当前位置:文档之家› 什么是步进电机细分

什么是步进电机细分

什么是步进电机细分
什么是步进电机细分

什么是步进电机细分?是不是驱动器细分越高精度越高?

很多雷赛驱动器新用户误以为步进电机驱动器的细分越高,步进电机的精度就越高,其实这是一种错误的观念,比如步进电机驱动器细分较高的可以达到60000个脉冲一转,而步进电机实际是无法分辨这个精度的,当驱动器设置为60000个脉冲/转的时候,步进电机驱动器接受好几个脉冲,步进电机才走一步,这样并不能提高步进电机的精度。

步进电机的细分技术实质上是一种电子阻尼技术,其主要目的是减弱或消除步进电机的低频振动,提高电机的运转精度只是细分技术的一个附带功能。细分后电机运行时的实际步距角是基本步距角的几分之一。(两相步进电机的基本步距角是1.8°,即一个脉冲走1.8°,如果没有细分,则是200个脉冲走一圈360°,细分是通过驱动器靠精确控制电机的相电流所产生的,与电机无关,如果是10细分,则发一个脉冲电机走0.18°,即2000个脉冲走一圈360°,电机的精度能否达到或接近0.18°,还取决于细分驱动器的细分电流控制精度等其它因素。不同厂家的细分驱动器精度可能差别很大;细分数越大精度越难控制。以次类推。三相步进电机的基本步距角是1.2°,即一个脉冲走1.2°,如果没有细分,则是300个脉冲走一圈360°,如果是10细分,则发一个脉冲,电机走0.12°,即3000个脉冲走一圈360°,以次类推。在电机实际使用时,如果对转速要求较高,且对精度和平稳性要求不高的场合,不必选高细分。在实际使用时,如果转速很低情况下,应该选大细分,确保平滑,减少振动和噪音。)

怎么设置步进驱动器细分?

【设置步进马达驱动器的细分参数】

1、设置步进驱动器的细分数,通常细分数越高,控制分辨率越高。但细分数太高则影响到最大进给速度。一般来说,对于模具机用户可考虑脉冲当量为0.001mm/P(此时最大进给速度为9600mm/min)或者0.0005mm/P(此时最大进给速度为4800mm/min);对于精度要求不高的用户,脉冲当量可设置的大一些,如0.002mm/P(此时最大进给速度为19200mm/min)或0.005mm/P(此时最大进给速度为48000mm/min)。对于两相步进电机,脉冲当量计算方法如下:脉冲当量=丝杠螺距÷细分数÷200。

2、起跳速度:该参数对应步进电机的起跳频率。所谓起跳频率是步进电机不经过加速,能够直接启动工作的最高频率。合理地选取该参数能够提高加工效率,并且能避开步进电机运动特性不好的低速段;但是如果该参数选取大了,就会造成闷车,所以一定要留有余量。在电机的出厂参数中,一般包含起跳频率参数。但是在机床装配好后,该值可能发生变化,一般要下降,特别是在做带负载运动时。所以,该设定参数最好是在参考电机出厂参数后,再实际测量决定。

3、单轴加速度:用以描述单个进给轴的加减速能力,单位是毫米/秒平方。这个指标由机床的物理特性决定,如运动部分的质量、进给电机的扭矩、阻力、切削负载等。这个值越大,在运动过程中花在加减速过程中的时间越小,效率越高。通常,对于步进电机,该值在100 ~500之间,对于伺服电机系统,可以设置在400~1200之间。在设置过程中,开始设置小一点,运行一段时间,重复做各种典型运动,注意观察,如果没有异常情况,然后逐步增加。如果发现异常情况,则降低该值,并留50%~100%的保险余量。

4、弯道加速度:用以描述多个进给轴联动时的加减速能力,单位是毫米/秒平方。它决定了机床在做圆弧运动时的最高速度。这个值越大,机床在做圆弧运动时的最大允许速度越大。通常,对于步进电机系统组成的机床,该值在400~1000之间,对于伺服电机系统,可以设置在1000~5000之间。如果是重型机床,该值要小一些。在设置过程中,开始设置小一点,运行一段时间,重复做各种典型联动运动,注意观察,如果没有异常情况,然后逐步增加。如果发现异常情况,则降低该值,并留50%~100%的保险余量。

通常考虑到步进电机的驱动能力、机械装配的摩擦、机械部件的承受能力,可以在厂商参数中修改各个轴的最大速度,对机床用户实际使用时的三个轴最大速度予以限制,。

5、根据三个轴零点传感器的安装位置,设置厂商参数中的回机械原点参数。当设置正确后,可运行“操作”菜单中的“回机械原点”。先单轴回,如果运动方向正确则继续回,否则需停止,重新设置设置厂商参数中的回机械原点方向,直至所有轴都可回机械原点。

6、设置自动加油参数(设置得小一些,如5秒加一次油),观察自动加油是否正确,如果正确,则将自动加油参数设置到实际需要的参数。

7、校验电子齿轮和脉冲当量的设定值是否匹配。可以在机床的任意一根轴上做个标记,在软件中把该点坐标设为工作零点,用直接输入指令、点动或手轮等工作方式使该轴走固定距离,用游标卡尺测量实际距离与软件中坐标显示距离是否相附。

8、测定有无丢脉冲。可以用直观的方法:用一把尖刀在工件毛坯上点一个点,把该点设为工作原点,抬高Z轴,然后把Z轴坐标设为0;反复使机床运动,比如空刀跑一个典型的加工程序(最好包含三轴联动),可在加工中暂停或停止,然后回工件原点,缓慢下降Z轴,看刀尖与毛坯上的点是否吻合。如有偏差,请检查步进驱动器接收脉冲信号的类型,检查端

子板与驱动器间接线是否有误。如果还出现闷车或丢步,调整加速度等参数。

4、基于FPGA的步进电机细分驱动控制设计

南京工程学院 自动化学院 大作业(论文) 题目:基于FPGA的步进电机细分驱动 控制设计 专业:测控技术与仪器 班级:学号: 学生姓名: 任课教师:郭婧 成绩:

基于FPGA的步进电机细分驱动控制设计 一、基本要求: 在理解步进电机的工作原理以及细分原理的基础上,利用FPGA实现四相步进电机的8细分驱动控制。 二、评分标准: 1、设计方案介绍(共15分) 要求:详细叙述利用FPGA实现对四相步进电机进行8细分控制的设计方案。 评分标准: 13-15分:方案叙述详细,正确; 10-12分:方案叙述较详细,基本正确; 9分以下:酌情给分 0分:抄袭别人 2、VHDL设计部分(60分) 要求:给出详细的VHDL设计过程,提供详细的程序代码,如果设计中用到LPM模块,则给出生成LPM模块的每一步操作流程的截图,并加以文字描述。 评分标准: 54-60分:代码详细,截图完整,书写规范, 48-53分:代码较详细,截图较完整,书写较规范; 47以下:酌情给分 0分:抄袭别人 3、模拟调试部分(20分) 要求:给出详细的仿真过程,对软件编译、仿真分析、仿真波形进行截图。并给出8细分情况下的仿真测试结果,给出详细的实验结果分析。 评分标准: 18-20分:调试过程详细,正确,截图完整; 15-17分:调试过程较详细,基本正确,有截图; 14分以下:酌情给分 0分:抄袭别人

4、提高部分(5分) 要求:利用FPGA实验箱上的步进电机,实现细分控制。 评分标准:根据完成的程度给分。 0分:抄袭别人

参考:实验十八 FPGA步进电机细分驱动控制设计 示例程序和实验指导课件位置:\EDA_BOOK3_FOR_C35\chpt3\EXP18_MOTO\工程:step_a 一、实验目的 学习用FPGA实现步进电机的驱动和细分控制。 二、实验设备 PC机一台 GW48-PK4试验系统一台 连接线若干 三、实验内容 1、建立工程。完成以图18-1为原理图的工程设计,并保存工程名为step_a。 2、编译仿真。对以上工程进行编译,成功后进行方针测试。 3、引脚锁定。引脚锁定参考图18-2. 图18-1 步进电机PWM细分控制控制电路图 图18-2 引脚锁定图 4、下载测试 参考\EDA_BOOK3_FOR_C35\Chpt3\ALl.PPT\实验17.PPT 选择模式5,短路冒接clock0.根据第一章注释分别“38“和”42“或”“7”连接(见GW48主

本教程介绍步进电机驱动和细分的工作原理

本教程介绍步进电机驱动和细分的工作原理,以及stm32103为主控芯片制作的一套自平衡的两轮车系统,附带原理图pcb图和源代码,有兴趣的同学一起来吧.本系统还有一些小问题,不当之处希望得到大家的指正. 一.混合式步进电机的结构和驱动原理 电机原理这部分不想讲的太复杂了,拆开一台电机看看就明白了。 电机的转子是一个永磁体,它的上面有若干个磁极SN组成,这些磁极固定的摆放成一定角度。电机的定子是几个串联的线圈构成的磁体。出线一般是四条线标记为A+,A-,B+,B-。A相与B相是不通的,用万用表很容易区分出来,至于各相的+-出线实际是不用考虑的,任意一相正负对调电机将反转。另外一种出线是六条线的只是在A相和B相的中间点做两条引出线别的没什么差别,六出线的电机通过中间出线到A+或A-的电流来模拟正向或负向的电流,可以在没有负相电流控制的电路中实现电机驱动,从而简化驱动电路,但是这种做法任意时刻只有半相有电流,对电机的力矩是有损失的。步进电机的转动也是电磁极与永磁极作用力的结果,只不过电磁极的极性是由驱动电路控制实现的。 我们做这样的一个实验就可以让步进电机转动起来。1找一节电池正负随意接入到A相两端;然后断开;(记为A正向)2再将电池接入到B相两端; 然后断开;(记为B正向)3电池正负对调再次接入A相; 然后断开;(记为A负向)4保持正负对调接入B相;然后断开;(记为B负向)…如此循环你会看到步进电机在缓慢转动。注意电机的相电阻是很小的接

通时近乎短路。我们将相电流的方向记录下来应该为:A+B+A-B-A+…, 如果我们更换接线顺序使得相电流顺序为A+B-A-B+A+…这时我们会看 到电机向反方向运动。这里每切换一次相电流电机都会转动一个很小的角度,这个角度就是电机的步距角。步距角是步进电机的一个固有参数,一般两相电机步距角为1.8度即切换200次可以让电机转动一圈。这里我们比较正反转的电流顺序可以看出A+和A-;B+和B-的交换后的顺序 和正反顺序是一致的,也就是前面所说的”任意一相正负对调电机将反转”。以上为四排工作方式,为了使相电流更加平滑另外可以使用八排的工作方式即: A+;A+B+;B+;B+A-;A-;A-B-;B-;B-A+;从前往后循环正转,从后往前循环反转。 为了用单片机实现相电流的正负流向控制必须要有一个H桥的驱动电路,这种带H桥的驱动模块还是很多的,比较便宜的是晶体管H桥比如L298N,晶体管开关速度比较慢,无法驱动电机高速运动。有些模块将细分控制电路也包含在内,我们也不用这种,因为我们的细分由软件控制。实际应用中使用ST的mos管两桥驱动芯片L6205一片即可驱 动一台步进电机。有了H桥通过PWM就可以控制相电流大小,改变输入极IN1、IN2的状态(参看手册第8页)可以控制相电流的方向。 二.细分的原理和输出控制 从这里开始重点了,别的地方看不到哦。 一个理想的步进电机电流曲线应该是相位相差90度的正弦曲线如

步进细分的算法

1、步进电机的步距角,比如说,1.8度,则一个圆周360/1.8=200,也就是说200个脉冲,电机旋转一周。 2、驱动器设了几个细分,请查阅相关资料,比如说4细分,则承上所述,200*4=800,等于说800个脉冲电机才旋转一周。 3、一周的导程:如果是丝杠,螺距*螺纹头数=导程,如果是齿轮齿条传动,分度圆直径(m*z)即为导程,导程/800=一个脉冲的线位移。 有关步进电动机驱动系统的基本知识 1、系统常识:步进电动机和步进电动机驱动器构成步进电机驱动系统。步进电动机驱动系统的性能,不但取决于步进电动机自身的性能,也取决于步进电动机驱动器的优劣。对步进电动机驱动器的研究几乎是与步进电动机的研究同步进行的。 2、系统概述:步进电动机是一种将电脉冲转化为角位移的执行元件。当步进电动机驱动器接收到一个脉冲信号(来自控制器),它就驱动步进电动机按设定的方向转动一个固定的角度(称为“步距角”),它的旋转是以固定的角度一步一步运行的。 3、系统控制:步进电动机不能直接接到直流或交流电源上工作,必须使用专用的驱动电源(步进电动机驱动器)。控制器(脉冲信号发生器)可以通过控制脉冲的个数来控制角位移量,从而达到准确定位的目的;同时可以通过控制脉冲频率来控制电机转动的速度和加速度,从而达到调速的目的。 4、用途:步进电动机是一种控制用的特种电机,作为执行元件,是机电一体化的关键产品之一,随着微电子和计算机技术的发展(步进电动机驱动器性能提高),步进电动机的需求量与日俱增。步进电动机在运行中精度没有积累误差的特点,使其广泛应用于各种自动化控制系统,特别是开环控制系统。 5、步进电机按结构分类:步进电动机也叫脉冲电机,包括反应式步进电动机(VR)、永磁式步进电动机(PM)、混合式步进电动机(HB)等。 (1)反应式步进电动机:也叫感应式、磁滞式或磁阻式步进电动机。其定子和转子均由软磁材料制成,定子上均匀分布的大磁极上装有多相励磁绕组,定、转子周边均匀分布小齿和槽,通电后利用磁导的变化产生转矩。一般为三、四、五、六相;可实现大转矩输出(消耗功率较大,电流最高可达20A,驱动电压较高);步距角小(最小可做到10?);断电时无定位转矩;电机内阻尼较小,单步运行(指脉冲频率很低时)震荡时间较长;启动和运行频率较高。 (2)永磁式步进电动机:通常电机转子由永磁材料制成,软磁材料制成的定子上有多相励磁绕组,定、转子周边没有小齿和槽,通电后利用永磁体与定子电流磁场相互作用产生转矩。一般为两相或四相;输出转矩小(消耗功率较小,电流一般小于2A,驱动电压12V);步距角大(例如7.5度、15度、22.5度等);断电时具有一定的保持转矩;启动和运行频率较低。 (3)混合式步进电动机:也叫永磁反应式、永磁感应式步进电动机,混合了永磁式和反应式的优点。其定子和四相反应式步进电动机没有区别(但同一相的两个磁极相对,且两个磁极上绕组产生的N、S极性必须相同),转子结构较为复杂(转子内部为圆柱形永磁铁,两端外套软磁材料,周边有小齿和槽)。一般为两相或四相;须供给正负脉冲信号;输出转矩

步进电机驱动方式(细分)概述

步进电机驱动方式(细分)概述 众所周知,步进电机的驱动方式有整步,半步,细分驱动。三者即有区别又有联系,目前,市面上很多驱动器支持细分驱动方式。本文主要描述这三种驱动的概述。 如下图是两相步进电机的内部定子示意图,为了使电机的转子能够连续、平稳地转动,定子必须产生一个连续、平均的磁场。因为从宏观上看,电机转子始终跟随电机定子合成的磁场方向。如果定子合成的磁场变化太快,转子跟随不上,这时步进电机就出现失步现象。 既然电机转子是跟随电机定子磁场转动,而电机定子磁场的强度和方向是由定子合成电流决定且成正比。即只要控制电机的定子电流,则可以达到驱动电机的目的。下图是两相步进电机的电流合成示意图。其中Ia是由A-A`相产生,Ib是由B-B`相产生,它们两个合成后产生的电流I就是电机定子的合成电流,它可以代表电机定子产生磁场的大小和方向。 有了以上的步进电机背景描述后,对于步进电机的整步、半步、细分的三种驱动方式,都会是同一种方法,只是电流把一个圆(360°)分割的粗细程序不同。 整步驱动 对于整步驱动方式,电机是走一个整步,如对于一个步进角是3.6°的步进电机,整步驱动是每走一步是走3.6°。

下图是整步驱动方式中,电机定子的电流次序示意图: 由上图可知,整步驱动每一时刻只有一个相通电,所以这种驱动方式的驱动电路可以是很简单,程序代码也是相对容易实现,且由上图可以得到电机整步驱动相序如下: BB’→A’A→B’B→A A’→B B’ 下图是这种驱动方式的电流矢量分割图: 可见,整步驱动方式的电流矢量把一个圆平均分割成四份。 下图是整步驱动方式的A、B相的电流I vs T图: 可以看出,整步驱动描出的正弦波是粗糙的。使用这种方式驱动步进电机,低速时电机会抖动,噪声会比较大。但是,这种驱动方式无论在硬件或软件上都是相对简单,从而驱

步进电机驱动及控制专业技术解答

步进电机驱动及控制技术解答 1.步进电机为什么要配步进电机驱动器才能工作? 步进电机作为一种控制精密位移及大范围调速专用的电机, 它的旋转是以自身固有的步距角角(转子与定子的机械结构所决定)一步一步运行的, 其特点是每旋转一步,步距角始终不变,能够保持精密准确的位置。所以无论旋转多少次,始终没有积累误差。由于控制方法简单,成本低廉,广泛应用于各种开环控制。步进电机的运行需要有脉冲分配的功率型电子装置进行驱动, 这就是步进电机驱动器。它接收控制系统发出的脉冲信号,按照步进电机的结构特点,顺序分配脉冲,实现控制角位移、旋转速度、旋转方向、制动加载状态、自由状态。控制系统每发一个脉冲信号, 通过驱动器就能够驱动步进电机旋转一个步距角。步进电机的转速与脉冲信号的频率成正比。角位移量与脉冲个数相关。步进电机停止旋转时,能够产生两种状态:制动加载能够产生最大或部分保持转矩(通常称为刹车保持,无需电磁制动或机械制动)及转子处于自由状态(能够被外部推力带动轻松旋转)。步进电机驱动器必须与步进电机的型号相匹配。否则将会损坏步进电机及驱动器。 2.什么是驱动器的细分?运行拍数与步距角是什么关系? “细分”是针对“步距角”而言的。没有细分状态,控制系统每发一个步进脉冲信号,步进电机就按照整步旋转一个特定的角度。步进电机的参数,都会给出一个步距角的值。如110BYG250A型电机给出的值为0.9°/1.8°(表示半步工作时为0.9°、整步工作时为1.8°),这是步进电机固有步距角。通过步进电机驱动器设置的细分状态,步进电机将会按照细分的步距角旋转位移角度,从而实现更为精密的定位。以110BYG250A电机为例,列表说明: 可以看出,细分数就是指电机运行时的真正步距角是固有步距角(整步)的几分指一。例如,驱动器工作在10细分状态时,其步距角只有步进电机固有步距角的十分之一。当驱动器工作在不细分的整步状态时,控制系统每发一个步进脉冲,步进电机旋转1.8°;而用细分驱动器工作在10细分状态时,电机只转动了0.18°。其实,细分就是步进电机按照微小的步距角旋转,也就是常说的微步距控制。当然,不同的场合,有不同的控制要求。并不是说,驱动步进电机必须要求细分。有些步进电机的步距角设计为3.6°、7.5°、15°、36°、180°,就是为了加大步距角,以适应特殊的工况条件。细分功能,只由驱动器采用精确控制步进电机的相电流方法,与步进电机的步距角无关,而与步进电机实际工作状态相关。 运行拍数与驱动器细分的关系是:运行拍数指步进电机运行时每转一个齿距所需的脉冲数。例如:110BYG250A电机有50个齿,如果运行拍数设置为160,那么步进电机旋转

步进电机的细分

步进电机的细分 步进电机是一种将离散的电脉冲信号转化成相应的角位移或线位移的电磁机械装置,它具有转矩大、惯性小、响应频率高等优点,已经在当今工业上得到广泛的应用,但其步矩角较大,一般为1.5o~3o,往往满足不了某些高精密定位、精密加工等方面的要求。实现细分驱动是减小步距角、提高步进分辨率、增加电机运行平稳性的一种行之有效的方法。本文在选择了合理的电流波形的基础上,提出了基于Intel 80C196MC 单片机控制的步进电机恒转矩细分驱动方案,其运行功耗小,可靠性高,通用性好,具有很强的实用性。 细分电流波形的选择及量化 步进电机的细分控制,从本质上讲是通过对步进电机的励磁绕组中电流的控制,使步进电机内部的合成磁场为均匀的圆形旋转磁场,从而实现步进电机步距角的细分。一般情况下,合成磁场矢量的幅值决定了步进电机旋转力矩的大小,相邻两合成磁场矢量之间的夹角大小决定了步距角的大小。因此,要想实现对步进电机的恒转矩均匀细分控制,必须合理控制电机绕组中的电流,使步进电机内部合成磁场的幅值恒定,而且每个进给脉冲所引起的合成磁场的角度变化也要均匀。我们知道在空间彼此相差2p/m的m相绕组,分别通以相位上相差2p/m而幅值相同的正弦电流,合成的电流矢量便在空间作旋转运动,且幅值保持不变。这—点对于反应式步进电机来说比较困难,因为反应式步进电机的旋转磁场只与绕组电流的绝对值有关,而与电流的正反流向无关。以比较经济合理的方式对三相反应式步进电机实现步距角的任意细分,绕组电流波形宜采用如图1所示的形式。 图中,a为电机转子偏离参考点的角度。ib滞后于ia,ic超前于ia。此时,合成电流矢量在所有区间b=Ime-ja,从而保证合成磁场幅值恒定,实现电机的恒转矩运行。且步进电机在这种情况下也最为平稳。将绕组电流根据细分倍数均匀量化后,所得细分步距角也是均匀的。为了进一步得到更加均匀的细分步距角,可通过实验测取一组在通入量化电流波形时的步进电机细分步距的数据,然后对其误差进行差值补偿,求得实际的补偿电流曲线。这些工作大部分由计算机来完成。 步进电机是一种将离散的电脉冲信号转化成相应的角位移或线位移的电磁机械装置,它具有转矩大、惯性小、响应频率高等优点,已经在当今工业上得到广泛的应用,但其步矩角较大,一般为1.5o~3o,往往满足不了某些高精密定位、精密加工等方面的要求。实现细分驱动是减小步距角、提高步进分辨率、增加电机运行平稳性的一种行之有效的方法。本文在选择了合理的电流波形的基础上,提出了基于Intel 80C196MC单片机控制的步进电机恒转矩细分驱动方案,其运行功耗小,可靠性高,通用性好,具有很强的实用性。

步进电机常识与矩频曲线

步进常识 1.什么是步进电机? 步进电机是一种将电脉冲转化为角位移的执行机构。通俗一点讲:当步进驱动器接收到一个脉冲信号,它就驱动步进电机按设定的方向转动一个固定的角度(及步进角)。您可以通过控制脉冲个数来控制角位移量,从而达到准确定位的目的;同时您可以通过控制脉冲频率来控制电机转动的速度和加速度,从而达到调速的目的。 2.步进电机分哪几种? 步进电机分三种:永磁式(PM),反应式(VR)和混合式(HB)永磁式步进一般为两相,转矩和体积较小,步进角一般为7.5度或15度;反应式步进一般为三相,可实现大转矩输出,步进角一般为1.5度,但噪声和振动都很大。在欧美等发达国家80年代已被淘汰;混合式步进是指混合了永磁式和反应式的优点。它又分为两相和五相:两相步进角一般为1.8度而五相步进角一般为 0.72度。 这种步进电机的应用最为广泛。 3.什么是保持转矩(HOLDING TORQUE)? 保持转矩(HOLDING TORQUE)是指步进电机通电但没有转动时,定子锁住转子的力矩。它是步进电机最重要的参数之一,通常步进

电机在低速时的力矩接近保持转矩。由于步进电机的输出力矩随速度的增大而不断衰减,输出功率也随速度的增大而变化,所以保持转矩就成为了衡量步进电机最重要的参数之一。比如,当人们说2N.m的步进电机,在没有特殊说明的情况下是指保持转矩为2N.m 的步进电机。 4.什么是DETENT TORQUE?(起动转扭) DETENT TORQUE 是指步进电机没有通电的情况下,定子锁住转子的力矩。DETENT TORQUE 在国内没有统一的翻译方式,容易使大家产生误解;由于反应式步进电机的转子不是永磁材料,所以它没有DETENT TORQUE。 5.步进电机精度为多少?是否累积? 一般步进电机的精度为步进角的3-5%,且不累积。 6.步进电机的外表温度允许达到多少? 步进电机温度过高首先会使电机的磁性材料退磁,从而导致力矩下降乃至于失步,因此电机外表允许的最高温度应取决于不同电机磁性材料的退磁点;一般来讲,磁性材料的退磁点都在摄氏130度以上,有的甚至高达摄氏200度以上,所以步进电机外表温度在摄氏80-90度完全正常。 7.为什么步进电机的力矩会随转速的升高而下降?

步进电机细分控制(英文)

1/17 AN1495 APPLICATION NOTE 1INTRODUCTION Microstepping a stepper motor may be used to achieve one or both of two objectives; 1) increase the position resolution or 2) achieve smoother operation of the motor. In either case the basic the-ory of operation is the same. The simplified model of a stepper motor is a permanent magnet rotor and two coils on the stator separated by 90 degrees, as shown in Figure 1. In classical full step operation an equal current is delivered to each of the coils and the rotor will align itself with the resulting magnetic vector along one of the 45 degree axis. To step the motor, the current in one of the two coils is reversed and the rotor will rotate 90 degrees. The complete full step sequence is shown in figure 2. Half step drive,where the current in the coil is turned off for one step period before being turned on in the opposite direction, has been used to double the step resolution of a motor. In either full and half step drive,the motor can be positioned only at one of the 4 (8 for half step) defined positions.[4][5] Therefore,the number of steps per electrical revolution and the number of poles on the motor determine the resolution of the motor. Typical motors are designed for 1.8 degree steps (200 steps per revolution)or 7.5 degree steps (48 steps per revolution). The resolution may be doubled to 0.9 or 3.75 degrees by driving the motor in half step. Further increasing the resolution requires positioning the rotor at positions between the full step and half step positions. Figure 1. Model of stepper motor MICROSTEPPING STEPPER MOTOR DRIVE USING PEAK DETECTING CURRENT CONTROL Stepper motors are very well suited for positioning applications since they can achieve very good positional accuracy without complicated feedback loops associated with servo sys-tems. However their resolution, when driven in the conventional full or half step modes of operation, is limited by the configuration of the motor. Many designers today are seeking alternatives to increase the resolution of the stepper motor drives. This application note will discuss implementation of microstepping drives using peak detecting current control where the sense resistor is connected between the bottom of the bridge and ground. Examples show the implementation of microstepping drives with several currently available chips and chip sets. REV . 2AN1495/0604

步进电机细分驱动方式的研究

步进电机作为电磁机械装置,其进给的分辨率取决于细分驱动技术。采用软件细分驱动方式,由于编程的灵活性、通用性,使得步进细分驱动的成本低、效率高,要修改方案也易办到。同时,还可解决步进电机在低速时易出现的低频振动和运行中的噪声等。但单一的软件细分驱动在精度与速度兼顾上会有矛盾,细分的步数越多,精度越高,但步进电机的转动速度却降低;要提高转动速度,细分的步数就得减少。为此,设计了多级细分驱动系统,通过不同的细分档位设定,实现不同步数的细分,同时保证了不同的转动速度。 1 细分驱动原理 步进电机控制中已蕴含了细分的机理。如三相步进电机按A→B→C……的顺序轮流通电,步进电机为整步工作。而按A→AC→C→CB→B→BA→A……的顺序通电,则步进电机为半步工作。以A→B为例,若将各相电流看作是向量,则从整步到半步的变换,就是在IA与IB之间插入过渡向量IAB,因为电流向量的合成方向决定了步进电机合成磁势的方向,而合成磁势的转动角度本身就是步进电机的步进角度。显然,IAB的插入改变了合成磁势的转动大小,使得步进电机的步进角度由θb 变为0.5θb,从而也就实现了2步细分。由此可见,步进电机的细分原理就是通过等角度有规律的插入电流合成向量,从而减小合成磁势转动角度,达到步进电机细分控制的目的。 在三相步进电机的A相与B相之间插入合成向量AB,则实现了2步细分。要再实现4步细分,只需在A与AB之间插入3个向量I1、I2、I3,使得合成磁势的转动角度θ1=θ2=θ3=θ4,就实现了4步细分。但4步细分与2步细分是不同的,由于I1、I2、I33个向量的插入是对电流向量IB的分解,故控制脉冲已变成了阶梯波。细分程度越高,阶梯波越复杂。 在三相步进电机整步工作时,实现2步细分合成磁势转动过程为 IA→IAB→IB;实现4步细分转动过程为IA→I2→IAB……;而实现8步细分则转

怎么确定步进电机脉冲频率

怎么确定步进电机脉冲频率 步进电机驱动及控制技术解答 南京步进电机厂技术部 1.步进电机为什么要配步进电机驱动器才能工作? 步进电机作为一种控制精密位移及大范围调速专用的电机, 它的旋转是以自身固有的步距角角(转子与定子的机械结构所决定)一步一步运行的, 其特点是每旋转一步,步距角始终不变,能够保持精密准确的位置。所以无论旋转多少次,始终没有积累误差。由于控制方法简单,成本低廉,广泛应用于各种开环控制。步进电机的运行需要有脉冲分配的功率型电子装置进行驱动, 这就是步进电机驱动器。它接收控制系统发出的脉冲信号,按照步进电机的结构特点,顺序分配脉冲,实现控制角位移、旋转速度、旋转方向、制动加载状态、自由状态。控制系统每发一个脉冲信号, 通过驱动器就能够驱动步进电机旋转一个步距角。步进电机的转速与脉冲信号的频率成正比。角位移量与脉冲个数相关。步进电机停止旋转时,能够产生两种状态:制动加载能够产生最大或部分保持转矩(通常称为刹车保持,无需电磁制动或机械制动)及转子处于自由状态(能够被外部推力带动轻松旋转)。步进电机驱动器,必须与步进电机的型号相匹配。否则,将会损坏步进电机及驱动器。 2.什么是驱动器的细分?运行拍数与步距角是什么关系? “细分”是针对“步距角”而言的。没有细分状态,控制系统每发一个步进脉冲信号,步进电机就按照整步旋转一个特定的角度。步进电机的参数,都会给出一个步距角的值。如110BYG250A型电机给出的值为0.9°/1.8°(表示半步工作时为0.9°、整步工作时为1.8°),这是步进电机固有步距角。通过步进电机驱动器设置的细分状态,步进电机将会按照细分的步距角旋转位移角度,从而实现更为精密的定位。以110BYG25 0A电机为例,列表说明: 电机固有步距角运行拍数细分数电机运行时的真正步距角 0.9°/1.8°8 2细分,即半步状态0.9° 0.9°/1.8°20 5细分状态0.36° 0.9°/1.8°40 10细分状态0.18° 0.9°/1.8°80 20细分状态0.09° 0.9°/1.8°160 40细分状态0.045° 可用看出,细分数就是指电机运行时的真正步距角是固有步距角(整步)的几分指一。例如,驱动器工作

步进电机驱动器及细分控制原理

步进电机驱动器及细分控制原理 步进电机驱动器原理: 步进电机必须有驱动器和控制器才能正常工作。驱动器的作用是对控制脉冲进行环形分配、功率放大,使步进电机绕组按一定顺序通电。 以两相步进电机为例,当给驱动器一个脉冲信号和一个正方向信号时,驱动器经过环形分配器和功率放大后,给电机绕组通电的顺序为AA BB A A B B ,其四个状态周而复始 进行变化,电机顺时针转动;若方向信号变为负时,通电时序就变为 AA B B A A BB ,电机就逆时针转动。 随着电子技术的发展,功率放大电路由单电压电路、高低压电路发展到现在的斩波电路。其基本原理是:在电机绕组回路中,串联一个电流检测回路,当绕组电流降低到某一下限值时,电流检测回路发出信号,控制高压开关管导通,让高压再次作用在绕组上,使绕组电流重新上升;当电流回升到上限值时,高压电源又自动断开。重复上述过程,使绕组电流的平均值恒定,电流波形的波顶维持在预定数值上,解决了高低压电路在低频段工作时电流下凹的问题,使电机在低频段力矩增大。 步进电机一定时,供给驱动器的电压值对电机性能影响较大,电压越高,步进电机转速越高、加速度越大;在驱动器上一般设有相电流调节开关,相电流设的越大,步进电机转速越高、力距越大。 细分控制原理: 在步进电机步距角不能满足使用要求时,可采用细分驱动器来驱动步进电机。细分驱动器的原理是通过改变A,B相电流的大小,以改变合成磁场的夹角,从而可将一个步距角细分为多步。

定子 A 转子 S N B B B S N A A (a)(b) A S N B B N S B S N A (c)(d) 图3.2步进电机细分原理 图 仍以二相步进电机为例,当A、B相绕组同时通电时,转子将停在A、B相磁极中间,如图3.2。 若通电方向顺序按AA AA BB BB BB AA AA AA BB BB BB AA,8个状态周而 复 始进行变化,电机顺时针转动;电机每转动一步,为45度,8个脉冲电机转一周。与图2.1相比,它的步距角小了一半。 驱动器一般都具有细分功能,常见的细分倍数有:1/2,1/4,1/8,1/16,1/32,1/64;或:1/5,1/10,1/20。 细分后步进电机步距角按下列方法计算:步距角=电机固有步距角/细分数 例如:一台1.8°电机设定为4细分,其步距角为 1.8°/4=0.45°。当细分 等级大于1/4后,电机的定位精度并不能提高,只是电机转动更平稳。

步进电机细分驱动电路设计

前言 随着社会的进步和人民生活水平的不断提高及全球经济一体化势不可挡的浪潮,我国微特电机工业在最近10年得到了快速的发展。快速发展的显着标志是使用领域不断拓宽,用量大增,特别是在日用消费市场和工业自动化装置及系统的表现最为明显。与此同时,随着电力电子技术、微电子技术和计算机技术、新材料以及控制理论和电机本体技术的不断发展进步,用户对电机控制的速度、精度和实时性提出了更高的要求,因此作为微特电机重要分枝的控制电机也得到了空前的发展。步进电动机又称为脉冲电动机,是数字控制系统中的一种执行组件。其功用是将脉冲电信号变换为相应的角位移或直线位移,即给一个脉冲电信号,电动机就转动一个角度或前进一步。步进电机和普通电动机不同之处是步进电机接受脉冲信号的控制。现在比较常用的步进电机包括反应式步进电机、永磁式步进电机、混合式步进电机和单相式步进电机等。其中反应式步进电机的转子磁路由软磁材料制成,定子上有多相励磁绕组,利用磁导的变化产生转矩。现阶段,反应式步进电机获得最多的应用。步进电机和普通电机的区别主要在于其脉冲驱动的形式,正是这个特点,步进电机可以和现代的数字控制技术相结合。不过步进电机在控制的精度、速度变化范围、低速性能方面都不如传统的闭环控制的直流伺服电动机。在精度不是需要特别高的场合就可以使用步进电机,步进电机可以发挥其结构简单、可靠性高和成本低的特点。使用恰当的时候,甚至可以和直流伺服电动机性能相媲美。步进电机被广泛应用于数字控制各个领域:机器人方面,机器人的的关节驱动及行进的精确控制,需要步进电机;数控机床方面,如数控电火花切割机床要求刀具精确走步,减小加工件表面的粗糙度的同时提高效率,需要步进电机;办公自动化方面,如电脑磁盘驱动器中的磁盘进行读盘操作的精确位置控制,需要步进电机,在打印机、传真机中也需要步进电机对设备进行位置控制。步进电动机是经济型数控系统经常采用的电机驱动系统。这类电机驱动系统的特点是控制简单,适合计算机系统控制要求。步进电动机的细分驱动系统较以往的电机系统,消除了低频震荡问题,控制分辨率更高,使其应用领域更加广泛。

基于FPGA的步进电机的PWM控制__细分驱动的实现

姓名___ _ _ _ 学号201016050136 院系电气信息工程学院 专业电子信息工程 班级___信息10-1______ __

目录 目录 (2) 摘要 (3) 关键词 (3) Abstract (3) Keywords (3) 一、引言 (4) 二、步进电机细分驱动的基本原理 (4) 三、Quartus II概述 (5) 四、课题设计 (5) (一)总体设计 (5) (二)细分电流的实现 (6) (三)细分驱动性能的改善 (6) (四)程序设计 (6) 六、仿真与测试结果分析 (10) 七、结论 (12) 参考文献 (12) 注释 (13) 附录 (14) 心得体会 (20)

摘要 在对步进电机细分驱动原理进行分析研究的基础上,提出一种基于FPGA 控制的步进电机细分驱动器。利用FPGA中的嵌入式EAB构成LPM-ROM,存放步进电机各相细分电流所需的PWM控制波形数据表,并通过FPGA设计的数字比较器,同时产生多路PWM电流波形,实现对步进电机转角进行均匀细分控制。实验证明,所研制的步进电机驱动器不仅体积小,简化了系统的设计,减少了延迟,改善了低频特性,有良好的适应性和自保护能力,提高了驱动器的稳定性和可靠性。 关键词 步进电机;细分驱动;脉宽调制;FPGA Abstract In this paper, a divided driving circuit for stepping motor controlled by FPGA is put forward, based on the analysis of the principle of stepping motor divided driving. Using embedded EAB in FPGA to compose LPM-ROM, store PWM control wave form data which stepping motor each phase subdivided driving current is needed.The magnitude comparator designed with FPGA generates several PWM current waveform synchronously, to realize the step angles even division control for three–phase stepping motor.Experimments have proved that the developed subdivision driver is not only smaller,sampler in system, can shorten the delay time,improve the stability in low frequency ,but has good self-adaptation and self-protection ability,and its stability and relibility are higher. Keywords stepping motor; divided driving;PWM; FPGA

步进电机的原理,分类,细分原理

步进电机原理及使用说明 一、前言 步进电机是将电脉冲信号转变为角位移或线位移的开环控制元件。在非超载的情况下,电机的转速、停止的位置只取决于脉冲信号的频率和脉冲数,而不受负载变化的影响,即给电机加一个脉冲信号,电机则转过一个步距角。这一线性关系的存在,加上步进电机只有周期性的误差而无累积误差等特点。使得在速度、位置等控制领域用步进电机来控制变的非常的简单。 虽然步进电机已被广泛地应用,但步进电机并不能象普通的直流电机,交流电机在常规下使用。它必须由双环形脉冲信号、功率驱动电路等组成控制系统方可使用。因此用好步进电机却非易事,它涉及到机械、电机、电子及计算机等许多专业知识。 步进电机是将电脉冲信号转变为角位移或线位移的一种开环线性执行元件,具有无累积误差、成本低、控制简单特点。产品从相数上分有二、三、四、五相,从步距角上分有0.9°/1.8°、0.36°/0.72°,从规格上分有口42~φ130,从静力矩上分有0.1N?M~40N?M。 签于上述情况,我们决定以广泛的感应子式步进电机为例。叙述其基本工作原理。望能对广大用户在选型、使用、及整机改进时有所帮助。 二、感应子式步进电机工作原理 (一)反应式步进电机原理 由于反应式步进电机工作原理比较简单。下面先叙述三相反应式步进电机原理。 1、结构: 电机转子均匀分布着很多小齿,定子齿有三个励磁绕阻,其几何轴线依次分别与转子齿轴线错开。 0、1/3て、2/3て,(相邻两转子齿轴线间的距离为齿距以て表示),即A与齿1相对齐,B与齿2向右错开1/3て,C与齿3向右错开2/3て,A…与齿5相对齐,(A…就是A,齿5就是齿1)下面是定转子的展开图: 2、旋转: 如A相通电,B,C相不通电时,由于磁场作用,齿1与A对齐,(转子不受任何力以下均同)。 如B相通电,A,C相不通电时,齿2应与B对齐,此时转子向右移过1/3て,此时齿3与C偏移为1/3て,齿4与A偏移(て-1/3て)=2/3て。 如C相通电,A,B相不通电,齿3应与C对齐,此时转子又向右移过1/3て,此时齿4与A偏移为1/3て对齐。 如A相通电,B,C相不通电,齿4与A对齐,转子又向右移过1/3て 这样经过A、B、C、A分别通电状态,齿4(即齿1前一齿)移到A相,电机转子向右转过一个齿距,如果不断地按A,B,C,A……通电,电机就每步(每脉冲)1/3て,向右旋转。如按A,C,B,A……通电,电机就反转。 由此可见:电机的位置和速度由导电次数(脉冲数)和频率成一一对应关系。而方向由导电顺序决定。 不过,出于对力矩、平稳、噪音及减少角度等方面考虑。往往采用A-AB-B-BC-C-CA-A这种导电状态,这样将原来每步1/3て改变为1/6て。甚至于通过二相电流不同的组合,使其1/3て变为1/12て,1/24て,这就是电机细分驱动的基本理论依据。 不难推出:电机定子上有m相励磁绕阻,其轴线分别与转子齿轴线偏移1/m,2/m……(m-1)/m,1。

步进电机细分原理

步进电动机高精度细分方法及其控制系统 叶韦韦 华南师范大学电信工程系99级 引言 本论文题目来自对现有椭偏仪进行技术改进工作中的“用步进电机取代传统直流减速电机”的研究课题。椭圆偏振测量技术是一种测量薄膜厚度和研究其表面特性的先进方法,具有灵敏度高、精度高、实时和无损样品的优点。在半导体、光学材料、表面物理、化工、冶金、生物和医学等领域都有重要应用。 传统的椭偏仪由于使用了直流电机,在定位过程中存在自动化水平低、操作复杂、精度难以保证和成本高(因需要配高精度光电旋转编码器)等不足,为提高椭偏仪的定位精度和自动化水平,研制出一种高精度自动定位系统无疑具有十分重要的意义。 本系统采用步进电机代替直流电机,但现有步进电机的最小步距角还未能达到本系统的要求,所以要在步进细分技术上作探讨。利用步进电机的准确动作和步进电机的细分技术,解决椭偏仪的角度与光强必须准确对应关系的问题。其中,当步进电动机的细分角度越小,越有利于提高步进电动机的角位、点位及连续控制方面的定位精度,越有利于与计算机联机,实现全自动化控制。同时,还可以大大提高步进电机的分辨率,大大改善步进电动机在动态运转时的特性。 由于工业技术的不断进步,在自动化控制、精密机械加工、航空航天技术以及所有要求高精度定位、自动记录、自动瞄准等高新技术领域内,对步进电机的细分要求也越来越高。 因此,多年来,国内外的同行都在努力寻求步进电动机细分技术的最佳方案及最高细分精度。本文所介绍的自动定位系统是在原椭偏仪系统的前提下,采用步进电机计算机细分控制技术建立起来的。 一.一.步进电机的基本原理 步进电机作为执行元件,是机电一体化的关键产品之一, 广泛应用在各种自动化控制系统中。随着微电子和计算机技术的发展,步进电机的需求量与日俱增,在各个国民经济领域

步进电机闭环细分驱动控制系统设计_宋鸿飞

步进电机闭环细分驱动控制系统设计 摘要:介绍了螺纹非接触光电测试系统中步进电机闭环细分控制系统的设计,并结合系统要求对抗干扰性和稳定性进行深入研究。文中对步进电机的特性与系统的性能相互关系进行了论述,在此基础上提出了可行的系统设计方案,给出了基于TA8435专用芯片的细分驱动设计电路,对系统抗干扰性和稳定性设计提出了具体解决办法,硬件设计中采用了传感器反馈的全伺服控制方法,软件上采用升频离散化处理,很好的解决了步进电机在高速启停过程中的堵转和丢步现象,提高了系统的稳定性和精度。 关键词:闭环控制;细分驱动;升频离散化 中图分类号:TP216文献标识码:A文章编号:1672-9870(2008)02-00093-03 收稿日期:200716 基金项目:国家863计划资助项目 作者简介:宋鸿飞(1980

角,并依靠电磁力锁定转轴在一定的位置上。因此在定位精度不高的场合下,一般的步进系统都采用开环控制。但由于步进电机固有的低频共振,高频扭矩小引起的失步和机械结构等因素的影响,都会造成实际位移值偏离指令设定值。因此在高定位精度的场合下,没有闭环反馈就无法知道电机是否丢步或过步,系统无法对其进行有效校正和补偿,导致不能准确定位。在步进系统中引入检测环节并对其进行闭环控制,可从根本上解决步进系统的定位精度问题,将使其性能大大提高。步进电机的闭环控制可采用各种不同的方法,其中包括步校验、无传感器反电动势检测和有传感器反馈的全伺服控制。 1系统构成 本电机系统设计应用精密在螺纹非接触光电测试系统中,两相步进电机通过精密滚珠螺杆把电机的轴角运动转化成直线位移运动,带动负载平台及上边安装的测试系统在螺管内部进行直线运动,实现对螺纹的实时检测。由于螺纹检测属于精密检测,对精密位移台的定位精度、速度范围和速度稳定性提出了很高的要求,因此步进电机采用开环控制方式是达不到系统的指标要求的,针对系统的要求步进电机要采用闭环细分控制方式。 电机控制系统设计采用有传感器反馈的全伺服控制方法。其系统组成包括四部分:(1)使用89S52单片机实现电机控制器设计;(2)电机细分驱动器采用东芝公司生产的TA8435电机驱动专业芯片实现电机细分驱动器的设计;(3)位置反馈传感器采用分辨率 1 图1步进电机闭环细分控制系统功能图 Fig.1Diagram for close-loop subdivision control system func- tion of stepper motor 2细分驱动器设计 结合螺纹检测系统对位移平台定位精度和速度范围的要求,步进电机步距角不能满足使用条件,在设计中采用细分驱动的方法,细分驱动电路是通过对步进电机的励磁绕组中电流的控制,来调整步进惦记步距角的大小,把原来的一个整步步距角细分成若干步来完成,从而实现步进电机的高精度定位,提高了步进电机的分辨率。实现细分驱动的方法有很多种,设计中使用了东芝公司生产的单片正弦细分二相步进电机驱动专用芯片TA8435,芯片采用的是脉宽调制式斩波驱动,该芯片有电路连接简单,工作稳定,特点如下: (1)工作电压范围宽(10 、B+、B 图2细分驱动电路原理图 Fig.2Circuit schematic diagram of subdivision driving 在系统中使用的位移平台螺杆导程L为4mm (即电机轴转动一周负载平台的直线位移量),细分数为为0.9° ,分数为 而转台的移动速度和脉冲频率、细分选择、电机本身的固有频率有关。在设计中由89S52的内部 定时器

相关主题
文本预览
相关文档 最新文档