b2
15
材 料 力 学 Ⅰ 电 子 教 案
第四章 弯曲应力
(2) 圆截面
在等直圆杆扭转问题(§3-4)中已求得:
πd 4 Ip 2 d A A 32
d
o y
z
dA
z
y
而由图可见,ρ2=y2+z2 , 从而知
πd 4 Ip 2 d A y2 d A z2 d A I z I y A A A 32
梁横截面上的正应力公式。
My Iz
M为截面的弯矩,y为欲求应力点至 中性轴的距离,Iz为截面对中性轴的 惯性矩。 σ
x
注意: 1.当弯矩为正时,梁下部产 生拉应力;上部产生压应力; 弯矩为负时,则相反。一般用 计算正应力时,M与y均取正值, 而正应力的拉、压由观察判断。
M
12
材 料 力 学 Ⅰ 电 子 教 案
max
式中,[]为材料的许用弯曲正应力。
20
材 料 力 学 Ⅰ 电 子 教 案
第四章 弯曲应力
对于中性轴为横截面对称轴的梁,上述强度条件可写作
M max Wz
由拉、压许用应力[t]和[c]不相等的铸铁等脆性材 料制成的梁,为充分发挥材料的强度,其横截面上的中性 轴往往不是对称轴,以尽量使梁的最大工作拉应力t,max和
2.公式是根据纯弯曲的情形导出的,但对于横向 弯曲(即剪力、弯矩均不为零的情形),也可以足 够精确地用来计算正应力。 3. 公式虽然是针对梁横截面有对称轴的情形 推出的,但对于不对称截面,公式的适用范围推 广到不对称截面梁,且外力作用面通过一个形心 主轴的情形。
13
材 料 力 学 Ⅰ 电 子 教 案
2.所有的纵线都弯曲 成曲线。靠近底面的 纵线伸长,靠近顶面 的纵线缩短。而位于 中间的某一条纵线O-O ,其长度不变。