312n−1+1012n−1+3=31n+35n+1=31+4n+1,只有n=1,3时,4n+1为整数,所以使a nb n为整数的正整数n的集合为1,3.第三部分17. (1)由余弦定理,得cos B=a2+c2−b22ac ,cos C=a2+b2−c22ab,将上式代入cos Bcos C =−b2a+c,得a 2+c2−b22ac⋅2aba+b−c=−b2a+c.整理,得a2+c2−b2=−ac,所以cos B=a 2+c2−b22ac=−ac2ac=−12.因为B为三角形的内角,所以B=23π.(2)将b=13,a+c=4,B=2π3代入b2=a2+c2−2accosB,得b2=a+c2−2ac−2accosB,所以13=16−2ac1−12,所以ac=3.所以S△ABC=12acsinB=334.18. (1)令n=1,S1=2a1−3,所以a1=3.由S n+1=2a n+1−3n+1,S n=2a n−3n,两式相减,得a n+1=2a n+1−2a n−3,则a n+1=2a n+3.a n+1+3=2a n+3,a n+1+3a n+3=2,所以a n+3是首项为a1+3=6,公比为2的等比数列.(2)a n+3=a1+3⋅2n−1=6⋅2n−1,所以a n=6⋅2n−1−3,S n=61−2n1−2−3n=6⋅2n−3n−6.T n=6⋅21−9+6⋅22−12+6⋅23−15+⋯+6⋅2n−3n+2=121−2n−3n2−15n=122n−1−32n2−152n.19. (1)每个学生有四个不同的选择,根据分步乘法计数原理,这3名学生选修课所有选法的总数N=4×4×4=64.(2)恰有2门选修课这3名学生都没选择的概率为:P=C42C32A2242=2×3×3×24×4×4=916.(3) A选修课被这3名学生选择的人数为ξ,则ξ的可能取值为0,1,2,3,Pξ=0=3343=2764,Pξ=1=C31⋅324=2764,Pξ=2=C32⋅343=964,Pξ=3=C334=164,所以ξ的分布列为:ξ0123P 27642764964164Eξ=0×27+1×27+2×9+3×1=3.20. (1)因为AD∥EF,EF∥BC,所以AD∥BC.又因为BC=2AD,G是BC的中点,所以AD=BG.所以四边形ADGB是平行四边形.所以AB∥DG.因为AB⊄平面DEG,DG⊂平面DEG,所以AB∥平面DEG.(2)方法一:因为EF⊥平面AEB,AE⊂平面AEB,所以EF⊥AE.又AE⊥EB,EB∩EF=E,所以AE⊥平面BCFE.如图,过D作DH∥AE交EF于H,则DH⊥平面BCFE.因为EG⊂平面BCFE,所以DH⊥EG.因为AD∥EF,DH∥AE,所以四边形AEHD平行四边形,所以EH=AD=2,即EH=BG=2.又EH∥BG,EH⊥BE,所以四边形BGHE为正方形.所以BH⊥EG.又BH∩DH=H,所以EG⊥平面BHD.因为BD⊂平面BHD,所以BD⊥EG.方法二:因为EF⊥平面AEB,所以EF⊥AE,EF⊥BE,又AE⊥EB,所以EB,EF,EA两两垂直.以点E为坐标原点,EB,EF,EA分别为x、y、z轴建立如图所示的空间直角坐标系,则B2,0,0,D0,2,2,G2,2,0,从而EG=2,2,0,BD=−2,2,2,所以BD⋅EG=−2×2+2×2=0,因此BD⊥EG.(3)由(2),得EB⊥平面EFDA,则EB=2,0,0是平面EFDA的法向量.设平面DCF的法向量为n=x,y,z,则FD⋅n=0,FC⋅n=0,因为FD=0,−1,2,FC=2,1,0,所以−y+2z=0,2x+y=0,令z=1,则n=−1,2,1,从而cos<n,EB>=26=−6.因此,二面角C−DF−E的余弦值为−66.21. (1)设P x,y,则Q x,−1,因为QP⋅QF=FP⋅FQ,所以0,y+1⋅−x,2=x,y−1⋅x,−2.即2y+1=x2−2y−1,即x2=4y,所以动点P的轨迹C的方程x2=4y.(2)设圆M的圆心坐标为M a,b,则a2=4b. ⋯⋯①圆M的半径为∣MD∣= a2+b−22.圆M的方程为x−a2+y−b2=a2+b−22.令y=0,则x−a2+b2=a2+b−22,整理得,x2−2ax+4b−4=0. ⋯⋯②由①,②解得,x=a±2.不妨设A a−2,0,B a+2,0,所以l1=a−22+4,l2=a+22+4.所以l1 l2+l2l1=l12+l22l1l2=2a4+64=2a2+824=21+16a2a4+64. ⋯⋯③当a≠0时,由③得,l1l2+l2l1=21+16a2+64a2≤21+162×8=22.当且仅当a=±22时,等号成立.当a=0时,由③得,l1l2+l2l1=2.故当a=±22时,l1l2+l2l1的最大值为22.22. (1)f x的定义域是0,+∞,a=1时,f x=ln x+1x −1,fʹx=x−1x2,令fʹx>0,解得:x>1,令fʹx<0,解得:0<x<1,所以f x在0,1递减,在1,+∞递增.(2)因为ln x−a1−1x≥0,所以ln x−a⋅x−1x≥0,所以a x−1≤x ln x,①当x=1时,上式成立;②当x>1时,上式可化为a≤x ln xx−1,令f x=x ln xx−1,则fʹx=x−ln x−1x−1,令g x=x−ln x−1,则gʹx=1−1x>0,故g x在1,+∞上是增函数,故g x>g1=1−0−1=0,故fʹx>0,故f x=x ln xx−1在1,+∞上是增函数,而limx→1f x=limx→1x ln xx−1=limx→1ln x+11=1,故a≤1.综上所述,a≤1.(3)由(2)得a=1时,ln x−a1−1x≥0对任意的x≥1均成立,所以ln x>1−1xx>1,取x=1+12015,则ln1+12015>1−11+1,即ln20162015>12016,所以20162015>e1,所以201620151008>e12.第11页(共11页)。