高一数学必修一反函数和互为反函数
- 格式:pptx
- 大小:171.13 KB
- 文档页数:20
数学 反函数【重点难点解析】1.本单元知识结构2.了解互为反函数的两个函数间的关系(定义域、值域、运算反映的映射法则及图象),会求函数的反函数(如果有的话).3.判断一个函数是否有反函数及求反函数运算时解不惟一,此时如何确定谁是所求的反函数等.【考点】1.求已知函数的反函数与已知函数的性质(单调性、奇偶性、图象特征等)从而确定反函数的性质.2.求函数的值域是数学中的难点也是考点,而利用求反函数的定义域来求函数的值域,在解题时常有使用.【典型热点考题】例1 求下列函数的反函数:(1)y =f(x)=2x -1; (2)3x 1x 2)x (f y -+==. 思路分析求函数y =f(x)的反函数)x (f y 1-=,需先对函数的解析式按运算律要求逐步实施逆运算求得)y (f x 1-=,然后再交换x 、y ,就可求得反函数.一般如不特别给出函数的定义域,则解得的解析式即为所求,不必再另注明反函数的定义域(函数的值域),如题目指明要求,则应计算函数的值域(反函数的定义域).解:(1)∵y =2x -1∴2x =y +1 21y 21x += ∴反函数21x 21)x (f y 1+==-. (2)∵3x 1x 2y -+=(x ≠3且x ∈R) ∴xy -3y =2x +1xy -2x =3y +1(y -2)x =3y +1当y -2≠0,即y ≠2时 有2y 1y 3x -+=(y ≠2) ∴反函数2x 1x 3)x (f y 1-+==-(x ≠2). 例2 求下列函数的反函数:(1)1x y 2-=(x ≤0); (2)7x 4x y 2+-=(x ≥2); (3)x y =(x ≥1).这3个函数或给出定义域或求得定义域,都是对应函数的一个单调区间,因此在此区间上一个自变量值只对应一个函数值,反之也成立,所以它们都存在反函数.但是由于定义域受到限制是人为施加的,因此函数的值域也不一定是“理论值”,也需要由给定函数的性质来确定,以便作为反函数的值域.解:(1)∵1x y 2-=(x ≤0)(-∞,0]是此二次函数的减区间∴y ≥f(0)=-1,即函数值域[-1,+∞)∴01y x 2≥+=, ∴1y x +±=∵x ≤0 ∴1y x +-=(y ≥-1) ∴反函数为1x )x (f y 1+-==-(x ≥-1).(2)∵7x 4x y 2+-=(x ≥2)∴3)2x (y 2+-=(x ≥2)∴[2,+∞)是此函数的增函数区间∴y ≥f(2)=3,即值域为[3,+∞) ∵3y 2x -±=-(y ≥3)x ≥2,则x -2≥0 ∴3y 2x -=- ∴3y 2x -+=(y ≥3) ∴反函数为23x )x (f y 1+-==-(x ≥3).(3)∵x y =(x ≥1)∴[1,+∞)是函数的增函数区间∴y ≥f(1)=1,即函数值域为[1,+∞)∵2y x =(y ≥1)∴反函数21x )x (f y ==-(x ≥1).例 3 已知函数ax b ax )x (f ++=(x ≠-a)的图象与其反函数)x (f 1-的图象都经过(-1,3)点,求不等式0)x (f 1>-的解的集合.确定函数f(x)——求得其系数a 、b 的值是解本题的关键.利用已知的两个条件(函数f(x)与其反函数)x (f 1-的图象均过点(-1,3)),布列两个方程组成方程组求解.解: ∵ax b ax )x (f y ++== ∴xy +ay =ax +b∴x(y -a)=-ay +b 当y ≠a 时,ay b ay x -+-= ∴ax b ax )x (f y 1-+-==- ∵f(x)与)x (f 1-的图象都过(-1,3)点 ∴⎩⎨⎧-==⇒⎪⎪⎩⎪⎪⎨⎧=--+=+-+-3b 0a 3a1b a 3a 1b a ∴x3)x (f 1-=- 0x 0x3)x (f 1<⇒>-=- ∴不等式0)x (f 1>-的解集为{x|x<0}.例4 (1)已知:函数y =f(x)的反函数为)x (f y 1-=,函数y =f(x +1)恒过点(-3,4),那么函数)1x (f y 1-=-恒过点___________.(2)已知:1x 是方程f(x)=3-x 的解,2x 是方程x 3)x (f 1-=-的解,f(x)与)x (f 1-互为反函数,那么21x x +=___________.(3)设函数:⎪⎩⎪⎨⎧∞+∈+-∈-∞∈=) 16[ 4)16()16 1( ]1 ( )(2,,,x x x x x x x f 则)16(f 1-=___________.思路分析(1)(2)考查反函数的图象与原函数的图象之间关于y =x 对称;(3)反函数的原象就是原函数中的象,反函数中的象就是原函数中的原象.解:(1)由y =f(x +1)恒过点(-3,4)⇒y =f(x)的图象恒过点(-2,4)∵y =f(x)与)x (f y 1-=互为反函数∴)x (f y 1-=恒过点(4,-2)⇒)1x (f y 1-=-恒过点(5,-2)(2)由f(x)=3-x ,可得:⎩⎨⎧-==x 3y )x (f y ∵1x 是方程f(x)=3-x 的解∴))x (f x (11,是方程组⎩⎨⎧-==x 3y )x (f y 的解 同理,由x 3)x (f 1-=-,可得⎩⎨⎧-==-x 3y )x (f y 1由2x 是方程x 3)x (f 1-=-的解,可得))x (f x (22,是方程组⎩⎨⎧-==-x 3y )x (f y 1的解.设P ))x (f x (11,,Q ))x (f x (22,显然P ,Q 均在直线y =3-x 上∵y =3-x 的图象与II ,IV 象限的角平分线平行∴y =3-x 的图象与y =x 的图象垂直即PQ ⊥l (l 是y =x 的图象)又∵y =f(x)的图象与)x (f y 1-=的图象之间关于直线l 对称,而且,P ))x (f x (11,在y =f(x)的图象上,))x (f x (Q 22,在)x (f y 1-=的图象上.∴P 、Q 两点关于l 对称从而,得出:P 、Q 的中点在y =x 的图象上即:2x x 2)x (f )x (f 21211+=+- ∴2121x x )x 3()x 3(+=-+-∴3x x 21=+.(3))16(f 1-的含义是已知函数y =f(x)的反函数的原象16,求反函数象)16(f 1-,也就是已知函数y =f(x)的象16,求原函数的原象x .利用反函数与原函数的关系由已知,可得:f(x)=16即:164)16x (2=+-∴3216x 3216x -=+=或, ∵x ≥16 ∴3216x -=(舍去), ∴3216x += 也就是:3216)16(f 1+=-.。
互为反函数知识点总结1. 对于f的定义域Df中的每一个x,在g的值域中存在一个唯一的y,使得g(y) = x;2. 对于g的定义域Dg中的每一个y,在f的值域中存在一个唯一的x,使得f(x) = y。
两个函数f和g互为反函数,当且仅当它们满足上述两个条件。
下面是互为反函数的一些知识点总结:1. 定义域和值域的关系互为反函数的函数f和g的定义域和值域之间存在特定的关系。
对于f的定义域Df中的任意x,都存在一个唯一的y,使得g(y) = x,即f的定义域映射到g的值域。
同样,对于g的定义域Dg中的任意y,都存在一个唯一的x,使得f(x) = y,即g的定义域映射到f的值域。
2. 反函数的性质互为反函数的函数f和g具有一些性质:(1)如果f和g互为反函数,则f是一一对应的函数,g也是一一对应的函数。
(2)如果f和g互为反函数,则对于f的定义域Df中的任意x,都有g(f(x)) = x;对于g的定义域Dg中的任意y,都有f(g(y)) = y。
(3)如果f和g互为反函数,则f的定义域和g的值域相等,g的定义域和f的值域相等。
3. 反函数的求法对于已知的函数f,如果要求它的反函数g,可以按照以下步骤进行:(1)将函数f表示为y = f(x)的形式;(2)交换自变量x和因变量y的位置,得到x = f(y);(3)解出y,得到y = g(x),即得到函数g。
4. 反函数的图像互为反函数的函数f和g的图像是关于y = x这条直线对称的。
如果知道了f的图像,就可以通过将f的图像关于y = x这条直线对称,得到g的图像。
反之,如果知道了g的图像,就可以通过将g的图像关于y = x这条直线对称,得到f的图像。
5. 互为反函数与复合函数如果函数f和g互为反函数,那么对于它们的复合函数f(g(x)),有f(g(x)) = x;对于g(f(x)),有g(f(x)) = x。
这就意味着,f和g的复合函数是恒等函数。
即f(g(x)) = x,g(f(x)) = x。
反函数——课堂教学设计一、[教材依据]全日制普通高级中学教科书数学(人教版)第一册(上)第二章《函数》第四节“反函数”第一课时。
二、[教材分析][设计思路]1、体验教学的原则:重视学生的亲身体验与感悟,使学生具有对于知识生成、发展、形成及应用过程的体验和感悟。
本节课力求体现二期课改的思路,以学生发展为本。
整节课的概念、例题与练习都以学生讨论、探究、归纳为主,教师引导为辅。
使学生在形成概念、发展规律、获取知识和理解内化的数学学习过程中,在数学应用和实践的过程中发展数学能力和一般能力,学会数学学习和应用的基本方法,逐步增强学生的研习能力、批判思维能力、自学能力和交流合作能力,培养学生勇于探索的精神。
2、本节教材是在学生初步学习了函数及其性质后,再来接触的一个新概念-----“反函数”。
反函数是函数中的一个重要概念,对这个概念的研究是对函数概念和性质在认识上的深化和提高。
它是从研究两个函数关系的角度产生的函数的,反函数本身也是一个函数。
由于反函数的定义本身比较抽象,难度较大,故在本节教学中从具体实例出发,引导学生从函数的三要素的变化角度,认识反函数的特征,揭示反函数的本质,逐步概括出反函数的定义,进而明确求解反函数问题的步骤。
当然学生在具体求解指定函数的反函数时,可能会遇到反解x时正负的选择问题及求原来函数的值域问题,教学中要预以足够的重视。
为了突破“反函数存在的条件”与“反函数与原函数的相互关系”这一难点,在本节教学中采用由课本上前面的例题(本章第一节“函数”部分给出的3个对应,并且是3个从A到B的函数)来加深对反函数定义的理解,这样便于把抽象的问题直观化。
反函数概念的建立,对研究原函数的性质有着重要作用,对将要学习研究的“指数函数”与“对数函数”等函数之间图象与性质的关系也起着重要作用。
三、[教学目标]1、知识与技能目标:(1)、理解反函数的概念 (2)、会求一些简单函数的反函数。
2、过程与方法目标:通过师生的共同讨论,弄清反函数的概念,探索与原函数的相互关系,会求一些简单函数的反函数。
高一数学反函数【本讲主要内容】反函数反函数的定义;反函数的求法;反函数间的图像性质【知识掌握】【知识点精析】1. 反函数的定义:若函数)(x f y =(A x ∈)的值域为C ,由这个函数中x 、y 的关系,用y 把x 表示出来,得到)(y x ϕ=。
如果对于y 在C 中的任何一个值,通过)(y x ϕ=,x 在A 中都有唯一的值和它对应,那么,)(y x ϕ=就表示y 是自变量,x 是自变量y 的函数。
这样的函数)(y x ϕ=(C y ⊂)叫做函数))((A x x f y ⊂=的反函数,记作)(1y fx -=。
在函数)(1y fx -=中,y 表示自变量,x 表示函数。
习惯上,我们一般用x 表示自变量,y 表示函数,因此我们常常对调函数)(1y f x -=中的字母x 、y ,把它改写成)(1x fy -=。
2. 求反函数的步骤:(1)解关于x 的方程)(x f y =,得到)(1y fx -=。
(2)把第一步得到的式子中的x 、y 对换位置,得到)(1x f y -=。
(3)求出并说明反函数的定义域(即函数)(x f y =的值域)。
3. 关于反函数常用性质:(1))(x f y =和)(1x f y -=的图象关于直线y=x 对称。
(2))(x f y =和)(1x f y -=具有相同的单调性。
(3))(x f y =和)(1y f x -=互为反函数,但在同一坐标系下,它们的图象相同。
(4)已知f(x)求)(1a f-,可利用a x f =)(,从中求出x ,即是)(1a f -。
特别提醒:因为反函数与原函数互为反函数,所以在学习反函数的过程中要注意原函数与反函数的定义域、值域、对应法则的互反性,同时在研究反函数的性质时要注意利用原函数和反函数之间的关系转化为研究原函数的性质,如研究函数2xx e e y -+=的反函数的单调性、奇偶性就可以直接研究2xx e e y -+=,而不必求出其反函数。
4.5反函数的概念一、教学内容分析“反函数”是《高中代数》第一册的重要内容.这一节课与函数的基本概念有着紧密的联系,通过对这一节课的学习,既可以让学生接受、理解反函数的概念并学会反函数的求法,又可使学生加深对函数基本概念的理解,还为今后反三角函数的教学做好准备,起到承上启下的重要作用. 二、教学目标设计(1)理解反函数的概念,并能判定一个函数是否存在反函数;(2)掌握求反函数的基本步骤,并能理解原函数和反函数之间的内在联系;(3)通过反函数概念的引入;函数及其反函数图像特征的主动探索,初步学会自主地学习、独立地探究问题;掌握观察、比较、分析、归纳等数学试验研究的方法;体验探索中挫折的艰辛与成功的快乐,激发学习热情.三、教学重点与难点:反函数的概念及求法;反函数的图像特征;反函数定义域的确定. 四、教学流程设计五、教学过程设计 1、设置情境,引出概念引例:在两种温度度量制摄氏度(C)和华氏度(F)相互转化时会发现,有时两人选用相同的数据,如下表,所建立的函数关系和作出的图像完全不同,这是为什么呢?教师点拨:指导学生观察上面两个函数的异同,引出反函数的定义.介绍反函数的记号)(1x fy ;了解)(1x f表示反函数的符号,1f表示对应法则.2、 探索研究,深化概念 ①探求反函数成立的条件.例1(1)2x y (R x )的反函数是 (2)2x y (0 x )的反函数是 (3)2x y (0 x )的反函数是 学生活动:讨论函数反函数成立的条件(理论根据为函数的定义):对值域A 中任意一个y 值,在定义域D 中总有唯一确定的x 值与它对应,即x 与y 必须一一对应. ②探求求反函数的方法.(课本例题) 例2.求下列函数的反函数:(1)24 x y (2)13x y (3))0(12x x y(4))21,(2413x R x x x y[说明]:学生分四组完成,教师巡视,把典型错误及正确解法投影. 学生活动:探求求反函数的方法. (1) 变形:解方程,)(x f y 得)(1y fx ; (2) 互换:互换y x ,的位置,得)(1x fy ;(3)写出定义域:注明反函数的定义域.③观察反函数的图像,探讨互为反函数的两个函数的关系.例3:在同一坐标下,画出例2中的函数及其反函数的图像.(在几何画板中显示)教师点拨:指导学生观察函数及其反函数的图像,结合反函数的定义,探讨函数及其反函数之间的关系.学生活动:探讨互为反函数的两个函数的关系. ①从函数角度看:若函数)(x f y 有反函数)(1x fy ,则)(1x fy 的反函数是)(x f y ,即)(x f y 和)(1x fy 互为反函数.反函数的定义域与值域恰好是原函数的值域与定义域.②从函数图像看:原函数和反函数图像关于x y 对称.③从单调性来看:原函数和反函数均为单调函数,他们具有相同的单调性. 3、例题分析,巩固方法: (1)课本练习4.5 (2)补充练习:1、给出下列几个函数:①)21(12x x y ;②)2(2)1(4x x x y ③)(23R x x y ④)0()2( x x x y 其中不存在反函数的函数序号是 ②、④2、若指数函数)(x f y 的反函数的图像经过点(2,-1),则此指数函数为 ( A )(A ) xy )21( (B )x y 2 (C )xy 3 (D)x y 103、设)1(22)( x x x f ,则)(1x f( D )(A )在(), 上是增函数 (B )在(), 上是减函数 (C )在),0[ 上是减函数 (D)在(]0, 上是增函数4、若函数)(x f 是函数 10222 x x y 的反函数,则)(x f 的图像为 ( B )A B C D5、)21( 22x x x y 反函数是 ( B )(A ))11( 112 x x y (B ))10( 112 x x y (C ))11( 112 x x y(D ))10( 112 x x y6、若)0( a b ax y 有反函数且它的反函数就是b ax y 本身,求b a ,应满足的条件.解:由b ax y ,得b y ax .由0 a ,知ab y a x1. 所以函数b ax y 的反函数为a by a x1. 由于函数b ax y 的反函数aby a x 1就是函数b ax y 本身,即有xxxyyyya a 1,且b ab. 于是,解得1 a ,0 b 或1 a ,b 为任意实数.教师点拨:提出两个问题:①什么样的一次函数,它的反函数正好是它本身?②除了一次函数外,是否还存在其它函数,满足反函数就是它本身?(11),0(x x y k x k y 等) 4、课堂小结①反函数的概念及求法; ②函数及其反函数的关系; 5、作业布置 练习册4.5 A 组 六、教学设计说明1.反函数概念比较抽象,不能简单地从形式上来定义. 在教学时先通过实例根据自变量和应变量的不同,得到两个函数关系式和图像完全不同的函数.在此基础上指出这两个函数互为反函数,这样使学生对反函数有一个初步的认识.2.在此基础上,引出反函数的一般概念,使得较抽象的概念能被学生逐步理解.然后再进一步强调函数),)((A y D x x f y 的反函数存在的条件——“对值域A 中任意一个y 值,在定义域D 中总有唯一确定的x 值与它对应”.3.通过学生对课本例题的练习,发现学生在解题过程中存在的问题.通过对课堂练习的点评,让学生了解并总结出求反函数的步骤. 同时让学生认识到若函数)(x f y 有反函数)(1x fy ,则)(1x fy 的反函数是)(x f y ,即)(x f y 和)(1x fy 互为反函数,并了解反函数的定义域与值域恰好是原函数的值域与定义域.4.通过几何画板在同一坐标下演示课本例题的函数及其反函数的图像,让学生掌握y x ,互换的几何意义,了解原函数和反函数图像关于x y 对称,从而巩固对反函数概念的理解.。
人教版数学高中《必修一》《反函数的定义》
人教版数学高中《必修一》《反函数的定义》
1、反函数的定义。
2、互为反函数的两个函数的图像和性质。
详细请看本课视频。
本课程终生免费,目的是为了更好的为学生服务,为了让更多的人听到焦老师的课程,您可以点击标题下方“焦阳初中数学”快速关注,也可以保存并转发此公众号名片,您的关注,是对公益事业的支持,你的转发,也是在做公益,谢谢。
感谢各位朋友的支持,感谢大家的推广。
今天,我们要学习的课程是人教版数学高中《必修一》《反函数的定义》。
今后每天会更新七、八、九年级及高中的课程,同步于课堂,敬请关注,谢谢。
关于“北师大版“和“苏教版“课程的声明:
目前焦老师一个人在做这个公益平台,录制课程蓝本为人教版数学教材,但是各教材的制订,课程标准是相同的,只是编排顺序不同,所以您看到的课程虽然是人教版课程,但不影响北师版的学习。
公众号置顶,添加到桌面,学生观看更方便。
人教版数学高中《必修一》《反函数的定义》。
一.课题:反函数(2)二.教学目标:1.使学生了解互为反函数的函数图象间的关系;2.运用互为反函数的函数图象间的关系解决函数的有关问题;3..通过由特殊到一般的归纳,培养学生探索、猜想、论证的思维习惯。
三.教学重点:互为反函数的函数图象间的关系。
四.教学过程:(一)复习:(提问)1.反函数的定义;2.反函数的求法。
练习:已知函数65()(,1x f x x R x +=∈-且1)x ≠有反函数1()y f x -=,求1(7)f -的值。
(二)新课讲解:研究函数除从函数的三要素去研究外,还经常研究函数的图象。
如果函数()y f x =(x A ∈)的反函数是1()y f x -=,那么在直角坐标系xOy 中,它们的图象有什么关系?例1.(1)求函数32()y x x R =-∈的反函数,并且画出原函数与它的反函数的图象。
解:从32,y x =-解得23y x +=,因此函数32()y x x R =-∈的反函数是2()3x y x R +=∈. 函数32()y x x R =-∈和它的反函数2()3x y x R +=∈的图象如图所示(图略)。
(2)求函数3()y x x R =∈的反函数,并且画出原函数与它的反函数的图象。
解:从函数3()y x x R =∈,解得x .因此3()y x x R =∈的反函数是)y x R =∈3()y x x R =∈和它的反函数)y x R ∈的图象如图所示(图略)。
由这两组图象,我们可以观察出互为相反数的两个函数的图象关于直线y x =对称。
说明:(1)如果(,)a b 是()y f x =上的点,那么(,)b a 是1()y f x -=上的点,而(,)a b 与(,)b a 是关于直线y x =对称的,所以互为相反数的两个函数的图象关于直线y x =对称的;(2)1()()b f a a fb -=⇔=,从而,有11(()),(())f f a a f f b b --==。