材料科学基础课后作业第三章 (1)
- 格式:doc
- 大小:101.96 KB
- 文档页数:4
资料科学导论课后习题谜底之巴公井开创作第二章资料科学概论1.氧化铝既牢固又坚硬且耐磨,但为什么不能用来制造榔头?答:氧化铝脆性较高,且抗震性欠安.2.将下列资料按金属、陶瓷、聚合物和复合资料进行分类:黄铜、环氧树脂、混泥土、镁合金、玻璃钢、沥青、碳化硅、铅锡焊料、橡胶、纸杯答:金属:黄铜、镁合金、铅锡焊料;陶瓷:碳化硅;聚合物:环氧树脂、沥青、橡胶、纸杯;复合资料:混泥土、玻璃钢3.下列用品选材时,哪些性能特别重要?答:汽车曲柄:强度,耐冲击韧度,耐磨性,抗疲劳强度;电灯胆灯丝:熔点高,耐高温,电阻年夜;剪刀:硬度和高耐磨性,足够的强度和冲击韧性;汽车挡风玻璃:透光性,硬度;电视机荧光屏:光学特性,足够的发光亮度.第三章资料结构的基础知识1.下列电子排列方式中,哪一个是惰性元素、卤族元素、碱族、碱土族元素及过渡金属?(1) 1s2 2s2 2p6 3s2 3p6 3d7 4s2(2) 1s2 2s2 2p6 3s2 3p6(3) 1s2 2s2 2p5(4) 1s2 2s2 2p6 3s2(5)1s2 2s2 2p6 3s2 3p6 3d2 4s2(6) 1s2 2s2 2p6 3s2 3p6 4s1答:惰性元素:(2);卤族元素:(3);碱族:(6);碱土族:(4);过渡金属:(1),(5)2.稀土族元素电子排列的特点是什么?为什么它们处于周期表的同一空格内?答:稀土族元素的电子在填满6s态后,先依次填入远离外壳层的4f、5d层,在此过程中,由于电子层最外层和次外层的电子分布没有变动,这些元素具有几乎相同的化学性质,故处于周期表的同一空格内.3.描述氢键的实质,什么情况下容易形成氢键?答:氢键实质上与范德华键一样,是靠分子间的偶极吸引力结合在一起.它是氢原子同时与两个电负性很强、原子半径较小的原子(或原子团)之间的结合所形成的物理键.当氢原子与一个电负性很强的原子(或原子团)X结合成份子时,氢原子的一个电子转移至该原子壳层上;分子的氢酿成一个裸露的质子,对另外一个电负性较年夜的原子Y暗示出较强的吸引力,与Y之间形成氢键.4.为什么金属键结合的固体资料的密度比离子键或共价键固体高?答:一是金属原子质量年夜;二是金属键的结合方式没有方向性,原子趋于紧密排列,获得简单的原子排列形态.离子键和共价键结合的原子,相邻原子的个数受到共价键数目的限制,离子键结合还要满足正、负离子间电荷的平衡,原子不成能紧密聚积,而且存在孔洞缺陷,故金属键结合的固体资料的密度比离子键或共价键固体高.5.应用公式计算Mg2+O2-离子对的结合键能,以及每摩尔MgO晶体的结合键能.假设离子半径为rMg2+=0.065nm;rO2-=0.140nm;n=7.答:在平衡时,F吸引=F排斥故,解得晶体的结合键能:转换为每摩尔MgO晶体的结合键能:6.原子序数为12的Mg有三种同位素:78.70%的Mg原子由12个中子,10.13%的Mg原子由13个中子,11.17%的Mg原子由14个中子,试计算Mg的原子量.答:7.试计算原子N壳层内的最年夜电子数.若K,L,M和N壳层中所有能级都被填满,试确定该原子的原子数.答:N壳层内最年夜电子数:1s22s22p63s23p63d104s24p64d104f145s25p66s2该原子的原子数是708.试写出Al原子13个电子的每个电子的全部量子数.答:n l m ms10020021021121-13003109.资料的三级和四级结构可以通过加工工艺来改变,那么资料的二级结构可以改变吗?为什么?答:原子的结合键是资料的二级结构.对单一的资料来说,其价键结构是不成以通过加工工艺来改变的.可是实际工程应用中,通过一定的加工工艺来改变资料的二级结构,比如金刚石具有共价键,石墨具有共价键和物理键,而石墨等碳质原料和某些金属在高温高压下可以反应生成金刚石,即一定水平上改变了资料的二级结构.第四章固体资料的晶体学基础1.回答下列问题:(1)在立方晶系的晶胞内画出具有下列密勒指数的晶面和晶向:(001)与[210],(111)与,与[111],与[123],与[236].(2)在立方晶系的一个晶胞中画出(111)和(112)晶面,并写出两晶面交线的晶向指数.(3)在立方晶系的一个晶胞中画出同时位于(101),(011),(112)晶面上的晶向.答:作图略.(2)两晶面交线的晶向指数为.2.有一正交点阵的a=b,c=a/2.某晶面在三个晶轴上的截距分别为6个,2个,4个原子间距,求该晶面的密勒指数.答:(263)3.写出六方晶系的晶面族中所有晶面的密勒指数,在六方晶胞中画出、晶向和晶面,并确定晶面与六方晶胞交线的晶向指数.答:晶面族中所有晶面的密勒指数为:作图略,()晶面与六方晶胞交线的晶向指数为:4.根据刚性球模型回答下列问题:(1)以点阵常数为单位,计算体心立方、面心立方和密排六方晶体中的原子半径及四面体和八面体的间隙半径.(2)计算体心立方、面心立方和密排六方晶胞中的原子数、致密度和配位数.答:体心立方面心立方密排六方原子半径 a a a四面体间隙 a a a八面体间隙 a a a原子数 2 4 6致密度0.68 0.74 0.74配位数8 12 125.用密勒指数暗示出体心立方、面心立方和密排六方结构中的原子密排面和原子密排方向,并分别计算这些晶面和晶向上的原子密度.答:体心立方面心立方密排六方原子密排面{110} {111} {0001}晶面的原子密度原子密排方向<111> <110> <>晶向的原子密度6.求下列晶面的晶面间距,并指出晶面间距最年夜的晶面.(1)已知室温下α-Fe的点阵常数为0.286nm,分别求出(100)、(110)、(123)的晶面间距.(2)已知916℃时γ-Fe的点阵常数为0.365nm,分别求出(100)、(111)、(112)的晶面间距.(3)已知室温下Mg的点阵常数为a=0.321nm,c=0.521nm,分别求出的晶面间距.答:(1)其中,晶面间距最年夜的晶面为(100)(2)其中,晶面间距最年夜的晶面为(110)(3)其中,晶面间距最年夜的晶面为7.已知Na+和Cl-的半径分别为0.097nm和0.181nm,请计算NaCl中钠离子中心到:(1)最近邻离子中心间的距离;(2)最近邻正离子中心间的距离;(3)第二个最近的氯离子中心间的距离;(4)第三个最近的氯离子中心间的距离;(5)它最近的同等位置间的距离.答:(1) r=r++r-=0.278nm (2) r=(3) r=(4) r= (5) r=8.根据NaCl的晶体结构及Na+和Cl-的原子量,计算氯化钠的密度.答:9.示意画出金刚石型结构的晶胞,说明其中包括有几个原子,并写出各个原子的坐标.答:作图略,其中包括原子数:极点坐标:(000),(100),(010),(001),(110),(101),(011),(111)(选填一个即可)面心坐标:(选填三个即可)晶胞内坐标:(),(),(),()10.何谓单体、聚合物和链节?它们相互之间有什么关系?请写出以下高分子链节的结构式:聚乙烯;聚氯乙烯;聚丙烯;聚苯乙烯;聚四氟乙烯.答:单体是合成聚合物的起始原料,是化合物自力存在的基本单位,是单个分子存在的稳定状态.聚合物是由一种或多种简单低分子化合物聚合而成的相对分子质量很年夜的化合物.链节是组成年夜分子链的特定结构单位.聚乙烯:[-CH2-CH2-]n; 聚氯乙烯:[-CHCl-CH2-]n; 聚丙烯:[-CHCH3-CH2-]n;聚苯乙烯:[-CHAr-CH2-]n; 聚四氟乙烯:[-CF2-CF2-]n第四章固体资料的晶体缺陷1.纯Cu的空位形成能为1.5aJ/atom,(1aJ=10-18J),将纯Cu加热至850℃后激冷至室温(20℃),若高温下的空位全部保管,试求过饱和空位浓度与室温平衡空位浓度的比值.答:2.空位对资料行为的主要影响是什么?答:首先,资料中原子(或分子)的扩散机制与空位的运动有关.其次,空位可以造成资料物理性能与力学性能的改变,如密度降低,体积膨胀,电阻增加,强度提高,脆性也更明显,晶体高温下发生蠕变等.3.某晶体中有一条柏氏矢量为a[001]的位错线,位错线的一端露头于晶体概况,另一端与两条位错线相连接,其中一条柏氏矢量为,求另一条位错线的柏氏矢量.答:a[001]=4.如附图a所示,试求某一晶格参数为2.5A0的立方金属刃型位错的burgers矢量的Miller指数及其长度.答:柏氏矢量垂直于(220),故其Miller指数为[110]5.如附图b所示,写出在FCC金属的滑移方向的晶向指数.答:第五章固体资料的凝固与结晶1.液体金属在凝固时必需过冷,而加热使其融化却毋需过热,即一旦加热到熔点就立即熔化,为什么?答:液体金属在凝固时必需克服概况能,形核时自由能变动年夜于零,故需要过冷.固态金属在熔化时,液相与气相接触,当有少量液体金属在固相概况形成时,就会很快覆盖在整个概况(因为液体金属总是润湿同一种固体金属).概况能变动决定过程能否自发进行.根据实验数据,在熔化过程中,概况自由能的变动小于零,即不存在概况能障碍,也就不用过热.2.金属凝固时的形核率常桉下式做简化计算,即试计算液体Cu在过冷度为180K、200K和220K时的均匀形核率.并将计算结果与书图6-4b比力.(已知)答:代入数据得,180K时N均=7.50;200K时N均=7.89;220K时N均=13.36与图6-4b相比,结果吻合,标明只有过冷度到达一定水平,使凝固温度接近有效成核温度时,形核率才会急剧增加.3.试解释凝固与结晶、晶胚与形核的相互关系.答:凝固是指物质从液态冷却成固态的一种转变过程,可以形成晶态或非晶态.若冷却后成为晶体,这种凝固成为结晶.根据热力学判断,在过冷液态金属中,短程规则排列的结构尺寸越年夜,就越稳定,只有尺寸较年夜的短程规则排列的结构,才华成为晶核.晶胚即是过冷液态金属中短程规则排列尺寸较年夜的原子有序排列部份.一定温度下,最年夜晶胚有一个极限值rmax;而液态金属的过冷度越年夜,实际可能呈现的最年夜晶胚尺寸也越年夜.当液态金属中形成的晶胚尺寸年夜于或即是一定临界尺寸时,成为晶核,其有两种形成方式:均匀成核(依靠液态金属自己能量的变动获得驱动力并由晶胚直接成核的过程)和非均匀成核(晶胚是依附在其他物质概况上形核的过程).4.金属结晶的热力学条件和结构条件是什么?答:过冷度是金属结晶的热力学条件;结构起伏和能量起伏是结构条件.5.哪些因素会影响金属结晶时的非均匀形核率?答:过冷度,固体杂质及其概况形貌,物理性能如液相宏观流动,外加电磁场,受机械作用等.第六章资料的扩散与迁移1. 把P原子扩散到单晶硅中的搀杂工艺是制备n型半导体的经常使用方法.若将原来的每107个Si原子中含有一个P原子的1mm厚的硅片,通过扩散搀杂处置后概况到达每107 Si原子中含有400个P原子,试分别按:(a) 原子百分数/cm, (b) 原子数/cm3.cm 的暗示方法计算浓度梯度.硅的晶格常数为5.4307A0.答:(a)(b) 硅的晶胞体积为:单位晶胞中有8个Si原子,则107Si所占体积为:2.试说明影响扩散的因素.答:温度,原子键力和晶体结构,固溶体类型和浓度,晶体缺陷,第三组元.3.试利用公式D=α2РГ,解释各因素对扩散的影响.答:D与α2,Р,Г成正比.其中,α为最邻近的间隙原子距离,与晶体结构有关;Р为跃迁几率,,跟温度,畸变能等有关;为跃迁频率,,与温度、晶体结构、畸变能、扩散机制等因素有关.4. 自扩散与空位扩散有何关系?为什么自扩散系数公式要比空位扩散系数Dv小很多?(Dv=D/nv,nv为空位的平衡浓度)答:对纯金属或间隙固溶体合金,原子都处于正常的晶格结点位置.若晶格结点某处的原子空缺时,相邻原子可能跃迁到此空缺位置,之后又留下新的空位,原子的这种扩散方式叫空位扩散.当晶体内完全是同类原子时,原子在纯资料中的扩散为自扩散.自扩散是空位扩散的一种特殊形式.对置换固溶体合金和纯金属,溶质原子与溶剂原子的尺寸和化学性质分歧,与空位交换位置的几率也分歧,D=D0exp(-Q/RT),自扩散的扩散激活能要比空位扩散的扩散激活能年夜.空位扩散系数Dv=D/nv,由于空位平衡浓度nv远小于1,Dv比D年夜很多.第七章热力学与相图1.分析共晶反应,包晶反应和共析反应的异同点.答:(1)分歧点:共晶反应是一定成份的液体合金,在一定温度下,同时结晶形成另外一种固相的反应过程;包晶反应是一定成份的固相与一定成份的液相作用,形成另外一种固相的反应过程;共析反应是由特定成份的单相固态合金,在恒定的温度下,分解成两个新的,具有一定晶体结构的固相的反应过程.(2)相同点:均是在恒温下发生,处于三相平衡的状态.2.试分析图7-6中合金IV的结晶过程(wsn=70%),计算室温下组元成份的含量及显微组织.答:结晶过程为匀晶反应+共晶反应+二次析出,冷却过程如下图所示,室温下组元成份:αII+ β+(α+β)共晶室温下组元成份的含量:3.铋(熔点为271.5℃)和锑(熔点为630.7℃)在液态和固态时均能彼此无限互溶,wBi=50%的合金在520时开始结晶处成份为wSb=87%的固相.wBi=80%的合金在400℃时开始结晶出成份为wSb=64%的固相.根据上述条件,(1)绘出Bi-Sb相图,并标出各线和各相区的名称.(2)从相图上确定含锑量为wSb=40%合金的开始结晶和结晶终了温度,并求出它在400℃时的平衡相成份及相对量.答:(1)(2)根据相图,含锑量为40%合金开始结晶温度年夜约为490℃,终了温度为350℃,液相含量54.5%,固相含量45.5%.4. (1)应用相律时需考虑哪些限制条件?(2)试指出图5-115中的毛病之处,并用相律说明理由,且加以改正.答:(1)A.相律只适用于热力学平衡状态.平衡状态下各相的温度应相等;各相的压力应相等;每一阻元在各相中的化学位必需相同.B.相律只能暗示体系中组元和相的数目,不能指明组元或相的类型和含量.C.相律不能预告反应动力学.D.自由度的值不得小于零.(2)A.二元体系两相平衡,自由度为1,故不成为直线.B.单一体系两相平衡,自由度为0,故应为一点.C.二元体系最多只能三相平衡,此处含四相.D.二元体系三相平衡,自由度为0,故应为水平线.5.分析wc=0.2%的铁-碳合金从液态平衡冷却至室温的转变过程,用冷却曲线和组织示意图,说明各阶段的组织,并分别计算室温下的相组织物及组织组成物的相对量.答:合金在t1~t2之间发生匀晶反应析出δ固溶体,冷却至t2(1495℃)时,液相L与δ固溶体发生包晶转变生成γ.包晶转变完成后,剩余的液相L在t2~t3之间不竭结晶出奥氏体,冷却至t3,合金全部为奥氏体.单相奥氏体在t4开始析出铁素体.当温度达t5(727℃)时,剩余的奥氏体发生共析反应转酿成珠光体,此时合金组织为铁素体加珠光体.727℃以下,铁素体中会析出少量三次渗碳体.该合金室温时的组织为铁素体与珠光体,相组成为α与Fe3C.冷却至室温的转变过程如图所示.相组成物的相对量:组织组成物的相对量:时间:二O二一年七月二十九日。
材料科学基础作业题(第3章、第5章)作业(1)p. 1143.8简述非晶态合金的主要特性和应用。
3.9概念解释:配位数、配位多面体、离子极化、极化率、极化力。
3.12简述Pauling第1和第2规则。
作业(2)p. 114 - 1153.18ThO2具有萤石型结构,Th4+离子半径为0.100nm,O2-离子半径为0.140nm。
试问:(1)实际结构中的Th4+离子配位数与理论预计配位数是否一致?(2)结构是否满足Pauling电价规则?3.19在萤石晶体中,Ca2+半径为0.112 nm,F-半径为0.131 nm,萤石晶体a = 0.547 nm。
(1)求萤石晶体中离子堆积系数(体积占有率)。
(2)求萤石的密度(g/cm3)。
3.22画出立方氧化锆晶体结构图,说明此类结构的特点。
立方氧化锆为何能用作固体氧化物燃料电池的电解质材料?作业(3)p. 1153.21在氧离子紧密堆积中,用Pauling静电价规则来说明,当间隙位置的填充如下列几种情况时,对于获得稳定的结构各需要何种价数的离子:(注:必须用所学Pauling规则解题,不允许用简单的电中性原理解题。
)(1)所有八面体间隙位置均填满;(2)所有四面体间隙位置均填满;(3)填满一半八面体间隙位置;(4)填满一半四面体间隙位置;(5)填满三分之二八面体间隙位置。
并对每种堆积方式举一晶体实例说明之。
3.23请分析CaTiO3晶体结构:晶系、有几套等同质点、哪些离子属同一套,单独指出Ca2+、Ti4+、O2-是按什么格子排列。
画出CaTiO3晶体结构的投影图并描述其结构,说明其结构与性能之间的相关性。
用静电价规则验证CaTiO3晶体结构的稳定性。
作业(4)补充题3.27何谓多晶转变?何谓位移型转变与重建型转变?二者有何特点与区别。
3.32如何用实验方法鉴别晶体SiO2、SiO2玻璃和硅胶,它们的结构有何不同?3.36 SiO2熔体的粘度在1000℃时为1015dPas,在1400℃时为108dPas,求其粘滞流动的活化能是多少?作业(5)补充题3.33请叙述玻璃的通性。
材料科学基础(山东理工大学)智慧树知到课后章节答案2023年下山东理工大学山东理工大学第一章测试1.晶体与非晶体的本质区别在于晶体中存在长程有序而非晶体中不存在长程有序。
答案:对2.只有那些自由能趋于降低的过程才能自发进行。
答案:对3.结合能是把两个原子完全分开需要的力,因此结合能越大,原子结合越不稳定。
答案:错4.利用X射线可以对晶体结构进行研究。
答案:对5.明显具有方向性的化学键是答案:共价键6.单一相的组织要满足的条件是答案:化学组成相同,晶体结构也相同;7.在光学显微镜下观察多晶体,则答案:晶界处比晶粒内部暗;8.原子结合键的一次键包括答案:金属键;;离子键;;共价键;9.关于物质性能描述正确的是答案:结合键强的物质熔点较高;; 金属原子的密集排列导致了高密度;; 二次键结合的物质密度最低。
; 金属原子的原子量较大也导致密度较大;10.体系最终得到的结构还与外部条件有关,包括答案:冷却速度; 压力;温度第二章测试1.面心立方和密排六方结构的八面体间隙和四面体间隙都是对称的。
答案:对2.最难以形成非静态结构的是()。
答案:金属3.底心四方是点阵类型之一。
答案:错4.某单质金属从高温冷却到室温的过程中发生同素异构转变时体积膨胀,则低温相的原子配位数比高温相()。
答案:低5.简单立方晶体中原子的配位数是()。
答案:66.已知面心立方结构中原子在(111)面上的堆垛方式为ABCABC…,则在(011)面上的堆垛方式为()。
答案:ABAB…7.碘化铯晶体结构中,碘占据立方体角顶位置,铯占据体心位置,所以其结构类型为体心格子。
答案:错8.离子键性可以由两个原子的电负性决定。
答案:错9.在四方晶系中,(100)面必定与(110)面相交成45°角。
答案:对10.鲍林规则适用于所有晶体结构。
答案:错第三章测试1.高温时材料中的点缺陷是发生蠕变的重要原因。
答案:对2.不论是刃型位错还是螺型位错都可以攀移。
第三章熔体和玻璃体§3-1 熔体的结构-聚合物理论一、聚合物的形成硅酸盐熔体聚合物的形成可分为三个阶段:(一)、石英颗粒分化熔体化学键分析:离子键与共价键性(约52%)混合。
Si-O键:σ、п 故具有高键能、方向性、低配位特点;R-O键:离子键键强比Si-O键弱 Si4+能吸引O2-;在熔融SiO2中,O/Si比为2:1,[SiO4]连接成架状。
若加入Na2O则使O/Si比例升高,随加入量增加,O/Si比可由原来的2:1逐步升高到4:1,[SiO4]连接方式可从架状变为层状、带状、链状、环状直至最后断裂而形成[SiO4]岛状,这种架状[SiO4]断裂称为熔融石英的分化过程。
由于Na+的存在使Si-O-Na中Si-O键相对增强,与Si相联的桥氧与Si的键相对减弱,易受Na2O的侵袭,而断裂,结果原来的桥氧变成非桥氧,形成由两个硅氧四面体组成的短链二聚体[Si2O1]脱离下来,同时断链处形成新的Si-O-Na键。
邻近的Si-O键可成为新的侵袭对象,只要有Na2O存在,这种分化过程将会继续下去。
分化的结果将产生许多由硅氧四面体短链形成的低聚合物,以及一些没有被分化完全的残留石英骨架,即石英的三维晶格碎片[SiO2]n 。
(二)、各类聚合物缩聚并伴随变形由分化过程产生的低聚合物,相互作用,形成级次较高的聚合物,同时释放出部分Na2O,这个过程称为缩聚。
[Si04]Na4+[Si2O7]NA6=[Si3O10]Na8+Na2O(短链)2[Si3O10]Na8=[SiO3]6Na12+2Na2O(三)、在一定时间和一定温度下,聚合⇌解聚达到平衡缩聚释放的Na2O又能进一步侵蚀石英骨架,而使其分化出低聚物,如此循环,最后体系出现分化⇌缩聚平衡。
熔体中存在低聚物、高聚物、三维晶格碎片、游离碱及石英颗粒带入的吸附物,因而熔体是不同聚合程度的聚合物的混合物,这些多种聚合物同时存在便是熔体结构远程无序的实质。
材料科学基础课后习题课后习题第⼀章原⼦结构与结合键1.原⼦中⼀个电⼦的空间位置和能量可⽤哪四个量⼦数来决定?2.在多电⼦的原⼦中,核外电⼦的排布应遵循哪些个原则?3.在元素周期表中,同⼀周期或同⼀主族元素原⼦结构有什么共同特点?从左到右或从上到下元素结构有什么区别?性质如何递变?4.何谓同位素?为什么原⼦量不总为整数?5.铬的原⼦序数为24,共有四种同位数:4.31%的Cr原⼦含有26个中⼦,83.76%含有28个中⼦,9.55%含有29个中⼦,且2.38%含有30个中⼦。
试求铬的原⼦量?6.铜的原⼦序数为29,原⼦量为63.54,它共有两种同位素Cu63和Cu65,试求两种铜的同位素之含量百分⽐。
7.铟的原⼦序数为49,除了4f亚层之外其它内部电⼦亚层均已填满。
试从原⼦结构⾓度来确定铟的价电⼦数。
8.铂的原⼦序数为78,它在5d亚层中只有9个电⼦,并且在5f层中没有电⼦,请问在Pt的6s亚层中有⼏个电⼦?9.已知某元素原⼦序数为32,根据原⼦的电⼦结构知识,试指出它属于哪个周期?哪个族?并判断其⾦属性强弱。
10.原⼦间的结合键共有⼏种?各⾃特点如何?11.已知Si的原⼦量为28.09,若100g的Si中有5×1010个电⼦能⾃由运动,试计算:(a)能⾃由运动的电⼦占价电⼦总数的⽐例为多少?(b)必须破坏的共价键之⽐例为多少?12.S的化学⾏为有时象6价的元素,⽽有时却象4价元素。
试解释S这种⾏为的原因。
13.⾼分⼦链结构分为近程结构和远程结构。
他们各⾃包括内容是什么?14.按分⼦材料受热的表现分类可分为热塑性和热固性两⼤类,试从⾼分⼦链结构⾓度加以解释之。
15.分别绘出甲烷(CH4)和⼄烯(C2H4)之原⼦排列与键合。
16.下图1-1绘出三类材料——⾦属、离⼦晶体和⾼分⼦材料之能量与距离关系曲线,试指出它们各代表何种材料。
参考答案1.主量⼦数n、轨道⾓动量量⼦数li、磁量⼦数mi和⾃旋⾓动量量⼦数Si。
第一章原子结构与键合1. 主量子数n、轨道角动量量子数l i、磁量子数m i和自旋角动量量子数S i。
2. 能量最低原理、Pauli不相容原理,Hund规则。
3. 同一周期元素具有相同原子核外电子层数,但从左→右,核电荷依次增多,原子半径逐渐减小,电离能增加,失电子能力降低,得电子能力增加,金属性减弱,非金属性增强;同一主族元素核外电子数相同,但从上→下,电子层数增多,原子半径增大,电离能降低,失电子能力增加,得电子能力降低,金属性增加,非金属性降低;4. 在元素周期表中占据同一位置,尽管它们的质量不同,然它们的化学性质相同的物质称为同位素。
由于各同位素的含中子量不同(质子数相同),故具有不同含量同位素的元素总的相对原子质量不为正整数。
5. 52.0576. 73% (Cu63); 27% (Cu65)8. a:高分子材料;b:金属材料;c:离子晶体10.a) Al2O3的相对分子质量为M=26.98×2+16×3=101.961mm3中所含原子数为1.12*1020(个)b) 1g中所含原子数为2.95*1022(个)11. 由于HF分子间结合力是氢键,而HCl分子间结合力是范德化力,氢键的键能高于范德化力的键能,故此HF的沸点要比HCl的高。
第2章固体结构1.每单位晶胞内20个原子2.CsCl型结构系离子晶体结构中最简单一种,属立方晶系,简单立方点阵,Pm3m空间群,离子半径之比为0.167/0.181=0.92265,其晶体结构如图2-13所示。
从图中可知,在<111> 方向离子相接处,<100>方向不接触。
每个晶胞有一个Cs+和一个Cl-,的配位数均为8。
3.金刚石的晶体结构为复杂的面心立方结构,每个晶胞共含有8个碳原子。
金刚石的密度(g/cm3)对于1g碳,当它为金刚石结构时的体积(cm3)当它为石墨结构时的体积(cm3)故由金刚石转变为石墨结构时其体积膨胀4.]101[方向上的线密度为1.6. 晶面族{123}=(123)+(132)+(213)+(231)+(321)+(312)+)231(+)321(+)132(+)312(+)213(+)123(+)321(+)231(+)312(+)132(+)123(+)213(+)312(+)213(+)321(+)123(+)132(+)231(晶向族﹤221﹥=[221]+[212]+[122]+]212[+]122[+]221[+]122[+]212[+]221[+]122[+]221[+]212[7. 晶带轴[uvw]与该晶带的晶面(hkl)之间存在以下关系:hu+kv+lw=0;将晶带轴[001]代入,则h×0+k×0+l×1=0;当l=0时对任何h,k取值均能满足上式,故晶带轴[001]的所有晶带面的晶面指数一般形式为(hk0)。
3-3.有两个形状、尺寸均相同的Cu-Ni合金铸件,其中一个铸件的
wNi=90%,另一个铸件的wNi=50%,铸后自然冷却。问凝固后哪一
个铸件的偏析严重?为什么?找出消除偏析的措施。
答:
合金在凝固过程中的偏析与溶质原子的再分配系数有关,再分
配系数为k0=Cα/CL。对一给定的合金系,溶质原子再分配系数与合
金的成分和原子扩散能力有关。根据Cu-Ni合金相图,在一定成分
下凝固,合金溶质原子再分配系数与相图固、液相线之间的水平距
成正比。当wNi=50% 时,液相线与固相线之间的水平距离更大,固
相与液相成分差异越大;同时其凝固结晶温度比wNi=90%的结晶温
度低,原子扩散能力降低,所以比偏析越严重。
一般采用在低于固相线100~200℃的温度下,长时间保温的均匀化
退火来消除偏析。
3-6.铋(熔点为271.5℃)和锑(熔点为630.7℃)在液态和固态时
均能彼此无限互溶,wBi=50%的合金在520℃时开始凝固出成分为
wSb=87%的固相。wBi=80%的合金在400℃时开始凝固出成分为
wSb=64%的固相。根据上述条件,要求:
1)绘出Bi-Sb相图,并标出各线和各相区的名称;
2)从相图上确定wSb=40%合金的开始结晶终了温度,并求出它在
400℃时的平衡相成分及其含量。
解:1)相图如图所示;
2)从相图读出结晶开始温度和结晶终了温度分别为495℃(左
右),350℃(左右)
固、液相成分wSb(L) =20%, wSb(S)=64%
固、液相含量:
%5.54%10020-6440-64
L
%5.45%100)1(
LS
3-7.根据下列实验数据绘出概略的二元共晶相图:組元A的熔点为
1000℃,組元B的熔点为700℃;wB=25%的合金在500℃结晶完
毕,并由73-1/3%的先共晶α相与26-2/3%的(α+β)共晶体所组成;
wB=50%的合金在500℃结晶完毕后,则由40%的先共晶α相与
60%的(α+β)共晶体组成,而此合金中的α相总量为50%。
解:由题意由(α+β)共晶含量得
01.03226--25.0
)()()(BB
B
6.0--5.0
)()()(BB
B
5.0-5.0-
)()()(BB
B
解得:%505.0)(B
%808.0
)(B
%9595.0
)(B
由此可以做出相图如下
3-8组元A的熔点为1000℃,组元B的熔点为700℃,在800℃时
存在包晶反应:α(ωB=5%)+ L(ωB=50%) ;在600℃时存在共
晶反应:L(ωB==80%) β(ωB=60%)+γ(ωB=95);在
400℃时发生共析反应:β(ωB=50%) α(ωB=2%)+γ
(ωB=97%)。根据这些数据画出相图。
解:根据题意作相图如下