制冷技术基础知识
- 格式:ppt
- 大小:1.84 MB
- 文档页数:31
制冷原理知识点总结1. 制冷原理概述制冷原理是利用某一制冷剂在内外受热、膨胀、压缩和其他物理性质变化规律的基础上,通过电能、热能、机械能等形式的能量输入,使制冷剂完成循环过程,从而实现对被制冷物体的制冷效果。
制冷原理是制冷技术的核心内容,也是制冷设备和系统设计、运行的基础。
2. 制冷剂的种类和性质制冷剂是制冷循环系统中的工质,它要能承载、存储、传递和释放热量,发生相变、压缩、膨胀等物理过程,具有较高的比热容和潜热;同时要具有较高的冷凝温度和较低的蒸发温度。
常见的制冷剂有氨、氮、二氧化碳、氟利昂等。
制冷剂的选择应根据制冷系统的工作条件和要求,确保安全、稳定和高效的制冷运行。
3. 制冷循环系统制冷循环系统是由蒸发器、压缩机、冷凝器、节流阀等四个基本部件以及连接它们的管道和附件组成的。
它的基本工作原理是:制冷剂在蒸发器中蒸发吸收热量,经过压缩机增压并排入冷凝器,冷凝器中冷凝成液体,释放热量,然后通过节流阀减压并回到蒸发器再次循环。
这一循环过程不断地吸热、排热,从而达到制冷的目的。
4. 制冷循环系统的工作过程(1)蒸发过程:制冷剂在低压条件下,通过吸收外界热量而蒸发成气体,从而降低被制冷物体的温度。
(2)压缩过程:蒸发后的制冷剂以气态进入压缩机,受到压缩机的压缩,升高了压力和温度。
(3)冷凝过程:经过压缩后的制冷剂进入冷凝器,在高温高压条件下,释放热量而冷凝成液体,给出热量。
(4)节流过程:冷凝成液态的制冷剂通过节流阀迅速减压,降低了温度和压力,准备进入蒸发器。
5. 制冷循环系统的热力分析制冷循环系统是在冷凝器和蒸发器之间进行热量交换的,这两个部件是系统工作热力分析的关键。
冷凝器的工作原理是:制冷剂冷凝,放热至外界冷却介质;蒸发器的工作原理是:制冷剂蒸发,吸收外界热量。
通过对蒸发器和冷凝器的热力分析,可以计算出系统的冷量、功率、效率等参数。
6. 制冷循环系统的性能评价对制冷循环系统的性能评价主要包括冷量、功率、效率、性价比等技术指标。
制冷知识基础制冷是指将物体的温度降低到低于周围环境温度的过程。
制冷技术广泛应用于家庭、商业和工业领域,为人们提供舒适的环境和保鲜的食品。
本文将从制冷原理、制冷剂、制冷循环和制冷设备等方面介绍制冷知识的基础内容。
一、制冷原理制冷原理基于热力学的第一和第二定律。
第一定律表明能量守恒,热量会从高温物体传递到低温物体,使得高温物体温度降低,低温物体温度升高。
而第二定律则说明热量自然向低温传递的趋势,即热量不会自发地从低温物体传递到高温物体。
利用这些原理,制冷系统可以将热量从室内或食品中移除,使其温度降低。
二、制冷剂制冷剂是制冷系统中用于传递热量的介质。
常见的制冷剂有氨、氟利昂、丙烷等。
制冷剂具有低沸点和高蒸发潜热的特性,可以在低温下蒸发吸收热量,然后在高温下冷凝释放热量。
制冷剂在制冷循环中循环流动,起到传递热量的作用。
三、制冷循环制冷循环是制冷系统中的核心部分,通过循环流动的制冷剂实现热量的传递。
常见的制冷循环有蒸发冷凝循环和吸收制冷循环。
蒸发冷凝循环由压缩机、冷凝器、膨胀阀和蒸发器组成,通过制冷剂的蒸发和冷凝来实现热量的传递。
吸收制冷循环则利用制冷剂和吸收剂的吸收和析出来实现热量的传递。
四、制冷设备制冷设备是实现制冷过程的关键装置。
常见的制冷设备包括冰箱、空调和冷库等。
冰箱利用制冷循环原理,将室内的热量传递到冷凝器外,使冷藏室内温度降低。
空调则通过循环流动的制冷剂将室内的热量带走,实现室内温度的调节。
冷库则利用制冷设备将空间内的温度降低到低于周围环境温度,用于食品的储存和保鲜。
五、制冷效率制冷效率是衡量制冷设备性能的重要指标。
制冷效率通常用COP (Coefficient of Performance)来表示,即单位制冷量所需的功率。
COP越高,表示制冷设备的能效越高。
提高制冷效率可以通过优化制冷循环、选择高效制冷剂和改进设备设计等方式来实现。
六、制冷系统的应用制冷技术在日常生活中得到广泛应用。
家用制冷设备如冰箱、空调等为人们提供了舒适的居住环境和新鲜的食品。
制冷知识点总结制冷技术是现代社会中不可或缺的一项重要技术,它在保鲜、储存、交通运输、医药、化工、航天和军工等各个领域都有广泛的应用。
制冷技术不仅可以让人们在炎热的夏天享受清凉舒适的环境,也能有效保障食品、医药等物品的质量和安全。
同时,随着全球气候变暖和能源资源的日益枯竭,制冷技术的能耗和环保问题也备受关注。
因此,对制冷知识的深入了解和掌握对于从事相关行业的人员来说非常重要。
本文将从基本原理、常见制冷设备、能源利用、环保等方面进行制冷知识点的总结,并给出一些案例和实践应用。
一、制冷基本原理1. 制冷循环制冷循环是一种通过不断循环流动的化学药剂将热量从一个地方转移到另一个地方的技术。
在制冷循环中,常用的介质包括制冷剂、空气、水等。
制冷循环包括蒸发器、压缩机、冷凝器和膨胀阀等四个主要组成部分。
其中,蒸发器是用于吸收外部热量的部件,压缩机是用于将低温低压的气体压缩为高温高压的气体的设备,冷凝器则是用于散热的部件,膨胀阀则是用于降低制冷剂压力和温度的部件。
2. 制冷剂的选择制冷剂是制冷循环的核心组成部分,它负责在制冷循环中循环流动,完成热量转移的任务。
制冷剂应具备一定的物理化学性质,如低沸点、低凝点、不易燃烧、不易爆炸和对环境友好等特点。
常见的制冷剂包括氨、氟利昂、丙酮、氟化碳等。
3. 制冷循环中的热力学原理制冷循环的热力学原理主要是基于热力学第一定律和第二定律。
根据热力学第一定律,热量不会自发地从低温物体传递给高温物体,因此需要通过外力的作用才能完成。
而根据热力学第二定律,热量是自然流动的,从高温物体传递给低温物体,而不会反向流动。
通过这些热力学原理,制冷循环可以实现对热量的转移和控制。
4. 制冷循环中的熵增原理在制冷循环中,熵增原理是很重要的一个概念。
熵是热力学中的一个基本概念,它反映的是系统的混乱度和无序度。
根据熵增原理,任何一个封闭系统中,熵都会不可逆地增大。
在制冷循环中,通过控制系统的混乱度和无序度,可以有效地实现对热量的转移和控制。
制冷工程师的知识点总结制冷工程是指利用各种制冷原理和技术手段,对空气、水、食品、医药、化工、航空、航天及各种实验设备等进行制冷或降温的一种技术。
制冷是现代社会中不可或缺的一部分,制冷工程师是这个领域中不可或缺的专业人才。
制冷工程师需要具备丰富的理论知识和实践经验,能够熟练掌握各种制冷技术以及相关的设备、材料和工艺。
本文将对制冷工程师的知识点进行总结,包括制冷原理、制冷设备、制冷材料、制冷系统、制冷技术和相关工程应用等内容。
一、制冷工程师的基本知识点1. 制冷原理制冷工程师需要了解各种制冷原理,包括压缩式制冷原理、吸收式制冷原理、蒸发式制冷原理、压缩吸收联合制冷原理等。
通过研究这些原理,制冷工程师可以选择合适的制冷系统和技术方案,设计和优化制冷设备,提高制冷效率和节能性能。
2. 制冷设备制冷工程师需要了解各种制冷设备,包括压缩机、冷凝器、蒸发器、节流阀、冷媒、控制系统等。
对制冷设备的性能参数、工作原理、结构特点和使用条件等方面有深入的了解,可以从原理出发,分析和解决制冷设备的故障和问题。
3. 制冷材料制冷工程师需要了解各种制冷材料,包括制冷剂、隔热材料、传热材料、制冷管道和附件等。
需要掌握这些材料的物性参数、工作性能、安全性能和环保性能等方面的知识,可以选择合适的制冷材料,改善制冷系统的工作条件,提高制冷效率和节能性能。
4. 制冷系统制冷工程师需要了解各种制冷系统,包括家用制冷系统、商用制冷系统、工业制冷系统、航空制冷系统和航天制冷系统等。
需要掌握这些系统的结构特点、工作原理、性能参数和使用条件等方面的知识,可以设计和优化制冷系统,提高系统的稳定性和可靠性。
5. 制冷技术制冷工程师需要了解各种制冷技术,包括制冷系统调试、制冷设备维护、制冷系统改造和制冷工程设计等。
需要具备丰富的实践经验和分析能力,可以解决各种制冷技术难题,提高制冷系统的工作效率和经济性能。
6. 相关工程应用制冷工程师需要了解制冷在各种工程应用中的相关知识,包括家用制冷、商用制冷、工业制冷、航空制冷、航天制冷等。
制冷专业必备的知识制冷专业是一个研究和应用制冷技术的学科,涉及到许多基础知识和技能。
本文将介绍制冷专业必备的知识,包括制冷循环、制冷剂、制冷设备和控制系统等方面。
1. 制冷循环制冷循环是制冷系统的基础,也是制冷专业必备的知识之一。
常见的制冷循环有蒸发-压缩-冷凝-膨胀四个过程组成。
在制冷循环中,制冷剂在不同的压力和温度下进行相态变化,从而实现热量的转移和降温。
2. 制冷剂制冷剂是实现制冷循环的关键物质。
制冷剂应具有适当的饱和蒸汽压、温度滑动、热导率和危险性低等特点。
常见的制冷剂有氨、氟利昂和丙烷等。
制冷专业的学生需要了解不同制冷剂的性质和应用范围,以及制冷剂的环保性和安全性。
3. 制冷设备制冷设备是制冷系统的核心部件,包括压缩机、冷凝器、蒸发器和膨胀阀等。
压缩机是制冷系统的动力源,负责将制冷剂压缩成高温高压气体。
冷凝器将压缩机输出的高温高压气体冷却并转化为高温高压液体。
蒸发器通过蒸发过程吸收外界热量,使制冷剂从液体转化为蒸汽。
膨胀阀调节制冷剂的流量,将高压液体膨胀成低压蒸汽。
4. 控制系统制冷系统的控制是保证制冷效果和安全运行的关键。
制冷专业的学生需要了解控制系统的组成和原理,包括传感器、控制器和执行器等。
传感器用于获取制冷系统的参数,控制器根据传感器的反馈信号进行控制策略的制定,执行器根据控制器的指令进行相应的操作。
5. 热传导热传导是制冷专业中重要的热力学知识之一。
热传导是指通过固体、液体或气体的分子间相互碰撞传递热量的过程。
制冷专业的学生需要了解热传导的基本原理和计算方法,以便在制冷系统的设计和优化中应用。
6. 热辐射热辐射是热量通过电磁波传递的过程,也是制冷专业必备的知识之一。
热辐射可以通过黑体辐射定律进行计算和分析。
制冷专业的学生需要了解热辐射的特性和计算方法,以便在制冷系统中考虑热辐射对热量传递的影响。
7. 空气流动空气流动是制冷系统中常见的热传递方式之一。
制冷专业的学生需要了解空气流动的基本原理和计算方法,以便在制冷系统的设计和优化中考虑空气流动的影响。
60制冷设备维修技术基本功二、项目基本知识知识点一 制冷基础知识1.制冷的分类根据制冷产生的低温温度不同,通常分为如下3种。
① 普通制冷:制冷温度在−153.15℃(120K )以上。
② 深度制冷:制冷温度在−153.15~−253.15℃之间。
③ 低温和超低温制冷:制冷温度在−253.15℃到接近绝对零度(−273.15℃)之间。
电冰箱和空调器属于普通制冷,普通制冷又分为3个温区。
① 低温区(−100℃以下),主要用于气体液化、气体分离、低温物理、超导等。
② 中温区(−100~+5℃),主要用于食品冷冻、冷藏保鲜、冷藏运输等。
③ 高温区(5~50℃),主要用于空气调节和热泵设备。
2.制冷方法常用的人工制冷方法有4种。
(1)液体汽化法在皮肤上擦些酒精,立刻会有凉感,这是由于低沸点的酒精在常压下挥发,吸收了皮肤的热量。
液体汽化法就是利用常压下沸点较低的液态制冷剂沸腾汽化,吸收周围物体或空间的热量,实现制冷。
在普通制冷范围内主要采用液体汽化法制冷。
液体汽化法又可分为蒸气压缩式制冷、吸收式制冷、蒸气喷射式等。
(2)温差电制冷(又叫半导体制冷)将两种不同的导体连接成闭合环路,两个连接点称为节点,这两种导体的组合称为电偶对。
在环路中接入直流电源,其中一个节点的温度会升高,向外放出热量称为热端,另一个节点的温度会降低,吸收周围热量产生制冷效应称为冷端,如图2-39所示。
改变电源极性冷热端互相变换,即原冷端变为热端,原热端变为端,这种电温差效应称为珀尔帖效应。
金属导体的珀尔帖效应十分微弱,而采用P型半导体和N 型半导体用铜片焊接成电偶对时,如图2-40所示,珀尔帖效应较为显著。
实际应用都采用半导体材料制作电偶对,所以温差电制冷又称半导体制冷。
一个半导体电偶对的制冷能力很小,约为1.163W ,往往将几十对电偶串联而成,将冷端排在一起,热端排在一起,串联组成热电堆,就可获得较大的制冷量,如图2-41所示。
半导体制冷的优点是不需要机械传动部分,体积小,无振动,无噪声,无磨损,运行可靠,维修方便,冷却速度快,无需制冷剂,易于控制。
制冷技术考点总结1.几个概念(1)制冷:利用人工的方法,把某物体和对象进行冷却,使其温度降低到低于周围环境的温度,并使之维持在这一低温的过程。
实质:将热量从被冷却对象中转移到环境中制冷的温度范围:(环境温度——绝对零度)• 制冷:t>120K• 低温:t<120K(2)、制冷机:实现制冷所需的机器和设备。
机器:压缩机、泵、风机设备:蒸发器、冷凝器特点:必须消耗能量——电能、机械能等(3)、制冷装置:将制冷机同消耗冷量的设备结合一起的装置。
(4)、制冷剂:制冷机中把热量从被冷却介质传给环境介质的内部循环流动的工作介质。
(5)、制冷循环:在制冷机中,制冷剂周而复始吸热、放热的流动循环。
2.热力学基础知识一. 热力学两大基本定律1、热力学第一定律(数量问题)(能量转换和守恒定律)热能与其它形式的能量进行转换时,能的总量保持恒定。
Q1+W= Q22、热力学第二定律(质量问题)热不能自发地、不付代价地从低温物体传到高温物体。
二. 热力系统:将研究的对象从周围物体中分割出来,这种人为分离出来,作为热力分析的对象,就称作热力系统。
绝热系统:热力系统与外界无热量的交换。
孤立系统:热力系统与外界既无能量交换,又无物质交换。
闭口系统开口系统6个基本状态参数(这个PPT上那一页被覆盖了,需要另行总结)四、热力过程:系统连续不断地从一个状态变化到另一个状态,这期间所经历的过程。
可逆过程系统与外界传递能量的方式: 作功,传热。
功:通过工质的容积变化(膨胀或压缩)来实现的。
热量:系统与外界之间仅仅由于温度的不同而传递的能量。
1.卡诺循环——理想可逆热机循环1-2定温吸热过程,q1 = T1(s2-s1) 2-3绝热膨胀过程,对外作功3-4定温放热过程,q2 = T2(s2-s1) 4-1绝热压缩过程,对内作功2.逆向卡诺循环3.制冷系数:在制冷循环中,制冷剂从被冷却物体中所制取的冷量q0与所消耗的机械功w之比值称为制冷系数,在给定的温度条件下,制冷系数越大,则循环的经济性越高。