【新】 九年级数学上册第二章一元二次方程2.4二次函数的应用第1课时最大面积问题同步练习北师大版-推荐下载
- 格式:doc
- 大小:1.28 MB
- 文档页数:8
北师大版数学九年级下册第二章二次函数《最大面积是多少》教学设计一、教学目标(一)知识目标:能够分析和表示不同背景下实际问题中变量之间的二次函数关系,并运用二次函数的知识求出实际问题中的最大(小)值,增强解决问题的能力。
(二)能力目标:1.通过分析和表示不同背景下实际问题中变量之间的二次函数关系,培养学生的分析判断能力.2.通过运用二次函数的知识解决实际问题,培养学生的数学应用能力.(三)情感态度与价值观:1.经历探究最大面积问题的探索过程,体会二次函数是一类最优化问题的数学模型,并感受数学的应用价值.2.体会数学与人类社会的密切联系,了解数学的价值,增进对数学的理解和学好数学的信心,具有初步的创新精神和实践能力.二、教学重点能够分析和表示不同背景下实际问题中变量之间的二次函数关系,并能够运用二次函数的知识解决实际问题,进一步感受数学模型思想和数学的应用价值.教学难点能够分析和表示不同背景下实际问题中变量之间的二次函数关系,并能运用二次函数的有关知识解决最大(小)面积问题.三、教学过程例1如图,在一个直角三角形的内部作一个长方形ABCD,其中AB和AD分别在两直角边上。
(1)设长方形的一边AB=xm,那么AD边的长度如何表示?(2)设长方形的面积为ym2,当x取何值时,y 的值最大?最大值是多少?40m 30m(3)如果设AD 边的长为 xm,那么长方形ABCD 的面积的最大值又是多少?与(2)比较,你发现了什么?【设计意图】:通过学生所熟悉的图形,引入新课,使学生初步了解解决最大面积问题的一般思路。
本节课主要学习如何应用代数的知识来解决几何的问题,也就是通过求二次函数的最值,来解决最大面积问题。
例2 在上面的问题中,如果把矩形改为如图所示的位置,其他条件不变,那么矩形的最大面积是多少?(1).设矩形的一边BC=xm,那么AB 边的长度如何表示?(2).设矩形的面积为ym 2,当x 取何值时,y 的最大值是多少?【设计意图】:变化问题情境,感受数学的严谨性,通过学生用自己的语言清晰表达解决问题的过程以提高语言表达能力,同时板书解题过程,规范书写过程.例3 某建筑物的窗户如图所示,它的上半部是半圆,下半部是矩形,制造窗框的材料总长(图中所有的黑线的长度和)为15m.当x 等于多少时,窗户通过的光线最多(结果精确到0.01m)?此时,窗户的面积是多少?40m30m HG MPNDCBA X Xy【设计意图】:在合作学习的基础上,学生经历观察、思考、类比、交流、探讨等数学活动,通过三角形相似和函数模型的建立解决最大面积问题,发展学生的形象思维和发散思维能力,提高解决问题的能力,并进一步得出解决最大面积问题的一般思路和方法。
2.4 二次函数的应用第1课时图形面积的最大值1.能根据实际问题列出函数关系式,并根据问题的实际情况确定自变量取何值时,函数取得最值;(重点)2.通过建立二次函数的数学模型解决实际问题,培养分析问题、解决问题的能力,提高用数学的意识,在解决问题的过程中体会数形结合思想.(难点)一、情境导入如图所示,要用长20m的铁栏杆,围成一个一面靠墙的长方形花圃,怎么围才能使围成的花圃的面积最大?如果花圃垂直于墙的一边长为x m,花圃的面积为y m2,那么y=x(20-2x).试问:x为何值时,才能使y的值最大?二、合作探究探究点一:二次函数y=ax2+bx+c的最值已知二次函数y=ax2+4x+a-1的最小值为2,则a的值为( )A.3 B.-1 C.4D.4或-1解析:∵二次函数y=ax2+4x+a-1有最小值2,∴a>0,y最小值=4ac-b24a=4a(a-1)-424a=2,整理,得a2-3a-4=0,解得a=-1或4.∵a>0,∴a=4.故选C.方法总结:求二次函数的最大(小)值有三种方法,第一种是由图象直接得出,第二种是配方法,第三种是公式法.变式训练:见《学练优》本课时练习“课堂达标训练”第1题探究点二:利用二次函数求图形面积的最大值【类型一】利用二次函数求矩形面积的最大值如图,在一面靠墙的空地上用长为24米的篱笆,围成中间隔有二道篱笆的长方形花圃,设花圃的宽AB为x米,面积为S平方米.(1)求S与x的函数关系式及自变量的取值范围;(2)当x取何值时所围成的花圃面积最大,最大值是多少?(3)若墙的最大可用长度为8米,则求围成花圃的最大面积.解析:(1)根据AB 为x m ,则BC 为(24-4x )m ,利用长方形的面积公式,可求出关系式;(2)由(1)可知y 和x 为二次函数关系,根据二次函数的性质即可求围成的长方形花圃的最大面积及对应的AB 的长;(3)根据BC 的长度大于0且小于等于8列出不等式组求解即可.解:(1)∵AB =x ,∴BC =24-4x ,∴S=AB ·BC =x (24-4x )=-4x 2+24x (0<x <6);(2)S =-4x 2+24x =-4(x -3)2+36,∵0<x <6,∴当x =3时,S 有最大值为36;(3)∵⎩⎪⎨⎪⎧24-4x≤8,24-4x >0,∴4≤x <6.所以,当x =4时,花圃的面积最大,最大面积为32平方米.方法总结:根据已知条件列出二次函数式是解题的关键.但要注意不要漏掉题中自变量的取值范围.变式训练:见《学练优》本课时练习“课堂达标训练” 第8题【类型二】 利用割补法求图形的最大面积在矩形ABCD 的各边AB ,BC ,CD ,DA 上分别选取点E ,F ,G ,H ,使得AE =AH =CF =CG ,如果AB =60,BC =40,四边形EFGH 的最大面积是( )A .1350B .1300C .1250D .1200 解析:设AE =AH =CF =CG =x ,四边形EFGH 的面积是S .由题意得BE =DG =60-x ,BF =DH =40-x ,则S △AHE =S △CGF =12x 2,S △DGH=S △BEF = 12(60-x )(40-x ),所以四边形EFGH 的面积为S =60×40-x 2-(60-x )(40-x )=-2x 2+100x =-2(x -25)2+1250(0<x ≤40).当x =25时,S 最大值=1250.故选C.方法总结:考查利用配方法求二次函数的最值,先配方,确定函数的对称轴,再与函数的自变量的取值范围结合即可求出四边形EFGH 的面积最大值.变式训练:见《学练优》本课时练习“课后巩固提升” 第7题【类型三】动点问题中的最值问题如图,在矩形ABCD 中,AB =m (m是大于0的常数),BC =8,E 为线段BC 上的动点(不与B 、C 重合).连接DE ,作EF ⊥DE ,垂足为E ,EF 与线段BA 交于点F ,设CE =x ,BF =y .(1)求y 关于x 的函数关系式; (2)若m =8,求x 为何值时,y 的值最大,最大值是多少?(3)若y =12m,要使△DEF 为等腰三角形,m 的值应为多少?解析:(1)利用互余关系找角相等,证明△BEF ∽△CDE ,根据对应边的比相等求函数关系式;(2)把m 的值代入函数关系式,再求二次函数的最大值;(3)∵∠DEF =90°,只有当DE =EF 时,△DEF 为等腰三角形,把条件代入即可.解:(1)∵EF ⊥DE ,∴∠BEF =90°-∠CED =∠CDE .又∠B =∠C =90°,∴△BEF∽△CDE ,∴BF CE =BE CD ,即y x =8-xm ,解得y =8x -x2m; (2)由(1)得y =8x -x2m ,将m =8代入,得y =-18x 2+x =-18(x 2-8x )=-18(x -4)2+2,所以当x =4时,y 取得最大值为2; (3)∵∠DEF =90°,∴只有当DE =EF 时,△DEF 为等腰三角形,∴△BEF ≌△CDE ,∴BE =CD =m ,此时m =8-x .解方程12m =8x -x2m,得x =6,或x =2.当x =2时,m =6;当x =6时,m =2.方法总结:在解题过程中,要充分运用相似三角形对应边的比相等的性质建立函数关系式,是解决问题的关键.变式训练:见《学练优》本课时练习“课后巩固提升”第5题【类型四】 图形运动过程中的最大面积问题如图,有一边长为5cm 的正方形ABCD 和等腰△PQR ,PQ =PR =5cm ,QR =8cm ,点B 、C 、Q 、R 在同一条直线l 上,当C 、Q 两点重合时,等腰△PQR 以1cm/秒的速度沿直线l 按箭头所示方向开始匀速运动,t 秒后正方形ABCD 与等腰△PQR 重合部分的面积为S cm 2.解答下列问题:(1)当t =3秒时,求S 的值; (2)当t =5秒时,求S 的值; (3)当5秒≤t ≤8秒时,求S 与t 的函数关系式,并求出S 的最大值.解析:当t =3秒和5秒时,利用三角形相似求出重合部分的面积.当5秒≤t ≤8秒时,利用二次函数求出重合部分面积的最大值.解:(1)如图①,作PE ⊥QR ,E 为垂足.∵PQ =PR ,∴QE =RE =12QR =4cm.在Rt △PEQ 中,PE =52-42=3(cm).当t =3秒时,QC =3cm.设PQ 与DC 交于点G .∵PE ∥DC ,∴△QCG ∽△QEP .∴SS△QEP =(34)2.∵S △QEP =12×4×3=6,∴S =(34)2×6=278(cm2);(2)如图②,当t =5秒时,CR =3cm.设PR 与DC 交于G ,由△RCG ∽△REP ,可求出CG =94,∴S △RCG =12×3×94=278(cm 2).又∵S△PQR=12×8×3=12(cm 2),∴S =S △PQR -S △RCG=12-278=698(cm2);图③(3)如图③,当5秒≤t ≤8秒时,QB =t -5,RC =8-t .设PQ 交AB 于点H ,PR 交CD 于点G .由△QBH ∽△QEP ,EQ =4,∴BQ ∶EQ=(t -5)∶4,∴S △BQH ∶S △PEQ =(t -5)2∶42,又S △PEQ =6,∴S △QBH =38(t -5)2.由△RCG ∽△REP ,同理得S △RCG =38(8-t )2,∴S =12-38(t -5)2-38(8-t )2=-34t 2+394t-1718.当t =-3942×(-34)=132时,S 最大,S 的最大值=4ac -b24a =16516(cm 2).方法总结:本题是一个图形运动问题,解题的方法是将各个时刻的图形分别画出,由“静”变“动”,再设法求解,这种分类画图的方法在解动态的几何问题时非常有效.探究点三:利用二次函数解决拱桥问题一座拱桥的轮廓是抛物线形(如图①),拱高6m ,跨度20m ,相邻两支柱间的距离均为5m.(1)将抛物线放在所给的直角坐标系中(如图②),求抛物线的解析式;(2)求支柱EF 的长度;(3)拱桥下地平面是双向行车道(正中间是一条宽2m 的隔离带),其中的一条行车道能否并排行驶三辆宽2m 、高3m 的汽车(汽车间的间隔忽略不计)?请说明你的理由.解析:(1)根据题目可知A ,B ,C 的坐标,设出抛物线的解析式代入可求解;(2)设F 点的坐标为(5,y F ),求出y F ,即可求出支柱EF 的长度;(3)设DN 是隔离带的宽,NG 是三辆车的宽度和.作GH ⊥AB 交抛物线于点H ,求出点H 的纵坐标,判断是否大于汽车高度即可求解.解:(1)根据题目条件,A ,B ,C 的坐标分别是(-10,0),(10,0),(0,6).设抛物线的解析式为y =ax 2+c ,将B ,C 的坐标代入y =ax 2+c ,得⎩⎪⎨⎪⎧6=c ,0=100a +c ,解得⎩⎪⎨⎪⎧a =-350,c =6.所以抛物线的解析式为y =-350x 2+6;(2)可设F 点的坐标为(5,y F ),于是y F=-350×52+6=4.5,从而支柱EF 的长度是10-4.5=5.5(米);(3)如图②,设DN 是隔离带的宽,NG 是三辆车的宽度和,则G 点坐标是(7,0).过G 点作GH ⊥AB 交抛物线于H 点,则y H =-350×72+6=3.06>3.根据抛物线的特点,可知一条行车道能并排行驶这样的三辆汽车. 方法总结:利用二次函数解决抛物线形的隧道、大桥和拱门等实际问题时,要恰当地把这些实际问题中的数据落实到平面直角坐标系中的抛物线上,从而确定抛物线的解析式,通过解析式可解决一些测量问题或其他问题.变式训练:见《学练优》本课时练习“课后巩固提升”第6题三、板书设计图形面积的最大值1.求函数的最值的方法2.利用二次函数求图形面积的最大值 3.利用二次函数解决拱桥问题由于本节课的内容是二次函数的应用问题,重在通过学习总结解决问题的方法,故而本节课以“启发探究式”为主线开展教学活动,以学生动手动脑探究为主,必要时加以小组合作讨论,充分调动学生学习积极性和主动性,突出学生的主体地位,达到“不但使学生学会,而且使学生会学”的目的.。
2.4 二次函数的应用第1课时图形面积的最大值1.能根据实际问题列出函数关系式,并根据问题的实际情况确定自变量取何值时,函数取得最值;(重点)2.通过建立二次函数的数学模型解决实际问题,培养分析问题、解决问题的能力,提高用数学的意识,在解决问题的过程中体会数形结合思想.(难点)一、情境导入如图所示,要用长20m的铁栏杆,围成一个一面靠墙的长方形花圃,怎么围才能使围成的花圃的面积最大?如果花圃垂直于墙的一边长为x m,花圃的面积为y m2,那么y=x(20-2x).试问:x为何值时,才能使y的值最大?二、合作探究探究点一:二次函数y=ax2+bx+c的最值已知二次函数y=ax2+4x+a-1的最小值为2,则a的值为()A.3 B.-1 C.4D.4或-1解析:∵二次函数y=ax2+4x+a-1有最小值2,∴a>0,y最小值=4ac-b24a=4a(a-1)-424a=2,整理,得a2-3a-4=0,解得a=-1或4.∵a>0,∴a=4.故选C.方法总结:求二次函数的最大(小)值有三种方法,第一种是由图象直接得出,第二种是配方法,第三种是公式法.变式训练:见《学练优》本课时练习“课堂达标训练”第1题探究点二:利用二次函数求图形面积的最大值【类型一】利用二次函数求矩形面积的最大值如图,在一面靠墙的空地上用长为24米的篱笆,围成中间隔有二道篱笆的长方形花圃,设花圃的宽AB为x米,面积为S平方米.(1)求S与x的函数关系式及自变量的取值范围;(2)当x取何值时所围成的花圃面积最大,最大值是多少?(3)若墙的最大可用长度为8米,则求围成花圃的最大面积.解析:(1)根据AB为x m,则BC为(24-4x)m,利用长方形的面积公式,可求出关系式;(2)由(1)可知y和x为二次函数关系,根据二次函数的性质即可求围成的长方形花圃的最大面积及对应的AB的长;(3)根据BC的长度大于0且小于等于8列出不等式组求解即可.解:(1)∵AB =x ,∴BC =24-4x ,∴S =AB ·BC =x (24-4x )=-4x 2+24x (0<x <6);(2)S =-4x 2+24x =-4(x -3)2+36,∵0<x <6,∴当x =3时,S 有最大值为36;(3)∵⎩⎪⎨⎪⎧24-4x ≤8,24-4x >0,∴4≤x <6.所以,当x =4时,花圃的面积最大,最大面积为32平方米.方法总结:根据已知条件列出二次函数式是解题的关键.但要注意不要漏掉题中自变量的取值范围.变式训练:见《学练优》本课时练习“课堂达标训练” 第8题【类型二】 利用割补法求图形的最大面积在矩形ABCD 的各边AB ,BC ,CD ,DA 上分别选取点E ,F ,G ,H ,使得AE =AH =CF =CG ,如果AB =60,BC =40,四边形EFGH 的最大面积是( )A .1350B .1300C .1250D .1200解析:设AE =AH =CF =CG =x ,四边形EFGH 的面积是S .由题意得BE =DG =60-x ,BF =DH =40-x ,则S △AHE =S △CGF =12x 2,S △DGH =S △BEF = 12(60-x )(40-x ),所以四边形EFGH 的面积为S =60×40-x 2-(60-x )(40-x )=-2x 2+100x =-2(x -25)2+1250(0<x ≤40).当x =25时,S 最大值=1250.故选C.方法总结:考查利用配方法求二次函数的最值,先配方,确定函数的对称轴,再与函数的自变量的取值范围结合即可求出四边形EFGH 的面积最大值.变式训练:见《学练优》本课时练习“课后巩固提升” 第7题【类型三】 动点问题中的最值问题如图,在矩形ABCD 中,AB =m (m是大于0的常数),BC =8,E 为线段BC 上的动点(不与B 、C 重合).连接DE ,作EF ⊥DE ,垂足为E ,EF 与线段BA 交于点F ,设CE =x ,BF =y .(1)求y 关于x 的函数关系式; (2)若m =8,求x 为何值时,y 的值最大,最大值是多少?(3)若y =12m,要使△DEF 为等腰三角形,m 的值应为多少?解析:(1)利用互余关系找角相等,证明△BEF ∽△CDE ,根据对应边的比相等求函数关系式;(2)把m 的值代入函数关系式,再求二次函数的最大值;(3)∵∠DEF =90°,只有当DE =EF 时,△DEF 为等腰三角形,把条件代入即可.解:(1)∵EF ⊥DE ,∴∠BEF =90°-∠CED =∠CDE .又∠B =∠C =90°,∴△BEF ∽△CDE ,∴BF CE =BE CD ,即y x =8-xm ,解得y =8x -x 2m;(2)由(1)得y =8x -x 2m ,将m =8代入,得y =-18x 2+x =-18(x 2-8x )=-18(x -4)2+2,所以当x =4时,y 取得最大值为2; (3)∵∠DEF =90°,∴只有当DE =EF 时,△DEF 为等腰三角形,∴△BEF ≌△CDE ,∴BE =CD =m ,此时m =8-x .解方程12m =8x -x 2m,得x =6,或x =2.当x =2时,m =6;当x =6时,m =2.方法总结:在解题过程中,要充分运用相似三角形对应边的比相等的性质建立函数关系式,是解决问题的关键.变式训练:见《学练优》本课时练习“课后巩固提升”第5题【类型四】 图形运动过程中的最大面积问题如图,有一边长为5cm 的正方形ABCD 和等腰△PQR ,PQ =PR =5cm ,QR =8cm ,点B 、C 、Q 、R 在同一条直线l 上,当C 、Q 两点重合时,等腰△PQR 以1cm/秒的速度沿直线l 按箭头所示方向开始匀速运动,t 秒后正方形ABCD 与等腰△PQR 重合部分的面积为S cm 2.解答下列问题:(1)当t =3秒时,求S 的值; (2)当t =5秒时,求S 的值; (3)当5秒≤t ≤8秒时,求S 与t 的函数关系式,并求出S 的最大值.解析:当t =3秒和5秒时,利用三角形相似求出重合部分的面积.当5秒≤t ≤8秒时,利用二次函数求出重合部分面积的最大值.解:(1)如图①,作PE ⊥QR ,E 为垂足.∵PQ =PR ,∴QE =RE =12QR =4cm.在Rt △PEQ 中,PE =52-42=3(cm).当t =3秒时,QC =3cm.设PQ 与DC 交于点G .∵PE ∥DC ,∴△QCG ∽△QEP .∴SS △QEP =(34)2.∵S △QEP =12×4×3=6,∴S =(34)2×6=278(cm 2);(2)如图②,当t =5秒时,CR =3cm.设PR 与DC 交于G ,由△RCG ∽△REP ,可求出CG =94,∴S △RCG =12×3×94=278(cm 2).又∵S △PQR =12×8×3=12(cm 2),∴S =S △PQR -S △RCG =12-278=698(cm 2);图③(3)如图③,当5秒≤t ≤8秒时,QB =t -5,RC =8-t .设PQ 交AB 于点H ,PR 交CD 于点G .由△QBH ∽△QEP ,EQ =4,∴BQ ∶EQ =(t -5)∶4,∴S △BQH ∶S △PEQ =(t -5)2∶42,又S △PEQ =6,∴S △QBH =38(t -5)2.由△RCG ∽△REP ,同理得S △RCG =38(8-t )2,∴S =12-38(t -5)2-38(8-t )2=-34t 2+394t -1718.当t =-3942×(-34)=132时,S 最大,S 的最大值=4ac -b 24a =16516(cm 2).方法总结:本题是一个图形运动问题,解题的方法是将各个时刻的图形分别画出,由“静”变“动”,再设法求解,这种分类画图的方法在解动态的几何问题时非常有效.探究点三:利用二次函数解决拱桥问题一座拱桥的轮廓是抛物线形(如图①),拱高6m ,跨度20m ,相邻两支柱间的距离均为5m.(1)将抛物线放在所给的直角坐标系中(如图②),求抛物线的解析式;(2)求支柱EF 的长度;(3)拱桥下地平面是双向行车道(正中间是一条宽2m 的隔离带),其中的一条行车道能否并排行驶三辆宽2m 、高3m 的汽车(汽车间的间隔忽略不计)?请说明你的理由.解析:(1)根据题目可知A ,B ,C 的坐标,设出抛物线的解析式代入可求解;(2)设F 点的坐标为(5,y F ),求出y F ,即可求出支柱EF 的长度;(3)设DN 是隔离带的宽,NG 是三辆车的宽度和.作GH ⊥AB 交抛物线于点H ,求出点H 的纵坐标,判断是否大于汽车高度即可求解.解:(1)根据题目条件,A ,B ,C 的坐标分别是(-10,0),(10,0),(0,6).设抛物线的解析式为y =ax 2+c ,将B ,C 的坐标代入y =ax 2+c ,得⎩⎪⎨⎪⎧6=c ,0=100a +c ,解得⎩⎪⎨⎪⎧a =-350,c =6.所以抛物线的解析式为y =-350x 2+6;(2)可设F 点的坐标为(5,y F ),于是y F =-350×52+6=4.5,从而支柱EF 的长度是10-4.5=5.5(米);(3)如图②,设DN 是隔离带的宽,NG 是三辆车的宽度和,则G 点坐标是(7,0).过G 点作GH ⊥AB 交抛物线于H 点,则y H =-350×72+6=3.06>3.根据抛物线的特点,可知一条行车道能并排行驶这样的三辆汽车.方法总结:利用二次函数解决抛物线形的隧道、大桥和拱门等实际问题时,要恰当地把这些实际问题中的数据落实到平面直角坐标系中的抛物线上,从而确定抛物线的解析式,通过解析式可解决一些测量问题或其他问题.变式训练:见《学练优》本课时练习“课后巩固提升”第6题三、板书设计图形面积的最大值1.求函数的最值的方法2.利用二次函数求图形面积的最大值 3.利用二次函数解决拱桥问题由于本节课的内容是二次函数的应用问题,重在通过学习总结解决问题的方法,故而本节课以“启发探究式”为主线开展教学活动,以学生动手动脑探究为主,必要时加以小组合作讨论,充分调动学生学习积极性和主动性,突出学生的主体地位,达到“不但使学生学会,而且使学生会学”的目的.。
中学资料
1
4 第1课时 最大面积问题
知识点 1 几何图形的面积与二次函数
1.如图2-4-1,假设篱笆(虚线部分)的长度是16 m,则所围成矩形ABCD的最大面积
是( )
A.60 m2 B.63 m
2
C.64 m2 D.66 m
2
图2-4-1
图2-4-2
2.[2016·衢州] 某农场拟建三间长方形种牛饲养室,饲养室的一面靠墙(墙长50 m),
中间用两道墙隔开(如图2-4-2).已知计划中的建筑材料可建墙的总长度为48 m,则这三
间长方形种牛饲养室的总占地面积的最大值为________m2.
图2-4-3
3.如图2-4-3,在△ABC中,∠B=90°,AB=12 mm,BC=24 mm,动点P从点A开
始沿边AB向点B以2 mm/s的速度移动(不与点B重合),动点Q从点B开始沿边BC向点C
以4 mm/s的速度移动(不与点C重合).如果P,Q分别从A,B同时出发,那么经过________s,
四边形APQC的面积最小.
4.为了改善小区环境,某小区决定要在一块一边靠墙(墙长25 m)的空地上修建一个矩
形绿化带ABCD,绿化带一边靠墙,另三边用总长为40 m的栅栏围住(如图2-4-4).设绿
化带的BC边长为x m,绿化带的面积为y m2.
(1)求y与x之间的函数关系式,并写出自变量x的取值范围.
(2)当x为何值时,绿化带的面积最大?
中学资料
2
图2-4-4
知识点 2 二次函数与抛物线形问题
5.河北省赵县的赵州桥的桥拱是近似的抛物线形,建立如图2-4-5所示的平面直角
坐标系,其函数关系式为y=-125x2,当水面离桥拱顶的高度DO是4 m时,这时水面宽度
AB为( )
图2-4-5
A.-20 m B.10 m C.20 m D.-10 m
6.竖直向上发射的小球的高度h(m)关于运动时间t(s)的函数表达式为h=at2+bt,其
图象如图2-4-6.若小球在发射后第2 s与第6 s时的高度相等,则下列时刻中小球的高
度最高的是第( )
A.3 s B.3.5 s C.4 s D.6.5 s
图2-4-6 图2-4-7
7.如图2-4-7,一场篮球赛中,篮球运动员跳起投篮,已知球出手时离地面2.2 m,
与篮圈中心的水平距离为8 m,当球出手后水平距离为4 m时达到最大高度4 m,篮圈运行
的轨迹为抛物线的一部分,篮圈中心距离地面3 m,运动员发现未投中,若假设出手的角度
和力度都不变,要使此球恰好通过篮圈中心,运动员应该跳得( )
A.比开始高0.8 m B.比开始高0.4 m
C.比开始低0.8 m D.比开始低0.4 m