定向井轨迹计算
- 格式:ppt
- 大小:622.00 KB
- 文档页数:41
定向井井身轨迹计算公式井身轨迹计算公式通常基于方位角和倾角的变化,通过测量这两个参数并施加合适的计算方法,从而获得井身轨迹的实时数据。
以下为常见的井身轨迹计算公式的详细介绍。
1.一般井身轨迹计算公式:在一般情况下,井身轨迹可以通过使用方位角(Azimuth)和倾角(Inclination)来计算。
方位角是井身相对于参考轴线的平面角度,倾角是井身相对于参考轴线的垂直角度。
(1)水平井身轨迹计算公式:对于水平井身,方向角为固定值0度,而倾角根据测量得到。
根据勾股定理的公式,可重写为:X=COS(倾角)*MDY=SIN(倾角)*MDZ=0其中,X、Y、Z分别是井身在三维空间坐标系中的X、Y、Z轴坐标,MD为测量的累计测深或测距。
(2)非水平井身轨迹计算公式:对于非水平井身,方向角和倾角都是动态变化的。
根据测量得到的方向角和倾角,可以使用三角函数计算井身在三维空间中的坐标位置。
X=COS(方位角)*COS(倾角)*MDY=SIN(方位角)*COS(倾角)*MDZ=SIN(倾角)*MD其中,X、Y、Z分别是井身在三维空间坐标系中的X、Y、Z轴坐标,MD为测量的累计测深或测距。
2.井身轨迹计算方法:井身轨迹的计算方法有很多,以下是其中两种常见的方法:(1)正演计算法:正演计算法是一种基于初始位置和起始方向进行连续迭代计算的方法,通过在每个测深点处使用三角函数和向量运算,根据方向角和倾角计算后面的点的位置。
这种方法适用于复杂的三维轨迹计算。
(2)逆演计算法:逆演计算法是一种从目标位置逆向计算的方法,它通过目标位置和方向,以及前一个点的位置和方向,通过反向的三角函数和向量运算计算前一个点的位置。
这种方法适用于实时测量和校正井身轨迹。
3.计算误差和改进方法:根据测量过程和仪器的精度,井身轨迹计算可能会引入误差。
为了减小误差,可以采用以下方法:(1)校正误差:在测量过程中,根据测量仪器的精度和标定,进行误差校正和修正。
煤矿井下近水平定向钻孔轨迹描述与计算方法孙荣军【摘要】摘要:本文在分析地面与井下钻孔轨迹描述习惯不同的基础上,结合煤矿井下定向钻孔施工的特点建立了钻孔轨迹描述体系,提出了描述钻孔轨迹空间位置的主要几何参数的定义和表示方法。
通过分析常用钻孔轨迹坐标计算方法的适用性,提出适合煤矿井下施工特点的最佳计算方法模型,为井下定向钻孔轨迹设计和控制提供了理论依据。
【期刊名称】中国煤层气【年(卷),期】2010(007)004【总页数】5【关键词】关键词:煤矿井下定向钻孔轨迹描述坐标计算1 前言随着煤矿综合机械化采煤技术的发展,煤矿安全生产对井下勘探孔、放水孔、瓦斯抽采孔等施工装备和技术的要求也不断提高,不但要求钻孔施工装备具有较高的钻进效率,同时要能够实现对钻孔轨迹的精确控制[1]。
定向钻进技术以其钻进速度快、定向精度高、“一孔多分支”等优点,已成为高产高效煤矿井下钻孔施工急需的技术手段。
要进行定向钻孔轨迹设计,除根据实际情况建立相应的空间坐标系外,还要搞清楚表征钻孔轨迹空间位置的点、线、面和角之间的关系以及钻孔轨迹的描述方法和计算方法,这些都是进行钻孔轨迹设计和计算的理论基础。
2 钻孔轨迹描述坐标系的建立2.1 地面与井下钻孔轨迹描述体系的不同煤矿井下水平定向钻孔轨迹和地面近水平定向钻孔轨迹一样都是由若干空间直线或曲线组成的,所不同的是地面近水平定向钻孔轨迹都是以地面为参照物建立相应的空间坐标系,而煤矿井下水平定向钻孔则必须以井下钻场为参照物建立空间坐标系。
要进行钻孔轨迹设计,除根据实际情况建立相应的空间坐标系外,还要搞清楚表征钻孔轨迹空间位置的点、线、面和角之间的关系以及钻孔轨迹的描述方法和计算方法,这些都是进行钻孔轨迹设计和计算的理论基础。
地面石油钻井和非开挖导向钻进都有相应的轨迹描述方法体系,而井下随钻测量技术由于尚处于起步阶段,钻孔轨迹描述体系尚不系统。
根据地面与井下钻孔形式和表述习惯不同,其坐标系的建立应有以下不同: (1)参照系不同,地面钻孔一般都以地表平面为参照,而井下习惯以开孔端面为参照;(2)垂直轴(Z)正方向不同,地面一般以垂直向下为正方向,而井下习惯以垂直向上为正方向;(3)井斜描述主参数不同,地面一般以钻孔当前轴线与垂直轴的夹角(即顶角)作为主参数,而井下习惯以钻孔当前轴线与水平轴的夹角 (即倾角)作为主参数; (4)所遵循的坐标系螺旋法则不同,地面一般符合右手螺旋,而井下一般符合左手螺旋,其主要原因是Z轴方向发生了变化。
Navigator定向井水平井轨迹设计及计算分析系统 简介 Navigator定向井水平井轨迹设计及计算分析系统,是为中国陆上石油钻井行业量身定制的一套定向井工程辅助系统。
它可以帮助定向井工程师合理地设计一个井的轨道,在轨迹控制过程中进行实钻计算和轨迹分析,无论何种情况,该系统都会为操作者提供准确、高效、灵活的解决方案和计算结果。
Navigator系统拥有轨道设计、实钻计算分析、防碰扫描等几大功能模块。
轨道设计模块提供十几种设计模型,可以进行任何类型轨道设计;实钻计算准确可靠,轨迹分析功能丰富,实用;Navigator的设计及计算方法、报表输出符合最新的行业标准和国际惯例,全中文界面,图形实时显示、图片编辑、输出功能强大,是一套操作简单、先进实用的轨迹软件。
主要的功能:1、轨道设计Navigator提供六种二维剖面设计模型和五种三维设计模型,几乎涵盖了所有国内外石油钻井行业可能出现的轨道形式。
无论是从井口开始的初始设计,还是在定向井工程中的扭方位待钻设计、侧钻设计,Navigator都可以轻松完成。
并且,设计操作简洁而灵活,用户可在原设计轨道上任意添加新的井段,以适应定向井、水平井无限延伸的要求。
所有的设计模型均提供设计轨道优选功能,系统自动计算出可能的轨道备选。
设计工程师可以根据自己现有的工具、仪器的配套能力和已经获得的经验,遵循技术经济效益最大化的原则,选择最满意的设计轨道方案。
2、实钻计算Navigator提供了准确的实钻测斜计算,根据用户选择的实钻计算方法(最小曲率法和曲率半径法),可计算出垂深、北坐标、东坐标、视平移、狗腿度、井斜变化率、方位变化率、闭合方位角和工具面角(装置角)等9项参数,为用户提供完整、丰富的数据信息。
数据输入支持数据整体输入和手动录入两种方式。
手动录入提供了界面友好的测斜计算表格,用户只需添加、修改、删除计算表格的数据,即可完成测斜计算。
系统还为用户提供了极其人性化的键盘及鼠标操作模式使计算表格具备了自动跳格、自动换行和自动赋值功能,能够极大方便用户进行数据录入工作。
1.井眼轨迹的基本概念1.1定向井的定义定向井是按预先设计的井斜角、方位角及井眼轴线形状进行钻进的井。
(井斜控制是使井眼按规定的井斜、狗腿严重度、水平位移等限制条件的钻井过程)。
1.2井眼轨迹的基本参数所谓井眼轨迹,实指井眼轴线。
测斜:一口实钻井的井眼轴线乃是一条空间曲线。
为了进行轨迹控制,就要了解这条空间曲线的形状,就要进行轨迹测量,这就是“测斜”。
测点与测段:目前常用的测斜方法并不是连续测斜,而是每隔一定长度的井段测一个点。
这些井段被称为“测段”,这些点被称为“测点”。
基本参数:测斜仪器在每个点上测得的参数有三个,即井深、井斜角和井斜方位角。
这三个参数就是轨迹的基本参数。
井深:指井口(通常以转盘面为基准)至测点的井眼长度,也有人称之为斜深,国外称为测量井深(Measure Depth)。
井深是以钻柱或电缆的长度来量测。
井深既是测点的基本参数之一,又是表明测点位置的标志。
井深常以字母L表示,单位为米(m)。
井深的增量称为井段,以ΔL表示。
二测点之间的井段长度称为段长。
一个测段的两个测点中,井深小的称为上测点,井深大的称为下测点。
井深的增量总是下测点井深减去上测点井深。
井斜角:井眼轴线上每一点都有自己的井眼前进方向。
过井眼轴线上的某点作井眼轴线的切线,该切线向井眼前进方向延伸的部分称为井眼方向线。
井眼方向线与重力线之间的夹角就是井斜角。
井斜角常以希腊字母α表示,单位为度(°)。
一个测段内井斜角的增量总是下测点井斜角减去上测点井斜角,以Δα表示。
井斜方位角:井眼轴线上每一点,都有其井眼方位线;称为井眼方位线,或井斜方位线。
井眼轴线上某点处的井眼方向线投影到水平面上,即为该点的井眼方位线(井斜方位线)以正北方位线为始边,顺时针方向旋转到井眼方位线(井斜方位线)上所转过的角度,即井眼方位角。
井斜方位角常以字母θ表示,单位为度(°)。
井斜方位角的增量是下测点的井斜方位角减去上测点的井斜方位角,以Δθ表示。
煤矿井下定向钻孔轨迹计算方法
煤矿井下定向钻孔轨迹的计算主要依赖于方位角和倾角。
方位角是井身相对于参考轴线的平面角度,而倾角则是井身相对于参考轴线的垂直角度。
一般来说,井身轨迹可以通过以下步骤进行计算:
确定起始点和目标点的坐标。
计算起始点和目标点之间的方位角和倾角。
根据方位角和倾角,利用三角函数计算出每一段轨迹的坐标变化。
将每一段轨迹的坐标变化累加,得到整个钻孔轨迹的坐标。
以上步骤可以根据具体的矿井情况和钻孔要求进行适当的调整和优化。
需要注意的是,煤矿井下定向钻孔轨迹的计算涉及到多个因素和变量,因此在实际操作中需要根据具体情况进行综合考虑和分析。
此外,还有一些专业的轨迹计算软件可以用于煤矿井下定向钻孔轨迹的计算,这些软件可以根据输入的参数和条件,自动计算出钻孔轨迹的坐标和参数,提高计算精度和效率。
关于子午线收敛角校正问题韩志勇(中国石油大学石油工程学院 山东东营 257061)摘要:本文论述了子午线收敛角校正在定向井轨迹计算中的重要性,介绍了子午线收敛角的概念、定义和性质,介绍了子午线收敛角的计算方法,最后介绍了在定向井轨迹计算中进行子午线收敛角校正的方法。
希望我国各油田尽快推行标准规定的子午线收敛角校正。
关键词:定向井;轨迹计算;子午线收敛角;磁偏角;高斯-克吕格投影;方位角参照系;SY/T5435-2003《定向井轨道设计与轨迹计算》新标准,在轨迹计算中有一条很重要的规定:“井斜方位角应进行磁偏角和子午线收敛角校正。
”这是我国石油天然气行业标准关于子午线收敛角校正问题的第一次明确规定。
井斜方位角的磁偏角校正,大约从上世纪80年代初开始,逐渐在我国各油田推行,现在应该是没有任何疑义了。
井斜方位角的子午线收敛角校正问题,早在上世纪90年代初就有人提出来[1],但是直到现在许多油田还没有推行,许多工程技术人员还不了解其必要性和重要性。
本文的目的在于宣传和贯彻新标准的精神,促进我国各油田尽快推行子午线收敛角的校正。
1.子午线收敛角校正的重要性让我方某油田们先看一个算例。
假如在我国北,有一口设计位移1000m 的定向井,校正是非常必要非常重要的。
水平位移越大的井,越显得重万美元损失的典代以来,已经大量应用水平井,大位移井也必将大量出现。
子午2.子午线收敛角的概念定向井的井位和目标点都是用坐标值来表示的。
坐标值又与常见的大地坐标系如图1所示,某点位置设计靶区半径30m ,井位所在地为北纬42度58分,东经89度58分,子午线收敛角2.02。
在完钻后进行轨迹计算时,只进行了磁偏角的校正,没有进行子午线收敛角校正。
假如计算结果是靶心距等于零(100%中靶),但是实际的靶心距却是35.26m ,如图1所示的A 点,已经脱靶了!这个算例说明,子午线收敛角的要。
即使对于目前广泛应用的中半径水平井,按靶前位移500m 算,1.5度的子午线收敛角,也会造成超过13m 的中靶偏差。