深基坑降水回灌结合技术
- 格式:pdf
- 大小:193.63 KB
- 文档页数:6
建筑深基础筏板后浇带中降水井封堵技术要点
1、基坑概况
1.1 工程概况
案例工程位于某城市主干道交汇处一角,属超高层建筑,塔楼36 层,地上总高165m,裙房4 层21m,地下室2 层,建筑面积近12 万m2。
主要有商业、办公与酒店等业态。
塔楼采用桩筏基础,埋深12m,采用桩端、桩侧后注浆钻孔灌注桩,塔楼与裙楼交界处设有800mm的沉降后浇带(见图1),裙楼其它区域设有伸缩后浇带;塔楼以外区域采用抗拔锚杆抗浮。
图1 塔裙交界环形后浇带示意
1.2 水文地质条件
据地质勘探报告,在勘探深度范围内场地地下水主要有两层,第一层为赋存于①层杂填土、③层粉质黏土、④层粉砂、⑤层粗砂中的孔隙潜水,第二层为赋存于⑦层粗砂、⑨层砾砂中的孔隙微承压水。
补给来源主要是降雨和侧向迳流,排泄途径主要是人工开采和侧向迳流。
勘察期间测得第一层地下水稳定水位为1.30~2.00m(标高2.04~2.50m),地下水位受季节性影响而变化,变化幅度约为1.50m ;第二层地下水稳定水位埋深较深,对基坑设计和地下室的安全无影响。
1.3 基坑支护设计与监测
基坑开挖深度按12m 计,基坑周长520m,平面呈方型。
基坑采用直立锚拉灌注桩三道锚索拉锚形式支护,并采用水泥搅拌桩止水帷幕+ 桩间三管旋喷组合进行止水。
对邻近道路和已有建筑物,和周边管线、道路及建筑物变形加强了观测。
2、基坑开挖与降水措施
2.1 地下水控制。
富水深基坑水气负压循环高效降水回灌施工工法富水深基坑水气负压循环高效降水回灌施工工法一、前言在深基坑施工中,降水回灌是一项重要的工程技术。
传统的降水回灌方式存在着水量大、工效低、施工周期长、安全隐患大等问题。
为了解决这些问题,开发了富水深基坑水气负压循环高效降水回灌施工工法。
该工法通过利用负压吸附技术、循环利用降水水质等手段,实现了高效降水回灌。
二、工法特点该工法具有以下特点:1. 采用水气负压循环回灌技术,实现了水资源循环利用,节约了大量水资源。
2. 采用负压吸附技术,有效防止了土壤渗透带水的污染。
3. 工法施工周期短,工效高,大大提高了施工效率。
4. 工法操作简单,施工工艺易于掌握。
5. 工法在施工中对环境和周围建筑物的影响小,安全性高。
三、适应范围该工法适用于富水深基坑的施工,特别适用于需要大量减少回灌水用量的工程。
四、工艺原理该工法的工艺原理是将深基坑中的降水通过负压吸附技术吸附到吸附剂材料中,再通过循环往复的方式实现回灌。
具体步骤如下:1. 在基坑中设置吸附剂材料,并通过管道将吸附剂材料与基坑外负压设备连接起来。
2. 启动负压设备,形成负压环境,使吸附剂材料具有吸附水分的能力。
3. 基坑中的降水通过管道引流到吸附剂材料中,被吸附剂材料吸附。
4. 去除在吸附剂材料中被吸附的水分,释放出干燥的吸附剂材料。
5. 干燥的吸附剂材料与新降水水分再次循环。
五、施工工艺1. 设置吸附剂材料:在基坑中按需设置吸附剂材料,可以采用沙子、多孔陶瓷球等材料。
2. 连接负压设备:基坑外设置负压设备,通过管道与吸附剂材料连接。
3. 启动负压设备:启动负压设备,形成负压环境。
4. 引流降水:通过管道将基坑中的降水引流到吸附剂材料中。
5. 吸附水分:吸附剂材料具有吸附降水水分的能力,将降水吸附到吸附剂材料中。
6. 去除被吸附水分:通过烘烤等方式将吸附剂材料中的水分去除。
7. 循环回灌:干燥的吸附剂材料与新降水水分再次循环回灌。
珠海市恒虹世纪广场基坑支护回灌井、降水井施工技术方案广东省珠海工程勘察院二O一O年一月珠海市恒虹世纪广场基坑支护回灌井、降水井施工技术方案编写:技术负责:项目负责:总工程师:院长:提交单位:广东省珠海工程勘察院提交日期:二O一O年一月十五日联系电话:,2263344(传真)项目负责电话:一、前言珠海市恒虹世纪广场位于拱北粤海中路与迎宾南路交汇处的西北角,由1~3单元42层商住楼及局部4层商业楼组成,设有2层地下室。
地下室基坑采用钻孔灌注桩+预应力锚索支护,桩间采用旋喷桩作为止水帷幕,支护桩及止水桩桩深均为。
恒虹世纪广场基坑外北侧现有2栋天然地基建筑物、基坑内地下水较丰富,为确保基坑支护安全顺利实施,必须采取回灌、降水措施。
参照广东省工程勘察院提交的《珠海市恒虹世纪广场超前钻勘察报告》,场地地层结构如下:(1)人工填土层土层为素填土和杂填土,素填土由粉质粘土混碎砖块、碎石块组成,松软~压实状;杂填土由建筑垃圾组成,灰黄色、灰褐色,松散-稍压实,层厚约~。
(2)淤泥质砂层主要分布在基坑外部边沿的局部地段,多呈薄层状或透镜体状分布,饱和,松散-稍密,含淤泥质,层厚约~。
(3)粉质粘土层主要分布在基坑外部边沿的孔段,湿~很湿,软可塑状,粘性较强,质纯,细腻,层厚约~。
(4)砾砂层局部为圆砾,该层分布于整个场地,饱和,稍密~中密状为主,含粘粒,层厚约~。
(5)粉质粘土层该层分布局限,湿,可塑状,含石英粒,层厚约~。
(6)花岗岩风化残积砂(砾)质粘性土层分布在场地内大部分地段,厚度变化较大,硬塑状为主,局部地段顶部呈可塑状,土性主要为砂质粘性土,局部地段为砾质粘性土,层厚约~。
(7)全风化花岗岩层岩芯呈土柱状,遇水易软化,原岩矿物以长石和石英为主,组织结构尚存,长石呈粉末状,湿,坚硬状,层厚约~。
(8)强风化花岗岩层矿物以长石和石英为主,底部夹少量碎岩屑,组织结构清晰,岩芯呈土柱~半岩半土状,层厚约~。
(9)中风化花岗岩层(10)微风化花岗岩层二、回灌井、降水井设计恒虹世纪广场基坑外北侧现有2栋天然地基建筑物。
封闭降水及水收集综合利用技术-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN封闭降水及水收集综合利用技术基坑施工封闭降水技术技术内容基坑封闭降水是指在坑底和基坑侧壁采用截水措施,在基坑周边形成止水帷幕,阻截基坑侧壁及基坑底面的地下水流入基坑,在基坑降水过程中对基坑以外地下水位不产生影响的降水方法;基坑施工时应按需降水或隔离水源。
在我国沿海地区宜采用地下连续墙或护坡桩+搅拌桩止水帷幕的地下水封闭措施;内陆地区宜采用护坡桩+旋喷桩止水帷幕的地下水封闭措施;河流阶地地区宜采用双排或三排搅拌桩对基坑进行封闭,同时兼做支护的地下水封闭措施。
技术指标(1)封闭深度:宜采用悬挂式竖向截水和水平封底相结合,在没有水平封底措施的情况下要求侧壁帷幕(连续墙、搅拌桩、旋喷桩等)插入基坑下卧不透水土层一定深度。
深度情况应满足下式计算:L式中 L——帷幕插入不透水层的深度;——作用水头; h w b——帷幕厚度。
)截水帷幕厚度:满足抗渗要求,渗透系数宜小于2(.-6cm/s。
×10(3)基坑内井深度:可采用疏干井和降水井,若采用降水井,井深度不宜超过截水帷幕深度;若采用疏干井,井深应插入下层强透水层。
(4)结构安全性:截水帷幕必须在有安全的基坑支护措施下配合使用(如注浆法),或者帷幕本身经计算能同时满足基坑支护的要求(如地下连续墙)。
适用范围适用于有地下水存在的所有非岩石地层的基坑工程。
工程案例北京地铁8号线、天津周大福金融中心。
施工现场水收集综合利用技术技术内容施工过程中应高度重视施工现场非传统水源的水收集与综合利用,该项技术包括基坑施工降水回收利用技术、雨水回收利用技术、现场生产和生活废水回收利用技术。
(1)基坑施工降水回收利用技术,一般包含两种技术:一是利用自渗效果将上层滞水引渗至下层潜水层中,可使部分水资源重新回灌至地下的回收利用技术;二是将降水所抽水体集中存放施工时再利用。
隆塑:丝凰深基坑降水回灌结合技术曾庆月(厦门长实工程监理有限公司,福建厦门361000)睛要】在当前深基坑璇.工中,一般往往只编制降水方案,但施工中常常发生因降水过度而造成周围建筑物沉降、开裂或倾斜现象。
本文‘?着重介绍了—种全新的降水与回灌同时进行的工艺,对降水和回灌进行相应设计,并运用到工程实践中,收刭了很好的效果,为今后类似工,I程提供借鉴。
:,巨键词]深基坑;地下水;降水;回灌;技术1前言在建筑物密集的场地上进行深基坑施工时,仅仅考虑基坑降水问题是不够的,还要考虑到因过度降水而引起周围原有建筑物地基的不均匀沉降和位移问题,这些不均匀沉降和位移会导致原有建筑物产生沉降、开裂或倾斜。
另外,若大量抽起的地下水不加以回灌,会造成水资源的大彰良费。
当前,在深基坑自旺中,一般只注重降水,很少注薰地下水回灌问题,我国在这方面的研究还不成熟,国家和地方没形成任何规范,也很难查到相关资料,学名们对地下水的抽取和补给机理也存在不同认识。
本文结合厦门奥网城工程实例,着重介绍深基坑降水和回灌相关谂寸与施工注意事项,抛砖引玉,为今后砻斟以二日勤剐±借鉴。
2降灌工艺原理井点回灌是在井点降水的同时,将抽出的地下水通过回灌井点再灌^地基土层内,水从井点周围土层渗透,在土层中形成一个和降水井点相反的倒转降落漏斗,使降水井点的影响半径不超过回灌井点的范围。
这样,回灌井点就以—道隔水帷幕,阻止回灌井点外侧的建筑物下的地下水流失,使地下水位基本保持不变,土层压力仍处于原始平衡状态,从而有效地防止降水井点对周围建筑物的影响。
工艺原理如下图:1.厦葛磕,哟:.F绣葛垃:j.1味;垮4.叠叠}砷量厦净虾水e撼.e.端豁案胁§墨矗:、嚣嘲j看地下雀63%t,嗣鹭尊宅摹垃咯:钆羞帮勰3降水并设计3.1设计资料奥网城位于厦门环岛路西侧。
地下室基坑北侧距民房仅侣米,基坑面积5400m2(60m x90m),基坑开挖深度一般为5.5m。
项目四基坑施工的排水与降水【职业能力目标】当基础深度在天然地下水位以下时,在基础施工中常常会遇到地下水的处理问题。
通常,基坑开挖要具备以下的必要条件:首先保持基坑干燥状态,创造有利于施工的环境;其次是确保边坡稳定,做到安全施工,如果忽视这些必要条件,其后果是严重的。
有的基坑积水或土质稀软,工人难以立足,无法施工;有的出现“流砂现象”导致边坡塌方,地质破坏;有的内部基坑土体发生较大的位移,影响邻近建筑物的安全。
工程实践表明,绝大部分基坑事故都与地下水有关,因此,在基坑工程施工中必须对地下水进行有效治理。
通过本项目的学习,熟悉动水压力的概念,掌握流砂产生的现象、原因、危害及防治措施;了解人工降水的常见方法;了解熟悉地面排水的要求和施工方法;熟悉井点降水的原理、方法和施工程序;掌握集水井降水的要求和施工方法;掌握轻型井点降水的设计步骤和方法;了解轻型井点降水的施工要求;了解喷射井点、深井井点、电渗井点、管井井的的降水原理和适用范围。
【关键词】(中英文)基坑foundation ditch ;地面排水surface drainage集水井catchment well;井点降水well-point dewatering明沟排水gutter drainage任务一地面排水一、概述施工排水包括排除地下自由水、地表水和雨水。
在开挖基坑或沟槽时,土壤的含水层常被切断,地下水将会不断地涌人坑内。
雨季施工时,地面水也会流入基坑内。
为了保证施工的正常进行,防止边坡坍塌和地基承载力下降,必须做好基坑降水工作。
地下含水层内的水分有水气、结合水和自由水三种状态。
结合水没有出水性。
自由水又分为潜水和承压水两种,如图2-1所示。
图2-1含水层的构造潜水是存在于地表以下、第一个稳定隔水层顶板以上的地下自由水,有一个自由水面,其水面受当地地质、气候及环境的影响。
雨季水位高,冬季水位下降,附近有河、湖等地表水存在时也会互相补给。
承压水亦称层间水,是埋藏于两个隔水层之间的地下自由水。
论减压降水和回灌的实际结合摘要:以上海交通大学医学院附属仁济医院肝脏泌尿外科临床中心诊疗中心项目降水工程为例,本工程位于上海市浦东新区1630号,该工程周边环境及水文地质条件复杂,为确保基坑施工的安全,同时确保周边建筑物安全,采用了抽灌一体化技术技术,既保证了基坑施工的安全要求,又减少了降承压水对周边环境的影响。
关键字:水文地质承压水回灌引言在实际施工中,由于基坑内需降压抽水,导致基坑外地层下沉,对外部建筑物产生破坏,因此在降压抽水的同时,采取回灌的保护措施。
以下为浦东仁济医院降压抽水和回灌结合的实例。
§1工程概况1.1项目基本情况本工程场地东侧为现状院内内科大楼,基坑边线距现状内科大楼基坑边线最近约 4m,局部相连;基坑边线距北侧地铁 4 号线区间隧道最近约 9m,距北侧院内辅助建筑最近约12m,周边环境十分复杂。
本设计图中,标高(均为相对标高,±0.00相当于绝对标高+4.90 ;基坑设计中,自然地坪标高取为-0.50,相当于绝对标高+4.40 ),以米计外,其余尺寸单位均为毫米。
本工程基坑一区及二区安全等级为一级,周边环境保护等级为一级。
A区、B区、C区安全等级为三级。
D区安全等级为一级,基坑周边安全等级为二级。
1.2周边环境场地东侧为现状院内内科大楼,基坑边线距现状内科大楼基坑边线最近约4m,局部相连;南侧为现状学生公寓,基坑边线距现状学生公寓最近约10m;西侧为现状院内大楼,基坑边线距西侧现状建筑最近约30m;北侧为院内道路,基坑边线距北侧地铁 4 号线区间隧道最近约 9m,距北侧院内辅助建筑最近约12m,周边环境十分复杂。
§2工程地质、水文地质条件2.1. 工程地质条件根据上海交通大学医学院附属仁济医院肝脏泌尿外科临床中心诊疗中心工程详勘探的地层资料表明:拟建场地位于正常沉积地层和古河道沉积地层边缘区域,在深度 90.30m 范围内地基土属晚更新世Q3 至全新世Q4 沉积物,主要由饱和粘性土、粉性土及砂土组成。
深基坑降水回灌结合技术论文发表写作指导资料参考发表时间:2010-11-02来源:鸣网作者:摘要:在当前深基坑施工中,一般往往只编制降水方案,但施工中常常发生因降水过度而造成周围建筑物沉降、开裂或倾斜现象。
本文着重介绍了一种全新的降水与回灌同时进行的工艺,对降水和回灌进行相应设计,并运用到工程实践中,收到了很好的效果,为今后类似工程提供借鉴。
关键词:深基坑,地下水,降水,回灌,技术一、前言在建筑物密集的场地上进行深基坑施工时,仅仅考虑基坑降水问题是不够的,还要考虑到因过度降水而引起周围原有建筑物地基的不均匀沉降和位移问题,这些不均匀沉降和位移会导致原有建筑物产生沉降、开裂或倾斜。
另外,若大量抽起的地下水不加以回灌,会造成水资源的大量浪费。
因此,将抽出的地下水重新回灌利用,是降水施工的必然趋势。
当前,在深基坑施工中,一般只注重降水,很少注重地下水回灌问题,我国在这方面的研究还不成熟,国家和地方没形成任何规范,也很难查到相关资料,学者们对地下水的抽取和补给机理也存在不同认识。
本文结合安溪金龙.现代广场工程实例,着重介绍深基坑降水和回灌相关设计与施工注意事项,抛砖引玉,为今后类似工程提供借鉴。
二、降灌工艺原理井点回灌是在井点降水的同时,将抽出的地下水通过回灌井点再灌入地基土层内,水从井点周围土层渗透,在土层中形成一个和降水井点相反的倒转降落漏斗,使降水井点的影响半径不超过回灌井点的范围。
这样,回灌井点就以一道隔水帷幕,阻止回灌井点外侧的建筑物下的地下水流失,使地下水位基本保持不变,土层压力仍处于原始平衡状态,从而有效地防止降水井点对周围建筑物的影响。
工艺原理如下图:三、降水井设计(一)设计资料金龙.现代广场位于福建安溪县城内河滨北路西侧。
地下室基坑北侧距民房仅15米,基坑面积5420.8m2,基坑开挖深度一般为5.30m。
地层自上而下主要土层有:(1)、杂填土:平均厚度3.55m;(2)、填砂:平均厚度2.25m;(3)素填土:平均厚度2.6m;(4)、中砂、卵石混砂:平均厚度9.35m;(5)、残积砂质粘性土:平均厚度4.60m。
其它地层与计算无关,忽略。
本工程地下水主要为潜水,赋存和运移于中砂、卵石混砂孔隙中,地下水稳定水位为4.5m左右。
中砂、卵石混砂中的地下水渗透系数为3.8×10-2cm/s,而残积砂质粘性土的渗透系数为5.0×10-5cm/s。
现拟在基坑北侧临近民房建筑物附近施打回灌井,在基坑开挖及降水的同时进行地下水回灌,以控制民房附近地下水位不至于变化过大。
(二)、基坑涌水量Q计算根据地勘报告,基坑涌水量可按照均质含水层潜水完整井考虑,基坑离大龙湖最近处约35米,而降水影响半径R=54.229m,基坑中心到河水边距离b=76.54>0.5R=27.114m;因此,基坑涌水量按基坑远离边界计算。
(1)基坑等效半径r0=(A/π)0.5=(5420.8/3.1415926)0.5=41.54m;(2)基坑水位降深S=5.3–4.5+0.5=1.3m(3)承压含水层厚度H:H=3.55+2.25+2.6+9.35-4.5=13.25m(4)降水影响半径:R=2×S×(k×H)0.5=54.229m(5)k为渗透系数,k=3.8×10-2㎝/s=32.832m/d按照《建筑基坑支护技术规程》JGJ120-99中F.0.1-1公式计算如下:Q=1.366×k×(2H-S)×S/lg(1+R/r0)=4050.181m3/d(三)、单个管井出水量q:1、按《建筑基坑支护技术规程》JGJ120-99中8.3.4公式计算:q=120×π×rs×L×(k)1/3=1646.924m3/d其中:rs——过滤器半径,本处取0.175m;L——过滤器进水部分长度L,L=13.25-1.3-41.54×i=7.796m,其中i为水力坡度,i=0.1;k为渗透系数,k=32.832m/d2、按《建筑与市政降水工程技术规范》JGJ/T111-98中6.4.5-1计算:q=L’×d×24/α’=1309.728m3/d其中:L’——过滤器进水部分长度L=13.25-1.3-41.54×i=7.796m,其中i为水力坡度,i=0.1;d——过滤器外径(㎜),d=350㎜;α’——与含水层渗透系数有关的经验系数,查表α’=503、按潜水完整井单井出水量计算(无干扰)q=π×k×(h02-hw2)/ln(R/rw)=2064m3/d其中:h0——未抽水时井水位到含水层底部的距离,h0=13.25m;hw——抽水时井内水位到含水层底部的距离,hw=7.796m;k——渗透系数,k=32.832m/d;R——降水影响半径:R=2×S×(k×H)0.5=54.229mrw——降水井半径,rw=0.175m4、群井抽水影响系数η的确定方法:三口群井排成一排,间距S取nR(R为抽水影响半径,n=S/R),中间的那口井的出水量非常接近群井抽水时的单井出水量,因此以此作为群井抽水时的单井出水量理论值。
在仅有1#、3#井抽水图中,阴影部分水体的面积为:S1=0.5×nR×0.5nSw=(1/4)×n2×R×Sw;(1)等效成梯形后的高度设为hx,该梯形的面积为:S2=0.5×(nR+nR+2Rhx/Sw)×hx(2)因为S1=S2,联解(1)、(2)可得:hx=n×Sw×[(2)0.5-1]/2=0.2071nSw而Sw=h0-hw。
故h2=0.7071×nh0+(1-0.7071n)hw依据裘布依公式:影响系数η=Q群/Q单=(h22-hw2)/(h02-hw2),代入h2,并设hw=mh0,代入得:η={[(0.7071×n)+(1-0.7071×n)m]2–m2}/(1–m2)其中:n——井的间距S与降水影响半径之比;m——hw/h0h0——未抽水时井水位到含水层底部的距离(m);hw——抽水时井内水位到含水层底部的距离(m可见,群井抽水影响系数η与n、h0、hw关系密切,它不是一个固定值,但可以肯定的是它小于1。
如本例中:h0=13.25m,hw=7.796m,并假如n=0.5,时,η=0.2944。
对降水影响半径R≥50m的,井的间距一般不会大于0.5R。
这样就基本确定了影响系数的上限,大大提高了群井抽水时平均单井出水量计算精度,再结合施工经验,即可确定η值。
故本工程中,η<0.2944。
再参考R的大小和施工经验,取η=0.21。
(四)、理论降水井数量n:按《建筑基坑支护技术规程》JGJ120-99中8.3.3,n=1.1×Q/q=1.1×4050.181/(0.21×2064)=10.28,取n=11(五)、降水井间距s因为基坑被等效为圆形,故s=πD/n=3.1415926×41.54×2/11=23.73m。
但按照《施工手册》,深度在8m内的基坑,井距一般为10~15m,故取s=15m。
四、回灌井设计(一)、回灌井深度为增加回灌井的渗透能力,最好让回灌井完全穿越渗透系数大的含水层即中砂、卵石混砂,而其下一层残积砂质粘性土渗透系数仅为5.0×10-5㎝/s,完全可看作不透水层。
这样降水井深度可按照各地层的平均厚度来计算。
本案例中Hw=3.55+2.25+2.6+9.35=17.75m,取18m。
(二)、单口降水井实测流量现场打了5口降水试验井,对5口试验井流量进行了测定得出单口降水井平均流量Q=0.5×0.23×0.74/5=0.017m3/s,以此数据代表现场每口井理论出水量。
故基坑北侧临近民房建筑物附近的四口降水井总出水量:Q1=4×0.017×86400=5875.2m3/d(三)、单口回灌井设计流量Q’计算地下水回灌过程可以看作是抽水的逆过程,只不过用灌水试验得出的渗透系数要比抽水试验得出的渗透系数小15~20%。
根据裘布依公式计算如下:Q’=K’×(hw2–H02)/[0.733×lg(r0/rw)=572.367m3/d其中:K’——回灌渗透系数,K’=0.8×32.832=26.266m/dhw——回灌水丘顶部到含水层底部的距离,按高出正常地下水位1.2m,hw=17.75-4.5+1.2=14.45mH0—未回灌时井水到含水层底部距离,H0=17.75-4.5=13.25mr0——影响半径,r0=54.229mrw——回灌井半径,rw=0.45m(四)、回灌井数量n:n=Q1/Q’=5875.2/572.367=10.265,取n=11,故相邻两回灌井间距s=45/(11-1)=4.5m五、降灌井点施工工艺(一)降、灌井点布置和施工1、降水井布井时,基坑周边多布,中间少布;在地下补给的方向多布,另一方向少布。
并应根据地质报告,使井的滤水器部分能处在较厚的砂层及砂卵层中,以免影响井的出水能力。
2、钻探施工达到设计深度后,根据洗井搁置时间的长短,宜多钻进2—3m,避免因洗井不及时泥浆沉淀过厚,增加洗井的难度。
洗井不应搁置时间过长或完成钻探后集中洗井。
3、降水深井在成孔后井管沉放前,应用压缩空气和潜水泵联合洗井,反复2~3次,然后迅速下放滤水井管,并在周围填上级配碎石。
4、回灌井点的滤管部分宜从设计回灌水丘顶部开始一直到井管底部。
滤管上钻孔φ8@200,呈梅花型布置,滤管外缠密目网三层,用扎丝绑牢固。
5、回灌井点在使用前应进行冲洗工作,冲洗方法是:通过滤管往回灌井内大量的注水至满后,迅速用深井泵抽出,反复2~3次。
6、为使注水形成一个有效的补给水幕,避免注水直接回到降水井点管,造成“两井”相通,两者间应保持不小于6.0m的距离。
(二)抽水、回灌1、水泵选择应与井的出水能力相匹配,水泵小时达不到降深要求;水泵大时,抽水不能连续。
一般可以准备大中小几种水泵,在现场实际调配。
2、降水、回灌期间应对抽水设备和运行状况进行检查,每天检查不应少于3次,使抽水设备始终处在正常运行状态。
同时应有一定量的备用设备。
3、回灌注水压力应大于0.5个大气压以上,为满足注水压力的要求,现场一般应设置高位水箱,利用水位差重力自流灌入土中。
4、回灌水尽量采用抽出的原水,但必须经常检查灌入水的污浊度及水质情况,防止机油、有毒有害物质、化学药剂、垃圾等进入回灌水中。