高一数学必修一反函数和互为反函数
- 格式:pptx
- 大小:171.13 KB
- 文档页数:20
数学 反函数【重点难点解析】1.本单元知识结构2.了解互为反函数的两个函数间的关系(定义域、值域、运算反映的映射法则及图象),会求函数的反函数(如果有的话).3.判断一个函数是否有反函数及求反函数运算时解不惟一,此时如何确定谁是所求的反函数等.【考点】1.求已知函数的反函数与已知函数的性质(单调性、奇偶性、图象特征等)从而确定反函数的性质.2.求函数的值域是数学中的难点也是考点,而利用求反函数的定义域来求函数的值域,在解题时常有使用.【典型热点考题】例1 求下列函数的反函数:(1)y =f(x)=2x -1; (2)3x 1x 2)x (f y -+==. 思路分析求函数y =f(x)的反函数)x (f y 1-=,需先对函数的解析式按运算律要求逐步实施逆运算求得)y (f x 1-=,然后再交换x 、y ,就可求得反函数.一般如不特别给出函数的定义域,则解得的解析式即为所求,不必再另注明反函数的定义域(函数的值域),如题目指明要求,则应计算函数的值域(反函数的定义域).解:(1)∵y =2x -1∴2x =y +1 21y 21x += ∴反函数21x 21)x (f y 1+==-. (2)∵3x 1x 2y -+=(x ≠3且x ∈R) ∴xy -3y =2x +1xy -2x =3y +1(y -2)x =3y +1当y -2≠0,即y ≠2时 有2y 1y 3x -+=(y ≠2) ∴反函数2x 1x 3)x (f y 1-+==-(x ≠2). 例2 求下列函数的反函数:(1)1x y 2-=(x ≤0); (2)7x 4x y 2+-=(x ≥2); (3)x y =(x ≥1).这3个函数或给出定义域或求得定义域,都是对应函数的一个单调区间,因此在此区间上一个自变量值只对应一个函数值,反之也成立,所以它们都存在反函数.但是由于定义域受到限制是人为施加的,因此函数的值域也不一定是“理论值”,也需要由给定函数的性质来确定,以便作为反函数的值域.解:(1)∵1x y 2-=(x ≤0)(-∞,0]是此二次函数的减区间∴y ≥f(0)=-1,即函数值域[-1,+∞)∴01y x 2≥+=, ∴1y x +±=∵x ≤0 ∴1y x +-=(y ≥-1) ∴反函数为1x )x (f y 1+-==-(x ≥-1).(2)∵7x 4x y 2+-=(x ≥2)∴3)2x (y 2+-=(x ≥2)∴[2,+∞)是此函数的增函数区间∴y ≥f(2)=3,即值域为[3,+∞) ∵3y 2x -±=-(y ≥3)x ≥2,则x -2≥0 ∴3y 2x -=- ∴3y 2x -+=(y ≥3) ∴反函数为23x )x (f y 1+-==-(x ≥3).(3)∵x y =(x ≥1)∴[1,+∞)是函数的增函数区间∴y ≥f(1)=1,即函数值域为[1,+∞)∵2y x =(y ≥1)∴反函数21x )x (f y ==-(x ≥1).例 3 已知函数ax b ax )x (f ++=(x ≠-a)的图象与其反函数)x (f 1-的图象都经过(-1,3)点,求不等式0)x (f 1>-的解的集合.确定函数f(x)——求得其系数a 、b 的值是解本题的关键.利用已知的两个条件(函数f(x)与其反函数)x (f 1-的图象均过点(-1,3)),布列两个方程组成方程组求解.解: ∵ax b ax )x (f y ++== ∴xy +ay =ax +b∴x(y -a)=-ay +b 当y ≠a 时,ay b ay x -+-= ∴ax b ax )x (f y 1-+-==- ∵f(x)与)x (f 1-的图象都过(-1,3)点 ∴⎩⎨⎧-==⇒⎪⎪⎩⎪⎪⎨⎧=--+=+-+-3b 0a 3a1b a 3a 1b a ∴x3)x (f 1-=- 0x 0x3)x (f 1<⇒>-=- ∴不等式0)x (f 1>-的解集为{x|x<0}.例4 (1)已知:函数y =f(x)的反函数为)x (f y 1-=,函数y =f(x +1)恒过点(-3,4),那么函数)1x (f y 1-=-恒过点___________.(2)已知:1x 是方程f(x)=3-x 的解,2x 是方程x 3)x (f 1-=-的解,f(x)与)x (f 1-互为反函数,那么21x x +=___________.(3)设函数:⎪⎩⎪⎨⎧∞+∈+-∈-∞∈=) 16[ 4)16()16 1( ]1 ( )(2,,,x x x x x x x f 则)16(f 1-=___________.思路分析(1)(2)考查反函数的图象与原函数的图象之间关于y =x 对称;(3)反函数的原象就是原函数中的象,反函数中的象就是原函数中的原象.解:(1)由y =f(x +1)恒过点(-3,4)⇒y =f(x)的图象恒过点(-2,4)∵y =f(x)与)x (f y 1-=互为反函数∴)x (f y 1-=恒过点(4,-2)⇒)1x (f y 1-=-恒过点(5,-2)(2)由f(x)=3-x ,可得:⎩⎨⎧-==x 3y )x (f y ∵1x 是方程f(x)=3-x 的解∴))x (f x (11,是方程组⎩⎨⎧-==x 3y )x (f y 的解 同理,由x 3)x (f 1-=-,可得⎩⎨⎧-==-x 3y )x (f y 1由2x 是方程x 3)x (f 1-=-的解,可得))x (f x (22,是方程组⎩⎨⎧-==-x 3y )x (f y 1的解.设P ))x (f x (11,,Q ))x (f x (22,显然P ,Q 均在直线y =3-x 上∵y =3-x 的图象与II ,IV 象限的角平分线平行∴y =3-x 的图象与y =x 的图象垂直即PQ ⊥l (l 是y =x 的图象)又∵y =f(x)的图象与)x (f y 1-=的图象之间关于直线l 对称,而且,P ))x (f x (11,在y =f(x)的图象上,))x (f x (Q 22,在)x (f y 1-=的图象上.∴P 、Q 两点关于l 对称从而,得出:P 、Q 的中点在y =x 的图象上即:2x x 2)x (f )x (f 21211+=+- ∴2121x x )x 3()x 3(+=-+-∴3x x 21=+.(3))16(f 1-的含义是已知函数y =f(x)的反函数的原象16,求反函数象)16(f 1-,也就是已知函数y =f(x)的象16,求原函数的原象x .利用反函数与原函数的关系由已知,可得:f(x)=16即:164)16x (2=+-∴3216x 3216x -=+=或, ∵x ≥16 ∴3216x -=(舍去), ∴3216x += 也就是:3216)16(f 1+=-.。
互为反函数知识点总结1. 对于f的定义域Df中的每一个x,在g的值域中存在一个唯一的y,使得g(y) = x;2. 对于g的定义域Dg中的每一个y,在f的值域中存在一个唯一的x,使得f(x) = y。
两个函数f和g互为反函数,当且仅当它们满足上述两个条件。
下面是互为反函数的一些知识点总结:1. 定义域和值域的关系互为反函数的函数f和g的定义域和值域之间存在特定的关系。
对于f的定义域Df中的任意x,都存在一个唯一的y,使得g(y) = x,即f的定义域映射到g的值域。
同样,对于g的定义域Dg中的任意y,都存在一个唯一的x,使得f(x) = y,即g的定义域映射到f的值域。
2. 反函数的性质互为反函数的函数f和g具有一些性质:(1)如果f和g互为反函数,则f是一一对应的函数,g也是一一对应的函数。
(2)如果f和g互为反函数,则对于f的定义域Df中的任意x,都有g(f(x)) = x;对于g的定义域Dg中的任意y,都有f(g(y)) = y。
(3)如果f和g互为反函数,则f的定义域和g的值域相等,g的定义域和f的值域相等。
3. 反函数的求法对于已知的函数f,如果要求它的反函数g,可以按照以下步骤进行:(1)将函数f表示为y = f(x)的形式;(2)交换自变量x和因变量y的位置,得到x = f(y);(3)解出y,得到y = g(x),即得到函数g。
4. 反函数的图像互为反函数的函数f和g的图像是关于y = x这条直线对称的。
如果知道了f的图像,就可以通过将f的图像关于y = x这条直线对称,得到g的图像。
反之,如果知道了g的图像,就可以通过将g的图像关于y = x这条直线对称,得到f的图像。
5. 互为反函数与复合函数如果函数f和g互为反函数,那么对于它们的复合函数f(g(x)),有f(g(x)) = x;对于g(f(x)),有g(f(x)) = x。
这就意味着,f和g的复合函数是恒等函数。
即f(g(x)) = x,g(f(x)) = x。
反函数——课堂教学设计一、[教材依据]全日制普通高级中学教科书数学(人教版)第一册(上)第二章《函数》第四节“反函数”第一课时。
二、[教材分析][设计思路]1、体验教学的原则:重视学生的亲身体验与感悟,使学生具有对于知识生成、发展、形成及应用过程的体验和感悟。
本节课力求体现二期课改的思路,以学生发展为本。
整节课的概念、例题与练习都以学生讨论、探究、归纳为主,教师引导为辅。
使学生在形成概念、发展规律、获取知识和理解内化的数学学习过程中,在数学应用和实践的过程中发展数学能力和一般能力,学会数学学习和应用的基本方法,逐步增强学生的研习能力、批判思维能力、自学能力和交流合作能力,培养学生勇于探索的精神。
2、本节教材是在学生初步学习了函数及其性质后,再来接触的一个新概念-----“反函数”。
反函数是函数中的一个重要概念,对这个概念的研究是对函数概念和性质在认识上的深化和提高。
它是从研究两个函数关系的角度产生的函数的,反函数本身也是一个函数。
由于反函数的定义本身比较抽象,难度较大,故在本节教学中从具体实例出发,引导学生从函数的三要素的变化角度,认识反函数的特征,揭示反函数的本质,逐步概括出反函数的定义,进而明确求解反函数问题的步骤。
当然学生在具体求解指定函数的反函数时,可能会遇到反解x时正负的选择问题及求原来函数的值域问题,教学中要预以足够的重视。
为了突破“反函数存在的条件”与“反函数与原函数的相互关系”这一难点,在本节教学中采用由课本上前面的例题(本章第一节“函数”部分给出的3个对应,并且是3个从A到B的函数)来加深对反函数定义的理解,这样便于把抽象的问题直观化。
反函数概念的建立,对研究原函数的性质有着重要作用,对将要学习研究的“指数函数”与“对数函数”等函数之间图象与性质的关系也起着重要作用。
三、[教学目标]1、知识与技能目标:(1)、理解反函数的概念 (2)、会求一些简单函数的反函数。
2、过程与方法目标:通过师生的共同讨论,弄清反函数的概念,探索与原函数的相互关系,会求一些简单函数的反函数。
高一数学反函数【本讲主要内容】反函数反函数的定义;反函数的求法;反函数间的图像性质【知识掌握】【知识点精析】1. 反函数的定义:若函数)(x f y =(A x ∈)的值域为C ,由这个函数中x 、y 的关系,用y 把x 表示出来,得到)(y x ϕ=。
如果对于y 在C 中的任何一个值,通过)(y x ϕ=,x 在A 中都有唯一的值和它对应,那么,)(y x ϕ=就表示y 是自变量,x 是自变量y 的函数。
这样的函数)(y x ϕ=(C y ⊂)叫做函数))((A x x f y ⊂=的反函数,记作)(1y fx -=。
在函数)(1y fx -=中,y 表示自变量,x 表示函数。
习惯上,我们一般用x 表示自变量,y 表示函数,因此我们常常对调函数)(1y f x -=中的字母x 、y ,把它改写成)(1x fy -=。
2. 求反函数的步骤:(1)解关于x 的方程)(x f y =,得到)(1y fx -=。
(2)把第一步得到的式子中的x 、y 对换位置,得到)(1x f y -=。
(3)求出并说明反函数的定义域(即函数)(x f y =的值域)。
3. 关于反函数常用性质:(1))(x f y =和)(1x f y -=的图象关于直线y=x 对称。
(2))(x f y =和)(1x f y -=具有相同的单调性。
(3))(x f y =和)(1y f x -=互为反函数,但在同一坐标系下,它们的图象相同。
(4)已知f(x)求)(1a f-,可利用a x f =)(,从中求出x ,即是)(1a f -。
特别提醒:因为反函数与原函数互为反函数,所以在学习反函数的过程中要注意原函数与反函数的定义域、值域、对应法则的互反性,同时在研究反函数的性质时要注意利用原函数和反函数之间的关系转化为研究原函数的性质,如研究函数2xx e e y -+=的反函数的单调性、奇偶性就可以直接研究2xx e e y -+=,而不必求出其反函数。
4.5反函数的概念一、教学内容分析“反函数”是《高中代数》第一册的重要内容.这一节课与函数的基本概念有着紧密的联系,通过对这一节课的学习,既可以让学生接受、理解反函数的概念并学会反函数的求法,又可使学生加深对函数基本概念的理解,还为今后反三角函数的教学做好准备,起到承上启下的重要作用. 二、教学目标设计(1)理解反函数的概念,并能判定一个函数是否存在反函数;(2)掌握求反函数的基本步骤,并能理解原函数和反函数之间的内在联系;(3)通过反函数概念的引入;函数及其反函数图像特征的主动探索,初步学会自主地学习、独立地探究问题;掌握观察、比较、分析、归纳等数学试验研究的方法;体验探索中挫折的艰辛与成功的快乐,激发学习热情.三、教学重点与难点:反函数的概念及求法;反函数的图像特征;反函数定义域的确定. 四、教学流程设计五、教学过程设计 1、设置情境,引出概念引例:在两种温度度量制摄氏度(C)和华氏度(F)相互转化时会发现,有时两人选用相同的数据,如下表,所建立的函数关系和作出的图像完全不同,这是为什么呢?教师点拨:指导学生观察上面两个函数的异同,引出反函数的定义.介绍反函数的记号)(1x fy ;了解)(1x f表示反函数的符号,1f表示对应法则.2、 探索研究,深化概念 ①探求反函数成立的条件.例1(1)2x y (R x )的反函数是 (2)2x y (0 x )的反函数是 (3)2x y (0 x )的反函数是 学生活动:讨论函数反函数成立的条件(理论根据为函数的定义):对值域A 中任意一个y 值,在定义域D 中总有唯一确定的x 值与它对应,即x 与y 必须一一对应. ②探求求反函数的方法.(课本例题) 例2.求下列函数的反函数:(1)24 x y (2)13x y (3))0(12x x y(4))21,(2413x R x x x y[说明]:学生分四组完成,教师巡视,把典型错误及正确解法投影. 学生活动:探求求反函数的方法. (1) 变形:解方程,)(x f y 得)(1y fx ; (2) 互换:互换y x ,的位置,得)(1x fy ;(3)写出定义域:注明反函数的定义域.③观察反函数的图像,探讨互为反函数的两个函数的关系.例3:在同一坐标下,画出例2中的函数及其反函数的图像.(在几何画板中显示)教师点拨:指导学生观察函数及其反函数的图像,结合反函数的定义,探讨函数及其反函数之间的关系.学生活动:探讨互为反函数的两个函数的关系. ①从函数角度看:若函数)(x f y 有反函数)(1x fy ,则)(1x fy 的反函数是)(x f y ,即)(x f y 和)(1x fy 互为反函数.反函数的定义域与值域恰好是原函数的值域与定义域.②从函数图像看:原函数和反函数图像关于x y 对称.③从单调性来看:原函数和反函数均为单调函数,他们具有相同的单调性. 3、例题分析,巩固方法: (1)课本练习4.5 (2)补充练习:1、给出下列几个函数:①)21(12x x y ;②)2(2)1(4x x x y ③)(23R x x y ④)0()2( x x x y 其中不存在反函数的函数序号是 ②、④2、若指数函数)(x f y 的反函数的图像经过点(2,-1),则此指数函数为 ( A )(A ) xy )21( (B )x y 2 (C )xy 3 (D)x y 103、设)1(22)( x x x f ,则)(1x f( D )(A )在(), 上是增函数 (B )在(), 上是减函数 (C )在),0[ 上是减函数 (D)在(]0, 上是增函数4、若函数)(x f 是函数 10222 x x y 的反函数,则)(x f 的图像为 ( B )A B C D5、)21( 22x x x y 反函数是 ( B )(A ))11( 112 x x y (B ))10( 112 x x y (C ))11( 112 x x y(D ))10( 112 x x y6、若)0( a b ax y 有反函数且它的反函数就是b ax y 本身,求b a ,应满足的条件.解:由b ax y ,得b y ax .由0 a ,知ab y a x1. 所以函数b ax y 的反函数为a by a x1. 由于函数b ax y 的反函数aby a x 1就是函数b ax y 本身,即有xxxyyyya a 1,且b ab. 于是,解得1 a ,0 b 或1 a ,b 为任意实数.教师点拨:提出两个问题:①什么样的一次函数,它的反函数正好是它本身?②除了一次函数外,是否还存在其它函数,满足反函数就是它本身?(11),0(x x y k x k y 等) 4、课堂小结①反函数的概念及求法; ②函数及其反函数的关系; 5、作业布置 练习册4.5 A 组 六、教学设计说明1.反函数概念比较抽象,不能简单地从形式上来定义. 在教学时先通过实例根据自变量和应变量的不同,得到两个函数关系式和图像完全不同的函数.在此基础上指出这两个函数互为反函数,这样使学生对反函数有一个初步的认识.2.在此基础上,引出反函数的一般概念,使得较抽象的概念能被学生逐步理解.然后再进一步强调函数),)((A y D x x f y 的反函数存在的条件——“对值域A 中任意一个y 值,在定义域D 中总有唯一确定的x 值与它对应”.3.通过学生对课本例题的练习,发现学生在解题过程中存在的问题.通过对课堂练习的点评,让学生了解并总结出求反函数的步骤. 同时让学生认识到若函数)(x f y 有反函数)(1x fy ,则)(1x fy 的反函数是)(x f y ,即)(x f y 和)(1x fy 互为反函数,并了解反函数的定义域与值域恰好是原函数的值域与定义域.4.通过几何画板在同一坐标下演示课本例题的函数及其反函数的图像,让学生掌握y x ,互换的几何意义,了解原函数和反函数图像关于x y 对称,从而巩固对反函数概念的理解.。
人教版数学高中《必修一》《反函数的定义》
人教版数学高中《必修一》《反函数的定义》
1、反函数的定义。
2、互为反函数的两个函数的图像和性质。
详细请看本课视频。
本课程终生免费,目的是为了更好的为学生服务,为了让更多的人听到焦老师的课程,您可以点击标题下方“焦阳初中数学”快速关注,也可以保存并转发此公众号名片,您的关注,是对公益事业的支持,你的转发,也是在做公益,谢谢。
感谢各位朋友的支持,感谢大家的推广。
今天,我们要学习的课程是人教版数学高中《必修一》《反函数的定义》。
今后每天会更新七、八、九年级及高中的课程,同步于课堂,敬请关注,谢谢。
关于“北师大版“和“苏教版“课程的声明:
目前焦老师一个人在做这个公益平台,录制课程蓝本为人教版数学教材,但是各教材的制订,课程标准是相同的,只是编排顺序不同,所以您看到的课程虽然是人教版课程,但不影响北师版的学习。
公众号置顶,添加到桌面,学生观看更方便。
人教版数学高中《必修一》《反函数的定义》。
一.课题:反函数(2)二.教学目标:1.使学生了解互为反函数的函数图象间的关系;2.运用互为反函数的函数图象间的关系解决函数的有关问题;3..通过由特殊到一般的归纳,培养学生探索、猜想、论证的思维习惯。
三.教学重点:互为反函数的函数图象间的关系。
四.教学过程:(一)复习:(提问)1.反函数的定义;2.反函数的求法。
练习:已知函数65()(,1x f x x R x +=∈-且1)x ≠有反函数1()y f x -=,求1(7)f -的值。
(二)新课讲解:研究函数除从函数的三要素去研究外,还经常研究函数的图象。
如果函数()y f x =(x A ∈)的反函数是1()y f x -=,那么在直角坐标系xOy 中,它们的图象有什么关系?例1.(1)求函数32()y x x R =-∈的反函数,并且画出原函数与它的反函数的图象。
解:从32,y x =-解得23y x +=,因此函数32()y x x R =-∈的反函数是2()3x y x R +=∈. 函数32()y x x R =-∈和它的反函数2()3x y x R +=∈的图象如图所示(图略)。
(2)求函数3()y x x R =∈的反函数,并且画出原函数与它的反函数的图象。
解:从函数3()y x x R =∈,解得x .因此3()y x x R =∈的反函数是)y x R =∈3()y x x R =∈和它的反函数)y x R ∈的图象如图所示(图略)。
由这两组图象,我们可以观察出互为相反数的两个函数的图象关于直线y x =对称。
说明:(1)如果(,)a b 是()y f x =上的点,那么(,)b a 是1()y f x -=上的点,而(,)a b 与(,)b a 是关于直线y x =对称的,所以互为相反数的两个函数的图象关于直线y x =对称的;(2)1()()b f a a fb -=⇔=,从而,有11(()),(())f f a a f f b b --==。
高一反函数知识点随着数学课程的深入学习,高中一年级的学生将接触到更多的数学概念和知识点。
在这篇文章中,我将为大家介绍高一学生将学习的一个重要内容,那就是反函数(Inverse Function)。
一、反函数的定义及性质反函数指的是由一个函数得到的新函数,其输入和输出之间的关系与原函数相反。
如果一个函数f的定义域与值域分别为A和B,那么对于B中的每一个元素b,存在一个唯一的元素a,使得f(a) = b。
这时候我们将这个新函数称为f的反函数,记作f^-1。
一个函数与其反函数之间存在以下几个性质:1. 函数f与其反函数f^-1互为关联:f(f^-1(x)) = x,f^-1(f(x)) = x。
即使用一个函数后再使用其反函数,或者先使用反函数再使用原函数,最终结果都会回到原来的输入。
2. 函数与其反函数的图像关于直线y = x对称:如果一个点(x, y)在函数f的图像上,那么点(y, x)则会在反函数f^-1的图像上。
3. 函数的定义域和值域互换:如果f的定义域为A,值域为B,那么f^-1的定义域就是B,值域就是A。
二、求反函数的方法在学习反函数时,我们面临的主要问题就是如何求得一个函数的反函数。
下面是几种常见的求反函数的方法:1. 代数法对于一些简单的函数,我们可以使用代数法求取其反函数。
具体的步骤是:- 将函数表示为y = f(x)的形式;- 将原方程中的y替换为x,将x替换为y,并且解出y;- 将得到的y表示为f^-1(x),即可得到反函数。
2. 图像法对于一些能够绘制出函数图像的函数,我们可以使用图像法求取其反函数。
具体的步骤是:- 绘制出函数f的图像;- 将图像关于直线y = x进行对称;- 根据对称后的图像,确定反函数的图像。
3. 复合函数法对于一些较为复杂的函数,我们可以使用复合函数法求取其反函数。
具体的步骤是:- 假设函数f的反函数为f^-1(x),即y = f^-1(x);- 将f(y)替换为x,并解出关于y的方程;- 将得到的y表示为f^-1(x),即可得到反函数。
1.反函数定义:若函数y =f (x )(x ∈A )的值域为C ,由这个函数中x 、y 的关系,用y 把x 表示出来,得到x =ϕ(y ).如果对于y 在C 中的任何一个值,通过x =ϕ(y ),x 在A 中都有唯一的值和它对应,那么,x =ϕ(y )就表示y 是自变量,x 是自变量y 的函数.这样的函数x =ϕ(y )(y ∈C )叫做函数y =f (x )(x ∈A )的反函数,记作x =f -1(y ). 在函数x =f -1(y )中,y 表示自变量,x 表示函数.习惯上,我们一般用x 表示自变量,y表示函数,因此我们常常对调函数x =f -1(y )中的字母x 、y ,把它改写成y =f -1(x ).2.互为反函数的两个函数y =f (x )与y =f -1(x )在同一直角坐标系中的图象关于直线y =x 对称.3.求反函数的步骤:(1)解关于x 的方程y =f (x ),得到x =f -1(y ).(2)把第一步得到的式子中的x 、y 对换位置,得到y =f -1(x ). (3)求出并说明反函数的定义域〔即函数y =f (x )的值域〕.1.函数y =-11+x (x ≠-1)的反函数是 A.y =-x1-1(x ≠0) B.y =-x1+1(x ≠0) C.y =-x +1(x ∈R )D.y =-x -1(x ∈R )解析:y =-11+x (x ≠-1)⇒x +1=-y 1⇒x =-1-y 1.x 、y 交换位置,得y =-1-x1.答案:A2.函数y =log 2(x +1)+1(x >0)的反函数为A.y =2x -1-1(x >1)B.y =2x -1+1(x >1) C.y =2x +1-1(x >0) D.y =2x +1+1(x >0)解析:函数y =log 2(x +1)+1(x >0)的值域为{y |y >1},由y =log 2(x +1)+1,解得x =2y -1-1.∴函数y =log 2(x +1)+1(x >0)的反函数为y =2x -1-1(x >1). 答案:A3.函数f (x )=-12+x (x ≥-21)的反函数 A.在[-21,+∞)上为增函数B.在[-21,+∞)上为减函数 C.在(-∞,0]上为增函数D.在(-∞,0]上为减函数 解析:函数f (x )=-12+x (x ≥-21)的值域为{y |y ≤0},而原函数在[-21,+∞)上是减函数,所以它的反函数在(-∞,0]上也是减函数.答案:D4.(2005年春季上海,4)函数f (x )=-x 2(x ∈(-∞,-2])的反函数f -1(x )=______________.解析:y =-x 2(x ≤-2),y ≤-4.∴x =-y -.x 、y 互换, ∴f -1(x )=-x -(x ≤-4).答案:-x -(x ≤-4) 5.若函数f (x )=2+x x ,则f -1(31)=___________.解法一:由f (x )=2+x x ,得f -1(x )=x x -12.∴f -1(31)=311312-⋅=1. 解法二:由2+x x=31,解得x =1. ∴f -1(31)=1. 答案:1评述:显然解法二更简便.【例】 求函数f (x )=⎩⎨⎧->+-≤+)1(1),1(12x x x x 的反函数.解:当x ≤-1时,y =x 2+1≥2,且有x =-1-y ,此时反函数为y =-1-x (x ≥2). 当x >-1时,y =-x +1<2,且有x =-y +1,此时反函数为y =-x +1(x <2).∴f (x )的反函数f -1(x )=⎪⎩⎪⎨⎧<+-≥--).2(1),2(1x x x x评述:分段函数应在各自的条件下分别求反函数式及反函数的定义域,分段函数的反函数也是分段函数.1.函数y =1-x +1(x ≥1)的反函数是A.y =x 2-2x +2(x <1)B.y =x 2-2x +2(x ≥1)C.y =x 2-2x (x <1)D.y =x 2-2x (x ≥1)2.记函数y =1+3-x 的反函数为y =g (x ),则g (10)等于A.2B.-2C.3 D .-1 3.函数y =e 2x (x ∈R )的反函数为A.y =2ln x (x >0)B.y =ln (2x )(x >0)C.y =21ln x (x >0) D.y =21ln (2x )(x >0) 4.已知函数f (x )=2(21-11+x a )(a >0,且a ≠1).(1)求函数y =f (x )的反函数y =f -1(x );(2)判定f -1(x )的奇偶性;(3)解不等式f -1(x )>1.解:(1)化简,得f (x )=11+-x x a a .设y =11+-x x a a ,则a x =y y -+11.∴x =log a yy-+11.∴所求反函数为y =f -1(x )=log axx-+11(-1<x <1). (2)∵f -1(-x )=log a x x +-11=log a (x x -+11)-1=-log a xx -+11=-f -1(x ),∴f -1(x )是奇函数.(3)log axx-+11>1. 当a >1时,原不等式⇒x x-+11>a ⇒11)1(--++x a x a <0.∴11+-a a <x <1. 当0<a <1时,原不等式⎪⎪⎩⎪⎪⎨⎧>-+<-+,011,11xx a xx解得⎪⎩⎪⎨⎧<<->+-<.11,111x x aa x 或 ∴-1<x <aa +-11. 综上,当a >1时,所求不等式的解集为(11+-a a ,1); 当0<a <1时,所求不等式的解集为(-1,11+-a a )5.已知函数f (x )=(11+-x x )2(x >1).(1)求f (x )的反函数f -1(x );(2)判定f -1(x )在其定义域内的单调性;解:(1)由y =(11+-x x )2,得x =yy -+11. 又y =(1-12+x )2,且x >1,∴0<y <1. ∴f -1(x )=xx -+11(0<x <1).(2)设0<x 1<x 2<1,则1x -2x <0,1-1x >0,1-2x >0.∴f -1(x 1)-f -1(x 2)=)1)(1()(22121x x x x ---<0,即f -1(x 1)<f -1(x 2).∴f -1(x )在(0,1)上是增函数.小结:(1)函数的反函数,本身也是一个函数,由反函数的定义,原来函数也是反函数的反函数.(2)反函数的定义域、值域分别是原来函数的值域与定义域.(3)由反函数定义知:①b =f (a )⇔a =f -1(b ),这两个式子是a 、b 之间关系的两种不同表示形式.②f [f -1(x )]=x (x ∈C ). ③f -1[f (x )]=x (x ∈A ).1.求下列函数的反函数:(1)y (x )(2)y x 2x 3x (0]2=≠-.=-+,∈-∞,.352112x x -+(3)y (x 0)(4)y x +1(1x 0) (0x 1)=≤.=-≤≤-<≤112x x +⎧⎨⎪⎩⎪4 反函数·基础练习(一)选择题1.函数y =-x 2(x ≤0)的反函数是[ ]A y (x 0)B y (x 0)C y (x 0)D y |x|.=-≥.=≤.=-≤.=-x x x --2.函数y =-x(2+x)(x ≥0)的反函数的定义域是[ ]A .[0,+∞)B .[-∞,1]C .(0,1]D .(-∞,0]3y 1(x 2).函数=+≥的反函数是x -2[ ]A .y =2-(x -1)2(x ≥2)B .y =2+(x -1)2(x ≥2)C .y =2-(x -1)2(x ≥1)D .y =2+(x -1)2(x ≥1) 4.下列各组函数中互为反函数的是[ ]A y y xB y y 2.=和=.=和=x x x11C y y (x 1)D y x (x 1)y (x 0)2.=和=≠.=≥和=≥3131311x x x x x +-+- 5.如果y =f(x)的反函数是y =f -1(x),则下列命题中一定正确的是[ ]A .若y =f(x)在[1,2]上是增函数,则y =f -1(x)在[1,2]上也是增函数B .若y =f(x)是奇函数,则y =f -1(x)也是奇函数C .若y =f(x)是偶函数,则y =f -1(x)也是偶函数D .若f(x)的图像与y 轴有交点,则f -1(x)的图像与y 轴也有交点 6.如果两个函数的图像关于直线y =x 对称,而其中一个函数是y =-,那么另一个函数是x -1[ ]A .y =x 2+1(x ≤0)B .y =x 2+1(x ≥1)C .y =x 2-1(x ≤0)D .y =x 2-1(x ≥1)7.设点(a ,b)在函数y =f(x)的图像上,那么y =f -1(x)的图像上一定有点[ ]A .(a ,f -1(a))B .(f -1(b),b)C .(f -1(a),a)D .(b ,f -1(b))8.设函数y =f(x)的反函数是y =g(x),则函数y =f(-x)的反函数是[ ]A .y =g(-x)B .y =-g(x)C .y =-g(-x)D .y =-g -1(x)(二)填空题1y 32y (x 0)y f(x)y x .函数=+的反函数是..函数=>与函数=的图像关于直线=对称,x x ++2121解f(x)=________.3.如果一次函数y =ax +3与y =4x -b 的图像关于直线y =x 对称,那a =________, b =________.4y (1x 0).函数=-<<的反函数是,反函数的定92-x 义域是________.5.已知函数y =f(x)存在反函数,a 是它的定义域内的任意一个值,则f -1(f(a))=________.6y 7y (x 1)(x 1)8f(x)(x 1)f ()1.函数=的反函数的值域是..函数=≥-<的反函数是:..函数=<-,则-=.121121232x x x x---⎧⎨⎪⎩⎪--参考答案(一)选择题1.(C).解:函数y=-x 2(x ≤0)的值域是y ≤0,由y=-x 2得x=--,∴反函数--≤.y x f (x)=(x 0)1-2.(D).解:∵y=-x 2-2x=-(x +1)2,x ≥0,∴函数值域y ≤0,即其反函数的定义域为x ≤0.3(D)y =x 21x 2y 1y =x 2..解:∵-+,≥,∴函数值域≥,由-+1,得反函数f -1(x)=(x -1)2+1,(x ≥1).4.(B).解:(A)错.∵y=x 2没有反函数.(B)中如两个函数互为反函数.中函数+-≠的反函数是+-≠而不是+-.中函数≥的值域为≥.应是其反函数的定义域≥.但中的定义域≥,故中两函数不是互为反函数.(C)y =3x 1x (x 1)y =x 1x 3(x 3)y =3x 13x 1(D)y =x (x 1)y 1x 1y =x x 0(D)21 5.(B).解:(A)中.∵y=f(x)在[1,2]上是增函数.∴其反函数y=f -1(x)在[f(1),f(2)]上是增函数,∴(A)错.(B)对.(C)中如y=f(x)=x 2是偶函数但没有反函数.∴(C)错.(D)中如函数f(x)=x 2+1(x ≥0)的图像与y 轴有交点,但其反函数-≥的图像与轴没有交点.∴错.f -(x)=x 1(x 1)y (D)1 6(A)y =y 0f (x)=x 12..解:∵函数--的值域≤;其反函数+x 1-+1(x ≤0).选(A).7.(D).解:∵点(a ,b)在函数y=f(x)的图像上,∴点(b ,a)必在其反函数y=f -1(x)的图像上,而a=f -1(b),故点(b ,f -1(b))在y=f -1(x)的图像上.选(D).8.(B).解:∵y=f(x)的反函数是y=f -1(x)即g(x)=f -1(x),而y=f(-x)的反函数是y=-f -1(x)=-g(x),∴选(B).(二)填空题1y =3y 3y =x 6x 2.解:∵函数++的值域≥,其反函数-+x 27(x ≥3)2y =12x 1(x 0)y 1f(x)=1x2x(x 1).解:+>的值域<,其反函数-<.3y =4x b y =14x x =ax .解:函数-的反函数是+,则++,b b41443比较两边对应项系数得,.a =14b =124y =9x (1x 0)y (223)2.解:函数--<<的值域∈,,反函数f -1 (x)=(223)--.反函数的定义为,.92x5.a6.[0,2)∪(2,+∞)7f (x)=x 1(x 1)1x(x 0)122.+≥-<-⎧⎨⎪⎩⎪8.-2作业一、 选择题1、 已知函数)1(156≠∈-+=x R x x x y 且,那么它的反函数为( ) A 、()1156≠∈-+=x R x x x y 且 B 、()665≠∈-+=x R x x x y 且 C 、⎪⎭⎫ ⎝⎛-≠∈+-=65561x R x x x y 且 D 、()556-≠∈+-=x R x x x y 且 2、函数⎪⎩⎪⎨⎧≥-=)0(21)0(2x x x x y 的反函数是( ) A 、()⎩⎨⎧≤-=0)0(2 x x x x y B 、()⎩⎨⎧-≤-=0)0(2 x x x x yC 、()()⎪⎩⎪⎨⎧≤-=0021 x x x x yD 、()()⎪⎩⎪⎨⎧-≤-=0021 x x x x y 3.若函数)1(1)(2-≤-=x x x f ,则)4(1-f 的值为( ) A 、5 B 、5- C 、15 D 、3。
反函数一、课题:反函数二、教学目标:理解反函数的意义,会求一些函数的反函数;掌握互为反函数的函数图象间的关系,会利用)(x f y =与)(1x f y -=的性质解决一些问题.三、教学重点:反函数的求法,反函数与原函数的关系.四、教学过程:(一)主要知识:1.反函数存在的条件:从定义域到值域上的一一映射确定的函数才有反函数;2.反函数的定义域、值域上分别是原函数的值域、定义域,若()y f x =与1()y f x -=互为反函数,函数()y f x =的定义域为A 、值域为B ,则1[()]()f f x x x B -=∈,1[()]()f f x x x A -=∈;3.互为反函数的两个函数具有相同的单调性,它们的图象关于y x =对称.(二)主要方法:1.求反函数的一般方法:(1)由()y f x =解出1()x f y -=,(2)将1()x f y -=中的,x y 互换位置,得1()y f x -=,(3)求()y f x =的值域得1()y f x -=的定义域.(三)例题分析:例1.求下列函数的反函数:(1)()1)f x x =≤-;(2)221(01)(){(10)x x f x x x -≤≤=-≤<;(3)32331y x x x =-++.解:(1)由1)y x =≤-得2211()(1)24y x x =+-≤-,∴10)2x y +=≥,∴所求函数的反函数为10)2y x =--≥.(2)当01x ≤≤时,得10)x y =-≤≤,当10x -≤<时,得1)x y =<≤,∴所求函数的反函数为10)1)x y x -≤≤=<≤.(3)由32331y x x x =-++得3(1)2y x =-+,∴1)x y R =∈,∴所求反函数为1()1)f x x R -=∈.例2.函数11(,)1ax y x x R ax a-=≠-∈+的图象关于y x =对称,求a 的值. 解:由11(,)1ax y x x R ax a -=≠-∈+得1(1)(1)y x y a y -=≠-+,∴11()(1)(1)x f x x a x --=≠-+, 由题知:1()()f x f x -=,11(1)1x ax a x ax--=++,∴1a =. 例3.若(2,1)既在()f x =,m n 的值. 解:∵(2,1)既在()f x =∴(1)2(2)1f f =⎧⎨=⎩,∴21==,∴37m n =-⎧⎨=⎩.例4.设函数xx x f +-=121)(,又函数)(x g 与1(1)y f x -=+的图象关于y x =对称,求)2(g 的值.解法一:由121x y x -=+得12y x y -=+,∴11()2x f x x --=+,1(1)3x f x x --+=+,∴)(x g 与3x y x -=+互为反函数,由23x x -=+,得(2)2g =-.解法二:由1(1)y f x -=+得()1x f y =-,∴()()1g x f x =-,∴(2)(2)12g f =-=-.例5.已知函数()y f x =(定义域为A 、值域为B )有反函数1()y f x -=,则方程()0f x =有解x a =,且()()f x x x A >∈的充要条件是1()y f x -=满足11()()(0)f x x x B f a --<∈=且.例6.已知21()()21x x a f x a R -=∈+,是R 上的奇函数.(1)求a 的值,(2)求()f x 的反函数,(3)对任意的(0,)k ∈+∞解不等式121()log x f x k-+>. 解:(1)由题知(0)0f =,得1a =,此时21212112()()021212112x x x xx x x xf x f x ------+-=+=+=++++, 即()f x 为奇函数.(2)∵21212121x x x y -==-++,得12(11)1x y y y +=-<<-, ∴121()log (11)1x f x x x -+=-<<-.(3)∵121()log x f x k -+>,∴11111x x x k x ++⎧>⎪-⎨⎪-<<⎩,∴111x k x >-⎧⎨-<<⎩,①当02k <<时,原不等式的解集{|11}x k x -<<,②当2k ≥时,原不等式的解集{|11}x x -<<. (四)巩固练习:1.设21(01)(){2(10)x x x f x x +≤≤=-≤<,则15()4f -= . 2.设0,1a a >≠,函数log a y x =的反函数和1log ay x =的反函数的图象关于 ( )()A x 轴对称 ()B y 轴对称 ()C y x =轴对称 ()D 原点对称3.已知函数1()()12x f x =+,则1()f x --的图象只可能是 ( )()A ()B ()C()D 4.若6y ax =-与13y x b =+的图象关于直线y x =对称,且点(,)b a 在指数函数()f x 的图象上,则()f x = .。
高一同步 数学反函数讲义编号:1.反函数定义:函数y=f(x)(x ∈A ) 中,设它的值域为 C .我们根据这个函数中x,y 的关系,用 y 把 x 表示出来,得到 x = ϕ (y) .如果对于y 在C 中的任何一个值,通过x = ϕ (y),x 在A 中都有唯一的值和它对应,那么, x = ϕ (y)就表示y 是自变量,x 是自变量 y 的函数.这样的函数 x = ϕ (y)(y ∈C )叫做函数y=f(x)(x ∈A )的反函数.记作: )(1y f x -=.考虑到“用 x 表示自变量, y 表示函数”的习惯,将)(1y fx -=中的x 与y 对调写成)(1x f y -=.2.引导分析: 1)反函数也是函数; 2)对应法则为互逆运算;3)定义中的“如果”意味着对于一个任意的函数y=f(x)来说不一定有反函数;4)函数y=f(x)的定义域、值域分别是函数x=f 1-(y)的值域、定义域; 5)函数y=f(x)与x=f 1-(y)互为反函数; 6)要理解好符号f 1-; 7)交换变量x 、y 的原因. 3.两次转换x 、y 的对应关系(原函数中的自变量x 与反函数中的函数值y 是等价的,原函数中的函数值y 与反函数中的自变量x 是等价的.) 4.函数与其反函数的关系例1.(★☆☆☆☆)求下列函数的反函数:③ )(13R x x y ∈-=; ②)(13R x x y ∈+=;③)0(1≥+=x x y ; ④)1,(132≠∈-+=x R x x x y 且.反函数定义一般地,设函数))((A x x f y ∈=的值域是C ,根据这个函数中x,y 的关系,用y 把x 表示出,得到x=ϕ(y). 若对于y 在C 中的任何一个值,通过x=ϕ(y),x 在A 中都有唯一的值和它对应,那么,x=ϕ(y)就表示y 是自变量,x 是自变量y 的函数,这样的函数x=ϕ(y) (y ∈C)叫做函数))((A x x f y ∈=的反函数,记作)(1y fx -=,习惯上改写成)(1x f y -=注1:不是所有函数都有反函数反函数也是函数,因为它符合函数的定义,从反函数的定义可知,对于任意一个函数)(x f y =来说,不一定有反函数,如2x y =,只有“一一映射”确定的函数才有反函数,2x y =,),0[+∞∈x 有反函数是x y =注2:互为反函数定义域、值域的关系从映射的定义可知,函数)(x f y =是定义域A 到值域C 的映射,而它的反函数)(1x f y -=是集合C 到集合A 的映射,因此,函数)(x f y =的定义域正好是它的反函数)(1x f y -=的值域;函数)(x f y =的值域正好是它的反函数)(1x f y -=的定义域x f f y 1-==x x f f x x ff ==--)]([,)]([11(如下表):注3:)(1x f y -=的反函数若函数)(x f y =有反函数)(1x f y -=,那么函数)(1x f y -=的反函数就是)(x f y =,这就是说,函数)(x f y =与)(1x fy -=互为反函数1. 结合知识点一和方法例2.(★☆☆☆☆)求函数23-=x y (R x ∈)的反函数,并画出原来的函数和它的反函数的图像例3:(★★☆☆☆)求函数 211x y --=(-1<x<0)的反函数例4:(★★☆☆☆) 已知)(x f = 2x -2x(x ≥2),求)(1x f-.例5.(★★☆☆☆)求函数)0(2<=x xy 的反函数,并利用对称关系作出其反函数的图象.例6.(★★★☆☆)求函数2385-+=x x y 的值域.例7. (★★★☆☆)已知)(x f =211x-(x<-1),求)31(1--f ;1. (★☆☆☆☆)判断下列函数在各自给的区间内是否有反函数。
高一数学 2.4反函数(备课资料) 大纲人教版必修一、反函数的学习因反函数是函数知识中重要的一部分内容,我们若能从函数的角度去理解反函数的概念,则一定能从中发现反函数的本质,并能顺利地应用函数与其反函数间的关系去解决相关问题.1.明确“函数与反函数”的关系(1)一个函数具有反函数的充要条件是确定这个函数的映射是从定义域到值域上的一一映射.(2)对于任一函数f (x )不一定有反函数,如果有反函数,那么原函数f (x )与它的反函数是互为反函数.(3)原函数的定义域是反函数的值域,原函数的值域是反函数的定义域.(4)一般的偶函数不存在反函数,奇函数不一定存在反函数.(5)原函数与其反函数在对应区间上的单调性是一致的.2.深入学习对“反函数”的求法[例]求下列函数的反函数(1)y =bax b ax +- (2)y =⎩⎨⎧<+-≥+)0(2)0(222x x x x x x (1)分析:由于a 、B 不定,故须分类讨论:当a =0,b ≠0时,y =-1,此时不存在反函数当a ≠0,b =0时,y =1(x ≠0),此时不存在反函数.当a ≠0,b ≠0时,函数y =bax b ax +-的值域是y ∈{y ∈R |y ≠1} 由y =bax b ax +-解得:x =ay a by b -+ (a ≠0,y ≠1) ∴当a ≠0,b ≠0时,函数y =bax b ax +-的反函数是: y =aya byb -+(x ≠1) 评述:熟练掌握求反函数的基本步骤是准确求出函数的反函数的必要条件.(2)分析:求分段函数的反函数时,先在各段求出相应的反函数,再将其合并.解:当x ≥0时,y =x 2+2x =(x +1)2-1∴x =-1+y +1∵x ≥0 ∴y =x 2+2x ≥0∴当x ≥0时,此段函数的反函数是 y =-1+1+x (x ≥0)当x <0时,y =-x 2+2x =-(x -1)2+1∴x =1-y -1∵x <0,∴y =-x 2+2x <0∴当x <0时,此段函数的反函数是 y =1-x -1(x <0)综上所述:所给函数的反函数为y =⎪⎩⎪⎨⎧<--≥++-0110 11x x x x 评述:(1)在求分段函数的每一段相应的反函数时,仍严格按照求反函数的基本步骤进行.(2)分段函数的反函数被求的过程,能让我们体会到“先分后合”的思想在数学中的渗透作用.3.灵活应用“反函数”于解题中[例1]求函数y =521+-x x 的值域 分析:此题除用前面介绍的“分离系数”法求得其值域外,也可通过求其反函数的定义域得到原函数的值域这一途径.解:由y =521+-x x 得x ≠-25 ∴有:y (2x +5)=1-x∴x =1251+-y y ∴反函数为y =1251+-x x (x ∈R 且x ≠-21); 因而此函数y =521+-x x 的值域为y ∈{y ∈R |y ≠-21} 评述:求函数的值域可以转化为求其反函数的定义域,这种方法往往可以使问题有“出奇制胜”的效果,它的优越性将随着我们对知识的继续深入学习体现得越发明显.[例2]已知函数f (x )=112-+x x 求f -1[[f (x )],f [f -1(x )]. 解:由y =112-+x x (x ≠1)可得 y (x -1)=2x +1,∴x =21-+y y ∴反函数f -1(x )=21-+x x (x ≠2) ∴f -1[f (x )]=f -1(112-+x x )=21121112--++-+x x x x =xf [f -1(x )]=f (21-+x x )=1211)21(2--++-+x x x x =x 评述:由上题我们发现,互为反函数的两个函数f (x )与f -1(x )之间符号互逆性,即f -1[f (x )]=x ,f [f -1(x )]=x请读者利用以上结论试探索:若函数y =f (x )的反函数是y =g(x ),且f (m )=n (mn ≠0)则g(n )等于多少?[例3]已知函数y =f (x )在定义域(-∞,0]内存在反函数,且f (x -1)=x 2-2x ,求f -1(-31). 分析:此题一般思路是:先求出f (x ),进而求出f -1(x ),将-31代入f -1(x )中求得f -1(-31). 解:∵f (x -1)=x 2-2x =(x -1)2-1∴f (x )=x 2-1(x ≤0)∵当x ≤0时,f (x )=x 2-1≥-1∴函数f (x )的值域为[-1,+∞)∵f (x )=x 2-1(x ≤0)得:x =-1+y (y =f (x )) ∴得函数f (x )的反函数是:y =-1+x (x ≥-1)∴f -1(-31)=-36131-=+- 评述:以上解题思路简单但运算麻烦,若不仔细认真,将会导致结果错误.如下解法将会体现一种技能技巧,使解题过程大大简化:解:∵f (x -1)=x 2-2x =(x -1)2-1∴f (x )=x 2-1(x ≤0)当x 2-1=-31(x ≤0)时 有:x =-36 ∴f -1(-31)=-36 评述:比较以上两种解法,请读者自行归纳总结它们解题过程繁简差别的原因,并试用简捷明快的思路解决以下问题:问题:已知函数f (x )=c bx a x ++的反函数是f -1(x )=325++-x x ,求常数a ,b ,c 值是多少?提示:选取由f -1(x )去求f (x )这一优秀途径解决此问题.二、参考练习题1.求下列函数的反函数(1)y =1-1-x (x ≥1)答案:y =x 2-2x +2(x ∈(-∞,1])(2)y =|x -1| (x ≤1)答案:y =1-x (x ∈[0,+∞)(3)y =x 2-2x +3 (x ∈(1,+∞))答案:y =1-2-x (x ∈(2,+∞))(4)y =x |x |+2x 答案:y =⎪⎩⎪⎨⎧<+--≥-+)0(11)0(11x x x x (5)f (x )=⎩⎨⎧>+≤+-)0(22)0(12x x x x答案:f -1(x )=⎪⎩⎪⎨⎧>-≤--)2(121)1(1x x x x2.解答题(1)已知f (x )=f -1(x )=xm x ++12(x ≠-m ),求实数m ? 答案:m =-2提示:利用相同函数的定义域、值域完全相同这一性质,巧妙地结合互为反函数的性质去解.(2)已知f -1[f -1(x )]=25x +30,则一次函数的解析式是什么?答案:f (x )=5x -1或f (x )=-51x -23 (3)已知f (x )=10x -2-2,求f -1(8)的值答案:f -1(8)=3(4)已知函数f (x )的图象过点(0,1),则f (4-x )的反函数的图象一定过哪个点? 答案:(1,4)(5)已知函数f (x )=341++x mx ,它的反函数是f -1(x )=2431--x x ,求m 的值? 答案:m =2(6)已知函数f (x )=x 2+2x +1(x ≥-1)的图象为C 1,它的反函数图象为C 2,请画出C 1,C 2并观察它们之间的位置关系有何特点?若又有一个函数的图象C 3与C 2关于y 轴对称,求这个函数的解析式?参考答案:(图略),C 1,C 2关于直线y =x 对称,所求函数的解析式为y =1--x (x ≤0)说明:本题旨在让学生提前思考练习,为下节课“互为反函数的函数图象间的关系”做准备.●备课资料“互为反函数的函数图象间的关系”的应用互为反函数的两个函数的图象间的关系是在反函数定义上进行的,而“将图象的对称转化为图象上任意一点的对称”的这种方法在我们解决有关函数的问题中大大显示了它的简捷性与技巧性.[例1]已知函数f (x )=b ax +(x ≥-ab )的图象过点(1,2),它的反函数图象也过此点,求函数f (x )的解析式. 解法一:由y =b ax +得x =ab y -2 ∴当x ≥-ab 时,y ≥0 ∴函数f (x )=b ax +(x ≥-ab )的反函数是f -1(x )=a b x -2(x ≥0) 又∵点(1,2)既在函数f (x )上,也在函数f -1(x )上 ∴有⎪⎩⎪⎨⎧-=+=a b b a 122 解得:a =-3,b =7∴函数f (x )=73+-x (x ≥-37) 解法二:由互为反函数的两个函数图象间的关系以及点(1,2)关于直线y =x 的对点为(2,1),可以得到函数f (x )的图象还过点(2,1) ∴得到⎩⎨⎧+=+=ba b a 212解得:a =-3 b =7∴函数f (x )=73+-x (x ≥-37) 评述:比较上述两种不同解法的区别:我们发现解法一思路自然,但过程较繁,解法二思路敏捷避免了求反函数这一步,从而减少了运算量,但它的掌握需要我们特别熟悉互为反函数的两个函数间的关系.[例2]已知函数f (x )=132-+x x ,函数y =g(x )的图象与函数y =f -1(x +1)的图象关于直线y =x 对称,求g(5)的值.分析:此题需要找到g(x )才能求出g(5)的值.解:∵y =f (x )=132-+x x ∴x =1+25-y 又∵y ≠2∴f -1(x )=1+25-x (x ≠0) ∴f -1(x +1)=1+15-x 又∵y =f -1(x +1)=1+15-x ∴x =1+15-y ∴y ≠1 ∴f -1(x +1)的反函数g(x )=1+15-x (x ≠1) ∴g(5)=1+45=49 评述:(1)以上解法是一种通用方法,思路简单自然,不失为一种能体现我们扎实的基本功和脚踏实地的学习精神的好方法,故应引起足够重视.(2)对于以上例2,也可以有如下巧解:∵g(x )是f -1(x +1)的反函数∴g(5)其实等于f -1(x +1)=5时的x 值,∵f [f -1(x +1)]=f (5)∴x =f (5)-1=413-1=49 显然,这种解法给我们以一种恰到好处的感觉.。