2017_2018学年八年级数学下册9中心对称图形_平行四边形9.1图形的旋转导学案无答案
- 格式:doc
- 大小:120.00 KB
- 文档页数:5
第9讲图形的旋转与中心对称目标导航1、掌握旋转的概念,探索它的基本性质,能够按要求作出简单平面图形旋转后的图形;2、掌握旋转对称图形、中心对称图形和中心对称的概念,理解他们的区别和联系,并会判别给出的图形是旋转对称图形还是中心对称图形;3、会画出给定条件的旋转对称图形或中心对称图形以及会画已知图形关于已知点成中心对称的图形.知识精讲知识点01 生活中的旋转现象(1)旋转的定义:在平面内,把一个图形绕着某一个点O旋转一个角度的图形变换叫做旋转.点O叫做旋转中心,转动的角叫做旋转角,如果图形上的点P经过旋转变为点P′,那么这两个点叫做对应点.(2)注意:①旋转是围绕一点旋转一定的角度的图形变换,因而旋转一定有旋转中心和旋转角,且旋转前后图形能够重合,这时判断旋转的关键.②旋转中心是点而不是线,旋转必须指出旋转方向.③旋转的范围是平面内的旋转,否则有可能旋转成立体图形,因而要注意此点.【知识拓展1】(2021秋•建华区期末)时钟的时针从上午的8时到上午10时,时针旋转的旋转角为.【即学即练1】(2021秋•太原期中)几何图形由点、线、面组成,点动成线、线动成面、面动成体.下列现象中能反映“线动成面”的是()A.流星划过夜空B.笔尖在纸上快速滑动C.汽车雨刷的转动D.旋转门的旋转【即学即练2】(2021春•凤翔县期末)下列运动形式属于旋转的是()A.在空中上升的氢气球B.飞驰的火车C.时钟上钟摆的摆动D.运动员掷出的标枪知识点02 旋转的性质(1)旋转的性质:①对应点到旋转中心的距离相等.②对应点与旋转中心所连线段的夹角等于旋转角.③旋转前、后的图形全等.(2)旋转三要素:①旋转中心;②旋转方向;③旋转角度.注意:三要素中只要任意改变一个,图形就会不一样.【知识拓展2】(2021秋•泰山区期末)小明把一副三角板按如图所示叠放在一起,固定三角板ABC,将另一块三角板DEF绕公共顶点B顺时针旋转(旋转角度不超过180°).若两块三角板有一边平行,则三角板DEF旋转的度数可能是()A.15°或45°B.15°或45°或90°C.45°或90°或135°D.15°或45°或90°或135°【即学即练1】(2021秋•湖北期末)如图,在△ABC中,∠BAC=110°,将△ABC绕点C逆时针旋转得到△DEC,点A,B的对应点分别为D,E,连接AD.当点A,D,E在同一条直线上时,则旋转角∠ACD的度数为()A.50°B.40°C.30°D.20°【即学即练2】(2021秋•莆田期末)“三等分角”大约是在公元前五世纪由古希腊人提出来的.借助如图①所示的“三等分角仪”能三等分任意一角.如图②,这个“三等分角仪”由两根有槽的棒OA,OB组成,两根棒在O点相连并可绕O转动,点C固定,点D,E可在槽中滑动,OC=CD=DE.若∠BDE=81°,则∠AOB的度数是()A.24°B.27°C.30°D.33°知识点03 旋转对称图形(1)旋转对称图形如果某一个图形围绕某一点旋转一定的角度(小于360°)后能与原图形重合,那么这个图形就叫做旋转对称图形.(2)常见的旋转对称图形有:线段,正多边形,平行四边形,圆等.【知识拓展3】(2021秋•北仑区期末)下列正多边形,绕其中心旋转72°后,能和自身重合的是()A.B.C.D.【即学即练1】(2021秋•荆门期末)把如图的五角星绕着它的中心旋转一定角度后与自身重合,则这个旋转角度可能是()A.36°B.72°C.90°D.108°【即学即练2】(2021秋•丰润区期末)如图,五角星的五个顶点等分圆周,把这个图形绕着圆心顺时针旋转一定的角度后能与自身重合,那么这个角度至少为()A.60°B.72°C.75°D.90°知识点04中心对称(1)中心对称的定义把一个图形绕着某个点旋转180°,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称,这个点叫做对称中心,这两个图形中的对应点叫做关于中心的对称点..(2)中心对称的性质①关于中心对称的两个图形能够完全重合;②关于中心对称的两个图形,对应点的连线都经过对称中心,并且被对称中心平分.【知识拓展4】(2021秋•淮南月考)如图,△ABC与△A′B'C'关于O成中心对称,下列结论中不成立的是()A.OC=OC′B.∠ABC=∠A'C'B'C.点B的对称点是B′D.BC∥B'C'【即学即练1】(2021秋•黄陂区期中)如图,点A,B分别是两个半圆的圆心,则该图案的对称中心是()A.点A B.点BC.线段AB的中点D.无法确定【即学即练2】(2021春•清苑区期末)如图,△ABC与△A′B′C′关于点O成中心对称,则下列结论不成立的是()A.点A与点A′是对称点B.BO=B′OC.AB∥A′B′D.∠ACB=∠C′A′B′知识点05中心对称图形(1)定义把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心.注意:中心对称图形和中心对称不同,中心对称是两个图形之间的关系,而中心对称图形是指一个图形自身的特点,这点应注意区分,它们性质相同,应用方法相同.(2)常见的中心对称图形平行四边形、圆形、正方形、长方形等等.【知识拓展5】(2021秋•交城县期末)下列交通标志中,是中心对称图形的是()A.向右和向左转弯B.靠左侧道路行驶C.禁止驶入D.环岛行驶【即学即练1】(2021秋•铅山县期末)下列图形中,是中心对称图形但不是轴对称图形的是()A.B.C.D.知识点06关于原点对称的点的坐标关于原点对称的点的坐标特点(1)两个点关于原点对称时,它们的坐标符号相反,即点P(x,y)关于原点O的对称点是P′(﹣x,﹣y).(2)关于原点对称的点或图形属于中心对称,它是中心对称在平面直角坐标系中的应用,它具有中心对称的所有性质.但它主要是用坐标变化确定图形.注意:运用时要熟练掌握,可以不用图画和结合坐标系,只根据符号变化直接写出对应点的坐标.【知识拓展6】(2021秋•沙河口区期末)在平面直角坐标系中,点P、点Q关于原点对称,若点P的坐标是(2,3),则点Q的坐标是.【即学即练1】(2021秋•新吴区期末)若点P(a,2)点Q(﹣4,b)关于原点对称,则点M (a,b)在第象限.【即学即练2】(2021秋•开州区期末)平面直角坐标系中点P(7,﹣9)关于原点对称的点的坐标是()A.(﹣9,7)B.(﹣7,9)C.(7,9)D.(﹣7,﹣9)知识点07作图-旋转变换(1)旋转图形的作法:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.(2)旋转作图有自己独特的特点,决定图形位置的因素较多,旋转角度、旋转方向、旋转中心,任意不同,位置就不同,但得到的图形全等.【知识拓展7】(2021秋•南开区期末)如图,已知点A(2,0),B(0,4),C(2,4),若在所给的网格中存在一点D,使得CD与AB垂直且相等.(1)直接写出点D的坐标;(2)将直线AB绕某一点旋转一定角度,使其与线段CD重合,则这个旋转中心的坐标为.【即学即练1】(2021秋•南沙区期末)如图,将△ABC绕点A顺时针旋转α,得到△ADE,若点D 恰好在CB的延长线上,则∠CDE等于()A.αB.90°+C.90°﹣D.180°﹣2α【即学即练2】(2021秋•铅山县期末)如图,在平面直角坐标系中,点A、B的坐标分别为A(﹣2,3)、B(﹣3,1).(1)画出△AOB绕点O顺时针旋转90°后的△A1OB1;(2)求四边形AOA1B1的面积.例题1.(2020·浙江八年级期末)如图,在Rt ABC 中,90C ∠=︒,点P 为AC 边上的一点,将线段AP 绕点A 顺时针方向旋转(点P 对应点'',P AP AP =).当AP 旋转至AP AB'⊥时,点'B P P ,,恰好在同一直线上,此时作'⊥P E AC 于点E .(1)求证:∠=∠CBP ABP ;(2)若4,8AB BC AC -==,求PBC 的面积;(3)在(2)的条件下,点N 为边BC 上一动点,点M 为边BP 上一个动点,连接MC MN ,,求MC MN +的最小值.能力拓展【变式1】(2021·河南郑州市·八年级期末)一副直角三角尺叠放如图1所示,现将45︒的三角尺ADE 固定不动,将含30的三角尺ABC 绕顶点A 顺时针转动,使两块三角尺至少有一组边互相平行.如图2:当角60CAE ∠=︒时,//BC DE .求其它所有可能符合条件的角()0180CAE CAE ∠︒<∠<︒的度数,画出对应的图形并证明.【变式2】(2021·内蒙古呼伦贝尔市·八年级期末)已知:如图1,AOB 和COD 都是等边三角形.(1)求证:①AC=BD ;②∠APB=60°;(2)如图2,在AOB 和COD 中,OA =OB ,OC =OD ,∠AOB=∠COD=α,则AC 与BD 间的等量关系为 ,∠APB的大小为模块三、中心对称例题1.(2020·辽宁锦州市·八年级期末)在边长为1个单位长度的正方形网格中建立如图所示的平面直角坐标系,△ABC 的顶点都在格点上.请回答下列问题:(1)作出△ABC 向左平移4个单位长度后得到111A B C △,并写出1A 的坐标;(2)作出△ABC 关于原点O 对称的222A B C △并写出22B C ,点的坐标.【变式1】(2021·山东济南市·八年级期末)如图网格中,△AOB 的顶点均在格点上,点A 、B 的坐标分别是(3,2)A 、()1,3B .(1)点A 关于点O 中心对称点的坐标为(_______,_______);(2)△AOB 绕点O 顺时针旋转90︒后得到11AOB ,在方格纸中画出11AOB ,并写出点1B 的坐标(______,_______);(3)在y 轴上找一点P ,使得PA PB +最小,请在图中标出点P 的位置,并求出这个最小值.【变式2】(2021·山东烟台市·八年级期末)如图所示,网格中每个小正方冠的边长为1,请你认真观察图(1)中的三个网格中阴影部分构成的图案.解答下列问题:(1)图①中的三个图案面积都是,且都具有一个共同特征:都是对称图形;(2)请在图②中设计出一个面积与图①阴影部分面积相同,且具备上述共同特征的图案,要求所画图案不能与图①中所给出的图案相同.分层提分题组A 基础过关练一.选择题(共8小题)1.(2021秋•澄海区期末)如图,将△AOB绕点O按逆时针方向旋转60°后得到△A′OB′,若∠AOB=25°,则∠AOB′的度数是()A.25°B.35°C.40°D.85°2.(2021秋•崆峒区期末)2022年2月4日﹣2月20日,北京冬奥会将隆重举行,如图是在北京冬奥会会徽征集过程中征集到的一幅图片.旋转图片中的“雪花图案”,旋转后要与原图形重合,至少需要旋转()A.180°B.120°C.90°D.60°3.(2021秋•雨花区期末)如图,△DEF是由△ABC绕点O旋转180°得到的,则下列结论不成立的是()A.点A与点D是对应点B.BO=EOC.∠ACB=∠FED D.AB∥DE4.(2021秋•沙河口区期末)下列图案是一些电视台的台标,是中心对称图形的是()A.B.C.D.5.(2021秋•澄海区期末)在平面直角坐标系中,点A(1,﹣2)和点B(m,2)关于原点对称,则m的值为()A.2B.﹣2C.1D.﹣16.(2021秋•铅山县期末)如图,将△ABC绕点A逆时针旋转80°,得到△ADE,若点D在线段BC的延长线上,则∠PDE的度数为()A.60°B.80°C.100°D.120°7.(2021秋•绥滨县期末)已知,如图,在△AOB中,∠AOB=90°,AO=3cm,BO=4cm.将△AOB绕顶点O按顺时针方向旋转到△A1OB1处,此时线段OB1与AB的交点D恰好为AB的中点,则线段B1D的长是()A.1.5cm B.3cm C.5cm D.2.5cm8.(2021秋•澄海区期末)如图,将△ABC绕点A按逆时针方向旋转得到△AB′C′.若点B′刚好落在BC边上,且AB′=CB′,若∠C=20°,则△ABC旋转的角度为()A.60°B.80°C.100°D.120°二.填空题(共1小题)9.(2021秋•杜尔伯特县期末)时针从数字“9”到“12”按时针方向旋转了90°.三.解答题(共9小题)10.(2021秋•大洼区期末)如图,将Rt△ABO绕点O顺时针旋转90°,在所给的直角坐标系中画出旋转后的Rt△A1B1O.11.(2021秋•昆明期末)如图,在平面直角坐标系中,△ABC的三个顶点的坐标分别为A(﹣3,3),B(﹣2,4),C(﹣1,1).(1)以x轴为对称轴画出△ABC的对称图形△A'B'C';(2)画出△ABC绕点C按顺时针旋转90°后的△A″B″C;(3)直接写出A'、A″点的坐标.12.(2021秋•尧都区期末)如图,已知O是坐标原点,B、C两点的坐标分别为(3,﹣1),(2,1),将△BOC绕点O逆时针旋转90度,得到△B1OC1,画出△B1OC1,并写出B、C两点的对应点B1、C1的坐标,13.(2021秋•富县期中)如图,△ABC逆时针旋转一定角度后与△ADE重合,且点C在AD上.若∠B=21°,∠ACB=26°,求出旋转的度数,并指出旋转中心.14.(2021秋•新丰县期中)如图,在边长为1的小正方形格中,△AOB的顶点均在格点上.(1)B点关于y轴的对称点坐标为;(2)以原点O为对称中心,画出△AOB关于原点对称的△A1OB1.15.(2020秋•定南县期末)已知点P(2x+y,1)与点Q(﹣7,x﹣y)关于原点对称,求x,y的值.16.(2021春•绿园区期末)如图,将△ABC以点C为旋转中心,顺时针旋转180°,得到△DEC,过点A作AF∥BE,交DE的延长线于点F,试问:∠B与∠F相等吗?为什么?17.(2021春•商河县校级期末)如图,D是△ABC边BC的中点,连接AD并延长到点E,使DE=AD,连接BE.(1)哪两个图形成中心对称?(2)已知△ADC的面积为4,求△ABE的面积;(3)已知AB=5,AC=3,求AD的取值范围.18.(2020春•肇源县期末)如图所示,在平面直角坐标系中,已知A(0,1),B(2,0),C (4,3).(1)在平面直角坐标系中画出△ABC,则△ABC的面积是;(2)若点D与点C关于原点对称,则点D的坐标为;(3)已知P为x轴上一点,若△ABP的面积为4,求点P的坐标.题组B 能力提升练一.选择题(共5小题)1.(2021秋•椒江区期末)如图,△DEC是由△ABC绕点C顺时针旋转30°所得,边DE,AC相交于点F.若∠A=35°,则∠EFC的度数为()A.50°B.55°C.60°D.65°2.(2021秋•铜官区期末)如图,将△ABC绕点C逆时针旋转α,得到△DEC,若点A恰好在DE的延长线上,则∠BAD的度数为()A.α﹣30°B.180°﹣αC.90°D.3.(2021秋•句容市期末)如图,边长为5的等边三角形ABC中,M是高CH所在直线上的一个动点,连接MB,将线段BM绕点B逆时针旋转60°得到BN,连接HN.则在点M运动过程中,线段HN 长度的最小值是()A.B.1C.2D.4.(2021秋•宜州区期末)如图,将Rt△ABC绕点A顺时针旋转40°,得到Rt△AB′C′,点C′恰好落在斜边AB上,连接BB′,则∠ABB′的度数为()A.50°B.60°C.70°D.80°5.(2021秋•绵阳期末)如图,将△ABC绕点B顺时针旋转角α,得到△A1BC1,此时点A,点B,点C1在一条直线上,若∠A1BC=22°,则旋转角α=()A.79°B.80°C.78°D.81°二.填空题(共5小题)6.(2021秋•廉江市期末)如图,△DEC与△ABC关于点C成中心对称,AB=3,AC=1,∠D=90°,则AE的长是.7.(2021秋•山亭区期末)如图,将n个边长都为1cm的正方形按如图所示摆放,点A1,A2,…,A n分别是正方形的中心,则n个正方形重叠形成的重叠部分的面积和为.8.(2021秋•滨城区期末)已知A(2x+1,3),B(﹣5,3y﹣3)关于原点对称,则x+y =.9.(2021秋•海门市期末)点M(﹣3,2)关于原点对称的点的坐标是.10.(2015秋•天津期末)点A(﹣2,3)与点B(a,b)关于坐标原点对称,则a+b的值为.三.解答题(共8小题)11.(2021秋•沙河口区期末)如图,正方形网格中每个小正方形的边长都是1.将△ABC绕点P逆时针旋转90°后得到△A'B'C',其中A和A',B和B',C和C'是对应点.(1)画出△A'B'C';(2)在该网格中建立平面直角坐标系,点P,A坐标分别为P(0,1),A(1,1),直接写出该坐标系下A',B',C'的坐标.12.(2021秋•喀什地区期末)如图,在每个小正方形边长都是1的方格纸中,点O,A,B都在格点上.(1)画出△AOB绕点O顺时针旋转90°后的△A1OB1;(2)求线段OB旋转到OB1时所扫过的扇形面积.13.(2021秋•芝罘区期末)如图,△ABC的顶点坐标分别为A(4,5),B(2,2),C(5,2).(1)将△ABC绕点(0,1)顺时针旋转180°,请画出旋转后的△A1B1C1;(2)将△ABC平移后得到△A2B2C2,若点A对应点A2坐标为(1,﹣2),请画出平移后的△A2B2C2,若△ABC内部一点P的坐标为(a,b),则点P的对应点P2的坐标是;(3)将△A1B1C1绕某一点M旋转可得到△A2B2C2,请画出点M的位置(保留痕迹),并直接写出点M的坐标.14.(2021秋•晋安区校级月考)如图,线段AC、BD相交于点O,AB∥CD,AB=CD.线段AC上的两点E、F关于点O对称.求证:AE=CF.15.(2021•鄂温克族自治旗二模)如图,△ABC中,BC=2AB,D,E分别是边BC,AC的中点.将△CDE绕点E旋转180度,得△AFE.(1)判断四边形ABDF的形状,并证明;(2)已知AB=5,AD+BF=14,求四边形ABDF的面积S.16.(2021春•宽城区期末)如图,在△ABC中,AD是BC边上的中线,△A'BD与△ACD关于点D成中心对称.(1)直接写出图中所有相等的线段.(2)若AB=5,AC=3,求线段AD的取值范围.17.(2021秋•桓台县期末)如图,在直角坐标系内,已知点A(﹣1,0).(1)图中点B的坐标是;(2)点B关于原点对称的点D的坐标是;点A关于y轴对称的点C的坐标是;(3)四边形ABCD的面积是;(4)在y轴上找一点F,使S△ADF=S△ABC.那么点F的坐标为.18.(2021秋•建安区期中)数学兴趣小组活动时,提出了如下问题:如图1,在△ABC中若AB=5,AC=3,求BC边上的中线AD的取值范围.解决方法:延长AD到E.使得DE=AD.再连接BE(或将MCD绕点D逆时针旋转180°得到△EBD).把AB,AC,2AD集中在△ABE中,利用三角形的三边关系可得2<AE<8,则1<AD<4.感悟:解题时,条件中若出现“中点”“中线”字样,可以考虑构造以中点为对称中心的中心对称图形,把分散的已知条件和所求证的结论集中到同一个三角形中.迁移应用:请参考上述解题方法,证明下列命题:如图2,在△ABC中,D是BC边上的中点,DE⊥DF,DE交AB于点E,DF交AC于点F,连接EF.(1)求证:BE+CF>EF;(2)若∠A=90°,探索线段BE,CF,EF之间的等量关系,并加以证明.题组C 培优拔尖练一.填空题(共5小题)1.(2021秋•新抚区期末)如图,△ABC是边长为3的等边三角形,E在AC上且AE=2,D是直线BC 上一动点,线段ED绕点E逆时针旋转90°,得到线段EF,连接DF,AF,下列结论:①DF的最小值为;②AF的最小值是1+;③当CD=1时,DE∥AB;④当DE∥AB时,DE=1.正确结论的题号是.2.(2021秋•思明区校级期中)如图,在Rt△ABC中,∠ACB=90°,AB=5,BC=3,将△ABC绕点B顺时针旋转得到△A′BC′,其中点A、C的对应点分别为点A′、C′,连接AA′、CC′,直线CC′交AA′于点D,点E为AC的中点,连接DE.则DE的最小值为.3.(2021•西湖区校级三模)如图,已知Rt△ACB,∠ACB=90°,∠B=60°,AC=4,点D在CB所在直线上运动,以AD为边作等边三角形ADE,则CB=.在点D运动过程中,CE的最小值.4.(2021春•龙岗区期末)如图,等腰△ABC中,∠BAC=150°,D是AB上一点,AD=1,BD=4,E点在边BC上,若点E绕点D逆时针旋转15°的对应点F恰好在AC上,则BE的长度为.5.(2019春•市南区期中)如图,一“L”型纸片是由5个边长都是10cm的正方形拼接而成,过点I的直线分别与AE,JN交于点P,Q,且“L”型纸片被直线PQ分成面积相等的上下两部分,将该纸片沿BG,CH,DI,IJ折成一个无盖的正方体盒子后,点P,Q之间的距离为cm.二.解答题(共7小题)6.(2021秋•沙坪坝区校级期末)(1)如图1,在6×6正方形网格中,有一格点△ABC(即△ABC 三个顶点都在小正方形的顶点处),其面积为7cm2,则这个方格纸的面积等于cm2;(2)若点M是图1中不同于点C的一个格点,且△ABC的面积与△ABM的面积相等,则满足条件的点M有个;(3)如图2,在12×12正方形网格中,每个小正方形的边长为1,给定了点D,E的位置,请先画一个△DEF,使DF,EF的长分别为,2,再画△DEF关于点O成中心对称的△D'E'F'.7.(2021秋•阳东区期中)直角坐标系第二象限内的点P(x2+2x,3)与另一点Q(x+2,y)关于原点对称,试求x+2y的值.8.(2019春•港南区期中)如图,在△ABC中,点D是AB边上的中点,已知AC=4,BC=6,(1)画出△BCD关于点D的中心对称图形;(2)根据图形说明线段CD长的取值范围.9.(2017•中原区校级三模)有这样一个问题:探究函数y=的图象与性质.下面是小强的探究过程,请补充完整:(1)函数y=的自变量x的取值范围;(2)如表是y与x的几组对应值.x…﹣5 ﹣4 ﹣3 ﹣2 0 1 2 3 …y…﹣2 0 …﹣﹣﹣如图,在平面直角坐标系xOy中,描出了以上表中各对对应值为坐标的点.①观察图中各点的位置发现:点A1和B1,A2和B2,A3和B3,A4和B4均关于某点中心对称,则该点的坐标为;②小文分析函数y=的表达式发现:当x<﹣1时,该函数的最大值为﹣2,则该函数图象在直线x=﹣1左侧的最高点的坐标为;(3)小强补充了该函数图象上两个点(﹣,),(﹣,﹣),①在上图中描出这两个点,并画出该函数的图象;②写出该函数的一条性质:.10.(2021秋•渝中区校级期末)已知,如图1,直线AB∥CD,E为直线AB上方一点,连接ED、BE,ED与AB交于P点.(1)若∠ABE=110°,∠CDE=70°,则∠E=;(2)如图1所示,作∠CDE的平分线交AB于点F,点M为CD上一点,∠BFM的平分线交CD于点H,过点H作HG⊥FH交FM的延长线于点G,GF∥BE,且2∠E=3∠DFH+20°,求∠EDF+∠G的度数.(3)如图2,在(2)的条件下,∠FDC=25°,将△FHG绕点F顺时针旋转,速度为每秒钟3°,记旋转中的△FHG为△FH′G′,同时∠FDE绕着点D顺时针旋转,速度为每秒钟5°,记旋转中的∠FDE为∠F′DE′,当∠FDE旋转一周时,整个运动停止.设运动时间为t(秒),则当△FH′G′其中一条边与∠F′DE′的其中一条边互相垂直时,直接写出t的值.11.(2021秋•南川区期中)在△ABC中,AB=10,AC=8,∠ACB=30°,将△ABC绕A按逆时针方向旋转,得到△ADE.(1)如图1,点F为BC与DE的交点,连接AF.求证:FA平分∠DFC;(2)如图2,点P为线段AB中点,点G是线段BC上的动点,在△ABC绕A按逆时针方向旋转的过程中,点G的对应点是点G1,求线段PG1长度的最大值与最小值.12.(2019春•宁波期中)知识背景:过中心对称图形的对称中心的任意一条直线都将其分成全等的两个部分.(1)如图①,直线m经过平行四边形ABCD对角线的交点O,则S四边形AEFB S四边形DEFC(填“>”“<”“=”);(2)如图②,两个正方形如图所示摆放,O为小正方形对角线的交点,求作过点O的直线将整个图形分成面积相等的两部分;(3)八个大小相同的正方形如图③所示摆放,求作直线将整个图形分成面积相等的两部分(用三种方法分割).。
如何利用旋转设计图案
难易度:★★★
关键词:旋转
答案:
利用旋转设计图案关键是利用旋转中的三个要素(①旋转中心;②旋转方向;③旋转角度)设计图案。
通过旋转变换不同角度或者绕着不同的旋转中心向着不同的方向进行旋转都可设计出美丽的图案。
【举一反三】
典例:用四块如图①所示的正方形瓷砖拼成一个新的正方形,使拼成的图案是一个轴对称图形.请你在图②、图③、图④中各画一种拼法(要求三种拼法各不相同,且其中至少一个既是轴对称图形,又是中心对称图形).
思路引导:根据图中画出的折痕分别作出轴对称和中心对称图形.要注意:轴对称图形关于某一直线对称,中心对称图形绕某一点旋转180度与原图重合.
答案:轴对称图形.
1。
8年级下学期数学讲义05 ( 第九章中心对称图形)知识点:9.1 图形的旋转1.一个图形和它经过旋转所得到的图形中,对应点到旋转中心距离相等,两组对应点分别与旋转中心连线所成的角相等。
9.2 中心对称和中心对称图形2.成中心对称的两个图形中,对应点的连线经过对称中心,且被对称中心平分。
9.3 平行四边形3.平行四边形的对边相等、对角相等、对角线互相平分。
4.一组对边平行且相等的四边形是平行四边形;两组对边分别相等的四边形是平行四边形;对角线互相平分的四边形是平行四边形。
9.4 矩形、菱形、正方形5.矩形的四个角都是直角,对角线相等。
三个角是直角的四边形是矩形;对角线相等的平行四边形是矩形。
6.菱形的四条边相等,对角线互相垂直。
四边相等的四边形是菱形;对角线互相垂直的平行四边形是菱形。
7.有一组领边相等的矩形是正方形;有一个角是直角的菱形是正方形。
9.5 三角形的中位线8.三角形的中位线平行于第三边,并且等于第三边的一半。
9.1 图形的旋转试题1.(2013•南昌)如图,将△ABC绕点A逆时针旋转一定角度,得到△ADE.若∠CAE=65°,∠E=70°,且AD⊥BC,∠BAC的度数为()2.(2013•河池)如图(1),已知两个全等三角形的直角顶点及一条直角边重合.将△ACB绕点C按顺时针方向旋转到△A′CB′的位置,其中A′C交直线AD于点E,A′B′分别交直线AD、AC于点F、G,则在图(2)中,全等三角形共有()A.5对B.4对3.(2011•哈尔滨)如图,在Rt△ABC中,∠BAC=90°,∠B=60°,△AB′C′可以由△ABC绕点A顺时针旋转90°得到(点B′与点B是对应点,点C′与点C是对应点),连接CC′,则∠CC′B′的度数是()4.(2009•漳州)如图,△OAB绕点O逆时针旋转80°得到△OCD,若∠A=110°,∠D=40°,则∠α的度数是()5.(2008•庐阳区)如图,将△ABC绕着点C按顺时针方向旋转20°,B点落在B′位置,A点落在A′位置,若AC⊥A′B′,则∠BAC的度数是()6.(2013•铁岭)如图,在△ABC中,AB=2,BC=3.6,∠B=60°,将△ABC绕点A按顺时针旋转一定角度得到△ADE,当点B的对应点D恰好落在BC边上时,则CD的长为___________.7.(2013•吉林)如图,把Rt△ABC绕点A逆时针旋转40°,得到Rt△AB′C′,点C′恰好落在边AB上,连接BB′,则∠BB′C′=___________度.8.(2008•厦门)如图,点G是△ABC的重心,CG的延长线交AB于D,GA=5cm,GC=4cm,GB=3cm,将△ADG绕点D旋转180°得到△BDE,则DE=___________cm,△ABC的面积=___________cm2.9.(2011•珠海)如图,将一个钝角△ABC(其中∠ABC=120°)绕点B顺时针旋转得△A1BC1,使得C点落在AB的延长线上的点C1处,连接AA1.(1)写出旋转角的度数;(2)求证:∠A1AC=∠C1.10.(2006•三明)已知△ABC中,AB=AC,∠A=36°,点D在AC上,将△BDC绕点D按顺时针方向旋转α(0°<α<180°),使△BDC与△ADE重合(如图所示).(1)求角α;(2)说明四边形EBCD是等腰梯形.9.2 中心对称和中心对称图形1.(2013•黔西南州)在平行四边形、等腰梯形、等腰三角形、矩形、菱形五个图形中,既是中心对称图形又是轴对称图形的有( )2.(2013•抚顺)下列图形中,不是中心对称图形的是( ).C3.(2010•连云港)下列四个多边形:①等边三角形;②正方形;③正五边形;④正六边形、其中,既是轴对称图形又是中心对称图形的是( ) 4.把26个英文字母依照轴对称性和中心对称性分成5组:①FRPJLG□②HIO□③NS□④BCKE□⑤VATYWU□,现在还有5个字母D 、M 、Q 、X 、Z 请你按原规律补上,其顺序依次为 ( ) 5.下列的正方体的平面展开图中,既不是轴对称图形,也不是中心对称图形的是( ).C6.(2011•曲靖)小明、小辉两家所在位置关于学校中心对称.如果小明家距学校2公里,那么他们两家相距___________公里.7.(1997•安徽)如右图,线段AB 关于点O (不在AB 上)的对称线段是A′B′;线段A′B′关于点O′(不在A′B′上)的对称线段是A″B″.那么线段AB 与线段A″B″的关系是___________.8.(2012•广陵区二模)如下图,是4×4的正方形网格,把其中一个标有数字的白色小正方形涂黑,就可以使图中的黑色部分构成一个中心对称图形,则这个白色小正方形内的数字是___________.9.(1)已知实数a ,b 满足a (a+1)-(a 2+2b )=1,求a 2-4ab+4b 2-2a+4b 的值.(2)如图是一个中心对称图形,A 为对称中心,若∠C=90°,∠B=30°,BC=1,则BB′的长?10.已知:如图所示,E 是等腰梯形一腰CD 的中点,EF ⊥AB ,垂足为F ,求证:S 梯形ABCD =AB•EF.9.3 平行四边形1.(2013•泸州)四边形ABCD中,对角线AC、BD相交于点O,下列条件不能判定这个四边形是平行四边形的是()2.(2013•乐山)如图,点E是▱ABCD的边CD的中点,AD,BE的延长线相交于点F,DF=3,DE=2,则▱ABCD的周长为()3.(2013•湖北)若平行四边形的一边长为2,面积为4根号6,则此边上的高介于()4.(2012•包头)如图,过▱ABCD的对角线BD上一点M分别作平行四边形两边的平行线EF与GH,那么图中的▱AEMG的面积S1与▱HCFM的面积S2的大小关系是()5.(2009•桂林)如图,在平行四边形ABCD中,AC,BD为对角线,BC=6,BC边上的高为4,则图中阴影部分的面积为()6.(2012•眉山)如图,平行四边形ABCD中,AB=5,AD=3,AE平分∠DAB交BC的延长线于F点,则CF=___________.7.(2011•天津)如图,六边形ABCDEF的六个内角都相等,若AB=1,BC=CD=3,DE=2,则这个六边形的周长等于___________.8.(2010•海南)如图,在▱ABCD中,AB=6cm,∠BCD的平分线交AD于点E,则DE=___________cm.9.(2013•玉溪)如图,在▱ABCD中,点E,F分别是边AD,BC的中点,求证:AF=CE.10.2013•茂名)如图,在▱ABCD中,点E是AB边的中点,DE与CB的延长线交于点F.(1)求证:△ADE≌△BFE;(2)若DF平分∠ADC,连接CE.试判断CE和DF的位置关系,并说明理由.11.(2012•永州)如图,在等腰梯形ABCD中,AD∥BC,点E、F、G分别在边AB、BC、CD上,且AE=GF=GC.求证:四边形AEFG为平行四边形.9.4 矩形、菱形、正方形试题1.(2013•淄博)如图,菱形纸片ABCD中,∠A=60°,折叠菱形纸片ABCD,使点C落在DP(P为AB中点)所在的直线上,得到经过点D的折痕DE.则∠DEC的大小为()2.(2013•枣庄)如图,△ABC中,AB=AC=10,BC=8,AD平分∠BAC交BC于点D,点E为AC的中点,连接DE,则△CDE的周长为()A.20 B.12 C.14 D.133.(2013•宜宾)矩形具有而菱形不具有的性质是()A.两组对边分别平行B.对角线相等C.对角线互相平分D.对角线互相平分4.(2013•南充)如图,把矩形ABCD沿EF翻折,点B恰好落在AD边的B′处,若AE=2,DE=6,∠EFB=60°,则矩形ABCD的面积是()A.12 B.24 C.12√3 D.16√35.(2012•西宁)如图,E、F分别是正方形ABCD的边BC、CD上的点,BE=CF,连接AE、BF.将△ABE绕正方形的对角线交点O按顺时针方向旋转到△BCF,则旋转角是()A.45°B.120°C.60°D.90°6.(2013•钦州)如图,在正方形ABCD中,E是AB上一点,BE=2,AE=3BE,P是AC上一动点,则PB+PE的最小值是___________.7.(2013•赤峰)如图,矩形ABCD中,E是BC的中点,矩形ABCD的周长是20cm,AE=5cm,则AB的长为___________cm.8.(2013•盐城)如图,在平行四边形ABCD中,E为BC边上的一点,连结AE、BD且AE=AB.(1)求证:∠ABE=∠EAD;(2)若∠AEB=2∠ADB,求证:四边形ABCD是菱形.9.(2013•聊城)如图,四边形ABCD中,∠A=∠BCD=90°,BC=CD,CE⊥AD,垂足为E,求证:AE=CE.10..(2013•晋江市)如图,BD是菱形ABCD的对角线,点E、F分别在边CD、DA上,且CE=AF.求证:BE=BF.9.5 三角形的中位线试题1.(2013•西宁)如果等边三角形的边长为4,那么等边三角形的中位线长为()2.(2013•巴中)如图,在梯形ABCD中,AD∥BC,点E、F分别是AB、CD的中点且EF=6,则AD+BC的值是()3.(2012•丹东)如图,菱形ABCD的周长为24cm,对角线AC、BD相交于O点,E是AD的中点,连接OE,则线段OE的长等于()4.(2011•安徽)如图,D是△ABC内一点,BD⊥CD,AD=6,BD=4,CD=3,E、F、G、H分别是AB、AC、CD、BD的中点,则四边形EFGH的周长是()5.(2013•安顺)如图,在△ABC中,D、E分别是AB、AC的中点,BE=2DE,延长DE到点F,使得EF=BE,连接CF.(1)求证:四边形BCFE是菱形;(2)若CE=4,∠BCF=120°,求菱形BCFE的面积.6.(2010•沈阳)如图,菱形ABCD的对角线AC与BD相交于点O,点E,F分别为边AB,AD的中点,连接EF,OE,OF,求证:四边形AEOF是菱形.7.(2008•贵港)如图所示,在梯形ABCD中,AD∥BC,点E、F分别为AB、CD的中点.连接AF并延长,交BC的延长线于点G.(1)求证:△ADF≌△GCF;(2)若EF=7.5,BC=10,求AD的长.答案9.11,解:根据旋转的性质知,∠EAC=∠BAD=65°,∠C=∠E=70°.如图,设AD⊥BC于点F.则∠AFB=90°,∴在Rt△ABF中,∠B=90°-∠BAD=25°,∴在△ABC中,∠BAC=180°-∠B-∠C=180°-25°-70°=85°,即∠BAC的度数为85°.故选C.2,解:旋转后的图中,全等的三角形有:△B′CG≌△DCE,△A′B′C≌△ADC,△AGF≌△A′EF,△ACE≌△A′CG,共4对.故选:B.3,解:由旋转的性质可知,AC=AC′,又∠CAC′=90°,可知△CAC′为等腰直角三角形,所以,∠CC′A=45°.∵∠CC′B′+∠ACC′=∠AB′C′=∠B=60°,∴∠CC′B′=15°.故选D.4,解:根据旋转的意义,图片按逆时针方向旋转80°,即∠AOC=80°,又∵∠A=110°,∠D=40°,∴∠DOC=30°,则∠α=∠AOC-∠DOC=50°.故选C.5,解:∵△ABC绕着点C按顺时针方向旋转20°,B点落在B′位置,A点落在A′位置∴∠BCB′=∠ACA′=20°∵AC⊥A′B′,∴∠BAC=∠A′=90°-20°=70°.故选C.6,解:由旋转的性质可得:AD=AB,∵∠B=60°,∴△ABD是等边三角形,∴BD=AB,∵AB=2,BC=3.6,∴CD=BC-BD=3.6-2=1.6.故答案为:1.6.7,解:∵Rt△ABC绕点A逆时针旋转40°得到Rt△AB′C′,∴AB=AB′,∠BAB′=40°,在△ABB′中,∠ABB′=1/2(180°-∠BAB′)=1/2(180°-40°)=70°,∵∠AC′B′=∠C=90°,∴B′C′⊥AB,∴∠BB′C′=90°-∠ABB′=90°-70°=20°.故答案为:20.8,解:∵点G是△ABC的重心,∴DE=GD=1/2GC=2,CD=3GD=6,∵GB=3,EG=GC=4,BE=GA=5,∴BG2+GE2=BE2,即BG⊥CE,∵CD为△ABC的中线,∴S△ACD=S△BCD,∴S△ABC=S△ACD+S△BCD=2S△BCD=2×1/2×BG×CD=18cm2.填:2,18.9,(1)解:∵∠ABC=120°,∴∠CBC1=180°-∠ABC=180°-120°=60°,∴旋转角为60°;(2)证明:由题意可知:△ABC≌△A1BC1,∴A1B=AB,∠C=∠C1,由(1)知,∠ABA1=60°,∴△A1AB是等边三角形,∴∠BAA1=60°,∴∠BAA1=∠CBC1,∴AA1∥BC,∴∠A1AC=∠C,∴∠A1AC=∠C1.10,解:(1)∵AB=AC,∠A=36°,∴∠ABC=∠C=72°,∵△BDC与△ADE重合,∴∠DBC=∠A=36°,∠AED=∠C=72°,∴∠ADE=∠BDC=180°-(72°+36°)=72°,∴α=180°-∠BDC=180°-72°=108°.(2)由(1)∠ADE=∠C=72°,∴DE∥BC,又BE与CD不平行,∴四边形EBCD是梯形,∵∠ABC=∠C=72°,∴四边形EBCD是等腰梯形.9.21,解:矩形、菱形是轴对称图形,也是中心对称图形,符合题意;等腰三角形、等腰梯形是轴对称图形,不是中心对称图形,不符合题意;平行四边形不是轴对称图形,是中心对称图形,不符合题意.故既是轴对称图形又是中心对称图形的是:矩形、菱形.故选:B.2,解:A、不是中心对称图形,故本选项正确;B、是中心对称图形,故本选项错误;C、是中心对称图形,故本选项错误;D、是中心对称图形,故本选项错误;故选A.3,解:由正多边形的对称性知,偶数边的正多边形既是轴对称图形,又是中心对称图形;奇数边的正多边形只是轴对称图形,不是中心对称图形.故选C.4,解:①不是对称图形,5个子母中不是对称图形的只有:Q;(2)有两条对称轴,并且两对称轴互相垂直,则规律相同的是:X;(3)是中心对称图形,则规律相同的是:Z;(4)是轴对称图形,对称轴是一条水平的直线,满足规律的是:D;(5)是轴对称图形,对称轴是竖直的直线,满足规律的是:M.故各个空,顺序依次为:Q,X,Z,D,M.故选D.5,解:A、不是轴对称图形,也不是中心对称图形;B、是中心对称图形,不是轴对称图形;C、是中心对称图形,但不是轴对称图形;D、不是中心对称图形,是轴对称图形.故选A.6,解:∵小明、小辉两家所在位置关于学校中心对称,∴小明、小辉两家到学校距离相等,∵小明家距学校2公里,∴他们两家相距:4公里.故答案为:4.7,解:中心对称图形中的不在同一直线上的两条对应线段的关系是:平行且相等.故线段AB与线段A″B″的关系是:平行且相等.故答案为:平行且相等.8,解:如图,把标有数字3的白色小正方形涂黑,就可以使图中的黑色部分构成一个中心对称图形.故答案为3.9,解:(1)∵a(a+1)-(a2+2b)=1,∴等式变形得:a-2b=1;原式=(a-2b)2-2(a-2b)=12-2=-1;(2)设AC=x,AB=2x,BB′=4x,在Rt△ABC中AB2=AC2+BC2,∴(2x)2=x2+12,解得:x=±√3/3(负数舍去),∴AB=2×√3/3=2√3/3,∴BB′=4√3/3.10,证明:如图,连接AE交BC的延长线于G点,连接BE,∵AD∥CG,∴∠D=∠ECG,在△ADE和△GCE中∠D=∠ECG;DE=EC;∠DEA=∠CEG∴△ADE≌△GCE(ASA),∴AE=GE,∴可得:S△ABG=S梯形ABCD=2S△ABE=AB×FE.9.31,解:A、由“AB∥DC,AD∥BC”可知,四边形ABCD的两组对边互相平行,则该四边形是平行四边形.故本选项不符合题意;B、由“AB=DC,AD=BC”可知,四边形ABCD的两组对边相等,则该四边形是平行四边形.故本选项不符合题意;C、由“AO=CO,BO=DO”可知,四边形ABCD的两条对角线互相平分,则该四边形是平行四边形.故本选项不符合题意;D、由“AB∥DC,AD=BC”可知,四边形ABCD的一组对边平行,另一组对边相等,据此不能判定该四边形是平行四边形.故本选项符合题意;故选D.2,解:∵四边形ABCD为平行四边形,∴DC∥=AB,AD∥=BC,∵E为CD的中点,∴DE为△FAB的中位线,∴AD=DF,DE=1/2AB,∵DF=3,DE=2,∴AD=3,AB=4,∴四边形ABCD的周长为:2(AD+AB)=14.故选D.3,解:根据四边形的面积公式可得:此边上的高=4√6÷2=2√6,2√6介于4与5之间,则则此边上的高介于4与5之间;故选B.4,解:∵四边形ABCD是平行四边形,EF∥BC,HG∥AB,∴AD=BC,AB=CD,AB∥GH∥CD,AD∥EF∥BC,∴四边形HBEM、GMFD是平行四边形,在△ABD和△CDB中;AD=BC,AB=CD,BD=DB∴△ABD≌△CDB,即△ABD和△CDB的面积相等;同理△BEM和△MHB的面积相等,△GMD和△FDM的面积相等,故四边形AEMG和四边形HCFM的面积相等,即S1=S2.故选C.5,解:通过观察结合平行四边形性质得:S阴影=1/2×6×4=12.故选C.6,解:如图,∵AE平分∠DAB,∴∠1=∠2,平行四边形ABCD中,AB∥CD,AD∥BC,∴∠2=∠3,∠1=∠F,又∵∠3=∠4(对顶角相等),∴∠1=∠3,∠4=∠F,∴AD=DE,CE=CF,∵AB=5,AD=3,∴CE=DC-DE=AB-AD=5-3=2,∴CF=2.故答案为:2.7,解:如图,分别作直线AB、CD、EF的延长线和反向延长线使它们交于点G、H、P.∵六边形ABCDEF的六个角都是120°,∴六边形ABCDEF的每一个外角的度数都是60°.∴△AHF、△BGC、△DPE、△GHP都是等边三角形.∴GC=BC=3,DP=DE=2.∴GH=GP=GC+CD+DP=3+3+2=8,FA=HA=GH-AB-BG=8-1-3=4,EF=PH-HF-EP=8-4-2=2.∴六边形的周长为1+3+3+2+4+2=15.故答案为15.8,解:在平行四边形ABCD中,则AD∥BC,DC=AB,∴∠DEC=∠BCE,又CE平分∠BCD,∴∠BCE=∠DCE,∴∠DCE=∠DEC,即DE=DC=AB=6cm,故此题应填6.9,证明:∵四边形ABCD是平行四边形,∴AD=BC,AD∥BC.∵点E,F分别是边AD,BC的中点,∴AE=CF.∴四边形AECF是平行四边形.∴AF=CE.10,(1)证明:∵四边形ABCD是平行四边形,∴AD∥BC.又∵点F在CB的延长线上,∴AD∥CF,∴∠1=∠2.∵点E是AB边的中点,∴AE=BE.∵在△ADE与△BFE中,∠1=∠2,∠DEA=∠FEB,AE=BE∴△ADE≌△BFE(AAS);(2)解:CE⊥DF.理由如下:如图,连接CE.由(1)知,△ADE≌△BFE,∴DE=FE,即点E是DF的中点,∠1=∠2.∵DF平分∠ADC,∴∠1=∠3,∴∠3=∠2,∴CD=CF,∴CE⊥DF.11,证明:∵梯形ABCD是等腰梯形,AD∥BC,∴∠B=∠C,∵GF=GC,∴∠GFC=∠C,∴∠GFC=∠B,∴AB∥GF,又∵AE=GF,∴四边形AEFG是平行四边形.9.41,解:连接BD,∵四边形ABCD为菱形,∠A=60°,∴△ABD为等边三角形,∠ADC=120°,∠C=60°,∵P为AB的中点,∴DP为∠ADB的平分线,即∠ADP=∠BDP=30°,∴∠PDC=90°,∴由折叠的性质得到∠CDE=∠PDE=45°,在△DEC中,∠DEC=180°-(∠CDE+∠C)=75°.故选B.2,解:∵AB=AC,AD平分∠BAC,BC=8,∴AD⊥BC,CD=BD=1/2BC=4,∵点E为AC的中点,∴DE=CE=1/2AC=5,∴△CDE的周长=CD+DE+CE=4+5+5=14.故选C.3,解:A、矩形与菱形的两组对边都分别平行,故本选项错误;B、矩形的对角线相等,菱形的对角线不相等,故本选项正确;C、矩形与菱形的对角线都互相平分,故本选项错误;D、矩形与菱形的两组对角都分别相等,故本选项错误.故选B.4,解:如图,连接BE,在矩形ABCD中,AD∥BC,∴∠AEF=180°-∠EFB=180°-60°=120°,∠DEF=∠EFB=60°,∵把矩形ABCD沿EF翻折点B恰好落在AD边的B′处,∴∠BEF=∠DEF=60°,∴∠AEB=∠AEF-∠BEF=120°-60°=60°,在Rt△ABE中,AB=AE•tan∠AEB=2tan60°=2√3,∵AE=2,DE=6,∴AD=AE+DE=2+6=8,∴矩形ABCD的面积=AB•AD=2√3×8=16√3.故选D.5,解:将△ABE绕正方形的对角线交点O按顺时针方向旋转到△BCF时,A和B重合,即∠AOB是旋转角,∵四边形ABCD是正方形,∴∠BAO=∠ABO=45°,∴∠AOB=180°-45°-45°=90°,即旋转角是90°,故选D.6,解:如图,连接DE,交AC于P,连接BP,则此时PB+PE的值最小.∵四边形ABCD是正方形,∴B、D关于AC对称,∴PB=PD,∴PB+PE=PD+PE=DE.∵BE=2,AE=3BE,∴AE=6,AB=8,∴DE=√62+82=10,故PB+PE的最小值是10.故答案为:10.7,解:设AB=x,则可得BC=10-x,∵E是BC的中点,∴BE=1/2BC=10−x/2,在Rt△ABE中,AB2+BE2=AE2,即x2+(10−x/2)2=52,解得:x=4.即AB的长为4cm.故答案为:4.8,证明:(1)在平行四边形ABCD中,AD∥BC,∴∠AEB=∠EAD,∵AE=AB,∴∠ABE=∠AEB,∴∠ABE=∠EAD;(2)∵AD∥BC,∴∠ADB=∠DBE,∵∠ABE=∠AEB,∠AEB=2∠ADB,∴∠ABE=2∠ADB,∴∠ABD=∠ABE-∠DBE=2∠ADB-∠ADB=∠ADB,∴AB=AD,又∵四边形ABCD是平行四边形,∴四边形ABCD是菱形.9,证明:如图,过点B作BF⊥CE于F,∵CE⊥AD,∴∠D+∠DCE=90°,∵∠BCD=90°,∴∠BCF+∠DCE=90°,∴∠BCF=∠D,在△BCF和△CDE中,∠BCF=∠D,∠CBE=∠BFC=90°,BC=CD,∴△BCF≌△CDE(AAS),∴BF=CE,又∵∠A=90°,CE⊥AD,BF⊥CE,∴四边形AEFB是矩形,∴AE=BF,∴AE=CE.10,证明:∵四边形ABCD是菱形,∴AB=BC,∠A=∠C,∵在△ABF和△CBE中,AF=CE,∠A=∠C,AB=CB,∴△ABF≌△CBE(SAS),∴BF=BE.9.51,选A.2,解:∵E和F分别是AB和CD的中点,∴EF是梯形ABCD的中位线,∴EF=1/2(AD+BC),∵EF=6,∴AD+BC=6×2=12.故选C.3,解:∵菱形ABCD的周长为24cm,∴边长AB=24÷4=6cm,∵对角线AC、BD相交于O点,∴BO=DO,又∵E是AD的中点,∴OE是△ABD的中位线,∴OE=1/2AB=1/2×6=3cm.故选A.4,解:∵BD⊥DC,BD=4,CD=3,由勾股定理得:BC=√BD2+CD2=5,∵E、F、G、H分别是AB、AC、CD、BD的中点,∴HG=1/2BC=EF,EH=FG=1/2AD,∵AD=6,∴EF=HG=2.5,EH=GF=3,∴四边形EFGH的周长是EF+FG+HG+EH=2×(2.5+3)=11.故选D.5,(1)证明:∵D、E分别是AB、AC的中点,∴DE∥BC且2DE=BC,又∵BE=2DE,EF=BE,∴EF=BC,EF∥BC,∴四边形BCFE是平行四边形,又∵BE=FE,∴四边形BCFE是菱形;(2)解:∵∠BCF=120°,∴∠EBC=60°,∴△EBC是等边三角形,∴菱形的边长为4,高为2√3,∴菱形的面积为4×2√3=8√3.6,证明:∵点E,F分别为AB,AD的中点∴AE=1/2AB,AF=1/2AD (2分),又∵四边形ABCD是菱形,∴AB=AD,∴AE=AF (4分),又∵菱形ABCD的对角线AC与BD相交于点O ∴O为BD的中点,∴OE,OF是△ABD的中位线.(6分)∴OE∥AD,OF∥AB,∴四边形AEOF是平行四边形(8分),∵AE=AF,∴四边形AEOF是菱形.7,(1)证明:∵AD∥BC,(AD∥BG)∴∠D=∠FCG,∠DAF=∠G.(2分)∵DF=CF,∴△ADF≌△GCF.(4分)(2)解法一:由(1)得△ADF≌△GCF,∴AF=FG,AD=CG.(5分)∵AE=BE,∴EF为△ABG的中位线.∴EF=1/2BG.(6分)∴BG=2×7.5=15.(7分)∴AD=CG=BG-BC=15-10=5.(8分)。
苏科版八年级下册数学第9章中心对称图形——平行四边形含答案一、单选题(共15题,共计45分)1、如图,在▱ABCD中,BE平分∠ABC交AD于E,BC=8cm,CD=6cm,∠D=60°,则下列说法中错误的是()A.∠C=120°B.AE=6cmC.AD=8cmD.∠BED=140°2、如图:将ABCD的对角线的交点与直角坐标系的原点重合,且点B(,-1)和C(2,1)所分别对应的D点,A点的坐标是()A.(- ,+1)和(-2,-1)B.(2,-1)和(- ,-1)C.(-2,1)和(,1)D.(-1,-2)和(-1,)3、若顺次连接四边形ABCD各边的中点所得四边形是菱形,则四边形ABCD一定是()A.菱形B.对角线互相垂直的四边形C.矩形DD.对角线相等的四边形4、如图,点E是矩形ABCD的边CD上一点,把△ADE沿AE对折,点D的对称点F恰好落在BC上,已知折痕AE=10 cm,且tan∠EFC= ,那么该矩形的周长为()A.72cmB.36cmC.20cmD.16cm5、如图,矩形的边在轴的正半轴上,点的坐标为,反比例函数的图象经过矩形对角线的交点,则的值是()A.8B.4C.2D.16、下列命题中错误的是()A.两组对角分别相等的四边形是平行四边形B.矩形的对角线相等C.对角线互相垂直的四边形是菱形D.对角线互相垂直平分且相等的四边形是正方形7、下列汽车标志中,既是轴对称图形又是中心对称图形的是()A. B. C. D.8、如图,直线l1的解析式是y=x,直线l2的解析式是y=x,点A1在l 1上,A1的横坐标为,作A1B1⊥l1交l2于点B1,点B2在l2上,以B1A1、B1B2为邻边在直线l1、l2间作菱形A1B1B2C1,延长B2C1交l1于点A2,点B3在l2上,以B2A2、B2B3为邻边在l1、l2间作菱形A2B2B3C2,………按照此规律继续作下去,则线段A2020B2020长为( )A. B. C. D.9、下列图形中,既是中心对称图形,又是轴对称图形的是()A. B. C. D.10、如图,在□ABCD中,已知∠ODA=90°,AC=10cm,BD=6cm,则BC的长为()A.4cmB.5cmC.6cmD.8cm11、如图,在平行四边形ABCD中,点E是AB的中点,BD与CE相交于点F,则△BEF与△DCF的面积比为()A.1:2B.2:1C.4:1 D.1:412、下列说法错误的是()A.矩形的对角线互相平分B.矩形的对角线相等C.有一个角是直角的四边形是矩形D.有一个角是直角的平行四边形叫做矩形13、如图是一个以点A为对称中心的中心对称图形,若∠C =90°,∠B = 30°,AC = 1,则BB′的长为()A.2B.4C.D.814、如图,在△ABC中,AB=AC,∠B=30°,点D、E分别为AB、AC上的点,且DE∥BC.将△ADE绕点A逆时针旋转至点B、A、E在同一条直线上,连接BD、EC.下列结论:①△ADE的旋转角为120°;②BD=EC;③BE=AD+AC;④DE⊥AC,其中正确有( )A.②③B.②③④C.①②③D.①②③④15、用反证法证明:“若整数系数一元二次方程ax2+bx+c=0(a≠0)有有理根,则a,b,c中至少有一个是偶数”,下列假设中正确的是()A.假设a,b,c都是偶数B.假设a,b,c都不是偶数C.假设a,b,c至多有一个是偶数D.假设a,b,c至多有两个是偶数二、填空题(共10题,共计30分)16、将一个含有45°角的直角三角板摆放在矩形上,如图所示,若∠1=40°,则∠2=________.17、已知:在平行四边形ABCD中,点E在DA的延长线上,AE= AD,连接CE 交BD于点F,则的值是________.18、七巧板由五个等腰直角三角形与两个平行四边形(其中的一个平行四边形是正方形)组成.用七巧板可以拼出丰富多彩的图形,图中的正方形ABCD就是由七巧板拼成的,那么正方形EFGH的面积与正方形ABCD的面积的比值为________.19、如图,正方形的边长为4,为上一点,且,为边上的一个动点,连接,以为边向右侧作等边,连接,则的最小值为________.20、如图,在边长为2的菱形ABCD中,∠A=60°,点M是AD边的中点,连接MC,将菱形ABCD翻折,使点A落在线段CM上的点E处,折痕交AB于点N,则线段EC的长为________.21、如图,B(2,﹣2),C(3,0),以OC,CB为边作平行四边形OABC,则经过点A的反比例函数的解析式为________.22、如图,点A、B、C是圆O上的三点,且四边形ABCO是平行四边形,OF⊥OC交圆O于点F,则∠BAF=________.23、如图,正方形AFCE中,D是边CE上一点,把绕点A顺时针旋转90°,点D对应点交CF延长线于点B,若四边形ABCD的面积是、则AC 长________cm.24、如图,在矩形ABCD中,,,E为AD上一点,将绕点B顺时针旋转得到,当点,分别落在BD,CD上时,则DE的长为________.25、如图,P、G是菱形ABCD的边BC、DC的中点,K是菱形的对角线BD上的动点,若BD=8,AC=6,则KP+KG的最小值是________.三、解答题(共5题,共计25分)26、如图,在平行四边形ABCD中,点E,F分别在AB,CD上,AE=CF.求证:DE=BF.27、如图,在矩形ABCD中,AB=2AD,E是CD上一点,且AE=AB,则∠CBE的度数是多少?28、如图,在矩形ABCD中,过点B作BE∥AC交DA的延长线于E,求证:BE=BD.29、如图,在中,,正方形的边长是,且四个顶点都在的各边上,,求的长.30、如图,平面直角坐标系中,每个小正方形边长都是1.(1)按要求作图:①△ABC关于原点O逆时针旋转90°得到△A1B1C1;②△A1B1C1关于原点中心对称的△A2B2C2.(2)△A2B2C2中顶点B2坐标为.参考答案一、单选题(共15题,共计45分)1、D2、A3、D4、A5、C6、C7、D8、B9、C10、A11、D12、C13、B14、B15、B二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、三、解答题(共5题,共计25分)26、27、28、29、。
第1节图形的旋转1课时第2节中心对称与中心对称图形2课时第3节平行四边形3课时第4节矩形、菱形、正方形5课时第5节三角形中位线2课时小结与思考2课时第1课时教学设计(其他课时同)课题9.2 中心对称与中心对称图形新授课 章/单元复习课□专题复习课□课型习题/试卷讲评课□学科实践活动课□其他□1.教学内容分析本节课是苏科版八年级第九章第二节第一课时的教学内容。
之前学习了轴对称和轴对称图形的内容,积累相关的数学活动经验及研究能力。
经历“观察、操作、分析、归纳教的活动3探索活动一:1.用透明纸覆盖在图1上,描出四边形ABCD.2.用大头针钉在点O处,把四边形ABCD绕点O旋转180°,你能发现什么?一个图形绕着某一点旋转180°,如果它能够与另一个图形重合,那么称这两个图形关于这点对称,也称这两个图形成中心对称.这个点叫做对称中心.(特殊的旋转,具有旋转的一切性质)。
探索活动二:1.如图1,点A与点A′关于点O 对称,连接AA′,你能发现什么?(图1)2.在图2中分别连接AA′、BB′、CC′、DD′,你发现了什么?(图2)成中心对称的两个图形中,对应点的连线经过对称中心,且被对称中心平学的活动3学生动手操作,观察发现,踊跃回答.四边形ABCD与A′B′C′D′四边形重合.小组讨论,代表回答.1.(1)点A绕点O旋转180°后与点A′重合.(2)OA=OA′;(3)∠AOA′=180°,点O在AA′上.2.(1)AA′、BB′、CC′、DD′都经过点O.(2)OA=OA′,OB=OB′, OC=OC′, OD =OD′.BCDAOBC DABCDAB CDA分. 探索活动三:1.已知点A 和O ,你能画出点A 关于点O 的对称点吗?2.已知线段AB 和O 点,你能画出线段AB 关于点O 的对称线段吗?3.已知△ABC 和点O ,你能画出△ABC 关于O 成中心对称的图形吗?画一画1.按要求分别画出四边形ABCD 成中心对称的四边形(1)以顶点A 为对称中心(2)以BC 的中点O 为对称中心反之,如果告诉我们两个图形成中心对称,我们怎么找对称中心1.学生说作法老师画,并且学生还说出这样做的理由.2、3两问由学生上黑板展示完成.学生在上面的探索基础上上黑板画图学生说作法老师画,并且学生还说出这样做的理由.生巩固一下可以转化为画点的对称,最后画出四边形的对称培养学生的逆向思维。
9.1 图形的旋转;
课题 9.1 图形的旋转; 自主空间
学习
目标
1.经历对生活中旋转现象的观察,分析过程,引导学生用数学的眼
光看待生活中的有关问题;
2.通过具体实例认识旋转,知道旋转的性质;
3.经历对具有旋转特征的图形的观察、操作、画图等过程,掌握作
图的技能.
学习
重难
点
图形旋转的性质、图形旋转的画法.
教学流程;;
预
习
导
航
1.手工制作:制作一个小风车.
2.欣赏日常生活中部分物体的旋转现象.
问题:⑴上述情境中的旋转现象有什么共同的特征?
⑵生活还有类似的例子吗?
O
合
作
探
究
一、概念探究:
在平面内,将一个图形绕一个定点旋转一定的角度,这样的图形
运动叫做图形的旋转.这个定点叫旋转中心.旋转的角度称为旋转角.
1.操作活动
(1)将一块三角尺ABC绕点C按逆时针方向旋转到DCB的位置.
问题: 度量∠ACD与∠BCE的度数,线段AC与DC、BC与EC的长度。
你发现了什么?
(2)将△ABC绕点O按顺时针方向旋转到△A/ B/C/的位置.
问题:度量∠AO A/、∠BO B/、∠CO C/的度数,线段AO与A/O、
BO
与B/O、CO与C/O的长度。你发现了什么?
(3)通过操作活动,让学生讨论:
三角形在旋转过程中哪些发生了改变?哪些没有发生改变?通
过学生的讨论得出旋转的性质:
2.小结:旋转的性质:
二、例题分析:
例:已知线段AB和点O,画出线段AB绕点O按逆时针方向旋转100°
后的图形:
合
作
探
究
三、展示交流
1.如图,线段AO绕点O顺时针旋转得到线段BO,在这个旋转过程中,
旋转中心是 ,旋转角是 .
2.如图,将左边的矩形绕点B旋转一定角度后,位置如右边的矩形,
则∠ABC= .
3.如图,P是等边三角形ABC内的一点,若将△PAB绕点A逆时针
旋转到△P′AC,则∠PAP′= .
4.如图,正方形1111DCBA是正方形ABCD按顺时针方向旋转一定的
角度而形成的,其中401CBC,则旋转中心是 ,
旋转角的度数为 .
5.下列说法正确的是( )
A.平移不改变图形的形状和大小,而旋转到改变图形的形状和大小.
B.平移和旋转的共同点是改变图形的位置.
C.图形可以沿某方向平、移一定的距离,也可以沿某方向旋转一定
的距离.
D.在平移和旋转图形中,对应角相等,对应线段相等且平行.
6.如图,把△ABC顺时针旋转60°后能与△A′BC′重合.
(1)找出旋转中心。
(2)指出对应顶点和对应边。
第1题
O
B
A
A
B(1B)
C
D
A
1
C
1
D
1
当
堂
达
标
1.下列现象中属于旋转的有( )个
①地下水位逐年下降;②传送带的移动;③方向盘的转动;④水龙
头开关的转动;⑤钟摆的运动;⑥荡秋千运动.
A.2 B.3 C.4 D.5
2.香港特别行政区区旗中央的紫荆花图案由5个相同的花瓣组成,
它是由其中一瓣经过几次旋转得到的?
3.如图,如果正方形CDEF旋转后能与正方形ABCD重合,那么图形
所在的平面上可以作为旋转中心的点共有______个.
4. 如图,将点阵中的图形绕点O按逆时针方向旋转900,画出旋转
后的图形.
5.在等腰直角△ABC中,∠C=900,BC=2cm,如果以AC的中点O为
旋转中心,将这个三角形旋转1800,点B落在点B′处,求BB′的
长度.
6.已知:如图,在△ABC中,∠BAC=1200,以BC为边向形外作等边
三角形△BCD,把△ABD绕着点D按顺时针方向旋转600后得到△ECD,
若AB=3,AC=2,求∠BAD的度数与AD的长.
F
A
B
D
E
C
O
B
C
A
O
学习反思: