2019年七上期末数学测试题(含答案)
- 格式:rtf
- 大小:852.09 KB
- 文档页数:6
2019-2020学年四川省凉山州七年级(上)期末数学试卷一.选择题(共15小题,共30分)1.在﹣|﹣1|,﹣|0|,﹣(﹣2),中,负数共有()A.4个B.3个C.2个D.1个2.如图,能用∠AOB,∠O,∠1三种方法表示同一个角的图形是()A.B.C.D.3.港珠澳大桥2018年10月24日上午9时正式通车,这座大桥跨越伶仃洋,东接香港,西接广东珠海和澳门,总长55000m,数据55000m用科学记数法表示为()A.0.55×105m B.5.5×104m C.55×103m D.5.5×103m4.某立体图形的三视图如图所示,则该立体图形的名称是()A.正方体B.长方体C.圆柱体D.圆锥体5.下列说法正确的是()A.单项式﹣的次数是8B.最小的非负数是0C.0的绝对值、相反数、倒数都等于它本身D.如果a=b,那么=6.若﹣a x+2b2+2ab y的和是单项式,则x y的值是()A.1B.﹣1C.2D.07.下列说法中,正确的有()个①笔尖在纸上快速滑动写出一个又一个字,这说明点动成线;②要整齐地栽一行树,只要确定两端的树坑位置,就能确定这一行树坑所在的直线,这是运用数学知识两点确定一条直线;③把一个直角三角形以直角边为轴旋转一周得到的几何体是圆柱;④射线AB与射线BA是同一条射线;⑤两条射线组成的图形叫角A.1 个B.2 个C.3 个D.48.化简2(a﹣b)﹣(3a+b)的结果是()A.﹣a﹣2b B.﹣a﹣3b C.﹣a﹣b D.﹣a﹣5b9.若方程2x+1=﹣2与关于x的方程1﹣2(x﹣a)=2的解相同,则a的值是()A.1B.﹣1C.﹣2D.﹣10.如图,点A、B在数轴上表示的数的绝对值相等,且AB=4,那么点A表示的数是()A.﹣3B.﹣2C.﹣1D.311.近似数3.5的准确值a的取值范围是()A.3.45≤a≤3.55B.3.4<a<3.6C.3.45≤a<3.55D.3.45<a≤3.5512.某商人在一次买卖中均以60元卖出两件衣服,一件赚25%,一件赔25%,在这次交易中,该商人()A.赚8元B.赔8元C.不赚不赔D.无法确定13.m为任意有理数,下列说法错误的是()A.(m+1)2的值总是正的B.m2+1的值总是正的C.|m+1|的值为非负数D.|m|+1的值不小于114.已知a+b=3,b﹣c=12,则a+2b﹣c的值为()A.15B.9C.﹣15D.﹣915.观察下列多项式:a+2b,a2﹣4b3,a3+8b5,a4﹣16b7…,则第10个多项式为()A.a10﹣210b20B.a10+210b19C.a10﹣210b19D.a10+210b20二.填空题(共6小题,共18分)16.多项式是关于x,y的三次二项式,则m的值是.17.数轴上表示有理数﹣4.5与2.5两点的距离是.18.在3时40分时,时钟的时针与分针的夹角是度.19.若多项式x4﹣ax3﹣x+3与多项式x3﹣bx﹣1之和不含x3和x项,则b a=.20.一个角的余角是54°38′,则这个角是.21.已知方程|2x﹣1|=2﹣x,那么方程的解是.三.解答题(共6小题,共52分)22.(1)计算:﹣22﹣(﹣2)3×﹣6÷||(2)先化简,再求值:,其中x,y满足(x﹣2)2+|y ﹣3|=023.解方程(1)4﹣3(2﹣x)=5x(2)=24.已知三角形的第一条边的长是a+2b,第二条边长是第一条边长的2倍少3,第三条边比第二条边短5.(1)用含a、b的式子表示这个三角形的周长;(2)当a=2,b=3时,求这个三角形的周长;(3)当a=4,三角形的周长为39时,求各边长.25.如图,FC为过点O的直线,OE为南偏东25°的射线,且OE平分∠FOD,求∠COD 的度数.26.如图,B、C是线段AD上的两点,且AB=AD,点M、C分别是AD、BD的中点,BM=2,求线段MC的长.27.某超市元月1日搞促销活动,购物不超过200元不给优惠;超过200元,而不超过500元优惠10%,超过500元的,其中500元按9折优惠,超过的部分按8折优惠,某人两次购物分别用了134元、466元.(1)此人两次购物时物品不打折分别值多少钱?(2)在这次活动中他节省了多少钱?(3)若此人将两次购买的物品合起来一次购买是不是更合算?请说明你的理由.参考答案与试题解析一.选择题(共15小题)1.在﹣|﹣1|,﹣|0|,﹣(﹣2),中,负数共有()A.4个B.3个C.2个D.1个【分析】根据小于零的数是负数,可得答案.【解答】解:﹣|﹣1|是负数,故选:D.2.如图,能用∠AOB,∠O,∠1三种方法表示同一个角的图形是()A.B.C.D.【分析】根据角的四种表示方法和具体要求回答即可.【解答】解:A、以O为顶点的角不止一个,不能用∠O表示,故A选项错误;B、以O为顶点的角不止一个,不能用∠O表示,故B选项错误;C、以O为顶点的角不止一个,不能用∠O表示,故C选项错误;D、能用∠1,∠AOB,∠O三种方法表示同一个角,故D选项正确.故选:D.3.港珠澳大桥2018年10月24日上午9时正式通车,这座大桥跨越伶仃洋,东接香港,西接广东珠海和澳门,总长55000m,数据55000m用科学记数法表示为()A.0.55×105m B.5.5×104m C.55×103m D.5.5×103m【分析】用科学记数法表示较大的数时,一般形式为a×10n,其中1≤|a|<10,n为整数,据此判断即可.【解答】解:55000m=5.5×104m.故选:B.4.某立体图形的三视图如图所示,则该立体图形的名称是()A.正方体B.长方体C.圆柱体D.圆锥体【分析】俯视图是圆形,说明这个几何体的上下有两个面是圆形的,左视图、左视图都是长方形的,于是可以判断这个几何体是圆柱体.【解答】解:俯视图是圆形,说明这个几何体的上下有两个面是圆形的,左视图、左视图都是长方形的,于是可以判断这个几何体是圆柱体.故选:C.5.下列说法正确的是()A.单项式﹣的次数是8B.最小的非负数是0C.0的绝对值、相反数、倒数都等于它本身D.如果a=b,那么=【分析】直接利用单项式的定义以及0的性质和倒数的定义分别分析得出答案.【解答】解:A、单项式﹣的次数是6,故此选项错误;B、最小的非负数是0,正确;C、0的绝对值、相反数都等于它本身,0没有倒数,故此选项错误;D、如果a=b,那么=(c≠0),故此选项错误;故选:B.6.若﹣a x+2b2+2ab y的和是单项式,则x y的值是()A.1B.﹣1C.2D.0【分析】根据同类项的定义列式,求出x、y的值可得结论.【解答】解:由题意得:﹣a x+2b2与2ab y是同类项,∴,∴x=﹣1,y=2,∴x y=(﹣1)2=1,故选:A.7.下列说法中,正确的有()个①笔尖在纸上快速滑动写出一个又一个字,这说明点动成线;②要整齐地栽一行树,只要确定两端的树坑位置,就能确定这一行树坑所在的直线,这是运用数学知识两点确定一条直线;③把一个直角三角形以直角边为轴旋转一周得到的几何体是圆柱;④射线AB与射线BA是同一条射线;⑤两条射线组成的图形叫角A.1 个B.2 个C.3 个D.4【分析】根据直线的性质、直线、射线、线段的概念判断即可.【解答】解:①笔尖在纸上快速滑动写出一个又一个字,这能说明点动成线,正确;②要整齐地栽一行树,只要确定两端的树坑位置,就能确定这一行树坑所在的直线,这是运用数学知识两点确定一条直线,正确;③把一个直角三角形以直角边为轴旋转一周得到的几何体是圆锥,错误;④射线AB与射线BA不是同一条射线,错误;⑤两条有公共顶点的射线组成的图形叫角,错误;故选:B.8.化简2(a﹣b)﹣(3a+b)的结果是()A.﹣a﹣2b B.﹣a﹣3b C.﹣a﹣b D.﹣a﹣5b【分析】原式去括号合并即可得到结果.【解答】解:原式=2a﹣2b﹣3a﹣b=﹣a﹣3b,故选:B.9.若方程2x+1=﹣2与关于x的方程1﹣2(x﹣a)=2的解相同,则a的值是()A.1B.﹣1C.﹣2D.﹣【分析】根据解方程,可得x的值,根据同解方程,可得关于a的方程,根据解方程,可得答案.【解答】解:解2x+1=﹣2,得x=﹣.把x=﹣代入1﹣2(x﹣a)=2,得1﹣2(﹣﹣a)=2.解得a=﹣1,故选:B.10.如图,点A、B在数轴上表示的数的绝对值相等,且AB=4,那么点A表示的数是()A.﹣3B.﹣2C.﹣1D.3【分析】如果点A,B表示的数的绝对值相等,那么AB的中点即为坐标原点.【解答】解:如图,AB的中点即数轴的原点O.根据数轴可以得到点A表示的数是﹣2.故选:B.11.近似数3.5的准确值a的取值范围是()A.3.45≤a≤3.55B.3.4<a<3.6C.3.45≤a<3.55D.3.45<a≤3.55【分析】根据四舍五入法,可以得到似数3.5的准确值a的取值范围,本题得以解决.【解答】解:近似数3.5的准确值a的取值范围是3.45≤a≤3.54,故选:C.12.某商人在一次买卖中均以60元卖出两件衣服,一件赚25%,一件赔25%,在这次交易中,该商人()A.赚8元B.赔8元C.不赚不赔D.无法确定【分析】首先根据题意计算出赚了25%的衣服的衣服的进价,然后再计算出赔了25%的衣服进价,然后再计算出是陪还是赚.【解答】解:设赚了25%的衣服是x元,则(1+25%)x=60,解得x=48,则实际赚了6048=12(元);设赔了25%的衣服是y元,则(1﹣25%)y=60,解得y=80元,则赔了80﹣60=20(元);∵20>12;∴赔大于赚,在这次交易中,该商人是赔了20﹣12=8(元).即:该商人在这次交易中赔了8元.故选:B.13.m为任意有理数,下列说法错误的是()A.(m+1)2的值总是正的B.m2+1的值总是正的C.|m+1|的值为非负数D.|m|+1的值不小于1【分析】根据任何数的平方都是非负数,可知平方的最小值是0,举反例排除错误选项,从而得出正确结果.【解答】解:A、当m=﹣1时,(m+1)2的值是0,错误;B、m2+1的值总是正的,正确;C、|m+1|的值为非负数,正确;D、|m|+1的值不小于1,正确;故选:A.14.已知a+b=3,b﹣c=12,则a+2b﹣c的值为()A.15B.9C.﹣15D.﹣9【分析】根据整式的运算法则即可求出答案.【解答】解:∵a+b=3,b﹣c=12,∴原式=a+b+b﹣c=3+12=15,故选:A.15.观察下列多项式:a+2b,a2﹣4b3,a3+8b5,a4﹣16b7…,则第10个多项式为()A.a10﹣210b20B.a10+210b19C.a10﹣210b19D.a10+210b20【分析】根据已知的式子可以得到每个式子的第一项中a的次数是式子的序号;第二项的符号:第奇数项是正号,第偶数项是符号;第二项中b的次数是序号的2倍减1,第二项系数的绝对值是2的序号次方,据此即可写出.【解答】解:∵a+2b=a1+(﹣1)1+1×21b2×1﹣1,a2﹣4b3=a2+(﹣1)2+1×22b2×2﹣1,a3+8b5=a3+(﹣1)3+1×23b2×3﹣1,a4﹣16b7=a4+(﹣1)4+1×24b2×4﹣1,……由上可知第n个式子为:a n+(﹣1)n+12n b2n﹣1,∴第10个式子是a10﹣210b19.故选:C.二.填空题(共6小题)16.多项式是关于x,y的三次二项式,则m的值是﹣1.【分析】直接利用二次三项式的定义得出关于m的等式进而得出答案.【解答】解:∵多项式是关于x,y的三次二项式,∴|m|+2=3,m+1=0,解得:m=﹣1.故答案为:﹣1.17.数轴上表示有理数﹣4.5与2.5两点的距离是7.【分析】有理数﹣4.5与2.5两点的距离实为两数差的绝对值.【解答】解:由题意得:有理数﹣4.5与2.5两点的距离为|﹣4.5﹣2.5|=7.故答案为:7.18.在3时40分时,时钟的时针与分针的夹角是130度.【分析】根据分针每分钟转6°,时针每分钟转0.5°得到40分钟分针从数字12开始转了240°,时针从数字3开始转了20°,于是3时40分时,时针与分针所夹的角度等于240°﹣20°﹣3×30°.【解答】解:3时40分时,分针从数字12开始转了40×6°=240°,时针从数字3开始转了40×0.5°=20°所以3时40分时,时针与分针所夹的角度=240°﹣20°﹣3×30°=130°,故答案为:130.19.若多项式x4﹣ax3﹣x+3与多项式x3﹣bx﹣1之和不含x3和x项,则b a=﹣1.【分析】根据题意列出关系式,由结果不含x3和x项求出a与b的值,代入原式计算即可求出值.【解答】解:根据题意得:原式=x4﹣ax3﹣x+3+x3﹣bx﹣1=x4+(﹣a+1)x3+(﹣1﹣b)x+2,由结果不含x3和x项,得到﹣a+1=0,﹣1﹣b=0,解得:a=1,b=﹣1,则原式=﹣1,故答案为:﹣120.一个角的余角是54°38′,则这个角是35°22′.【分析】根据余角是两个角的和为90°,这两个角互为余角,两个角的和为180°,这两个角互为补角,可得答案.【解答】解:∵一个角的余角是54°38′∴这个角为:90°﹣54°38′=35°22′.故答案为:35°22′21.已知方程|2x﹣1|=2﹣x,那么方程的解是x=±1.【分析】绝对值方程要转化为整式方程,因为|2x﹣1|=±(2x﹣1),所以得方程2﹣x=±(2x﹣1),解即可.【解答】解:由|2x﹣1|=2﹣x,可得:2﹣x=±(2x﹣1),当2﹣x=2x﹣1,解得:x=1,当2﹣x=﹣2x+1,解得:x=﹣1,所以方程的解为x=±1.三.解答题(共6小题)22.(1)计算:﹣22﹣(﹣2)3×﹣6÷||(2)先化简,再求值:,其中x,y满足(x﹣2)2+|y ﹣3|=0【分析】(1)根据有理数混合运算顺序和运算法则计算可得;(2)原式去括号、合并同类项化简后,再根据非负数的性质得出x、y的值,最后代入计算可得.【解答】解:(1)原式=﹣4﹣(﹣8)×﹣6×=﹣4+﹣9=﹣11;(2)原式=x﹣2x+y2﹣x+y2=﹣3x+y2,∵(x﹣2)2+|y﹣3|=0,∴x﹣2=0且y﹣3=0,则x=2、y=3,所以原式=﹣3×2+32=﹣6+9=3.23.解方程(1)4﹣3(2﹣x)=5x(2)=【分析】(1)方程去括号,移项合并,把x系数化为1,即可求出解;(2)方程去分母,去括号,移项合并,把x系数化为1,即可求出解.【解答】解:(1)去括号得:4﹣6+3x=5x,移项合并得:﹣2x=2,解得:x=﹣1;(2)去分母得:4x﹣2+6=2x+1,移项合并得:2x=﹣3,解得:x=﹣1.5.24.已知三角形的第一条边的长是a+2b,第二条边长是第一条边长的2倍少3,第三条边比第二条边短5.(1)用含a、b的式子表示这个三角形的周长;(2)当a=2,b=3时,求这个三角形的周长;(3)当a=4,三角形的周长为39时,求各边长.【分析】(1)根据题意表示出三角形的周长即可;(2)把a与b的值代入计算即可求出值;(3)根据周长求出各边长即可.【解答】解:(1)原式=(a+2b)+[2(a+2b)﹣3]+[2(a+2b)﹣3﹣5]=a+2b+2a+4b﹣3+2a+4b﹣8=5a+10b﹣11;(2)当a=2,b=3时,原式=10+30﹣11=29;(3)当a=4时,5a+10b﹣11=39,20+10b﹣11=39,则第一条边为10,第二条边为17,第三条边为12.25.如图,FC为过点O的直线,OE为南偏东25°的射线,且OE平分∠FOD,求∠COD 的度数.【分析】利用方向角得到∠GOE=25°,再利用互余计算出∠EOD=65°,接着根据角平分线的定义得到∠FOE=∠BOD=65°,然后利用邻补角可计算出∠COD的度数.【解答】解:由题意知∠GOE=25°,∴∠EOD=90°﹣25°=65°,∵OE平分∠POD,∴∠FOE=∠BOD=65°,∴∠FOD=65°+65°=130°,∴∠COD=180°﹣130°=50°.26.如图,B、C是线段AD上的两点,且AB=AD,点M、C分别是AD、BD的中点,BM=2,求线段MC的长.【分析】设AD=x,由题意BM=AM﹣AB=x﹣x=x,构建方程即可解决问题.【解答】解:设AD=x.∵AB=AD,∴AB=x,BD=x,∵点M、C分别是AD、BD的中点,∴AM=DM=x,CD=×x=x,∴BM=AM﹣AB=x﹣x=x,∵BM=2,∴x=12,∵MC=DM﹣DC=x=2.27.某超市元月1日搞促销活动,购物不超过200元不给优惠;超过200元,而不超过500元优惠10%,超过500元的,其中500元按9折优惠,超过的部分按8折优惠,某人两次购物分别用了134元、466元.(1)此人两次购物时物品不打折分别值多少钱?(2)在这次活动中他节省了多少钱?(3)若此人将两次购买的物品合起来一次购买是不是更合算?请说明你的理由.【分析】(1)先判断两次是否优惠,若优惠,在哪一档优惠;(2)用商品标价减实际付款可求解;(3)先计算两次的标价和,再计算实际付款,比较即可.【解答】解:(1)∵200×90%=180元>134元,∴134元的商品未优惠;∵500×0.9=450元<466元,∴466元的商品享受到了超过500元,而不超过500元的优惠.设其标价x元,则500×0.9+(x﹣500)×0.8=466,解得x=520,所以物品不打折时的分别值134元,520元;(2)134+520﹣134﹣466=54,所以省了54元;(3)两次物品合起来一次购买合算.不优惠需要支付134+520=654元,两次合起来一次购买支付500×0.9+(654﹣500)×0.8=573.2元,573.2<134+466<654,所以两次物品合起来一次购买合算.。
2019-2020学年七年级(上)期末数学试卷一.选择题(共6小题)1.﹣2的绝对值是()A.2 B.±2 C.D.2.已知关于x的方程2x+a﹣9=0的解是x=2,则a的值为()A.2 B.3 C.4 D.53.下列各式中,是一元一次方程的是()A.2x+5y=6 B.3x﹣2 C.x2=1 D.3x+5=84.从不同方向看某物体得到如图所示的三个图形,那么该物体是()A.长方体B.圆柱C.正方体D.圆锥5.如果线段AB=6cm,BC=4cm,且点A、B、C在同一直线上,那么A、C间的距离是()A.10cm B.2cmC.10cm或者2cm D.无法确定6.某商店卖出两件衣服,每件60元,其中一件赚25%,另一件亏25%,那么这两件衣服卖出后,商店是()A.不赚不亏B.赚8元C.亏8元D.赚15元二.填空题(共8小题)7.若a、b是互为倒数,则2ab﹣5=.8.中国倡导的“一带一路”建设将促进我国与世界各国的互利合作,根据规划,“一带一路”地区覆盖总人口约为4400000000人,这个数用科学记数法表示为.9.已知代数式2a2b n+3与﹣3a m﹣1b2是同类项,则m+n=.10.若一个足球m元,一个篮球n元,则买4个足球和8个篮球共需要元.11.实数a,b,c,d在数轴上的对应点的位置如图,则这四个数中,绝对值最小的是.12.如图,∠AOB=90°,若射线OA的方向为北偏东55°,则射线OB的方向为.13.如图是一个数值转换机,如果输出的结果为﹣9,那么输入的数x是.14.一张试卷只有25道选择题,做对一题得4分,做错1题倒扣1分,某同学做了全部试题共得85分,他做对了道题.三.解答题(共12小题)15.计算:(﹣2)3×4﹣(﹣5)÷.16.解方程:.17.当a=3,b=﹣1时,求下列代数式的值.(1)(a+b)(a﹣b);(2)a2+2ab+b2.18.如图,OD、OE分别是∠AOC和∠BOC的平分线,∠AOD=40°,∠BOE=25°,求∠AOB 的度数.19.若定义一种新的运算“*”,规定有理数a*b=4ab,如2*3=4×2×3=24.(1)求3*(﹣4)的值;(2)求(﹣2)*(6*3)的值.20.已知关于x的方程2(x﹣1)=3m﹣1与3x+2=﹣4的解互为相反数,求m的值.21.王老师想为梦想班的同学们购买学习用品,了解到某商店每个书包价格比每本词典多8元,用124元恰好可以买到3个书包和2本词典.(1)每个书包和每本词典的价格各是多少元?(2)王老师计划用900元为全班40位学生每人购买一件学习用品(一个书包或一本词典)后,余下的钱最少为多少元?此时购买书包和词典的方案是什么?22.如图所示,已知四个点A、B、C、D,根据下列要求画图:(1)画线段AB;(2)画∠CDB;(3)找一点P,使点P既在直线AD上,又在直线BC上.23.阅读下面的解题过程:计算(﹣15)÷()×6解:原式=(﹣15)×6(第一步)=(﹣15)÷(﹣1)(第二步)=﹣15(第三步)回答:(1)上面解题过程中有两处错误,第一处是第步,错误的原因是,第二处是第步,错误的原因是.(2)把正确的解题过程写出来.24.如图,已知线段AD和BC的公共部分CD=AC=BC,线段AC的中点为E,若DE=10cm,求AC,BC的长.25.第66路公交车沿东西方向行驶,如果把车站的起点记为0,向东行驶记为正,向西行驶记为负,其中一辆车从车站出发以后行驶的路程如下表(单位:km):(1)该车最后是否回到了车站?为什么?(2)该辆车离开出发点最远是多少千米?(3)若每千米耗油0.2升,每升油价是7.5元,则从O地出发到收工时油费是多少元?26.阅读下面材料:点A、B在数轴上分别表示有理数a、b,A、B两点之间的距离表示为AB,在数轴上A、B两点之间的距离AB=|a﹣b|.回答下列问题:(1)数轴上表示﹣3和1两点之间的距离是,数轴上表示﹣2和3的两点之间的距离是;(2)数轴上表示x和﹣1的两点之间的距离表示为;(3)若x表示一个有理数,则|x﹣2|+|x+3|有最小值吗?若有,请求出最小值;若没有,请说明理由.参考答案与试题解析一.选择题(共6小题)1.﹣2的绝对值是()A.2 B.±2 C.D.【分析】根据数轴上的点表示的数到原点的距离是该数的绝对值,可得﹣2的绝对值.【解答】解:﹣2的绝对值是2,故选:A.2.已知关于x的方程2x+a﹣9=0的解是x=2,则a的值为()A.2 B.3 C.4 D.5【分析】根据方程的解的定义,把x=2代入方程,解关于a的一元一次方程即可.【解答】解;∵方程2x+a﹣9=0的解是x=2,∴2×2+a﹣9=0,解得a=5.故选:D.3.下列各式中,是一元一次方程的是()A.2x+5y=6 B.3x﹣2 C.x2=1 D.3x+5=8【分析】只含有一个未知数(元),并且未知数的指数是1(次)的方程叫做一元一次方程.它的一般形式是ax+b=0(a,b是常数且a≠0).【解答】解:A、含有2个未知数,故选项错误;B、不是等式,故选项错误;C、是2次方程,故选项错误;D、正确.故选:D.4.从不同方向看某物体得到如图所示的三个图形,那么该物体是()A.长方体B.圆柱C.正方体D.圆锥【分析】由主视图和左视图可得此几何体为柱体,根据俯视图是圆可判断出此几何体为圆柱.【解答】解:∵主视图和左视图都是长方形,∴此几何体为柱体,∵俯视图是一个圆,∴此几何体为圆柱,故选:B.5.如果线段AB=6cm,BC=4cm,且点A、B、C在同一直线上,那么A、C间的距离是()A.10cm B.2cmC.10cm或者2cm D.无法确定【分析】讨论:当点C在线段AB的延长线上时,AC=AB+BC;当点C在线段AB的上时,AC=AB﹣BC,再把AB=6cm,BC=4cm代入计算可求得AC的长,即得到A、C间的距离.【解答】解:当点C在线段AB的延长线上时,如图,AC=AB+BC=6+4=10(cm),即A、C间的距离为10cm;当点C在线段AB的上时,如图,AC=AB﹣BC=6﹣4=2(cm),即A、C间的距离为2cm.故A、C间的距离是10cm或者2cm.故选:C.6.某商店卖出两件衣服,每件60元,其中一件赚25%,另一件亏25%,那么这两件衣服卖出后,商店是()A.不赚不亏B.赚8元C.亏8元D.赚15元【分析】设盈利的进价是x元,亏损的进价是y元,根据每件60元,其中一件赚25%,另一件亏25%,可列出方程求解.【解答】解:设盈利的进价是x元,则x+25%x=60,x=48.设亏损的进价是y元,则y﹣25%y=60,y=80.60+60﹣48﹣80=﹣8,∴亏了8元.故选:C.二.填空题(共8小题)7.若a、b是互为倒数,则2ab﹣5=﹣3 .【分析】互为倒数的两数之积为1,从而代入运算即可.【解答】解:∵a、b是互为倒数,∴ab=1,∴2ab﹣5=﹣3.故答案为:﹣3.8.中国倡导的“一带一路”建设将促进我国与世界各国的互利合作,根据规划,“一带一路”地区覆盖总人口约为4400000000人,这个数用科学记数法表示为 4.4×109.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将4400000000用科学记数法表示为4.4×109.故答案为:4.4×109.9.已知代数式2a2b n+3与﹣3a m﹣1b2是同类项,则m+n= 2 .【分析】直接利用同类项的定义得出m,n的值,进而得出答案.【解答】解:∵代数式2a2b n+3与﹣3a m﹣1b2是同类项,∴m﹣1=2,n+3=2,解得:m=3,n=﹣1,则m+n=3﹣1=2.故答案为:2.10.若一个足球m元,一个篮球n元,则买4个足球和8个篮球共需要(4m+8n)元.【分析】根据总价=单价×数量,可知买4个足球需4m元,8个篮球需8n元,故共需(4m+8n)元.【解答】解:∵一个足球m元,一个篮球n元,∴买4个足球和8个篮球共需要(4m+8n)元.故答案为:(4m+8n).11.实数a,b,c,d在数轴上的对应点的位置如图,则这四个数中,绝对值最小的是c.【分析】直接利用绝对值的意义进而得出答案.【解答】解:如图所示:实数a,b,c,d在数轴上的对应点,只有c距离原点的距离最近,故这四个数中,绝对值最小的是c.故答案为:c.12.如图,∠AOB=90°,若射线OA的方向为北偏东55°,则射线OB的方向为南偏东35°.【分析】利用已知得出∠1的度数,进而得出OB的方向角.【解答】解:如图,所示:∵OA是北偏东55°方向的一条射线,∠AOB=90°,∴∠1=90°﹣55°=35°,∴OB的方向角是南偏东35°.故答案是:南偏东35°.13.如图是一个数值转换机,如果输出的结果为﹣9,那么输入的数x是﹣21 .【分析】根据题意列出关于x的方程,求出方程的解即可得到x的值.【解答】解:根据题意得:(x+3)÷2=﹣9,即x+3=﹣18,解得:x=﹣21,故答案为:﹣21.14.一张试卷只有25道选择题,做对一题得4分,做错1题倒扣1分,某同学做了全部试题共得85分,他做对了22 道题.【分析】设他做对了x道题,则做错了(25﹣x)道题,根据“做了全部试题共得85分,”列出方程并解答.【解答】解:设他做对了x道题,则做错了(25﹣x)道题,依题意得:4x﹣(25﹣x)=85,解得x=22.故答案是:22.三.解答题(共12小题)15.计算:(﹣2)3×4﹣(﹣5)÷.【分析】原式先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果.【解答】解:原式=﹣8×4﹣(﹣5)×2=﹣32+10=﹣22.16.解方程:.【分析】首先熟悉解一元一次方程的步骤:去分母,去括号,移项,合并同类项,系数化为1.【解答】解:去分母得:3(3x﹣1)﹣12=2(5x﹣7)去括号得:9x﹣3﹣12=10x﹣14移项得:9x﹣10x=﹣14+15合并得:﹣x=1系数化为1得:x=﹣1.17.当a=3,b=﹣1时,求下列代数式的值.(1)(a+b)(a﹣b);(2)a2+2ab+b2.【分析】(1)把a与b的值代入计算即可求出值;(2)原式利用完全平方公式变形,将a与b的值代入计算即可求出值.【解答】解:(1)当a=3,b=﹣1时,原式=2×4=8;(2)当a=3,b=﹣1时,原式=(a+b)2=22=4.18.如图,OD、OE分别是∠AOC和∠BOC的平分线,∠AOD=40°,∠BOE=25°,求∠AOB 的度数.【分析】根据图示找出所求各角之间的关系,∠EOD=∠EOB+∠AOD,利用角平分线的性质,求出这个角的度数,即可求结果.【解答】解:根据题意:∵OD、OE分别是∠AOC和∠BOC的平分线,且∠AOD=40°,∠BOE=25°,∴∠BOC=2∠BOE=2×25°=50°,∠AOC=2∠AOD=2×40°=80°所以:∠AOB=∠AOC+∠BOC=130°.19.若定义一种新的运算“*”,规定有理数a*b=4ab,如2*3=4×2×3=24.(1)求3*(﹣4)的值;(2)求(﹣2)*(6*3)的值.【分析】分别根据运算“*”的运算方法列式,然后进行计算即可得解.【解答】解:(1)3*(﹣4),=4×3×(﹣4),=﹣48;(2)(﹣2)*(6*3),=(﹣2)*(4×6×3),=(﹣2)*(72),=4×(﹣2)×(72),=﹣576.20.已知关于x的方程2(x﹣1)=3m﹣1与3x+2=﹣4的解互为相反数,求m的值.【分析】求出第二个方程的解,根据两方程解互为相反数求出第一个方程的解,即可求出m的值.【解答】解:方程3x+2=﹣4,解得:x=﹣2,把x=2代入第一个方程得:2=3m﹣1,解得:m=1.21.王老师想为梦想班的同学们购买学习用品,了解到某商店每个书包价格比每本词典多8元,用124元恰好可以买到3个书包和2本词典.(1)每个书包和每本词典的价格各是多少元?(2)王老师计划用900元为全班40位学生每人购买一件学习用品(一个书包或一本词典)后,余下的钱最少为多少元?此时购买书包和词典的方案是什么?【分析】(1)设每个书包价格为x元,则每本词典价格为(x﹣8)元,根据用124元恰好可以买到3个书包和2本词典,列方程组求解;(2)设购买书包y个,则购买词典(40﹣y)个,根据“余下的钱最少”列方程求解.【解答】解:(1)设每个书包价格为x元,则每本词典价格为(x﹣8)元,根据题意得:3x+2(x﹣8)=124 解得:x=28 所以 28﹣8=20(元)答:每个书包价格为28元,每本词典价格为20元.(2)设购买书包y个,则购买词典(40﹣y)个,余下的钱为:900﹣[28y+20(40﹣y)]=100﹣8y,由题意,当y=12时,100﹣8y为最小的正数2.答:购买方案为购买书包12个,词典28本.22.如图所示,已知四个点A、B、C、D,根据下列要求画图:(1)画线段AB;(2)画∠CDB;(3)找一点P,使点P既在直线AD上,又在直线BC上.【分析】(1)用直尺画线段AB即可;(2)作射线DC、DB即可画出∠CDB;(3)画直线AD、BC,两条直线相交于点P.【解答】解:(1)如图所示:线段AB即为所求作的图形;(2)如图所示:∠CDB即为所求作的角;(3)直线AD和BC的交点即为所求作的点P.23.阅读下面的解题过程:计算(﹣15)÷()×6解:原式=(﹣15)×6(第一步)=(﹣15)÷(﹣1)(第二步)=﹣15(第三步)回答:(1)上面解题过程中有两处错误,第一处是第二步,错误的原因是运算顺序错误,第二处是第三步,错误的原因是得数错误.(2)把正确的解题过程写出来.【分析】(1)从第一步到第二步,先计算除法,再计算乘法,所以第1处是第二步,错误原因是运算顺序错误;然后根据有理数除法的运算方法,可得第2处是第三步,错误原因是得数错误.(2)根据有理数除法、乘法的运算方法,从左向右,求出算式的值是多少即可.【解答】解:(1)上面解题过程中有两处错误,第一处是第二步,错误的原因是运算顺序错误,第二处是第三步,错误的原因是得数错误.(2)(﹣15)÷()×6=(﹣15)×6=(﹣15)×(﹣6)×6=90×6=540.故答案为:二、运算顺序错误;三、得数错误.24.如图,已知线段AD和BC的公共部分CD=AC=BC,线段AC的中点为E,若DE=10cm,求AC,BC的长.【分析】先根据设CD=x,根据CD=AC=BC,得出AC=3x,BC=2x,CE=1.5x,再根据DE=10cm,列出方程求解即可得到x的值,最后计算AC,BC的长.【解答】解:设CD=x,则AC=3x,BC=2x,∵线段AC的中点为E,∴CE=1.5x,∵DE=10cm,∴CE+CD=10cm,即1.5x+x=10,解得x=4,∴AC=3x=12cm,BC=2x=8cm.25.第66路公交车沿东西方向行驶,如果把车站的起点记为0,向东行驶记为正,向西行驶记为负,其中一辆车从车站出发以后行驶的路程如下表(单位:km):(1)该车最后是否回到了车站?为什么?(2)该辆车离开出发点最远是多少千米?(3)若每千米耗油0.2升,每升油价是7.5元,则从O地出发到收工时油费是多少元?【分析】(1)把七个数值相加,再根据有理数加减混合运算的法则计算,计算结果是正数,则是离开车站向东,是负数,则是离开车站向西,等于0,则是回到车站;(2)求出各站点离开出发点的距离,即可求出最远路程;(3)求出所有路程的绝对值的和,然后再乘以0.2,再乘以7.5即可.【解答】解:(1)(+5)+(﹣3)+(+10)+(﹣8)+(﹣6)+(+12)+(﹣10),=5﹣3+10﹣8﹣6+12﹣10,=5+10+12﹣3﹣8﹣6﹣10.=27﹣27,=0,∴回到了车站;(2)5﹣3=2;2+10=12;12﹣8=4;4﹣6=﹣2;﹣2+12=10;10﹣10=0;∴离开出发点最远是12km;(3)|+5|+|﹣3|+|+10|+|﹣8|+|﹣6|+|+12|+|﹣10|,=5+3+10+8+6+12+10,=54(km).54×0.2×7.5=81(元).∴从O地出发到收工时油费是81元.26.阅读下面材料:点A、B在数轴上分别表示有理数a、b,A、B两点之间的距离表示为AB,在数轴上A、B两点之间的距离AB=|a﹣b|.回答下列问题:(1)数轴上表示﹣3和1两点之间的距离是 4 ,数轴上表示﹣2和3的两点之间的距离是 5 ;(2)数轴上表示x和﹣1的两点之间的距离表示为|x+1| ;(3)若x表示一个有理数,则|x﹣2|+|x+3|有最小值吗?若有,请求出最小值;若没有,请说明理由.【分析】(1)(2)在数轴上A、B两点之间的距离为AB=|a﹣b|,依此即可求解;(3)根据绝对值的性质去掉绝对值号,然后计算即可得解【解答】解:(1)|1﹣(﹣3)|=4;|3﹣(﹣2)|=5;故答案为:4;5;(2)|x﹣(﹣1)|=|x+1|或|(﹣1)﹣x|=|x+1|,故答案为:|x+1|;(3)有最小值,当x<﹣3时,|x﹣2|+|x+3|=2﹣x﹣x﹣3=﹣2x﹣1,当﹣3≤x≤2时,|x﹣2|+|x+3|=2﹣x+x+3=5,当x>2时,|x﹣2|+|x+3|=x﹣2+x+3=2x+1,在数轴上|x﹣2|+|x+3|的几何意义是:表示有理数x的点到﹣3及到2的距离之和,所以当﹣3≤x≤2时,它的最小值为5.。
人教版2019-2020学年七年级(上)期末数学试卷含答案解析一、选择题(本大题共10个小题,每小题3分,共30分)每小题都有代号为A、B、C、D四个答案选项,其中只有一个是正确的.请根据正确选项的代号填涂答题卡对应位置.填涂正确记3分,不涂、错涂或多涂记0分.1.四个有理数﹣2,﹣1,0,5,其中最小的是()A.5 B.0 C.﹣1 D.﹣22.单项式﹣x3y2的系数与次数分别为()A.﹣1,5 B.﹣1,6 C.0,5 D.1,53.下列方程中,是一元一次方程的是()A.x2﹣4x=3 B.x=0 C.x+2y=3 D.x﹣1=4.已知﹣x3y n与3x m y2是同类项,则mn的值是()A.2 B.3 C.6 D.95.2017年12月6日西成高铁全线开通运营,西安至成都的运行时间由11个小时缩短为4小时.这条经关中、汉中平原及穿越秦岭、巴山山脉的高速铁路用部分高难度的桥梁、遂洞等方式缩短了路程,这样做的主要依据是()A.两点确定一条直线B.两点之间,线段最短C.直线比曲线短D.两条直线相交于一点6.如图,下列描述正确的是()A.射线OA的方向是北偏东方向B.射线OB的方向是北偏西65°C.射线OC的方向是东南方向D.射线OD的方向是西偏南15°7.如图所示,数轴上点A、B对应的有理数分别为a、b,下列说法正确的是()A.ab>0 B.a+b>0 C.|a|﹣|b|<0 D.a﹣b<08.一个表面标有汉字的多面体的平面展开图如图所示,如果“你”在上面,“乐”在前面,则不正确的是()A.“年”在下面B.“祝”在后面C.“新”在左边D.“快”在左边9.已知31=3,32=9,33=27,34=81,35=243,36=729,37=2187,…,请你推测32018的个位数字是()A.3 B.9 C.7 D.110.甲、乙两人完成一项工作,甲先做了3天,然后乙加入合作,完成剩下的工作,设工作总量为1,工作进度如右表:则完成这项工作共需()A.9天B.10天C.11天D.12天二、填空题(每小题3分,共18分)11.﹣1的倒数是.12.已知x=2是关于x的一元一次方程mx﹣2=0的解,则m的值为.13.已知a﹣b=﹣10,c+d=3,则(a+d)﹣(b﹣c)=.14.如图,将一副三角板叠放在一起,使直角顶点重合于O,则∠AOC+∠DOB=.15.一艘船从A地到B地顺流而行,然后又逆流而上到C地,共用了5.1h,已知该船在静水中的平均速度为7.5km/h,水流的速度是2.5km/h,若A、C两地的距离为12km,则A、B两地的距离为km.16.如果∠A和∠B互补,且∠A>∠B,给出下列四个式子:①90°﹣∠B;②∠A﹣90°;③(∠A+∠B)④(∠A﹣∠B)其中表示∠B余角的式子有.(填序号)三、解答题(本大题共72分)17.作图题:已知平面上点A,B,C,D.按下列要求画出图形:(1)作直线AB,射线CB;(2)取线段AB的中点E,连接DE并延长与射线CB交于点O;(3)连接AD并延长至点F,使得AD=DF.18.计算:(1)10﹣(﹣5)+(﹣9)+6﹣12018﹣6÷(﹣2)×(2)19.解方程:(1)2(3﹣x)=﹣4(x+5)(3)20.先化简,再求值:4xy﹣(2x2+5xy﹣y2)+2(x2+3xy),其中x=﹣2,y=1.21.检修工乘汽车沿东西方向检修电路,规定向东为正,向西为负,某天检修工从A地出发,到收工时行程记录为(单位:千米)+8,﹣9,+4,﹣7,﹣2,﹣10,+11,﹣3,+7,﹣5;(1)收工时,检修工在A地的哪边?距A地多远?(2)若每千米耗油0.3升,从A地出发到收工时,共耗油多少升?22.“元旦”期间,某文具店购进100只两种型号的文具进行销售,其进价和售价如下表:(1)该店用1300元可以购进A,B两种型号的文具各多少只?(2)若把所购进A,B两种型号的文具全部销售完,利润率超过40%没有?请你说明理由.23.如图,∠AOB=∠COD=90°,OC平分∠AOB,∠BOD=3∠DOE.(1)试说明∠AOC与∠BOD的大小关系并说明理由?(2)求∠COE的度数.24.去年微信圈上曾传“手机尾号暴露你的年龄”.①看一下你手机号的最后一位;②把这个数字乘以2;③然后加上5;④再乘以50;⑤把得到的数目加上1767;⑥用这个数目减去你出生的那一年,现在你看到一个三位数的数字,第一位数字是你手机号的最后一位,接下来就是你的实际年龄!是不是很准!(温馨提示:结果若是两位数,则百位上的数字视为0,本规则适用于年龄在100岁以内的人.)现在,请同学们解决以下问题:(1)假若你有一个手机尾号是7,你出生于2004年,请用上述方法验证你年龄是否准确.(2)请你用所学的数学知识说明为什么“手机尾号暴露了你的年龄”;(3)若是今年(2018年),这样的算法还准吗?若不准,请你修改规则,使这条“手机尾号暴露你的年龄”在2018年仍然很准!并说明你的理由.25.已知点A在数轴上对应的数为a,点B在数轴上对应的数为b,且|a+2|+(b﹣5)2=0,规定A、B两点之间的距离记作AB=|a﹣b|.(1)求A、B两点之间的距离AB;(2)设点P在A、B之间,且在数轴上对应的数为x,通过计算说明是否存在x的值使PA+PB=10;(3)设点P不在A、B之间,且在数轴上对应的数为x,此时是否又存在x的值使PA+PB =10呢?参考答案与试题解析一.选择题(共10小题)1.四个有理数﹣2,﹣1,0,5,其中最小的是()A.5 B.0 C.﹣1 D.﹣2【分析】将各数按照从小到大顺序排列,找出最小的数即可.【解答】解:根据题意得:﹣2<﹣1<0<5,则最小的数是﹣2,故选:D.2.单项式﹣x3y2的系数与次数分别为()A.﹣1,5 B.﹣1,6 C.0,5 D.1,5【分析】根据单项式系数及次数的定义来求解.【解答】解:根据单项式系数的定义,单项式﹣x3y的系数是﹣1,次数是5.故选:A.3.下列方程中,是一元一次方程的是()A.x2﹣4x=3 B.x=0 C.x+2y=3 D.x﹣1=【分析】根据一元一次方程的定义,可得答案.【解答】解:A、是一元二次方程,故A错误;B、是一元一次方程,故B正确;C、是二元一次方程,故C错误;D、是分式方程,故D错误;故选:B.4.已知﹣x3y n与3x m y2是同类项,则mn的值是()A.2 B.3 C.6 D.9【分析】直接利用所含字母相同,并且相同字母的指数也相同,这样的项叫做同类项,进而得出m,n的值,即可分析得出答案.【解答】解:∵﹣x3y n与3x m y2是同类项,∴m=3,n=2,则mn=6.故选:C.5.2017年12月6日西成高铁全线开通运营,西安至成都的运行时间由11个小时缩短为4小时.这条经关中、汉中平原及穿越秦岭、巴山山脉的高速铁路用部分高难度的桥梁、遂洞等方式缩短了路程,这样做的主要依据是()A.两点确定一条直线B.两点之间,线段最短C.直线比曲线短D.两条直线相交于一点【分析】根据线段的性质:两点之间,线段最短进行解答即可.【解答】解:2017年12月6日西成高铁全线开通运营,西安至成都的运行时间由11个小时缩短为4小时.这条经关中、汉中平原及穿越秦岭、巴山山脉的高速铁路用部分高难度的桥梁、遂洞等方式缩短了路程,这样做的主要依据是两点之间,线段最短,故选:B.6.如图,下列描述正确的是()A.射线OA的方向是北偏东方向B.射线OB的方向是北偏西65°C.射线OC的方向是东南方向D.射线OD的方向是西偏南15°【分析】直接利用方向角的概念分别分析得出答案.【解答】解:A、射线OA的方向是北偏东30°方向,故此选项错误;B、射线OB的方向是北偏西25°,故此选项错误;C、射线OC的方向是东南方向,正确;D、射线OD的方向是南偏西15°,故此选项错误;故选:C.7.如图所示,数轴上点A、B对应的有理数分别为a、b,下列说法正确的是()A.ab>0 B.a+b>0 C.|a|﹣|b|<0 D.a﹣b<0【分析】根据图示,可得a<0<b,而且|a|>|b|,据此逐项判断即可.【解答】解:根据图示,可得a<0<b,而且|a|>|b|,∵a<0<b,∴ab<0,∴选项A不正确;∵a<0<b,而且|a|>|b|,∴a+b<0,∴选项B不正确,选项D正确;∵|a|>|b|,∴|a|﹣|b|>0,∴选项C不正确;故选:D.8.一个表面标有汉字的多面体的平面展开图如图所示,如果“你”在上面,“乐”在前面,则不正确的是()A.“年”在下面B.“祝”在后面C.“新”在左边D.“快”在左边【分析】根据正方体的平面展开图的特点,相对的两个面中间一定隔着一个小正方形,且没有公共的顶点,结合展开图可知“你”和“年”相对,“乐”和“祝”相对,“新”和“快”相对,再根据已知“你”在上面,“乐”在前面,进行判断即可.【解答】解:根据题意可知,“你”在上面,则“年”在下面,“乐”在前面,则“祝”在后面,从而“新”在右边,“快”在左边.故不正确的是C.故选:C.9.已知31=3,32=9,33=27,34=81,35=243,36=729,37=2187,…,请你推测32018的个位数字是()A.3 B.9 C.7 D.1【分析】观察不难发现,3n的个位数字分别为3、9、7、1,每4个数为一个循环组依次循环,用2018÷3,根据余数的情况确定答案即可.【解答】解:∵31=3,32=9,33=27,34=81,35=243,36=729,37=2187,…,∴个位数字分别为3、9、7、1依次循环,∵2018÷4=504……2,∴32018的个位数字与循环组的第2个数的个位数字相同,是9,故选:B.10.甲、乙两人完成一项工作,甲先做了3天,然后乙加入合作,完成剩下的工作,设工作总量为1,工作进度如右表:则完成这项工作共需()A.9天B.10天C.11天D.12天【分析】此题是工程问题,把此工作分段进行分析,甲自己做了3天做了,则可知道甲自己做需要3÷=12天,再用方程求出各自做完需要的时间,利用工作量=工作时间×工作效率求剩余时间,而后即可求得总时间.【解答】解:设乙自己做需x天,甲自己做需3÷=12天,根据题意得,2(+)=﹣解得x=24则还需÷(+)=4天所以完成这项工作共需4+5=9天故选:A.二.填空题(共6小题)11.﹣1的倒数是﹣.【分析】直接利用倒数的定义分析得出答案.【解答】解:﹣1=﹣的倒数是:﹣.故答案为:﹣.12.已知x=2是关于x的一元一次方程mx﹣2=0的解,则m的值为 1 .【分析】根据一元一次方程的解得概念即可求出m的值.【解答】解:将x=2代入mx﹣2=02m﹣2=0m=1故答案为:113.已知a﹣b=﹣10,c+d=3,则(a+d)﹣(b﹣c)=﹣7 .【分析】将a﹣b=﹣10、c+d=3代入原式=a+d﹣b+c=a﹣b+c+d,计算可得.【解答】解:当a﹣b=﹣10、c+d=3时,原式=a+d﹣b+c=a﹣b+c+d=﹣10+3=﹣7,故答案为:﹣7.14.如图,将一副三角板叠放在一起,使直角顶点重合于O,则∠AOC+∠DOB=180°.【分析】因为本题中∠AOC始终在变化,因此可以采用“设而不求”的解题技巧进行求解.【解答】解:设∠AOD=a,∠AOC=90°+a,∠BOD=90°﹣a,所以∠AOC+∠BOD=90°+a+90°﹣a=180°.故答案为:180°.15.一艘船从A地到B地顺流而行,然后又逆流而上到C地,共用了5.1h,已知该船在静水中的平均速度为7.5km/h,水流的速度是2.5km/h,若A、C两地的距离为12km,则A、B两地的距离为9或25 km.【分析】设A、B两地的距离为xkm,分C地在A、B两地之间、A地在B、C两地之间两种情况考虑,根据时间=路程÷速度即可得出关于x的一元一次方程,解之即可得出结论.【解答】解:设A、B两地的距离为xkm,当C地在A、B两地之间时(如图1所示),有+=5.1,解得:x=25;当A地在B、C两地之间时(如图2所示),有+=5.1,解得:x=9.故答案为:9或25.16.如果∠A和∠B互补,且∠A>∠B,给出下列四个式子:①90°﹣∠B;②∠A﹣90°;③(∠A+∠B)④(∠A﹣∠B)其中表示∠B余角的式子有①②④.(填序号)【分析】根据互为补角的两个角的和等于180°可得∠A+∠B=180°,再根据互为余角的两个角的和等于90°对各小题分析判断即可得解.【解答】解:∵∠A和∠B互补,∴∠A+∠B=180°,①∵∠B+(90°﹣∠B)=90°,∴90°﹣∠B是∠B的余角,②∵∠B+(∠A﹣90°)=∠B+∠A﹣90°=180°﹣90°=90°,∴∠A﹣90°是∠B的余角,③∵∠B+(∠A+∠B)=∠B+×180°=∠B+90°,∴(∠A+∠B)不是∠B的余角,④∵∠B+(∠A﹣∠B)=(∠A+∠B)=×180°=90°,∴(∠A﹣∠B)是∠B的余角,综上所述,表示∠B余角的式子有①②④.故答案为:①②④.三.解答题(共9小题)17.作图题:已知平面上点A,B,C,D.按下列要求画出图形:(1)作直线AB,射线CB;(2)取线段AB的中点E,连接DE并延长与射线CB交于点O;(3)连接AD并延长至点F,使得AD=DF.【分析】(1)根据直线是向两方无限延伸的,射线是向一方无限延伸的画图即可;(2)找出线段AB的中点E,画射线DE与射线CB交于点O;(3)画线段AD,然后从A向D延长使DF=AD.【解答】解:如图所示:.18.计算:(1)10﹣(﹣5)+(﹣9)+6(2)﹣12018﹣6÷(﹣2)×【分析】(1)将减法转化为加法,再计算即可得;(2)根据有理数混合运算顺序和运算法则计算可得.【解答】解:(1)原式=10+5﹣9+6=21﹣9=12;(2)原式=﹣1+3×=﹣1+1=019.解方程:(1)2(3﹣x)=﹣4(x+5)(2)【分析】(1)方程去括号,移项合并,把x系数化为1,即可求出解;(2)方程去分母,去括号,移项合并,把x系数化为1,即可求出解.【解答】解:(1)去括号得:6﹣2x=﹣4x﹣20,移项合并得:2x=﹣26,解得:x=﹣13;(2)去分母得:9+3x﹣6=2x+4,移项合并得:x=1.20.先化简,再求值:4xy﹣(2x2+5xy﹣y2)+2(x2+3xy),其中x=﹣2,y=1.【分析】原式去括号合并得到最简结果,把x与y的值代入计算即可求出值.【解答】解:原式=4xy﹣2x2﹣5xy+y2+2x2+6xy=5xy+y2,当x=﹣2,y=1时,原式=﹣10+1=﹣9.21.检修工乘汽车沿东西方向检修电路,规定向东为正,向西为负,某天检修工从A地出发,到收工时行程记录为(单位:千米)+8,﹣9,+4,﹣7,﹣2,﹣10,+11,﹣3,+7,﹣5;(1)收工时,检修工在A地的哪边?距A地多远?(2)若每千米耗油0.3升,从A地出发到收工时,共耗油多少升?【分析】(1)根据表格中的数据,将各个数据相加看最后的结果,即可解答本题;(2)根据表格中的数据将它们的绝对值相加,然后乘以0.3即可解答本题.【解答】解:(1)(+8)+(﹣9)+(+4)+(﹣7)+(﹣2)+(﹣10)+(+11)+(﹣3)+(+7)+(﹣5)=8﹣9+4﹣7﹣2﹣10+11﹣3+7﹣5=8+4+11+7﹣9﹣7﹣2﹣10﹣3﹣5=30﹣36=﹣6(千米),答:收工时,检修工在A地的西边,距A地6千米;(2)|+8|+|﹣9|+|+4|+|﹣7|+|﹣2|+|﹣10|+|+11|+|﹣3|+|+7|+|﹣5|=8+9+4+7+2+10+11+3+7+5=66(千米)66×0.3=19.8(升)答:从A地出发到收工时,共耗油19.8升.22.“元旦”期间,某文具店购进100只两种型号的文具进行销售,其进价和售价如下表:(1)该店用1300元可以购进A,B两种型号的文具各多少只?(2)若把所购进A,B两种型号的文具全部销售完,利润率超过40%没有?请你说明理由.【分析】(1)设可以购进A种型号的文具x只,则可以购进B种型号的文具(100﹣x)只,根据总价=单价×数量结合A、B两种文具的进价及总价,即可得出关于x的一元一次方程,解之即可得出结论;(2)根据总利润=单价利润×数量即可求出销售完这批货物的总利润,用其除以进价×100%再与40%比较后,即可得出结论.【解答】解:(1)设可以购进A种型号的文具x只,则可以购进B种型号的文具(100﹣x)只,根据题意得:10x+15(100﹣x)=1300,解得:x=40,∴100﹣x=60.答:该店用1300元可以购进A种型号的文具40只,B种型号的文具60只.(2)(12﹣10)×40+(23﹣15)×60=560(元),∵560÷1300×100%≈43.08%>40%,∴若把所购进A,B两种型号的文具全部销售完,利润率超过40%.23.如图,∠AOB=∠COD=90°,OC平分∠AOB,∠BOD=3∠DOE.(1)试说明∠AOC与∠BOD的大小关系并说明理由?(2)求∠COE的度数.【分析】(1)先根据角平分线定义求出∠AOC、∠COB的度数,再求出∠BOD的度数即可求解;(2)求出∠BOE的度数,根据角的和差关系即可得出答案.【解答】解:(1)∵∠AOB=90°,OC平分∠AOB,∴∠AOC=∠COB=∠AOB=45°,∵∠COD=90°,∴∠BOD=45°,∴∠AOC=∠BOD;(2)∵∠BOD=3∠DOE,∴∠DOE=15°,∴∠BOE=30°,∴∠COE=∠COB+∠BOE=45°+30°=75°.24.去年(2017年)微信圈上曾传“手机尾号暴露你的年龄”.①看一下你手机号的最后一位;②把这个数字乘以2;③然后加上5;④再乘以50;⑤把得到的数目加上1767;⑥用这个数目减去你出生的那一年,现在你看到一个三位数的数字,第一位数字是你手机号的最后一位,接下来就是你的实际年龄!是不是很准!(温馨提示:结果若是两位数,则百位上的数字视为0,本规则适用于年龄在100岁以内的人.)现在,请同学们解决以下问题:(1)假若你有一个手机尾号是7,你出生于2004年,请用上述方法验证你年龄是否准确.(2)请你用所学的数学知识说明为什么“手机尾号暴露了你的年龄”;(3)若是今年(2018年),这样的算法还准吗?若不准,请你修改规则,使这条“手机尾号暴露你的年龄”在2018年仍然很准!并说明你的理由.【分析】(1)先根据题中所描述的6条规则,列出式子得到一个三位数,然后根据规则判断手机号的最后一位及年龄,再根据年份验证即可;(2)根据题意列出代数式,从数学式子进行解释即可;(3)根据(2)中的式子进行判断是否符合,然后根据年份为2018,修改规则即可.【解答】解:(1)根据题意得:(7×2+5)×50+1767﹣2004=713第一位数字7是你手机号的最后一位,接下来13就是你的实际年龄,2017﹣2004=13,准确;(2)设手机尾号为x,由题意得:(2x+5)×50+1767=100x+2017去年是2017年,此数减去你出生的那一年后,正好是你的年龄,而百位上的第一个数字是手机尾号;(3)设手机尾号为x,(2x+5)×50+1767=100x+2017今年是2018年,用2017年这个数减去你出生的那一年后,不符合,可以修改规则⑤为:“把得到的数目加上1768”(2x+5)×50+1767=100x+2018,这样在今年就仍然准了.25.已知点A在数轴上对应的数为a,点B在数轴上对应的数为b,且|a+2|+(b﹣5)2=0,规定A、B两点之间的距离记作AB=|a﹣b|.(1)求A、B两点之间的距离AB;(2)设点P在A、B之间,且在数轴上对应的数为x,通过计算说明是否存在x的值使PA+PB=10;(3)设点P不在A、B之间,且在数轴上对应的数为x,此时是否又存在x的值使PA+PB =10呢?【分析】(1)利用非负数的性质求出a与b的值,确定出AB即可;(2)根据P在A、B之间确定出x的范围,进而求出PA+PB,判断即可;(3)根据P在A、B之间确定出x的范围,进而求出PA+PB,判断即可.【解答】解:(1)∵|a+2|+(b﹣5)2=0,∴a+2=0,b﹣5=0,解得:a=﹣2,b=5,则AB=|a﹣b|=|﹣2﹣5|=7;(2)若点P在A、B之间时,PA=|x﹣(﹣2)|=x+2,|PB|=|x﹣5|=5﹣x,∴PA+PB=x+2+5﹣x=7<10,∴点P在A、B之间不合题意,则不存在x的值使PA+PB=10;(3)若点P在AB的延长线上时,PA=|x﹣(﹣2)|=x+2,PB=|x﹣5|=x﹣5,由PA+PB=10,得到x+2+x﹣5=10,解得:x=6.5;若点P在AB的反向延长线上时,PA=|x﹣(﹣2)|=﹣2﹣x,PB=|x﹣5|=5﹣x,由PA+PB=10,得到﹣2﹣x+5﹣x=10,解得:x=﹣3.5,综上,存在使PA+PB=10的x值,分别为6.5或﹣3.5.。
山西省太原市2019~2019学年度七年级上学期期末数学试卷一、选择题:共10小题,每小题3分,在每小题给出的四个选项中,只有一项符合题目要求.请选出并将其字母代码填入表格相应的位置1.下列各数中,比﹣2小的数是()A.﹣3 B.﹣1 C.0 D.12.为完成下列任务,最适合用普查的是()A.了解全国2019~2019学年度七年级学生的视力情况B.对乘坐高铁的乘客进行安检C.了解一批电视机的使用寿命D.检测汾河某段水域的水质情况3.如图的立体图形是由7个完全相同的小立方体组成的,从正面看这个立体图形得到的形状图是()A.B.C.D.4.下列四个数中,是负数的是()A.|﹣2| B.(﹣2)2C.﹣(﹣2)D.﹣|﹣2|5.如图是一个长方体的表面展开图,6个面上分别标有数字1,2,3,4,5,6(数字都在表表面),与标有数字6的面相对面上的数字是()A.3 B.5 C.2 D.16.为了了解某初中学校学生的视力情况,需要抽取部分学生进行调查.下列抽取学生的方法最合适的是()A.随机抽取该校一个班级的学生B.随机抽取该校一个年级的学生C.随机抽取该校一部分男生D.分别从该校初一、初二、初三年级中各随机抽取10%的学生7.一个两位数,十位上的数字是x,个位上的数字是y,这个两位数用代数式表示为()A.xy B.x+y C.10y+x D.10x+y8.把笔尖放在数轴的原点,沿数轴先向左移动5个单位长度,再向右移动3个单位长度,用算式表示上述过程与结果,正确的是()A.5+3=8 B.﹣5+3=﹣2 C.5﹣3=2 D.﹣5﹣3=﹣89.下列解方程的步骤中正确的是()A.由13﹣x=﹣5,得13﹣5=xB.由﹣7x+3=﹣13x﹣2,得13x+7x=﹣3﹣2C.由﹣7x=1,得x=﹣7D.由=2,得x=610.如图是甲、乙两公司近年销售收入情况的折线统计图,根据统计图得出下列结论,其中正确的是()A.甲公司近年的销售收入增长速度比乙公司快B.乙公司近年的销售收入增长速度比甲公司快C.甲、乙两公司近年的销售收入增长速度一样快D.不能确定甲、乙两公司近年销售收入增长速度的快慢二、填空题:本题共5个小题,每小题3分,共15分.只要求写出最后结果11.计算:2ab+3ab=.12.太阳的半径约为696000000米,用科学记数法表示为米.13.某地区随机抽查了一部分市民进行法律知识测试,测试成绩(得分取整数,每组数据含最小值不含最大值)整理后,得到如图所示的频数分布直方图,写出一条你从图中所获得的信息:.14.若方程4x﹣1=□x+2的解是x=3,则“□”处的数为.15.如图,用黑白两色正方形瓷砖按一定的规律铺设地图案,第n个图案中白色瓷砖有块(用含n的式子表示)16.家电经销部某品牌一种电视机的进价为800元/台,为了促销准备按标价的6折销售,若要使卖出一台这种电视机就能获利400元,则这种电视机的标价应为元/台.三、解答题:本大题共8小题,共58分.解答要写出必要的文字说明、证明过程或演算步骤17.计算:(1)(﹣5)﹣2×4+(﹣3)(2)(﹣2)2+(﹣)×24.18.先化简,再求值:3(x2y+xy2)+(2x2y﹣3xy2),其中x=﹣2,y=3.19.解方程:(1)3x+1=9﹣x(2)=1﹣.20.如图,已知平面内两点A,B.(1)用尺规按下列要求作图,并保留作图痕迹:①连接AB;②在线段AB的延长线上取点C,使BC=AB;③在线段BA的延长线上取点D,使AD=AC.(2)图中,若AB=6,则AC的长度为,BD的长度为.21.某区环保部门为了提高宣传垃圾分类的实效,抽样调查了部分居民小区一段时间内生活垃圾的分类情况,进行整理后,绘制了如下两幅不完整的统计图:根据统计图解答下列问题:(1)求抽样调查的生活垃圾的总吨数以及其中的有害垃圾的吨数;(2)求扇形统计图中,“D”部分所对应的圆心角的度数,并将条形统计图补充完整;(3)调查发现,在可回收物中废纸垃圾约占,每回收1吨废纸可再造0.85吨的再生纸,假设该城市每月生产的生活垃圾为10000吨,且全部分类处理,那么每月回收的废纸可制成再生纸多少吨?22.某文具店中一种铅笔的售价为2元/支,一种圆珠笔的售价为3元/支,某一天该文具店卖出这两种笔共60支,卖的金额165元,求该文具店这一天卖出的这两种笔各多少支.23.已知,在下列各图中,点O为直线AB上一点,∠AOC=60°,直角三角板的直角顶点放在点处.(1)如图1,三角板一边OM在射线OB上,另一边ON在直线AB的下方,则∠BOC的度数为°,∠CON的度数为°;(2)如图2,三角板一边OM恰好在∠BOC的角平分线OE上,另一边ON在直线AB的下方,此时∠BON的度数为°;(3)请从下列(A),(B)两题中任选一题作答.我选择:.(A)在图2中,延长线段NO得到射线OD,如图3,则∠AOD的度数为°;∠DOC 与∠BON的数量关系是∠DOC∠BON(填“>”、“=”或“<”);(B)如图4,MN⊥AB,ON在∠AOC的内部,若另一边OM在直线AB的下方,则∠COM+∠AON 的度数为°;∠AOM﹣∠CON的度数为°.24.甲乙两地相距900千米,一列快车从甲地出发匀速开往乙地,速度为120千米/时;快车开出30分钟时,一列慢车从乙地出发匀速开往甲地,速度为90千米/时.设慢车行驶的时间为x小时,快车到达乙地后停止行驶,根据题意解答下列问题:(1)当快车与慢车相遇时,求慢车行驶的时间;(2)请从下列(A),(B)两题中任选一题作答.我选择:.(A)当两车之间的距离为315千米时,求快车所行的路程;(B)①在慢车从乙地开往甲地的过程中,求快慢两车之间的距离;(用含x的代数式表示)②若第二列快车也从甲地出发匀速驶往乙地,速度与第一列快车相同,在第一列快车与慢车相遇后30分钟时,第二列快车与慢车相遇,直接写出第二列快车比第一列快车晚出发多少小时.山西省太原市2019~2019学年度七年级上学期期末数学试卷参考答案与试题解析一、选择题:共10小题,每小题3分,在每小题给出的四个选项中,只有一项符合题目要求.请选出并将其字母代码填入表格相应的位置1.下列各数中,比﹣2小的数是()A.﹣3 B.﹣1 C.0 D.1【考点】有理数大小比较.【分析】根据题意,结合实数大小的比较,从符号和绝对值两个方面分析可得答案.【解答】解:比﹣2小的数是应该是负数,且绝对值大于2的数;分析选项可得,只有A符合.故选:A.【点评】本题考查实数大小的比较,是基础性的题目.2.为完成下列任务,最适合用普查的是()A.了解全国2019~2019学年度七年级学生的视力情况B.对乘坐高铁的乘客进行安检C.了解一批电视机的使用寿命D.检测汾河某段水域的水质情况【考点】全面调查与抽样调查.【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.【解答】解:A、了解全国2019~2019学年度七年级学生的视力情况,调查范围广,适合抽样调查,故A错误;B、对乘坐高铁的乘客进行安检是事关重大的调查,适合普查,故B正确;C、了解一批电视机的使用寿命,调查具有破坏性,适合抽样调查,故C错误;D、检测汾河某段水域的水质情况,无法普查,适合抽样调查,故D错误;故选:B.【点评】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.3.如图的立体图形是由7个完全相同的小立方体组成的,从正面看这个立体图形得到的形状图是()A.B.C.D.【考点】简单组合体的三视图.【分析】根据从正面看得到的图形是主视图,可得答案.【解答】解:从正面看从下面第一层是三个小正方形,第二层左右各一个小正方形,故选:C.【点评】本题考查了简单组合体的三视图,把从正面看到的图形画出是解题关键.4.下列四个数中,是负数的是()A.|﹣2| B.(﹣2)2C.﹣(﹣2)D.﹣|﹣2|【考点】正数和负数.【分析】先化简,再利用负数的意义判定.【解答】解:A、|﹣2|=2,是正数;B、(﹣2)2=4,是正数;C、﹣(﹣2)=2,是正数;D、﹣|﹣2|=﹣2,是负数.故选:D.【点评】此题考查绝对值、相反数以、乘方以及负数的意义等基础知识.5.如图是一个长方体的表面展开图,6个面上分别标有数字1,2,3,4,5,6(数字都在表表面),与标有数字6的面相对面上的数字是()A.3 B.5 C.2 D.1【考点】专题:正方体相对两个面上的文字.【分析】把图中所示的展开图折叠成立体图形,标有数字1的面与标有数字4的面相对,标有数字2的面与标有数字6的面相对,标有数字3的面与标有数字5的面相对.【解答】解:根据题意和图示可知:“1”的对面是4,“6”的对面是2,“3”的对面是5.故选:C.【点评】本题考查了正方体相对两个面上的文字,关键是灵活运用正方体的相对面特点解答问题,立意新颖,是一道不错的题.6.为了了解某初中学校学生的视力情况,需要抽取部分学生进行调查.下列抽取学生的方法最合适的是()A.随机抽取该校一个班级的学生B.随机抽取该校一个年级的学生C.随机抽取该校一部分男生D.分别从该校初一、初二、初三年级中各随机抽取10%的学生【考点】全面调查与抽样调查.【专题】应用题.【分析】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.【解答】解:因为要了解初中的视力情况范围较大、难度较大,所以应采取抽样调查的方法比较合适,本题考查的是调查方法的选择,正确选择调查方式要根据全面调查的优缺点再结合实际情况去分析,故只有D符合实际并具有普遍性,故选:D.【点评】本题考查了调查方法的选择,正确选择调查方式要根据全面调查的优缺点再结合实际情况去分析,难度适中.7.一个两位数,十位上的数字是x,个位上的数字是y,这个两位数用代数式表示为()A.xy B.x+y C.10y+x D.10x+y【考点】列代数式.【分析】把十位上的数字y乘以10后加上x即可.【解答】解:这个两位数表示为10x+y.故选D.【点评】本题考查了列代数式:把问题中与数量有关的词语,用含有数字、字母和运算符号的式子表示出来,就是列代数式.解决本题的关键是十位数的表示方法.8.把笔尖放在数轴的原点,沿数轴先向左移动5个单位长度,再向右移动3个单位长度,用算式表示上述过程与结果,正确的是()A.5+3=8 B.﹣5+3=﹣2 C.5﹣3=2 D.﹣5﹣3=﹣8【考点】数轴.【专题】推理填空题.【分析】把笔尖放在数轴的原点,沿数轴先向左移动5个单位长度,再向右移动3个单位长度,根据“左减右加”的法则,用算式表示上述过程与结果,正确的是:﹣5+3=﹣2,据此解答即可.【解答】解:把笔尖放在数轴的原点,沿数轴先向左移动5个单位长度,再向右移动3个单位长度,用算式表示上述过程与结果,正确的是:﹣5+3=﹣2.故选:B.【点评】此题主要考查了数轴的特征和应用,要熟练掌握,解答此题的关键是要明确“左减右加”的法则.9.下列解方程的步骤中正确的是()A.由13﹣x=﹣5,得13﹣5=xB.由﹣7x+3=﹣13x﹣2,得13x+7x=﹣3﹣2C.由﹣7x=1,得x=﹣7D.由=2,得x=6【考点】解一元一次方程.【分析】去分母,去括号时一定要注意:不要漏乘方程的每一项,移项要变号.【解答】解:A、移项﹣5没有变号,错误;B、﹣7x改变了符号,错误;C、系数化为1是两边同时除以﹣7,错误;D、正确.故选D.【点评】本题考查解一元一次方程,解一元一次方程的一般步骤是:去分母、去括号、移项、合并同类项、化系数为1.注意移项要变号.10.如图是甲、乙两公司近年销售收入情况的折线统计图,根据统计图得出下列结论,其中正确的是()A.甲公司近年的销售收入增长速度比乙公司快B.乙公司近年的销售收入增长速度比甲公司快C.甲、乙两公司近年的销售收入增长速度一样快D.不能确定甲、乙两公司近年销售收入增长速度的快慢【考点】折线统计图.【分析】结合折线统计图,分别求出甲、乙两公司近年销售收入各自的增长量即可求出答案.【解答】解:从折线统计图中可以看出:甲公司2010年的销售收入约为50万元,2019年约为90万元,则从2010~2019年甲公司增长了90﹣50=40万元;乙公司2010年的销售收入约为50万元,2019年约为70万元,则从2010~2019年甲公司增长了70﹣50=20万元.则甲公司近年的销售收入增长速度比乙公司快.故选A.【点评】本题考查了折线统计图,折线图不但可以表示出数量的多少,而且能够清楚地表示出数量的增减变化情况.读懂统计图,从统计图中得到必要的信息是解决问题的关键.二、填空题:本题共5个小题,每小题3分,共15分.只要求写出最后结果11.计算:2ab+3ab=5ab.【考点】合并同类项.【专题】常规题型.【分析】这个式子的运算是合并同类项的问题,根据合并同类项的法则,即系数相加作为系数,字母和字母的指数不变.【解答】解:原式=(2+3)ab=5ab.故答案为:5ab.【点评】本题主要考查合并同类项的法则.即系数相加作为系数,字母和字母的指数不变.12.太阳的半径约为696000000米,用科学记数法表示为 6.96×108米.【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:696 000 000=6.96×108,故答案为:6.96×108.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.13.某地区随机抽查了一部分市民进行法律知识测试,测试成绩(得分取整数,每组数据含最小值不含最大值)整理后,得到如图所示的频数分布直方图,写出一条你从图中所获得的信息:分数在70~80之间的人数最多;成绩低于60分的有3人;成绩90分及其以上的有6人;参加测试的共有48人等.【考点】频数(率)分布直方图.【分析】根据频数分布直方图进行解答即可.【解答】解:分数在70~80之间的人数最多;成绩低于60分的有3人;成绩90分及其以上的有6人;参加测试的共有48人等,故答案为:分数在70~80之间的人数最多;成绩低于60分的有3人;成绩90分及其以上的有6人;参加测试的共有48人等.【点评】此题考查频数分布直方图问题,关键是根据频数分布直方图得出信息.14.若方程4x﹣1=□x+2的解是x=3,则“□”处的数为3.【考点】一元一次方程的解.【分析】根据方程解的定义,将x=3代入即可得出答案.【解答】解:∵方程4x﹣1=□x+2的解是x=3,∴12﹣1=3□+2,∴“□”处的数为3,故答案为3.【点评】本题考查了一元一次方程的解,根据已知条件求未知系数的方法叫待定系数法,在以后的学习中,常用此法求函数解析式.15.如图,用黑白两色正方形瓷砖按一定的规律铺设地图案,第n个图案中白色瓷砖有3n+2块(用含n的式子表示)【考点】规律型:图形的变化类.【分析】由图形可知:第1个图案是5个.第二个图案是8个,多了3个…依此类推,发现后一个图案中的白色瓷砖总比前一个多3个,即第n个图案中白色瓷砖块数是5+3(n﹣1)=3n+2.【解答】解:∵第n个图案中白色瓷砖有1+3+1=5块,第n个图案中白色瓷砖有1+3×2+1=5块,第n个图案中白色瓷砖有1+3×3+1=11块,…∴第n个图案中白色瓷砖有1+3n+1=3n+2块.故答案为:3n+2.【点评】此题考查图形的变化规律,找出图形之间的联系,得出数字的运算规律:后一个图案中的白色瓷砖总比前一个多3个解决问题.16.家电经销部某品牌一种电视机的进价为800元/台,为了促销准备按标价的6折销售,若要使卖出一台这种电视机就能获利400元,则这种电视机的标价应为2000元/台.【考点】一元一次方程的应用.【分析】根据题意,设这种电视机的标价为x元,按照等量关系“标价×0.6﹣进价=400元,列出一元一次方程即可求解.【解答】解:设这种电视机的标价为x元,依题意有0.6x﹣800=400,解得x=2000.答:这种电视机的标价应为2000元/台.故答案为:2000.【点评】考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.三、解答题:本大题共8小题,共58分.解答要写出必要的文字说明、证明过程或演算步骤17.计算:(1)(﹣5)﹣2×4+(﹣3)(2)(﹣2)2+(﹣)×24.【考点】有理数的混合运算.【分析】(1)先算乘法,再算加减即可;(2)根据乘法分配律进行计算即可.【解答】解:(1)原式=﹣5﹣8﹣3=﹣16;(2)原式=×4+×24﹣×24=2+9﹣4=7.【点评】本题考查的是有理数的混合运算,熟知有理数混合运算的顺序是解答此题的关键.18.先化简,再求值:3(x2y+xy2)+(2x2y﹣3xy2),其中x=﹣2,y=3.【考点】整式的加减—化简求值.【专题】计算题;整式.【分析】原式去括号合并得到最简结果,把x与y的值代入计算即可求出值.【解答】解:原式=3x2y+3xy2+2x2y﹣3xy2=5x2y,当x=﹣2,y=3时,原式=60.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.19.解方程:(1)3x+1=9﹣x(2)=1﹣.【考点】解一元一次方程.【分析】(1)先移项,再合并同类项,最后化系数为1,从而得到方程的解;(2)先去分母,再去括号,移项,合并同类项,最后化系数为1,从而得到方程的解.【解答】解:(1)移项得:3x+x=9﹣1,合并同类项得:4x=8,化系数为1得:x=2;(2)去分母得:3(2x﹣1)=12﹣4(x+2),去括号得:6x﹣3=12﹣4x﹣8,移项合并得:10x=7,系数化为1得:得x=.【点评】本题考查解一元一次方程,解一元一次方程的一般步骤是:去分母、去括号、移项、合并同类项、化系数为1.注意移项要变号.20.如图,已知平面内两点A,B.(1)用尺规按下列要求作图,并保留作图痕迹:①连接AB;②在线段AB的延长线上取点C,使BC=AB;③在线段BA的延长线上取点D,使AD=AC.(2)图中,若AB=6,则AC的长度为12,BD的长度为18.【考点】两点间的距离;直线、射线、线段.【专题】作图题.【分析】(1)根据题意画出图形即可;(2)由AC=2AB,AD=AC,以及DB=AD+AB求解即可.【解答】解:(1)如图所示;(2)∵AB=BC,∴AC=2AB=2×6=12.∵AD=AC=12,∴BD=AD+AB=12+6=18.故答案为:12;18.【点评】本题主要考查的是两点间的距离,掌握图形间线段之间的长度关系式解题的关键.21.某区环保部门为了提高宣传垃圾分类的实效,抽样调查了部分居民小区一段时间内生活垃圾的分类情况,进行整理后,绘制了如下两幅不完整的统计图:根据统计图解答下列问题:(1)求抽样调查的生活垃圾的总吨数以及其中的有害垃圾的吨数;(2)求扇形统计图中,“D”部分所对应的圆心角的度数,并将条形统计图补充完整;(3)调查发现,在可回收物中废纸垃圾约占,每回收1吨废纸可再造0.85吨的再生纸,假设该城市每月生产的生活垃圾为10000吨,且全部分类处理,那么每月回收的废纸可制成再生纸多少吨?【考点】条形统计图;扇形统计图.【分析】(1)根据D类垃圾的数量是5吨,所占的百分比是10%,据此即可求得总数,然后根据百分比的意义求得有害垃圾的数量;(2)利用360°乘以对应的百分比即可求得圆心角的度数,根据百分比的意义求得B类垃圾的数量;(3)利用总吨数乘以54%,再乘以,最后乘以0.85即可求解.【解答】解:(1)抽样调查的生活垃圾的总吨数是5÷10%=50(吨),其中的有害垃圾的吨数是:500(1﹣54%﹣30%﹣10%)=3(吨);(2)扇形统计图中,“D”部分所对应的圆心角的度数是360×10%=36°.B类的垃圾吨数是50×30%=15(吨).;(3)每月回收的废纸可制成再生纸的数量是:10000×54%××0.85=918(吨).【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.22.某文具店中一种铅笔的售价为2元/支,一种圆珠笔的售价为3元/支,某一天该文具店卖出这两种笔共60支,卖的金额165元,求该文具店这一天卖出的这两种笔各多少支.【考点】一元一次方程的应用.【分析】设文具店这一天卖出这种铅笔x支,圆珠笔(60﹣x)支.根据“铅笔的售价为2元/支,圆珠笔的售价为3元/支,卖的金额165元”列出方程并解答.【解答】解:设文具店这一天卖出这种铅笔x支,圆珠笔(60﹣x)支.根据题意得:2x+3(60﹣x)=165,解这个方程,得x=15.60﹣x=45.答:文具店这一天卖出这种铅笔15支,圆珠笔45支.【点评】本题考查了一元一次方程的应用.解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.23.已知,在下列各图中,点O为直线AB上一点,∠AOC=60°,直角三角板的直角顶点放在点处.(1)如图1,三角板一边OM在射线OB上,另一边ON在直线AB的下方,则∠BOC的度数为120°,∠CON的度数为150°;(2)如图2,三角板一边OM恰好在∠BOC的角平分线OE上,另一边ON在直线AB的下方,此时∠BON的度数为30°;(3)请从下列(A),(B)两题中任选一题作答.我选择:A(或B).(A)在图2中,延长线段NO得到射线OD,如图3,则∠AOD的度数为30°;∠DOC与∠BON 的数量关系是∠DOC=∠BON(填“>”、“=”或“<”);(B)如图4,MN⊥AB,ON在∠AOC的内部,若另一边OM在直线AB的下方,则∠COM+∠AON 的度数为150°;∠AOM﹣∠CON的度数为30°.【考点】角的计算;角平分线的定义.【分析】(1)利用两角互补,即可得出结论;(2)根据OM平分∠BOC,可得出∠BOM=60°,由∠BOM+∠BON=∠MON=90°可求得∠BON的度数;(3)根据直角三角板MON各角的度数以及图中各角的关系即能得出结论.【解答】解:(1)∵∠AOC=60°,∠BOC与∠AOC互补,∠AON=90°∴∠BOC=180°﹣60°=120°,∠CON=∠AOC+∠AON=60°+90°.故答案为:120;150.(2)∵三角板一边OM恰好在∠BOC的角平分线OE上,∠BOC=120°,∴∠BOM=∠BOC=60°,又∵∠MON=∠BOM+∠BON=90°,∴∠BON=90°﹣60°=30°.故答案为:30°.(3)(A)∵∠AOD=∠BON(对顶角),∠BON=30°,∴∠AOD=30°,又∵∠AOC=60°,∴∠DOC=∠AOC﹣∠AOD=60°﹣30°=30°=∠BON.(B)∵MN⊥AB,∴∠AON与∠MNO互余,∵∠MNO=60°(三角板里面的60°角),∴∠AON=90°﹣60°=30°,∵∠AOC=60°,150∴∠CON=∠AOC﹣∠AON=60°﹣30°=30°,∴∠COM+∠AON=∠MON+2∠CON=90°+2×30°=150°,∠AOM﹣∠CON=∠MON﹣2∠CON=90°﹣2×30°=30°.故答案为:A(或B);30;=;150;30.【点评】本题考查了角的计算,解题的关键是利用角间的各种关系,利用互余、互补即可解决问题.24.甲乙两地相距900千米,一列快车从甲地出发匀速开往乙地,速度为120千米/时;快车开出30分钟时,一列慢车从乙地出发匀速开往甲地,速度为90千米/时.设慢车行驶的时间为x小时,快车到达乙地后停止行驶,根据题意解答下列问题:(1)当快车与慢车相遇时,求慢车行驶的时间;(2)请从下列(A),(B)两题中任选一题作答.我选择:(A).(A)当两车之间的距离为315千米时,求快车所行的路程;(B)①在慢车从乙地开往甲地的过程中,求快慢两车之间的距离;(用含x的代数式表示)②若第二列快车也从甲地出发匀速驶往乙地,速度与第一列快车相同,在第一列快车与慢车相遇后30分钟时,第二列快车与慢车相遇,直接写出第二列快车比第一列快车晚出发多少小时.【考点】一元一次方程的应用.【分析】(1)设慢车行驶的时间为x小时,根据相遇时,快车行驶的路程+慢车行驶的路程=900,依此列出方程,求解即可;(2)(A)当两车之间的距离为315千米时,分三种情况:①两车相遇前相距315千米,快车行驶的路程+慢车行驶的路程=900﹣315;②两车相遇后相距315千米,快车行驶的路程+慢车行驶的路程=900+315;③当快车到达乙地时,快车行驶了7.5小时,慢车行驶了7小时,7×90=630>315,此种情况不存在;(B)分三种情况:①慢车与快车相遇前;慢车与快车相遇后;快车到达乙地时;②在第一列快车与慢车相遇后30分钟时,慢车行驶的时间为4+=小时,快车慢车行驶的时间为4++=5小时.设第二列快车行驶y小时与慢车相遇,根据相遇时,快车行驶的路程+慢车行驶的路程=900,求出y的值,进而求解即可.【解答】解:(1)设慢车行驶的时间为x小时,由题意得120(x+)+90x=900,解得x=4.答:当快车与慢车相遇时,慢车行驶了4小时;(2)(A)当两车之间的距离为315千米时,有两种情况:①两车相遇前相距315千米,此时120(x+)+90x=900﹣315,解得x=2.5.120(x+)=360(千米);②两车相遇后相距315千米,此时120(x+)+90x=900+315,解得x=5.5.120(x+)=720(千米);③当快车到达乙地时,快车行驶了7.5小时,慢车行驶了7小时,7×90=630>315,此种情况不存在.答:当两车之间的距离为315千米时,快车所行的路程为360千米或720千米;(B)①当慢车与快车相遇前,即0≤x<4时,两车的距离为900﹣120(x+)﹣90x=840﹣210x;当慢车与快车相遇后,快车到达乙地前,即4≤x<7.5时,两车的距离为120(x+)+90x﹣900=210x﹣840;当快车到达乙地时,即7.5≤x≤10时,两车的距离为90x;②在第一列快车与慢车相遇后30分钟时,慢车行驶的时间为4+=小时,快车慢车行驶的时间为4++=5小时.设第二列快车行驶y小时与慢车相遇,由题意,得120y+×90=900,解得y=4,。
2019年七年级上册数学期末总复习期末总复习模拟测试题一、选择题1.平面上有三点A 、B 、C ,如果AB=8,AC=5,BC=3,则( )A .点C 在线段AB 上 B .点C 在线段AB 的延长线上C .点C 在直线AB 外D .点C 可能在直线AB 上,也可能在直线AB 外2.如图,直线AB 、CD 相交于点O ,OM ⊥AB ,若∠COB=135°,则∠MOD 等于( )A .45°B .35°C .25°D .15°3.如图,长度为12cm 的线段AB 的中点为M C ,点将线段MB 分成:1:2MC CB ,则线段AC 的长度为( )A .2cmB .8cmC .6cmD .4cm4.对角的表示方法理解错误的是( )A .角可用三个大写字母表示,顶点字母写在中间,每边上的点的字母写在两旁B .任何角都可用一个顶点字母表示C .记角有时可在靠近顶点处加上弧线,注上数字来表示D .记角有时可在靠近顶点处加上弧线,注上希腊字母表示5.甲、乙两人参加某体育项目训练,为了便于研究,把最近五次的训练成绩分别用实线和虚线连接,如图所示,则下面的结论中,错误的是( )A .乙的第二次成绩与第五次成绩相同B .第三次测试甲的成绩与乙的成绩相同C .第四次测试甲的成绩比乙的成绩多 2分D .五次测试甲的成绩都比乙的成绩高6.如图为小刚一天中的作息时间分配比例扇形统计图,如果小刚希望把自己每天的阅读时间调整为2小时,那么他的阅读时间需减少( )A . 15分B . 48分C .60分 105分7.若方程3(2x-1)=2-3x 的解与关于x 的方程622(3)k x -=+的解相同,则k 的值为( )A .59B .59-C .53D .53-8.用代数式表示“a 的3倍与b 的差的平方”,正确的是( ) A .2(3)a b - B .23()a b - C .23a b - D .2(3)a b - 9.代数式32377a a a -++与23323a a a -+-的和是( )A .奇数B .偶数C .5 的倍数D .以上都不能确定10.若a =-时,a 是( )A . 全体实数B . 正实数C .负实数D .零 11.若0a b +=,则a b 的值是( ) A .-1 B .0 C .无意义 D .-1 或无意义12.数学课上老师给出下面的数据,精确的是( )A .2002年美国在阿富汗的战争每月耗费10亿美元B .地球上煤储量为5万亿吨以上C .人的大脑有l ×1010个细胞D .七年级某班有51个人13.若a 、b 互为倒数,a 、c 互为相反数,且||2d =,则式子23()2a c ab d d ++-的值为( )A .334 B . 334或144 C . 144 D .233 或14314.设|3|a =-+,|3|b =--,c 是-3 的相反数,则 a 、b 、c 的大小关系是( )A .a b c ==B .a b c =<C .a b c =>D .a b c ≥>15. 下列各式中,等号不成立的是( )A .|5|5-=B .|4||4|--=-C .|3|3-=D .|2|2--=二、填空题16.观察下列等式9-1=8;16-4=12;25 -9= 16;36--16=20;…这些等式反映出自然数间的某种规律,设n(n ≥1)表示自然数,用关于 n 的等式表示 这个规律为 .17.123-的绝对值是 , 绝对值等于123的数是 ,它们是一对 . 18.请你任意写出一个自然数 ,一个负分数 , 个非负数19.整数和分数统称为 .20.在横线上填上适当的符号,使下列式子成立. (1)( 6)+(-18)=-12; (2)(+30)+( 30)=0; (3)(-25)+( 38)=+1 (4) ( 115)+( 415)=25- 21.比 0 小 8 的数是 ,比 3 小 7 的数是 ,5℃比-2℃高 .22.a 、b 是不同的有理数,若0ab =,则 ;若0a b=,则 . 23.若在数轴上表示数a 的点到原点的距离为 3,则3a -= .24.下列各数-4,17,π,3. 14,00.333…中,无理数有 . 25. 已知有理数 a ,则 a 的相反数可用 表示.26.已知37x +的立方根是-2,则152x -平方根是 .27.说出一个可以用252x +表示结果的实际问题: . 28.长方形的面积为 56 cm 2,若长为x(cm),则长方形的宽为 cm.29.写出代数式223a b c -与32x c 的两个相同点: (1) ; (2) .30.写出一个一无一次方程,使它的解为12x =-,这个方程是 .31.请写出25ab 的两个同类项,且这两个同类项与25ab 合并后结果为0. 你给出的两个同类项是 ..32.在x=4,x= -3 中,是方程 2x-6 =3(x-1)的解的是 .33.已知代数式 2m 的值是 4,则代数式231m m -+的值是 .34.某商场为了解本商场的服务质量,随机调查了本商场的200名顾客,调查的结果如图所示.根据图中给出的信息,这200名顾客中对该商场的服务质量表示不满意的有 人.35.若互为余角的两角之差是35°,则较大的角的度数为 .36.计算:2591-= ,22158+±= .37.3 的相反数是 ,的相反数是 .38.数轴上有一点到原点的距离为 6.03,那么这个点表示的数是 .三、解答题39.如图,点C 是直线AB 上的一点,已知∠BCD=30°,∠ACE=2∠BCD ,请判别断CD 与CE 的位置关系,并说明理由.40.如图,一个长方体,(1)用符号表示出与棱A 1B 1平行的棱;(2)用符号表示出过棱AB 的端点且垂直于AB 的棱;(3)棱DD 1与棱BC 没有交点,它们平行吗?41.如图,AB 、CD 相交于点0,∠FOC=90°,∠1=100°,∠2=20°,求∠3、∠4、∠5、∠6的度数.42.从某种卫生纸的外包装上得到以下资料:每卷纸有两层300格,每格面积为11.4厘米×11厘米,如图1. 用尺量出整卷卫生纸横切面的半径与纸筒内芯的半径分别为 5.8厘米和2.3厘米,如图2. 那么该卫生纸每层的厚度是多少厘米( 取3.14,结果精确到 0.001厘米)?43.一轮船以18 km/h的速度从甲地航行到乙地,而原路返回时速度为12 km/h,若此次航行共用40 h,求甲、乙两地间的距离.44.根据下列条件列方程,并求出方程的解:(1)某数的13比它本身小 6,求这个数;(2)一个数的 2倍与 3 的和等于这个数与 7的差.45.检验括号中的数是否为方程的解:(1)5m-3=7(m=3,m=2)(2)4y+3=6y-7(y=4,y=5)46.小明阅读一本世界名著,第一天看了全书的13,第二天看了剩下部分的23,若全书共x页,现在小明还有多少页未看?29x47.用代数式表示图中阴影部分的面积,并计算 x=10,y=14时的面积.48.用代数式表示:(1)a 的绝对值;(2)a(a≠0)的倒数;(3)a 的相反数;(4)a 的平方根(a≥0);(5)a 的立方根.49.在数轴上-7 与 37 之间插入三个数,使这五个数的每相邻两个点之间的距离相等. 求插入的三个数.50.在两个圈的重叠部分填入 3 个既属于负数集合,又属于整数集合的数,并说出它们属于什么集合.。
2019北京海淀初一(上)期末数学考生须知:1.本试卷满分100分。
2.在试卷和答题卡上准确填写学校、班级、姓名和学号。
3.试题答案一律填写在答题卡上,在试卷上作答无效。
4.在答题卡上,选择题须用2B铅笔将选中项涂黑涂满,其他试题用黑色字迹签字笔作答。
5.考试结束时,将本试卷、答题卡一并交回。
一、选择题(本大题共30分,每小题3分)第1~10题符合题意的选项均只有一个,请将你的答案填写在下面的表格中.A.A′B′>AB B.A′B′=ABC.A′B′<AB D.没有刻度尺,无法确定2.(3分)﹣5的绝对值是()A.5 B.﹣5 C.D.±53.(3分)2018年10月23日,世界上最长的跨海大桥﹣港珠澳大桥正式开通,这座大桥集跨海大桥、人工岛、海底隧道于一身,全长约55000米.其中55000用科学记数法可表示为()A.5.5×103B.55×103C.5.5×104D.6×1044.(3分)下列计算正确的是()A.3a+2b=5ab B.3a﹣(﹣2a)=5aC.3a2﹣2a=a D.(3﹣a)﹣(2﹣a)=1﹣2a5.(3分)若x=﹣1是关于x的方程2x+3=a的解,则a的值为()A.﹣5 B.5 C.﹣1 D.16.(3分)如图,将一个三角板60°角的顶点与另一个三角板的直角顶点重合,∠1=27°40′,∠2的大小是()A.27°40′B.57°40′C.58°20′D.62°20′7.(3分)已知AB=6,下面四个选项中能确定点C是线段AB中点的是()A.AC+BC=6 B.AC=BC=3 C.BC=3 D.AB=2AC8.(3分)若x=2时x4+mx2﹣n的值为6,则当x=﹣2时x4+mx2﹣n的值为()A.﹣6 B.0 C.6 D.269.(3分)从图1的正方体上截去一个三棱锥,得到一个几何体,如图2.从正面看图2的几何体,得到的平面图形是()A.B.C.D.10.(3分)数轴上点A,M,B分别表示数a,a+b,b,那么下列运算结果一定是正数的是()A.a+b B.a﹣b C.ab D.|a|﹣b二、填空题(本大题共16分,每小题2分)11.(2分)比较大小:﹣3﹣2.1(填“>”,“<”或“=”).12.(2分)图中A,B两点之间的距离是厘米(精确到厘米),点B在点A的南偏西°(精确到度).13.(2分)如图是一位同学数学笔记可见的一部分.若要补充文中这个不完整的代数式,你补充的内容是:.14.(2分)如图所示,长方形纸片上画有两个完全相同的灰色长方形,那么剩余白色长方形的周长为(用含a,b的式子表示).15.(2分)如图,点O在直线AB上,射线OD平分∠COA,∠DOF=∠AOE=90°,图中与∠1相等的角有(请写出所有答案).16.(2分)传统文化与创意营销的结合使已有近600年历史的故宫博物院重新焕发出生机,一些文创产品让顾客爱不释手.某购物网站上销售故宫文创笔记本和珐琅书签,若文创笔记本的销量比珐琅书签销量的2倍少700件,二者销量之和为5900件,用x表示珐琅书签的销量,则可列出一元一次方程.17.(2分)已知点O为数轴的原点,点A,B在数轴上,若AO=10,AB=8,且点A表示的数比点B表示的数小,则点B表示的数是.18.(2分)如图,这是一个数据转换器的示意图,三个滚珠可以在槽内左右滚动.输入x的值,当滚珠发生撞击,就输出相撞滚珠上的代数式所表示数的和y.已知当三个滚珠同时相撞时,不论输入x的值为多大,输出y 的值总不变.(1)a=;(2)若输入一个整数x,某些滚珠相撞,输出y值恰好为﹣1,则x=.三、解答题(本大题共24分,第19,20题每题8分,第21~22每题4分)19.(8分)计算:(1)5﹣32÷(﹣3);(2)﹣8×(+1﹣1).20.(8分)解方程:(1)5x+8=1﹣2x;(2).21.(4分)已知2a﹣b=﹣2,求代数式3(2ab2﹣4a+b)﹣2(3ab2﹣2a)+b的值.22.(4分)如图,点C在∠AOB的边OA上,选择合适的画图工具按要求画图.(1)反向延长射线OB,得到射线OD,画∠AOD的角平分线OE;(2)在射线OD上取一点F,使得OF=OC;(3)在射线OE上作一点P,使得CP+FP最小;(4)写出你完成(3)的作图依据:.四、解答题(本大题共11分,23题6分,24题5分)23.(6分)已知点C在线段AB上,点M为AB的中点,AC=8,CB=2.(1)如图1,求CM的长;(2)如图2,点D在线段AB上,若AC=BD,判断点M是否为线段CD的中点,并说明理由.24.(5分)洛书(如图1),古称龟书,现已入选国家级非物质文化遗产名录.洛书是术数中乘法的起源,“戴九履一,左三右七,二四为肩,六八为足,五居中宫”是对洛书形象的描述,洛书对应的九宫格(如图2)填有1到9这九个正整数,满足任一行、列、对角线上三个数之和相等.洛书的填法古人是怎么找到的呢?在学习了方程相关知识后,小凯尝试探究其中的奥秘.【第一步】设任一行、列、对角线上三个数之和为S,则每一行三个数的和均为S,而这9个数的和恰好为1到9这9个正整数之和,由此可得S=;【第二步】再设中间数为x,利用包含中间数x的行、列、对角线上的数与9个数的关系可列出方程,求解中间数x.请你根据上述探究,列方程求出中间数x的值.五、解答题(本大题共19分,25~26每题6分,27题7分)25.(6分)已知k≠0,将关于x的方程kx+b=0记作方程◇.(1)当k=2,b=﹣4时,方程◇的解为;(2)若方程◇的解为x=﹣3,写出一组满足条件的k,b值:k=,b=;(3)若方程◇的解为x=4,求关于y的方程k(3y+2)﹣b=0的解.26.(6分)如图,已知点O在直线AB上,作射线OC,点D在平面内,∠BOD与∠AOC互余.(1)若∠AOC:∠BOD=4:5,则∠BOD=;(2)若∠AOC=α(0°<α≤45°),ON平分∠COD.①当点D在∠BOC内,补全图形,直接写出∠AON的值(用含α的式子表示);②若∠AON与∠COD互补,求出α的值.27.(7分)数学是一门充满思维乐趣的学科,现有3×3的数阵A,数阵每个位置所对应的数都是1,2或3.定义a*b为数阵中第a行第b列的数.例如,数阵A第3行第2列所对应的数是3,所以3*2=3.(1)对于数阵A,2*3的值为;若2*3=2*x,则x的值为;(2)若一个3×3的数阵对任意的a,b,c均满足以下条件:条件一:a*a=a;条件二:(a*b)*c=a*c;则称此数阵是“有趣的”.①请判断数阵A是否是“有趣的”.你的结论:(填“是”或“否”);②已知一个“有趣的”数阵满足1*2=2,试计算2*1的值;③是否存在“有趣的”数阵,对任意的a,b满足交换律a*b=b*a?若存在,请写出一个满足条件的数阵;若不存在,请说明理由.2019北京海淀初一(上)期末数学参考答案一、选择题(本大题共30分,每小题3分)第1~10题符合题意的选项均只有一个,请将你的答案填写在下面的表格中.1.【分析】根据比较线段的长短进行解答即可.【解答】解:由图可知,A′B′<AB;故选:C.【点评】本题主要考查了比较线段的长短,解题的关键是正确比较线段的长短.2.【分析】根据绝对值的含义和求法,可得﹣5的绝对值是:|﹣5|=5,据此解答即可.【解答】解:﹣5的绝对值是:|﹣5|=5.故选:A.【点评】此题主要考查了绝对值的含义和求法的应用,要熟练掌握,解答此题的关键是要明确:①互为相反数的两个数绝对值相等;②绝对值等于一个正数的数有两个,绝对值等于0的数有一个,没有绝对值等于负数的数.③有理数的绝对值都是非负数.3.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:55000=5.5×104.故选:C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.【分析】根据各个选项中的式子,可以计算出正确的结果,从而可以解答本题.【解答】解:∵3a+2b不能合并,故选项A错误;∵3a﹣(﹣2a)=3a+2a=5a,故选项B正确;∵3a2﹣2a不能合并,故选项C错误;∵(3﹣a)﹣(2﹣a)=3﹣a﹣2+a=1,故选项D错误,故选:B.【点评】本题考查整式的运算,解题的关键是熟练运用整式的运算法则,本题属于基础题型.5.【分析】把x=﹣1代入方程计算即可求出a的值.【解答】解:把x=﹣1代入方程得:﹣2+3=a,解得:a=1,则a的值为1,故选:D.【点评】此题考查了一元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.6.【分析】根据∠BAC=60°,∠1=27°40′,求出∠EAC的度数,再根据∠2=90°﹣∠EAC,即可求出∠2的度数.【解答】解:∵∠BAC=60°,∠1=27°40′,∴∠EAC=32°20′,∵∠EAD=90°,∴∠2=90°﹣∠EAC=90°﹣32°20′=57°40′;故选:B.【点评】本题主要考查了度分秒的换算,关键是求出∠EAC的度数,是一道基础题.7.【分析】根据线段中点的定义确定出点A、B、C三点共线的选项即为正确答案.【解答】解:A、AC+BC=6,C不一定在线段AB中点的位置,不符合题意;B、AC=BC=3,点C是线段AB中点,符合题意;C、BC=3,点C不一定是线段AB中点,不符合题意;D、AB=2AC,点C不一定是线段AB中点,不符合题意.故选:B.【点评】本题考查了两点间的距离,要注意根据条件判断出A、B、C三点是否共线.8.【分析】把x=2代入求出4m﹣n的值,再将x=﹣2代入计算即可求出所求.【解答】解:把x=2代入得:16+4m﹣n=6,解得:4m﹣n=﹣10,则当x=﹣2时,原式=16+4m﹣n=16﹣10=6,故选:C.【点评】此题考查了代数式求值,熟练掌握运算法则是解本题的关键.9.【分析】根据从正面看得到的图形是主视图,可得答案.【解答】解:从正面看是,故选:D.【点评】本题考查了简单组合体的三视图,从正面看得到的图形是主视图.10.【分析】数轴上点A,M,B分别表示数a,a+b,b,由它们的位置可得a<0,a+b>0,b>0且|a|<|b|,再根据整式的加减乘法运算的计算法则即可求解.【解答】解:数轴上点A,M,B分别表示数a,a+b,b,由它们的位置可得a<0,a+b>0,b>0且|a|<|b|,则a﹣b<0,ab<0,|a|﹣b<0,故运算结果一定是正数的是a+b.故选:A.【点评】考查了列代数式,数轴,正数和负数,绝对值,关键是得到a<0,a+b>0,b>0且|a|<|b|.二、填空题(本大题共16分,每小题2分)11.【分析】直接根据负数比较大小的法则进行比较即可.【解答】解:∵|﹣3|>|﹣2.1|,∴﹣3<﹣2.1,故答案为:<.【点评】本题考查的是有理数大小,熟知以下知识是解答此题的关键:正数都大于0,负数都小于0,正数大于一切负数;两个负数相比较,绝对值大的反而小.12.【分析】根据长度的测量可求图中A,B两点之间的距离;根据方向角的定义可求点B的方向.【解答】解:测量可得,图中A,B两点之间的距离是2厘米(精确到厘米),点B在点A的南偏西58°(精确到度).故答案为:2,58.【点评】考查了两点间的距离,关键是熟练掌握长度和角的测量方法.13.【分析】根据多项式的次数定义进行填写,答案不唯一,可以是2x3,3x3等.【解答】解:可以写成:2x3+xy﹣5,故答案为:2x3.【点评】本题考查了多项式的定义和次数,明确如果一个多项式含有a个单项式,次数是b,那么这个多项式就叫b次a项式.14.【分析】利用矩形的性质得到剩余白色长方形的长为b,宽为(b﹣a),然后计算它的周长.【解答】解:剩余白色长方形的长为b,宽为(b﹣a),所以剩余白色长方形的周长=2b+2(b﹣a)=4b﹣2a.故答案为4b﹣2a.【点评】本题考查了矩形的周长.15.【分析】根据角平分线定义可得∠COD=∠1;根据同角的余角相等可得∠EOF=∠1.【解答】解:∵射线OD平分∠COA,∴∠COD=∠1.∵∠DOF=∠AOE=90°,∴∠DOE+∠EOF=90°,∠DOE+∠1=90°,∴∠EOF=∠1.∴图中与∠1相等的角有∠COD,∠EOF.故答案为∠COD,∠EOF.【点评】本题考查了余角和补角,角平分线定义,掌握余角的性质是解题的关键.16.【分析】设珐琅书签的销售了x件,则文创笔记本销售了(2x﹣700)件,根据文创笔记本和珐琅书签共销售5900件,即可得出关于x的一元一次方程,此题得解.【解答】解:设珐琅书签的销售了x件,则文创笔记本销售了(2x﹣700)件,根据题意得:(2x﹣700)+x=5900.故答案为:(2x﹣700)+x=5900.【点评】本题考查了由实际问题抽象出一元一次方程,找准等量关系,正确列出一元一次方程是解题的关键.17.【分析】根据AO=10,得到点A表示的数为±10,由AB=8,且点A表示的数比点B表示的数小,得到点B 表示的数在点A表示的数的右边,于是得到结论.【解答】解:∵AO=10,∴点A表示的数为±10,∵AB=8,且点A表示的数比点B表示的数小,∴点B表示的数是﹣2或18,故答案为:﹣2或18【点评】本题考查了数轴,正确的理解题意是解题的关键.18.【分析】(1)根据题意得到y=2x﹣1+3+ax=(2+a)x+2,由y的值与x的值无关,可知x的系数为0,即2+a=0,由此求得a的值;(2)结合(1)的a的值,可知当y=﹣1时,此时只有两个球相撞,分两种情况,从而可以求得x的值.【解答】解:(1)(2x﹣1)+3+ax=2x﹣1+3+ax=(2+a)x+2,∵当三个滚珠同时相撞时,不论输入x的值为多大,输出y的值总不变,∴2+a=0,得a=﹣2,故答案为:﹣2;(2)当y=2x﹣1+3=2x+2时,令y=﹣1,则﹣1=2x+2,得x=﹣1.5(舍去),当y=3+(﹣2x)=﹣2x+3时,令y=﹣1,则﹣1=﹣2x+3,得x=2,故答案为:2.【点评】本题考查有理数的混合运算、代数式求值,解答本题的关键是明确题意,求出a的值和相应的x的值.三、解答题(本大题共24分,第19,20题每题8分,第21~22每题4分)19.【分析】(1)先根据乘方的意义计算乘方运算,然后利用除法法则把除法运算化为乘法运算,根据负因式的个数判断得到结果的符号,最后利用加法法则即可得出结果;(2)根据乘法分配律进行计算即可.【解答】解:(1)原式=5﹣9÷(﹣3),=5+3,=8;(2)原式=,=﹣4﹣8+10,=﹣2.【点评】此题考查了有理数的混合运算,有理数的混合运算首先弄清运算顺序,先乘方,再乘除,最后算加减,有括号先计算括号里边的,且先小括号,再中括号,最后算大括号,同级运算从左到右依次计算,有时可以利用运算律来简化运算,熟练掌握各种运算法则是解本题的关键.20.【分析】(1)方程移项合并,把x系数化为1,即可求出解;(2)方程去分母,去括号,移项合并,把x系数化为1,即可求出解.【解答】解:(1)移项得:5x+2x=1﹣8,合并得:7x=﹣7,解得:x=﹣1;(2)去分母得:3(x+1)=2(2﹣3x),去括号得:3x+3=4﹣6x,移项合并得:9x=1,解得:x=.【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.21.【分析】利用去括号法则和合并同类项的方法先对所求式子进行化简,然后根据2a﹣b的值,即可求得所求式子的值,本题得以解决.【解答】解:3(2ab2﹣4a+b)﹣2(3ab2﹣2a)+b=6ab2﹣12a+3b﹣6ab2+4a+b=﹣8a+4b,∵2a﹣b=﹣2,∴原式=﹣8a+4b=﹣4(2a﹣b)=﹣4×(﹣2)=8.【点评】本题考查整式的加减﹣化简求值,解答本题的关键是明确整式化简求值的方法.22.【分析】(1)、(2)根据几何语言画出对应的几何图形;(3)连接CF交OE于P;(4)利用两点之间线段最短求解.【解答】解:(1)如图,OD、OE为所作;(2)如图,点F为所作;(3)如图,点P为所作;(4)连接FC交OE于P,则根据两点之间,线段最短可判断此时PC+PF最小.答案为:两点之间,线段最短.【点评】本题考查了作图﹣复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.四、解答题(本大题共11分,23题6分,24题5分)23.【分析】(1)方法一:根据线段的和差关系可求AB,再根据中点的定义可求BM,再根据CM=BM﹣CB或方法二:CM=AC﹣AM即可求解;(2)方法一:由(1)可知,DM=DB﹣MB,可得DM=MC,从而求解;方法二:根据等量关系可得AD=CB,根据中点的定义可得AM=MB,再根据等量关系可得DM=MC,从而求解.【解答】解:(1)方法一:∵AC=8,CB=2,∴AB=AC+CB=10,∵点M为线段AB的中点,∴,∴CM=BM﹣CB=5﹣2=3.或方法二:∴CM=AC﹣AM=8﹣5=3.(2)点M是线段CD的中点,理由如下:方法一:∵BD=AC=8,∴由(1)可知,DM=DB﹣MB=8﹣5=3.∴DM=MC=3,∴由图可知,点M是线段CD的中点.方法二:∵AC=BD,∴AC﹣DC=BD﹣DC,∴AD=CB.∵点M为线段AB的中点,∴AM=MB,∴AM﹣AD=MB﹣CB,∴DM=MC∴由图可知,点M是线段CD的中点.【点评】本题考查了两点间的距离,利用了线段的和差,线段中点的性质.24.【分析】(1)根据每一行三个数的和均为S,而这9个数的和恰好为1到9这9个正整数之和,由此可得S 的值;(2)设中间数为x,利用包含中间数x的行、列、对角线上的数与9个数的关系列出方程,解方程即可.【解答】解:(1)S=(1+2+3+…+9)÷3=45÷3=15.故答案为15;(2)由计算知:1+2+3+…+9=45.设中间数为x,依题意可列方程:4×15﹣3x=45,解得:x=5.故中间数x的值为5.【点评】本题考查了一元一次方程的应用,理解洛书对应的九宫格的要求是解题的关键.五、解答题(本大题共19分,25~26每题6分,27题7分)25.【分析】(1)代入后解方程即可;(2)只需满足b=3k即可;(3)介绍两种解法:方法一:将x=4代入方程◇:得,整体代入即可;方法二:将将x=4代入方程◇:得b=﹣4k,整体代入即可;【解答】解:(1)当k=2,b=﹣4时,方程◇为:2x﹣4=0,x=2.故答案为:x=2;(2)答案不唯一,如:k=1,b=3.(只需满足b=3k即可)故答案为:1,3;(3)方法一:依题意:4k+b=0,∵k≠0,∴.解关于y的方程:,∴3y+2=﹣4.解得:y=﹣2.方法二:依题意:4k+b=0,∴b=﹣4k.解关于y的方程:k(3y+2)﹣(﹣4k)=0,3ky+6k=0,∵k≠0,∴3y+6=0.解得:y=﹣2.【点评】本题考查了一元一次方程的解,熟练掌握解一元一次方程是关键.26.【分析】(1)根据余角的定义即可求解;(2)①先根据余角、平角的定义求出∠BOC,再根据角平分线的定义求出∠COD,再根据角的和差关系即可求解;②分点D在∠BOC内,点D在∠BOC外两种情况即可求解.【解答】解:(1)∵∠AOC:∠BOD=4:5,∠BOD与∠AOC互余,∴∠BOD=90°×=50°;(2)①补全图形如下:∵∠BOD与∠AOC互余,∴∠BOD+∠AOC=90°,∴∠COD=90°,∵ON平分∠COD,∴∠CON=45°,∴∠AON=α+45°;②情形一:点D在∠BOC内.此时,∠AON=α+45°,∠COD=90°,依题意可得:α+45°+90°=180°,解得:α=45°.情形二:点D在∠BOC外.在0°<α≤45°的条件下,补全图形如下:此时∠AON=45°,∠COD=90°+2α,依题意可得:45°+90°+2α=180°,解得:α=22.5°.综上,α的取值为45°或22.5°.故答案为:50°.【点评】本题考查了余角和补角、角度的计算,正确理解角平分线的定义,理解角度之间的和差关系是关键.27.【分析】(1)根据定义a*b为数阵中第a行第b列的数即可求解;(2)①根据“有趣的”定义即可求解;②根据a*a=a;(a*b)*c=a*c,将2*1变形得到2*1=(1*2)*1即可求解;③若存在满足交换律的“有趣的”数阵,依题意,对任意的a,b,c有:a*c=(a*b)*c=(b*a)*c=b*c,这说明数阵每一列的数均相同.进一步得到1*2=2,2*1=1,与交换律相矛盾.因此,不存在满足交换律的“有趣的”数阵.【解答】解:(1)对于数阵A,2*3的值为2;若2*3=2*x,则x的值为1,2,3;(2)①由数阵图可知,数阵A是“有趣的”.②∵1*2=2,∴2*1=(1*2)*1,∵(a*b)*c=a*c,∴(1*2)*1=1*1,∵a*a=a,∴1*1=1,∴2*1=1.(3)不存在理由如下:方法一:若存在满足交换律的“有趣的”数阵,依题意,对任意的a,b,c有:a*c=(a*b)*c=(b*a)*c=b*c,这说明数阵每一列的数均相同.∵1*1=1,2*2=2,3*3=3,∴此数阵第一列数均为1,第二列数均为2,第三列数均为3,∴1*2=2,2*1=1,与交换律相矛盾.因此,不存在满足交换律的“有趣的”数阵.方法二:由条件二可知,a*b只能取1,2或3,由此可以考虑a*b取值的不同情形.例如考虑1*2:情形一:1*2=1.若满足交换律,则2*1=1,再次计算1*2可知:1*2=(2*1)*2=2*2=2,矛盾;情形二:1*2=2由(2)可知,2*1=1,1*2≠2*1,不满足交换律,矛盾;情形三:1*2=3若满足交换律,即2*1=3,再次计算2*2可知:2*2=(2*1)*2=3*2=(1*2)*2=1*2=3,与2*2=2矛盾.综上,不存在满足交换律的“有趣的”数阵.故答案为:2;1,2,3;是.【点评】考查了规律型:数字的变化类,探究题是近几年中考命题的亮点,尤其是与数列有关的命题更是层出不穷,形式多样,它要求在已有知识的基础上去探究,观察思考发现规律.。
人教版2019-2020学年七年级上册期末数学试卷含答案解析一、选择题(每小题2分,共20分)1.如果向东走2m记为+2m,则向西走3m可记为()A.+3m B.+2m C.﹣3m D.﹣2m2.在,,,0.1010010001,,中,无理数的个数是()A.1 B.2 C.3 D.43.人类的遗传物质是DNA,DNA是一个很长的链,最短的22号染色体也长达30000000个核苷酸,30000000用科学记数法表示为()A.3×107B.30×106C.0.3×107D.0.3×1084.如图,如果用剪刀沿直线将一个正方形图片剪掉一部分,发现剩下部分的周长比原正方形图片的周长要小,能正确解释这一现象的数学知识是()A.垂线段最短B.经过一点有无数条直线C.经过两点,有且仅有一条直线D.两点之间,线段最短5.下列化简正确的是()A.2a+3b=5ab B.7ab﹣3ab=4C.2ab+3ab=5ab D.a2+a2=a46.下列算式中,运算结果为负数的是()A.﹣(﹣2)B.|﹣2| C.(﹣2)3D.(﹣2)27.如图,甲从A点出发向北偏东60°方向走到点B,乙从点A出发向南偏西20°方向走到点C,则∠BAC的度数是()A.80°B.100°C.120°D.140°8.2018年宁波市中考新增英语口语听力自动化考试,考试需要耳麦,已知甲耳麦比乙耳麦贵20元,某校购买了甲耳麦40个、乙耳麦60个,共花费了6000元,假设甲耳麦每个x元,由题意得()A.40x+60(x﹣20)=6000 B.40x+60(x+20)=6000C.60x+40(x﹣20)=6000 D.60x+40(x+20)=60009.已知a,b,c在数轴上的位置如图所示,化简|a+c|﹣|a﹣2b|﹣|c﹣2b|的结果是()A.0 B.4b C.﹣2a﹣2c D.2a﹣4b10.某校组织了一次数学测试,试卷的计分规则如下:如果某考生考了82分及以下,他的分数就是实际分数,如果考了82分以上,超过82分的部分按一半计算(例如小明同学考了90分,按这个规则得82+8÷2=86分),全部答对的学生按照这个规则得100分.如果某一个同学按照这个规则的最后分数是93分,他实际考试被扣了()分.A.11 B.14 C.16 D.18二、填空题(每小题3分,共30分)11.单项式的系数是,次数是.12.﹣8的立方根是,9的算术平方根是.13.近似数13.7万精确到位.14.用度表示30°9′36″为.15.已知2x6y2和﹣是同类项,则m﹣n的值是.16.已知a,b为有理数,定义一种运算:a*b=2a﹣3b,若(5x﹣3)*(1﹣3x)=29,则x值为.17.若a、b互为相反数,m、n互为倒数,则2018a+2017b+mnb的值为.18.如图,AB,CD相交于点O,∠BOE=90°,有以下结论:①∠AOC与∠COE互为余角;②∠BOD与∠COE互为余角;③∠AOC=∠BOD;④∠COE与∠DOE互为补角;⑤∠AOC与∠DOE互为补角;⑥∠AOC=∠COE其中错误的有(填序号).19.计算机利用的是二进制数,它共有两个数码0、1,将一个十进制数转化为二进制数,只需要把该数写成若干个2n数的和,依次写出1或0即可.如十进制数19=16+2+1=1×24+0×23+0×22+1×21+1×20,转化为二进制数就是10011,所以19是二进制下的5位数.问:365是二进制下的位数.20.在1,3,5,……,2017,2019,2021这1011数的前面任意添加一个正号或一个负号,其代数和的绝对值最小值是.三、解答题(本大题共有8小题,共50分)21.计算:(1)﹣12018+(﹣6)2×(﹣)(2)+﹣|﹣3|22.解下列方程(1)4+3(x﹣2)=x(3)=1﹣.23.先化简,再求值:﹣8m2+[7m2﹣2m﹣(3m2﹣4m)],其中m=﹣.24.如题,平面上四个点A,B,C,D,按要求完成下列问题:(1)连接线段AD,BC;(2)画射线AB与直线CD相交于E点;(3)在直线CD上找一点M,使线段AM最短,并说明理由.25.如图①点C在线段AB上,点M、N分别是AC、BC的中点,且满足AC=a,BC=b.(1)若a=4 cm,b=6 cm,求线段MN的长;(2)若点C为线段AB上任意一点,其它条件不变,你能猜想MN的长度吗?直接写出你的猜想结果;(3)若点C在线段AB的延长线上,其它条件不变,你能猜想MN的长度吗?请在图②中画出图形,写出你的猜想并说明理由.26.观察下列两个等式:2+2=2×2,3+=3×,给出定义如下:我们称使等式a+b=ab成立的一对有理数a,b为“有趣数对”,记为(a,b)如:数对(2,2),(3,)都是“有趣数对”.(1)数对(0,0),(5,)中是“有趣数对”的是;(2)若(a,)是“有趣数对”,求a的值;(3)请再写出一对符合条件的“有趣数对”;(注意:不能与题目中已有的“有趣数对”重复)(4)若(a2+a,4)是“有趣数对”求3﹣2a2﹣2a的值.27.公共自行车的普及给市民的出行带来了方便.现有两个公共自行车投放点A地、B地.要从甲、乙两厂家向A、B两地运送自行车.已知甲厂家可运出20辆自行车,乙厂家可运出60辆自行车;A地需30辆自行车,B地需50辆自行车.甲、乙两厂家向A、B两地的运费如下表:(1)若设甲厂家运往A地的自行车的量数为x,则甲厂家运往B地的自行车的量数为;则乙厂家运往A地的自行车的量数为;则乙厂家运往B地的自行车的量数为;(2)当甲、乙两厂家各运往A、B两地多少辆自行车时,总运费等于470元?28.请阅读下列材料,并解答相应的问题:将若干个数组成一个正方形数阵,若任意一行,一列及对角线上的数字之和都相等,则称具有这种性质的数字方阵为“幻方”中国古代称“幻方”为“河图“、“洛书“等,例如,下面是三个三阶幻方,是将数字1,2,3,4,5,6,7,8,9填入到3×3的方格中得到的,其每行、每列、每条对角线上的三个数之和相等.(1)设图1的三阶幻方中间的数字是x,用x的代数式表示幻方中9个数的和为;(2)请你将下列九个数:﹣10、﹣8、﹣6、﹣4、﹣2、0、2、4、6分别填入图2方格中,使得每行、每列、每条对角线上的三个数之和都相等;(3)图3是一个三阶幻方,那么标有x的方格中所填的数是;(4)如图4所示的每一个圆中分别填写了1、2、3…19中的一个数字(不同的圆中填写的数字各不相同),使得图中每一个横或斜方向的线段上几个圆内的数之和都相等,现在已知该图中七个圆内的数字,则图中的x=,y=.参考答案与试题解析一.选择题(共10小题)1.如果向东走2m记为+2m,则向西走3m可记为()A.+3m B.+2m C.﹣3m D.﹣2m【分析】根据正数和负数表示相反意义的量,向东走记为正,可得向西走的表示方法.【解答】解:若向东走2m记作+2m,则向西走3m记作﹣3m,故选:C.2.在,,,0.1010010001,,中,无理数的个数是()A.1 B.2 C.3 D.4【分析】分别根据无理数、有理数的定义即可判定选择项.【解答】解:在所列6个数中无理数有、这两个,故选:B.3.人类的遗传物质是DNA,DNA是一个很长的链,最短的22号染色体也长达30000000个核苷酸,30000000用科学记数法表示为()A.3×107B.30×106C.0.3×107D.0.3×108【分析】先确定出a和n的值,然后再用科学记数法的性质表示即可.【解答】解:30000000=3×107.故选:A.4.如图,如果用剪刀沿直线将一个正方形图片剪掉一部分,发现剩下部分的周长比原正方形图片的周长要小,能正确解释这一现象的数学知识是()A.垂线段最短B.经过一点有无数条直线C.经过两点,有且仅有一条直线D.两点之间,线段最短【分析】根据两点之间,线段最短解答即可.【解答】解:因为两点之间线段最短.故选:D.5.下列化简正确的是()A.2a+3b=5ab B.7ab﹣3ab=4C.2ab+3ab=5ab D.a2+a2=a4【分析】直接利用合并同类项法则分别计算得出答案.【解答】解:A、2a+3b无法计算,故此选项不合题意;B、7ab﹣3ab=4ab,故计算错误,不合题意;C、2ab+3ab=5ab,正确,符合题意;D、a2+a2=2a2,故计算错误,不合题意;故选:C.6.下列算式中,运算结果为负数的是()A.﹣(﹣2)B.|﹣2| C.(﹣2)3D.(﹣2)2【分析】根据在一个数的前面机上负号就是这个数的相反数,负数的绝对值是它的相反数,负数的奇数次幂是负数,负数的偶数次幂是正数,可得答案.【解答】解:A、﹣(﹣2)=2,故A错误;B、|﹣2|=2,故B错误;C、(﹣2)3=﹣8,故C正确;D、(﹣2)2=4,故D错误;故选:C.7.如图,甲从A点出发向北偏东60°方向走到点B,乙从点A出发向南偏西20°方向走到点C,则∠BAC的度数是()A.80°B.100°C.120°D.140°【分析】∠BAC等于三个角的和,求出各角的度数,相加即可.【解答】解:如图,由题意,可知:∠AOD=60°,∴∠CAE=30°,∵∠BAF=20°,∴∠BAC=∠CAE+∠EAF+∠BAF=30°+90°+20°=140°,故选:D.8.2018年宁波市中考新增英语口语听力自动化考试,考试需要耳麦,已知甲耳麦比乙耳麦贵20元,某校购买了甲耳麦40个、乙耳麦60个,共花费了6000元,假设甲耳麦每个x元,由题意得()A.40x+60(x﹣20)=6000 B.40x+60(x+20)=6000C.60x+40(x﹣20)=6000 D.60x+40(x+20)=6000【分析】根据题意可以列出相应的方程,从而可以解答本题.【解答】解:由题意可得,40x+60(x﹣20)=6000,故选:A.9.已知a,b,c在数轴上的位置如图所示,化简|a+c|﹣|a﹣2b|﹣|c﹣2b|的结果是()A.0 B.4b C.﹣2a﹣2c D.2a﹣4b【分析】根据数轴上点的位置判断出绝对值里边式子的正负,利用绝对值的代数意义化简,去括号合并即可得到结果.【解答】解:由数轴上点的位置得:b<a<0<c,且|b|>|c|>|a|,∴a+c>0,a﹣2b>0,c﹣2b>0,则原式=a+c﹣a+2b﹣c+2b=4b.故选:B.10.某校组织了一次数学测试,试卷的计分规则如下:如果某考生考了82分及以下,他的分数就是实际分数,如果考了82分以上,超过82分的部分按一半计算(例如小明同学考了90分,按这个规则得82+8÷2=86分),全部答对的学生按照这个规则得100分.如果某一个同学按照这个规则的最后分数是93分,他实际考试被扣了()分.A.11 B.14 C.16 D.18【分析】根据题意可以得到本次考试的实际满分是多少,从而可以计算出某一个同学按照这个规则的最后分数是93分,他实际考试被扣了多少分,本题得以解决.【解答】解:由题意可得,这次考试总分为:82+(100﹣82)×2=118(分),如果某一个同学按照这个规则的最后分数是93分,则这个同学的实际考试被扣了:118﹣[82+(93﹣82)×2]=118﹣(82+11×2)=118﹣(82+22)=118﹣104=14(分),故选:B.二.填空题(共10小题)11.单项式的系数是,次数是 4 .【分析】根据单项式中的数字因数叫做单项式的系数,一个单项式中所有字母的指数的和叫做单项式的次数可得答案.【解答】解:单项式的系数是,次数是4;故答案为:;4.12.﹣8的立方根是﹣2 ,9的算术平方根是 3 .【分析】根据立方根和算术平方根的定义求解可得.【解答】解:﹣8的立方根是﹣2,9的算术平方根是3,故答案为:﹣2、3.13.近似数13.7万精确到千位.【分析】根据近似数的精确度求解.【解答】解:近似数13.7万精确到千位.故答案为千.14.用度表示30°9′36″为30.16°.【分析】根据度分秒的进率为60,再进行换算即可.【解答】解:30°9′36″=30.16°,故答案为:30.16°15.已知2x6y2和﹣是同类项,则m﹣n的值是0 .【分析】根据同类项得定义得出m、n的值,继而代入计算可得.【解答】解:根据题意知3m=6,即m=2、n=2,所以m﹣n=2﹣2=0,故答案为:0.16.已知a,b为有理数,定义一种运算:a*b=2a﹣3b,若(5x﹣3)*(1﹣3x)=29,则x值为 2 .【分析】根据新定义列出关于x的方程,解之可得.【解答】解:由题意得2(5x﹣3)﹣3(1﹣3x)=29,10x﹣6﹣3+9x=29,10x+9x=29+6+3,19x=38,x=2,故答案为:2.17.若a、b互为相反数,m、n互为倒数,则2018a+2017b+mnb的值为0 .【分析】根据a、b互为相反数,m、n互为倒数,可以求得a+b和mn的值,从而可以求得所求式子的值.【解答】解:∵a、b互为相反数,m、n互为倒数,∴a+b=0,mn=1,∴2018a+2017b+mnb=2017(a+b)+a+b=2017×0+0=0,故答案为:0.18.如图,AB,CD相交于点O,∠BOE=90°,有以下结论:①∠AOC与∠COE互为余角;②∠BOD与∠COE互为余角;③∠AOC=∠BOD;④∠COE与∠DOE互为补角;⑤∠AOC与∠DOE互为补角;⑥∠AOC=∠COE其中错误的有⑥(填序号).【分析】根据垂线的定义、对顶角、邻补角的性质解答即可.【解答】解:∵AB,CD相交于点O,∠BOE=90°,∴①∠AOC与∠COE互为余角,正确;②∠BOD与∠COE互为余角,正确;③∠AOC=∠BOD,正确;④∠COE与∠DOE互为补角,正确;⑤∠AOC与∠BOC=∠DOE互为补角,正确;⑥∠AOC=∠BOD≠∠COE,错误;故答案为:⑥.19.计算机利用的是二进制数,它共有两个数码0、1,将一个十进制数转化为二进制数,只需要把该数写成若干个2n数的和,依次写出1或0即可.如十进制数19=16+2+1=1×24+0×23+0×22+1×21+1×20,转化为二进制数就是10011,所以19是二进制下的5位数.问:365是二进制下的9 位数.【分析】根据题意得28=256,29=512,根据规律可知最高位应是1×28,故可求共由有9位数.【解答】解:∵28=256,29=512,且256<365<512,∴最高位应是1×28,则共有8+1=9位数,故答案为:9.20.在1,3,5,……,2017,2019,2021这1011数的前面任意添加一个正号或一个负号,其代数和的绝对值最小值是 1 .【分析】从题目中可见这是一组奇数的排列,求一共有1011个数的代数和的绝对值,根据奇数做差可求出最小值.【解答】解:根据题意,要求出其代数和的绝对值最小值,相邻两位做差,差值都为2,则其中1010个数做差的绝对值最小值为:(1010÷2)×2=1010如果剩余的一个数取﹣1009或﹣1011,整个代数和最小,即|1010﹣1009|=1或|1010﹣1011|=1所以其代数和的绝对值最小值是:1故答案为:1三.解答题(共8小题)21.计算:(1)﹣12018+(﹣6)2×(﹣)(2)+﹣|﹣3|【分析】(1)直接利用有理数的混合运算法则计算得出答案;(2)直接利用立方根以及绝对值的性质分别化简得出答案.【解答】解:(1)原式=﹣1+36×=﹣1+6=5;(2)原式=2+﹣3=.22.解下列方程(1)4+3(x﹣2)=x(2)=1﹣.【分析】(1)方程去括号,移项合并,把x系数化为1,即可求出解;(2)方程去分母,去括号,移项合并,把x系数化为1,即可求出解.【解答】解:(1)去括号得:4+3x﹣6=x,移项合并得:2x=2,解得:x=1;(2)去分母得:8x﹣2=6﹣3x+1,移项合并得:11x=9,解得:x=.23.先化简,再求值:﹣8m2+[7m2﹣2m﹣(3m2﹣4m)],其中m=﹣.【分析】原式去括号合并得到最简结果,把m的值代入计算即可求出值.【解答】解:原式=﹣8m2+7m2﹣2m﹣3m2+4m=﹣4m2+2m,当m=﹣时,原式=﹣1﹣1=﹣2.24.如题,平面上四个点A,B,C,D,按要求完成下列问题:(1)连接线段AD,BC;(2)画射线AB与直线CD相交于E点;(3)在直线CD上找一点M,使线段AM最短,并说明理由.【分析】(1)画线段AD,BC即可;(2)画射线AB与直线CD,交点记为E点;(3)根据垂线段最短作出垂线段即可求解.【解答】解:(1)如图所示:(2)如图所示:(3)如图所示:理由是垂线段最短.25.如图①点C在线段AB上,点M、N分别是AC、BC的中点,且满足AC=a,BC=b.(1)若a=4 cm,b=6 cm,求线段MN的长;(2)若点C为线段AB上任意一点,其它条件不变,你能猜想MN的长度吗?直接写出你的猜想结果;(3)若点C在线段AB的延长线上,其它条件不变,你能猜想MN的长度吗?请在图②中画出图形,写出你的猜想并说明理由.【分析】(1)根据M、N分别是AC、BC的中点,求出MC、CN的长度,MN=MC+CN;(2)根据(1)的方法求出MN=AB;(3)作出图形,MC=AC,CN=BC,所以MN=AC﹣CB.【解答】解:(1)∵M、N分别是AC、BC的中点,∴MC=AC,CN=BC,∴MN=MC+CN=AC+BC=×4+×6=5cm,所以MN的长为5cm.(2)同(1),MN=AC+CB=(AC+CB)=(a+b).(3)图如右,MN=(a﹣b).理由:由图知MN=MC﹣NC=AC﹣BC=a﹣b=(a﹣b).26.观察下列两个等式:2+2=2×2,3+=3×,给出定义如下:我们称使等式a+b=ab成立的一对有理数a,b为“有趣数对”,记为(a,b)如:数对(2,2),(3,)都是“有趣数对”.(1)数对(0,0),(5,)中是“有趣数对”的是(0,0);(2)若(a,)是“有趣数对”,求a的值;(3)请再写出一对符合条件的“有趣数对”(4,);(注意:不能与题目中已有的“有趣数对”重复)(4)若(a2+a,4)是“有趣数对”求3﹣2a2﹣2a的值.【分析】(1)根据“有趣数对”的定义即可得到结论;(2)根据“有趣数对”的定义列方程即可得到结论;(3)根据根据“有趣数对”的定义即可得到结论;(4)根据“有趣数对”的定义列方程即可得到结论.【解答】解:(1)∵0+0=0×0,∴数对(0,0)是“有趣数对”;∵5+=,5×=,∴(5,)不是“有趣数对”,故答案为:(0,0);(2)∵(a,)是“有趣数对”,∴a=a+,解得:a=﹣3;(3)符合条件的“有趣数对”如(4,);故答案为:(4,);(4)∵(a2+a,4)是“有趣数对”∴a2+a+4=4(a2+a),解得:a2+a=,∴﹣2a2﹣2a=﹣2(a2+a)=﹣2×=﹣,∴3﹣2a2﹣2a=3﹣=.27.公共自行车的普及给市民的出行带来了方便.现有两个公共自行车投放点A地、B地.要从甲、乙两厂家向A、B两地运送自行车.已知甲厂家可运出20辆自行车,乙厂家可运出60辆自行车;A地需30辆自行车,B地需50辆自行车.甲、乙两厂家向A、B两地的运费如下表:(1)若设甲厂家运往A地的自行车的量数为x,则甲厂家运往B地的自行车的量数为20﹣x;则乙厂家运往A地的自行车的量数为30﹣x;则乙厂家运往B地的自行车的量数为30+x;(2)当甲、乙两厂家各运往A、B两地多少辆自行车时,总运费等于470元?【分析】(1)根据表格中的数据填空;(2)根据总运费是470元列出方程并解答.【解答】解:(1)若设甲厂家运往A地的自行车的量数为x,则甲厂家运往B地的自行车的量数为 20﹣x;则乙厂家运往A地的自行车的量数为 30﹣x;则乙厂家运往B地的自行车的量数为 30+x;故答案是:20﹣x;30﹣x;30+x.(2)根据题意,得5x+6(20﹣x)+10(30﹣x)+4(30+x)=470解得x=10则20﹣x=10(辆)30﹣x=20(辆)30+x=40(辆)答:甲厂家运往B地的自行车的量数为10辆,则甲厂向B运算自行车的数量是10辆;乙厂家运往A地的自行车的量数为20辆;乙厂家运往B地的自行车的量数为40辆.28.请阅读下列材料,并解答相应的问题:将若干个数组成一个正方形数阵,若任意一行,一列及对角线上的数字之和都相等,则称具有这种性质的数字方阵为“幻方”中国古代称“幻方”为“河图“、“洛书“等,例如,下面是三个三阶幻方,是将数字1,2,3,4,5,6,7,8,9填入到3×3的方格中得到的,其每行、每列、每条对角线上的三个数之和相等.(1)设图1的三阶幻方中间的数字是x,用x的代数式表示幻方中9个数的和为9x;(2)请你将下列九个数:﹣10、﹣8、﹣6、﹣4、﹣2、0、2、4、6分别填入图2方格中,使得每行、每列、每条对角线上的三个数之和都相等;(3)图3是一个三阶幻方,那么标有x的方格中所填的数是21 ;(4)如图4所示的每一个圆中分别填写了1、2、3…19中的一个数字(不同的圆中填写的数字各不相同),使得图中每一个横或斜方向的线段上几个圆内的数之和都相等,现在已知该图中七个圆内的数字,则图中的x= 1 ,y=19 .【分析】观察数字之间的关系,根据每行、每列、每条对角线上的三个数之和相等;(1)(x+3)+(x﹣4)+(x+1)+(x﹣2)+(x+2)+x+(x﹣1)+(x+4)+(x﹣3)(2)﹣10、﹣8、﹣6、﹣4、﹣2、0、2、4、6将数从小到大排序,最中间的数填入中心位置,大小匹配填﹣2的两侧;(3)三个数之和18+x,2边填16,以此为突破口;(4)设第一行最后一个数是m,则每一个横或斜方向的线段的和是28+m,以此展开推理;【解答】解:(1)三阶幻方如图所示:用x的代数式表示幻方中9个数的和S=(x+3)+(x﹣4)+(x+1)+(x﹣2)+(x+2)+x+(x﹣1)+(x+4)+(x﹣3)=9x;故答案为9x;(2)三阶幻方如图所示:(3)故答案为21;(4)如图所示:x=1,y=19;故答案气为1,19;。
七年级上册数学期末检测试卷(附答案和解释)2019年七年级上册数学期末检测试卷(附答案和解释)距离期末考试越来越近了,期末考试考查的是整个学期的学习内容,内容很多。
各科都已经进入复习阶段,现在大家都在忙碌的复习阶段。
我们一起来看看这篇七年级上册数学期末检测试卷吧!一、选择题(每小题3分,共30分)1. 如果向东走80m记为+80m,那么向西走60m记为()A. ﹣60mB. |﹣60|mC. ﹣(﹣60)mD. m2. ﹣6的绝对值等于()A. 6B.C. ﹣D. ﹣63. 未来三年,国家将投入8 500亿元用于缓解群众看病难,看病贵问题.将8 500亿元用科学记数法表示为A. 0.85104亿元B. 8.5103亿元C. 8.5104亿元D. 85102亿元4. 当x=﹣2时,代数式x+1的值是()A. ﹣1B. ﹣3C. 1D. 35. 在解方程时,去分母正确的是()A. 3(x﹣1)﹣2(2x+3)=6B. 3(x﹣1)﹣2(2x+3)=1C. 2(x﹣1)﹣2(2x+3)=6 D. 3(x﹣1)﹣2(2x+3)=36. 中国古代问题:有甲、乙两个牧童,甲对乙说:把你的羊给我一只,我的羊数就是你的羊数的2倍.乙回答说:最18. 已知x=﹣2是方程3(x+a)=15的解,则a=.19. 如图,将一副三角板折叠放在一起,使直角的顶点重合于点O,则AOC+DOB=度.20. 如图,AOB中,OD是BOC的平分线,OE是AOC的平分线,若AOB=140,则EOD=度.三、计算题(每小题6分,共24分)21. (﹣18)2(1﹣)22. ﹣23+(﹣3)2﹣32(﹣2)2.23. 先化简,后求值:2(3x﹣4y)﹣5(x﹣2y)+10,其中x=2,y=﹣1.24. 解方程:四、解答题25. 用两架掘土机掘土,第一架掘土机比第二架掘土机每小时多掘土40m3,第一架工作16小时,第二架工作24小时,共掘土8640m3,问每架掘土机每小时可以掘土多少m3? 26. 如图,已知C点为线段AB的中点,D点为BC的中点,AB=10cm,求AD的长度.27. 海滨中学暑假将××部分学生到北京旅游,甲旅行社说:如果领队买全票一张,那么其他学生可以享受半价优惠.乙旅行社说:包括领队在内,全部按全票价的6折优惠.两家旅行社的全票价均为240元.(1)设学生数为x,甲旅行社收费为m,乙旅行社收费为n,列等式表示两家旅行社的收费情况.(2)当学生数是多少时,两家旅行社的收费一样多?参考答案与试题解析一、选择题(每小题3分,共30分)1. 如果向东走80m记为+80m,那么向西走60m记为()A. ﹣60mB. |﹣60|mC. ﹣(﹣60)mD. m考点:正数和负数.分析:在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.解答:解:正和负相对,所以,如果向东走80m记为+80m,那么向西走60m记为﹣60m.2. ﹣6的绝对值等于()A. 6B.C. ﹣D. ﹣6考点:绝对值.专题:计算题.分析:根据绝对值的性质解答即可.解答:解:根据绝对值的性质,3. 未来三年,国家将投入8 500亿元用于缓解群众看病难,看病贵问题.将8 500亿元用科学记数法表示为A. 0.85104亿元B. 8.5103亿元C. 8.5104亿元D. 85102亿元考点:科学记数法表示较大的数.分析:科学记数法的表示形式为a10n的形式,其中110,n 为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值10时,n是正数;当原数的绝对值1时,n是负数.解答:解:按照科学记数法的形式8 500亿元应该写成8.5103亿元.4. 当x=﹣2时,代数式x+1的值是()A. ﹣1B. ﹣3C. 1D. 3考点:代数式求值.分析:把x=﹣2直接代入x+1计算.5. 在解方程时,去分母正确的是()A. 3(x﹣1)﹣2(2x+3)=6B. 3(x﹣1)﹣2(2x+3)=1C. 2(x﹣1)﹣2(2x+3)=6 D. 3(x﹣1)﹣2(2x+3)=3考点:解一元一次方程.专题:计算题.分析:去分母的方法是:方程左右两边同时乘以各分母的最小公倍数,这一过程的依据是等式的基本性质,注意去分母时分数线起到括号的作用,容易出现的错误是:漏乘没有分母的项,以及去分母后忘记分数线的括号的作用,符号出现错误.解答:解:方程左右两边同时乘以6得:3(x﹣1)﹣2(2x+3)=6.6. 中国古代问题:有甲、乙两个牧童,甲对乙说:把你的羊给我一只,我的羊数就是你的羊数的2倍.乙回答说:最好还是把你的羊给我一只,我们羊数就一样了.若设甲有x 只羊,则下列方程正确的是()A. x+1=2(x﹣2)B. x+3=2(x﹣1)C. x+1=2(x﹣3)D.考点:由实际问题抽象出一元一次方程.分析:根据甲的话可得乙羊数的关系式,根据乙的话得到等量关系即可.解答:解:∵甲对乙说:把你的羊给我1只,我的羊数就是你的羊数的两倍.甲有x只羊,乙有+1只,∵乙回答说:最好还是把你的羊给我1只,我们的羊数就一样了,7. 下列图形中,不是正方体的展开图的是()A. B. C. D.考点:几何体的展开图.专题:压轴题.分析:利用正方体及其表面展开图的特点解题.解答:解:A、B、C经过折叠均能围成正方体,D折叠后下边没有面,不能折成正方体,故选D.8. 已知点A、B、P在一条直线上,则下列等式中,能判断点P是线段AB的中点的个数有()①AP=BP; ②BP=AB; ③AB=2AP; ④AP+PB=AB.A. 1个B. 2个C. 3个D. 4个考点:两点间的距离.分析:根据题意画出图形,根据中点的特点即可得出结论. 解答:解:如图所示:①∵AP=BP,点P是线段AB的中点,故本小题正确;②∵BP=A B,AP=BP,即点P是线段AB的中点,故本小题正确;③∵AB=2AP,AB=AP+BP,AP=BP,即点P是线段AB的中点,故本小题正确;9. 一个多项式减去x2﹣2y2等于x2+y2,则这个多项式是()A. ﹣2x2+y2B. 2x2﹣y2C. x2﹣2y2D. ﹣x2+2y2考点:整式的加减.分析:被减式=差+减式.解答:解:多项式为:x2﹣2y2+(x2+y2)10. 如图,已知直线AB,CD相交于点O,OE平分COB,若EOB=55,则BOD的度数是()A. 35B. 55C. 70D. 110考点:角平分线的定义;余角和补角.分析:利用角平分线的定义和补角的定义求解.解答:解:OE平分COB,若EOB=55,二、填空题(共10个小题,每小题2分,共20分)11. 比较大小:﹣6﹣8(填、=或)考点:有理数大小比较.专题:计算题.分析:先计算|﹣6|=6,|﹣8|=8,根据负数的绝对值大的反而小,绝对值小的反而大即可得到﹣6与﹣8的大小.解答:解:∵|﹣6|=6,|﹣8|=8,12. 计算:|﹣3|﹣2= 1 .考点:有理数的减法;绝对值.分析:先根据绝对值定义去掉这个绝对值的符号再计算.13. 化简:2(x﹣3)﹣(﹣x+4)= 3x﹣10 .考点:整式的加减.分析:首先根据去括号法则去括号(注意括号前是负号时,去括号,括号里各项都要变号),再合并同类项(注意只把系数相加减,字母和字母的指数不变).解答:解:2(x﹣3)﹣(﹣x+4),14. 如果一个角的补角是150,那么这个角的余角是 60 度. 考点:余角和补角.专题:计算题.分析:本题考查互补和互余的概念,和为180度的两个角互为补角;和为90度的两个角互为余角.解答:解:根据定义一个角的补角是150,则这个角是180﹣150=30,15. 若x,y互为相反数,a、b互为倒数,则代数式的值为﹣3 .考点:代数式求值.分析:根据相反数的概念和倒数概念,可得x、y;a、b的等量关系,把所得的等量关系整体代入可求出代数式的值. 解答:解:∵x,y互为相反数,a、b互为倒数,16. 如果把6.48712保留三位有效数字可近似为 6.49 . 考点:近似数和有效数字.分析:一个近似数的有效数字是从左边第一个不是0的数字起,后面所有的数字都是这个数的有效数字.近似数6.48712保留三位有效数字,精确到百分位.解答:解:6.48712保留三位有效数字可近似为:6.49.17. 若2x与2(1+x)互为相反数,则x的值为﹣ .考点:解一元一次方程.专题:计算题.分析:利用互为相反数两数之和为0列出方程,求出方程的解即可得到x的值.解答:解:根据题意得:2x+2(1+x)=0,去括号得:2x+2+2x=0,移项合并得:4x=﹣2,18. 已知x=﹣2是方程3(x+a)=15的解,则a= 7 .考点:一元一次方程的解.专题:计算题.分析:由x=﹣2是方程的解,将x=﹣2代入方程即可求出a 的值.解答:解:根据题意将x=﹣2代入方程得:3(﹣2+a)=15,19. 如图,将一副三角板折叠放在一起,使直角的顶点重合于点O,则AOC+DOB= 180 度.考点:角的计算.专题:计算题.分析:本题考查了角度的计算问题,因为本题中AOC始终在变化,因此可以采用设而不求的解题技巧进行求解.解答:解:设AOD=a,AOC=90+a,BOD=90﹣a,20. 如图,AOB中,OD是BOC的平分线,OE是AOC的平分线,若AOB=140,则EOD= 70 度.考点:角的计算;角平分线的定义.分析:由图形可知DOE=DOC+EOC,然后根据角平分线的性质,可推出DOC=BOC,EOC=AOC,由此可推出DOE=AOB,最后根据AOB的度数,即可求出结论.解答:解:∵OD是BOC的平分线,OE是AOC的平分线,DOC=BOC,EOC=AOC,DOE=DOC+EOC=AOB,三、计算题(每小题6分,共24分)21. (﹣18)2(1﹣)考点:有理数的除法;有理数的乘法.分析:根据除以一个数等于乘以这个数的倒数,可把除法转化成乘法,根据有理数的乘法运算,可得答案.22. ﹣23+(﹣3)2﹣32(﹣2)2.考点:有理数的乘方.分析:根据有理数的乘方的定义进行计算即可得解.解答:解:﹣23+(﹣3)2﹣32(﹣2)2=﹣8+9﹣9423. 先化简,后求值:2(3x﹣4y)﹣5(x﹣2y)+10,其中x=2,y=﹣1.考点:整式的加减化简求值.专题:计算题.分析:原式去括号合并得到最简结果,将x与y的值代入计算即可求出值.解答:解:原式=6x﹣8y﹣5x+10y+1024. 解方程:考点:解一元一次方程.专题:计算题.分析:这是一个带分母的方程,所以要先去分母,再去括号,最后移项、合并同类项,系数化为1,从而得到方程的解.解答:解:去分母得:2(x+3)=12﹣3(3﹣2x)去括号得:2x+6=12﹣9+6x移项得:2x﹣6x=12﹣9﹣6四、解答题25. 用两架掘土机掘土,第一架掘土机比第二架掘土机每小时多掘土40m3,第一架工作16小时,第二架工作24小时,共掘土8640m3,问每架掘土机每小时可以掘土多少m3?考点:一元一次方程的应用.专题:工程问题.分析:在工程问题中,注意公式:工作总量=工作效率工作时间.若设第一架掘土机每小时掘土xm3,那么,第二架掘土机每小时掘土(x﹣40)m3.第一架掘土机16小时掘土16xm3,第二架掘土机24小时掘土24(x﹣40)m3.解答:解:设第一架掘土机每小时掘土xm3,那么第二架掘土机每小时掘土(x﹣40)m3,依题意得:16x+24(x﹣40)=8640,解得:x=240,(x﹣40)=200m3.答:第一架掘土机每小时掘土240立方米,第二架掘土机每小时掘土200m3.26. 如图,已知C点为线段AB的中点,D点为BC的中点,AB=10cm,求AD的长度.考点:比较线段的长短.专题:计算题.分析:根据C点为线段AB的中点,D点为BC的中点,可知AC=CB=AB,CD=CB,AD=AC+CD,又AB=10cm,继而即可求出答案.解答:解:∵C点为线段AB的中点,D点为BC的中点,AB=10cm,27. 海滨中学暑假将××部分学生到北京旅游,甲旅行社说:如果领队买全票一张,那么其他学生可以享受半价优惠.乙旅行社说:包括领队在内,全部按全票价的6折优惠.两家旅行社的全票价均为240元.(1)设学生数为x,甲旅行社收费为m,乙旅行社收费为n,列等式表示两家旅行社的收费情况.(2)当学生数是多少时,两家旅行社的收费一样多?考点:一元一次方程的应用.分析: (1)根据甲乙两个旅行社的优惠情况,分别表示出示两家旅行社的收费情况即可;(2)令m=n,求出x的值.解答:解:(1)由题意得,甲旅行社收费为:m=240+120x,乙旅行社收费为:n=2400.6(x+1)=144x+144;(2)令m=n可得,240+120x=144x+144,解得:x=4,这篇七年级上册数学期末检测试卷的内容,希望会对各位同学带来很大的帮助。
人教版2019-2020年度七年级(上)期末数学试卷含答案解析一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.李白出生于公元701年,我们记作+701,那么秦始皇出生于公元前259年,可记作()A.259 B.﹣960 C.﹣259 D.4422.若x=﹣,y=4,则代数式3x+y﹣3的值为()A.﹣6 B.0 C.2 D.63.下列调查中,最适合采用抽样调查的是()A.对某地区现有的16名百岁以上老人睡眠时间的调查B.对“神舟十一号”运载火箭发射前零部件质量情况的调查C.对某校九年级三班学生视力情况的调查D.对某市场上某一品牌电脑使用寿命的调查4.下列选项中,左边的平面图形能够折成右边封闭的立体图形的是()A.B.C.D.5.如图,对于直线AB,线段CD,射线EF,其中能相交的图是()A.B.C.D.6.下列说法错误的是()A.2x2﹣3xy﹣1是二次三项式B.﹣x+1不是单项式C.﹣22xab2的次数是6D.﹣的系数是7.对于命题“若a2>b2,则a>b”,下面四组关于a,b的值中,能说明这个命题是假命题的是()A.a=3,b=2 B.a=﹣3,b=2 C.a=3,b=﹣1 D.a=﹣1,b=38.钟表上的时间指示为两点半,这时时针和分针之间形成的角(小于平角)的度数为()A.120°B.90°C.100°D.105°9.如图,把一块含45°角的直角三角板的直角顶点放在直尺的一边上,如果∠1=33°,那么∠2为()A.33°B.57°C.67°D.60°10.某车间有27名工人,生产某种由一个螺栓套两个螺母的产品,每人每天生产螺母16个或螺栓22个,若分配x名工人生产螺栓,其他工人生产螺母,恰好使每天生产的螺栓和螺母配套,则下面所列方程中正确的是()A.22x=16(27﹣x)B.16x=22(27﹣x)C.2×16x=22(27﹣x)D.2×22x=16(27﹣x)11.如图,数轴上的A、B、C三点所表示的数是分别是a、b、c,其中AB=BC,如果|a|>|b|>|c|,那么该数轴的原点O的位置应该在()A.点A与点B之间B.点B与点C之间C.点B与点C之间(靠近点C)D.点B与点C之间(靠近点C)或点C的右边12.将正偶数按表1排成5列:根据上面的排列规律,2018应在()A.第252行,第1列B.第252行,第4列C.第253行,第2列D.第253行,第5列二、填空题(本大题共6小题,每小题4分,共24分)13.“渝新欧”国际铁路联运大通道全长11000千米,成为服务“一带一路”的大动脉之一,将数11000用科学记数法表示为.14.方程﹣2x﹣1=1的解为x=15.直线AB、CD、EF交于点O,则∠1+∠2+∠3=度.16.某区从近期卖出的不同面积的商品房中随机抽取1000套进行统计,并根据结果绘出如图所示的统计图.从中可知卖出的110m2~130 m2的商品房套.17.如果m是最大的负整数,n是绝对值最小的有理数,c是倒数等于它本身的自然数,那么代数式m2015+2016n+c2017的值为.18.将正整数按如图所示的规律排列下去,若用有序数对(m,n)表示从上到下第m排,从左到右第n个数,如(4,2)表示整数8.则(62,55)表示的数是.三、解答题(本大题共9小题,共78分。
A B
C D E O
七年级上册期末数学测试卷
班级 姓名
一、选择题(40分)
1、下面的数中,与-3的和为0的是 ( )
A. 3;
B. -3;
C. 31;
D. 3
1-; 2、据报道:在我国南海某海域探明可燃冰储量约有194亿立方米,194亿用科学记数法表示为 ( )
A. 1.94×1010;
B. 0.194×1010;
C. 19.4×109;
D. 1.94×109;
3、绝对值不大于5的整数有 ( )
A. 4个
B. 5个
C. 10个
D. 11个
4、若b a x 2
1-与22+y ab 的和是单项式,则2015y x -的值为( ) A. 1; B. -1; C. 2; D. 0
5、数轴上与原点的距离为5的数是 ( )
A. 5
B. -5
C. ±5
D. 6
6、有苹果若干,分给小朋友吃,若每个小朋友分3个则剩1个,若每个小朋友分4个则少2个,设共有苹果x 个,则可列方程为( )
A. 3x +4=4x -2;
B. 4231-=+x x ;
C.4231+=-x x ;
D. 4
132-=+x x ; 7、下列计算正确的是( )
A.224a b ab +=
B.2232x x -=
C.550mn nm -=
D.2a a a +=
8、已知某种商品的售价为204元,即使促销降价20﹪仍有20﹪的利润,则该商
品的成本价是 ( ) A. 133; B. 134; C. 135; D. 136;
9、如图,已知直线AB 、CD 相交于点O ,OA 平分∠EOC , ∠EOC=100°,则∠BOD 的度数是 ( )
A. 20°;
B. 40°;
C. 50°;
D. 80°;
10、如图,用8块相同的小长方形地砖拼成一个大长方形,则每个小长方形地砖的面积是 ( )
A. 200cm 2
B. 300 cm 2
C. 400 cm 2
D. 600 cm 2
二、填空题(32分)
11、3
1-的绝对值是 。
12、若代数式2x -1与-12互为倒数,则x =________.
A B C E F O
13、体育成绩以80分为标准,超过记着“正”,不足记为“负”,老师将三名同学的成绩记为:+18,-14,0,则这三名同学的实际成绩分别是 。
14、若记号“*”表示下列运算,2b a b a +=*,则(1*2)*(-3)= . 15、若a 2=-a ,则a 2+a+2009的值为 。
16、某校为了了解初一年级300名学生每天完成作业所用时间的情况,调查了其中20名学生每天完成作业所用时间,在这个问题中,样本的容量是 .
17、已知∠A=72°36′,则∠A 的补角是 。
18、若19=a ,97=b ,且b a b a +≠+,那么=-b a 。
三、解答题(78分)
19、计算(12分)
(1)-9+5×(-6) -(-4)2÷(-8) (2)20152)1(12
1)3221(33--÷-+÷-
20、(12分)解方程:
(1)31)2(3-=-+x x ; (2)23141x x x --=--.
21、(8分)如图所示,∠AOB=90°,OE 、OF 分别平分∠AOB ,∠BOC ,如果∠EOF=60°,求∠AOC 的度数。
B 图甲
图乙A B C D 50%22、(8分)如图,已知M 是线段AB 的中点,N 在AB 上,MN=5
2AM ,若MN=2, 求AB 的长。
23、(8分)先化简,再求值。
)76()32(2522a ab a ab ab ---+,其中b a ,满足()03112=-++b a .
24、(8分)今年5月,学校为了解九年级学生的体育备考情况,随机抽取了部分学生进行模拟测试,现将学生按模拟测试成绩m 分成A 、B 、C 、D 四等(A 等:90≤m <100;B 等:80≤m <90;C 等:60≤m <80;D 等: m <60)并绘制出了如图所示的两幅不完整的统计图:
(1)本次模拟测试共抽取 个学生。
(2)将图乙中条形统计图补充完整。
(3)扇形统计图中C 等所对的圆心角是多少度?
25、(10分)某旅行社安排8名旅客分别乘坐两辆小汽车一起赶往飞机场,其中一辆小汽车在距机场15km 的地方出了故障,次时,距规定到达机场的时间仅剩42分钟,但唯一可以使用的交通工具只有一辆小汽车,连司机在内限坐5人,已知这辆汽车分两批送这8人去机场的平均速度是60km/h ,现拟如下方案:
方案一、小汽车送走第一批人后,第二批人在原地等待汽车返回接送; 方案二、小汽车送走第一批人的同时,第二批人以5km/h 的平均速度往机场方向步行,等途中遇返回的汽车时上车前行;
请问这两种方案是否都能使这8名旅客在规定的时间内赶到机场?
26、(12分)已知A ,B ,C 三点在同一条数轴上。
(1)若点A 、B 表示的数分别为-4、2,且AB BC 2
1=,则点C 表示的数是 ; (2)点A 、B 表示的数分别为m ,n ,且m <n .
① 若AC -AB =2,求点C 表示的数(用含m ,n 的式子表示);
② 点D 是这条数轴上的一个动点,且点D 在点A 的右侧(不与点B 重合),当AC AD 2=,BD BC 4
1=,求线段AD 的长(用含m ,n 的式子表示).
参考答案
一、选择题:1、A ;2、A ;3、B ;4、C ;5、A ;6、C ;
7、D ;8、D ;9、C ;10、B ;
二、填空题:11、-12;12、-1;13、98分,66分,80分; 14、1; 15、2009;16、15°;17、4.90×105;18、a ,17.5;
三、解答题:19、(1)-1;(2)-4;
22. (1)解:去括号,得 3163-=-+x x
移项,合并同类项得 82-=x
两边都除以2,得 4-=x
(2)解:去分母,得 )3(24)1(4x x x --=--
去括号,得 x x x 26414+-=+-
移项,合并同类项得 3-=x
20、(1)100(a -b+c)+10(b -c+a)+(c -a+b)=109a -89b+91c
(2)当a=2,b=5,c=4时,这个三位数:190×2-89×5+91×4=137
21、因为MN=5
2AM , MN=2m ,所以AM=5cm ,M 是线段AB 的中点, 所以AB=2AM=10cm ,即AB 的长是10cm
23. 解:∵b a ,满足031)1(2=-
++b a , ∴2)1(a +与31
-b 互为相反数.
又∵0)1(2≥+a ,031≥-
b , 所以0)1(2=+a ,031=-
b . ∴01=+a ,031
=-b ,∴1-=a ,3
1=b .
因此=+--+=---+222276645)76()32(25a ab a ab ab a ab a ab ab
0)1(31)1(3322=-+⨯-⨯=+a ab . 23、(1)∵B 等人数为100人,占50﹪,∴抽取的学生数=100÷50﹪=200人;
(2)C 等人数:200-100-40-10=50人;作图 略
(3)D 等学生数所占百分比为:%5%100200
10=⨯ 所以该校今年有九年级1000人,其中D 等人数为:1000×5﹪=50人
24、对于方案一:设小汽车送这两批人到达机场所用时间为x 小时,
得:60x =15×3,解得:x =43 即:4
3小时=45分钟>42分钟 所以,用方案一,这8名旅客不能在规定时间内到达机场。
对于方案二:设汽车送第一批人返回与第二批人相遇的时间为x 小时,则这段时
间内第二批人走的路程是:5x km ,汽车送第二批人的时间为:60
515x -小时, 依题意得:60x +5x =2×15,解得:136=x ,送第二批人时间:60515x -=52
11; 共用:分钟小时4052
355211136≈=+<42分钟 所以,采用方案二,这8名旅客能在规定时间内到达机场。
25. 解:设该车间分配x 名工人生产A 种零件。
由题意,得 )75(20152x x -=⨯
解得 30=x
4575=-x
答:该车间分配30名工人生产A 种零件,45名工人生产B 种零件才能保证连续安装机械时,两种零件恰好配套。