反激钳位电路设计方法RCD的计算
- 格式:doc
- 大小:358.50 KB
- 文档页数:12
RCD 箝位反激变换器的设计与实现
1 引言
反激变换器具有电路拓扑简洁、输入输出电气隔离、电压升/降范围宽、易于多路输出等优点,因而是逆变器辅助开关电源理想的电路拓扑。
然而,反激变换器功率开关关断时由漏感储能引起的电压尖峰必须用箝位电路加以抑制。
由于RCD 箝位电路比LCD 箝位、有源箝位电路更简洁且易实现,因而RCD 箝位反激变换器在小功率变换场合更具有实用价值。
将RCD 箝位反激变换器与峰值电流控制技术结合在一起,便可获得高性能的逆变器辅助开关电源。
本文主要论述RCD 箝位反激式变换器的原理,介绍了UC3843 电流控制型脉宽调制器的各种设置,并给出了设计实例与试验结果。
2 RCD 箝位反激式变换器的原理
2.1 功率电路
采用RCD 箝位的反激变换器,如图1 所示。
当功率开关S 关断时,变压器T 漏感的储能将转移到箝位电容C 中,并在电阻R 上消耗,从而使功率开关S 关断时产生的电压尖峰得到了有效的抑制。
然而,箝位电路参数对反激变换器的性能有重要的影响。
选取不同R、C 值时,箝位电容电压波形如图2 所示。
图2(a)中,C 取值较大,C 上电压缓慢上升,副边反激过冲小,变压器原边能量不能迅速传递到副边;图2(b) 中,R、C 值合适,C 上电压在S 截止瞬间冲上去,然后D 截止,C 通过R 放电,到S 开通瞬间,C 上电压应放到接近(N1/N2)Uo;图2(c)中,R、C 均偏小,C 上电压在S 截止瞬间冲上去,然后因为RC 时间常数小,C 上电压很快放电到等于(N1/N2)Uo,此时RCD 箝位电路将成为反激变换器的死负。
RCD钳位电路分析及参数设计RCD (Residual Current Device)钳位电路是一种用于保护人身安全的电气装置。
它可以检测电流泄露,并在泄露电流超过设定值时切断电流供应,以防止电击事故的发生。
本文将对RCD钳位电路的分析及参数设计进行详细介绍。
RCD钳位电路由三个主要组成部分组成:差动变压器、电流互感线圈和电子比例装置。
差动变压器是其关键组件,主要用于检测电流泄露。
它由两个绕组组成,一个绕组由额定电流通过,称为主绕组;另一个绕组则检测差动电流,称为次级绕组。
在正常工作情况下,主绕组的电流与次级绕组的电流一致,若有电流泄露,两个绕组的电流将不再一致,从而触发电子比例装置切断电流。
参数设计是RCD钳位电路设计的重要部分,其主要目标是确定适当的额定电流和动作时间。
额定电流是指RCD钳位电路能够持续工作的最大电流。
一般来说,在家庭用电中,额定电流为30mA或100mA。
较低额定电流可以更有效地防止电击事故的发生,但也会增加虚警的可能性。
因此,在确定额定电流时,需要根据具体情况进行综合考虑。
动作时间是指RCD钳位电路切断电流的时间。
根据不同应用的要求,动作时间可以有所不同。
对于家庭用电来说,一般要求动作时间在0.1秒至0.3秒之间,以确保及时切断电流。
设计RCD钳位电路的参数还需要考虑安装环境的条件。
例如,在湿度较高的环境中,可能会增加电流泄露的风险,因此额定电流可能需要调整为较低的值。
此外,还需要考虑电流泄露的容忍程度。
对于一些特殊应用,如医疗设备,对电流泄露的容忍程度可能较低,需要更高的额定电流和更快的动作时间。
总之,RCD钳位电路是一种重要的电气安全设备,可以有效防止电击事故的发生。
在设计RCD钳位电路的时候,需要根据具体情况确定合适的额定电流和动作时间,并考虑安装环境的条件,以确保其可靠性和有效性。
认识反激中的RCD吸收电路
反激式开关电源结构简单,应用广泛,但其变压器漏感大,开关管存在电压尖峰,在大部分低功率应用场合都会采用简单易实现的RCD钳位电路来减缓电压尖峰,这里将简单介绍RCD电路的工作原理以及如何确定钳位电路中的参数。
单端反激式开关电源具有结构简单,输入输出电气隔离,输入电压范围宽,易于实现多路输出,可靠性高,成本低等优点而广泛应用于中小功率场合。
但由于反激变压器漏感影响,其功率开关管在关断时将引起电压尖峰,必须用钳位电路加以抑制,因此RCD钳位电路以其简洁易实现多用于小功率场合。
图1和图2分别为反激电路中的RCD钳位电路和电容C两端的电压波形。
图1 反激中的RCD 钳位电路
图2 电容两端波形
1. 漏感的抑制
变压器的漏感是不可消除的,但可以通过合理的电路设计和绕制使之减小。
设计和绕制是否合理,对漏感的影响是很明显的。
采用合理的方法,可将漏感控制在初级电感的2%左右。
设计时应综合变压器磁芯的选择和初级匝数的确定,尽量使初级绕组可紧密绕满磁芯骨架一层或多层。
绕制时绕线要尽量分布得紧凑、均匀,这样线圈和磁路空间上更接近垂直关系,耦合效果更好。
初级和次级绕线也要尽量靠得紧密。
励磁电感LM同理想变压器并联,漏感LK同励磁电感串联,变压器中漏感能量不能传递到副边,若不采取措施,漏感将通过寄生电容释放能量,引起电压过冲和振荡,引起EMI。
为抑制其影响,可在变压器初级并联RCD钳位电路。
2. 钳位电路的工作原理
引入RCD钳位电路,目的是消耗漏感能量,但不能消耗主励磁电感能量,否则会降低电路效率,因此在电路设计调试过程中要选择恰当的R及C的值,以使其刚好消耗掉漏感。
反激式变换器中RCD箝位电路的设计分析反激式变换器是一种常见的DC-DC变换器拓扑结构,具有简单、高效的特点。
在反激式变换器的设计中,RCD箝位电路扮演着非常重要的角色。
本文将从设计和分析的角度探讨RCD箝位电路在反激式变换器中的作用、设计原则以及优化方法。
首先,让我们来了解一下RCD箝位电路在反激式变换器中的作用。
反激式变换器的基本原理是利用输入电感储存能量,并通过控制开关管的开关周期实现能量的传递。
箝位电路的作用是限制开关管的电压峰值,以确保开关管能够正常工作,同时减小电压应力和电流应力,提高系统的可靠性和效率。
在设计RCD箝位电路时,首先要确定电容C、电感L和电阻R的合适取值。
理想的RCD箝位电路应该具有良好的限压、保护开关管的功能,同时要保证电路的稳定性和效率。
设计原则之一是要选择合适的电感L。
选择合适的电感值可以在箝位电路中产生合适的电感电流,以保证开关管正常工作。
一般来说,电感的电流应该在稳态工作状态下不超过其可承受的最大电流。
另外,电感值的选择还应考虑反激式变换器的输入电压、输出电压和负载条件,以及电感的尺寸和成本。
设计原则之二是要选择合适的电容C。
电容C的选择要考虑三个方面:限制开关管的电压峰值、储存能量和抑制电压尖峰。
合适的电容值可以限制开关管的电压峰值,以保护开关管不受电压应力过大的影响。
另外,电容的容量也会影响电路的能量储存和输出效率。
较大的电容值可以增加能量储存,但也会增加电路的成本和尺寸。
此外,电容的选择还需要考虑电容的ESR(壳体电阻)和ESL(壳体电感),以提高电路的性能和稳定性。
设计原则之三是要选择合适的电阻R。
电阻R的作用是限制开关管的电流,以保护开关管不受电流应力过大的影响。
合适的电阻值要根据开关管的最大电流和电路的工作条件来确定。
较小的电阻值可以减小电流应力,但也会降低电路的效率和稳定性。
因此,需要在保护开关管的同时兼顾效率和稳定性。
在实际的设计中,可以通过仿真和实验来验证和优化RCD箝位电路的设计。
认识反激中的RCD吸收电路单端反激式具有结构容易,输入输出电气隔离,输入范围宽,易于实现多路输出,牢靠性高,成本低等优点而广泛应用于中小功率场合。
但因为反激漏感影响,其功率开关管在关断时将引起电压尖峰,必需用钳位加以抑制,因此RCD钳位电路以其简洁易实现多用于小功率场合。
图 1和图 2分离为反激电路中的RCD钳位电路和C两端的电压波形。
图 1反激中的 RCD钳位电路图 2 电容两端波形1.漏感的抑制变压器的漏感是不行消退的,但可以通过合理的电路设计和绕制使之减小。
设计和绕制是否合理,对漏感的影响是很显然的。
采纳合理的办法,可将漏感控制在初级的2%左右。
设计时应综合变压器磁芯的挑选和初级匝数确实定,尽量使初级绕组可紧密绕满磁芯骨架一层或多层。
绕制时绕线要尽量分布得紧凑、匀称,这样线圈和磁路空间上更临近垂直关系,耦合效果更好。
初级和次级绕线也要尽量靠得紧密。
励磁电感LM同抱负变压器并联,漏感LK同励磁电感串联,变压器中漏感能量不能传递到副边,若不实行措施,漏感将通过寄生电容释放能量,引起电压过冲和振荡,引起EMI。
为抑制其影响,可在变压器初级并联RCD钳位电路。
2.钳位电路的工作原理引入RCD钳位电路,目的是消耗漏感能量,但不能消耗主励磁电感能量,否则会降低电路效率,因此在电路设计调试过程中要挑选恰当的R及C的值,以使其刚好消耗掉漏感能量。
下面将分析其工作原理。
当开关管Q关断时,变压器初级线圈电压反向,同时漏感LK释放能量挺直对C举行充电,电容C电压快速升高,D截止后C通过R举行放电若C值较大,C上电压缓慢升高,副边反激过冲小,变压器能量不能快速传递到副边;若C值特殊大,电压峰值小于副边反射电压,则钳位电容上电压将向来保持在副边反射电压附近,即钳位变为负载,向来在消耗磁芯能量,此时电容两端波形 3 (a)所示。
图 3 电容两端波形若RC过小,则电容C充电较快,且C将通过电阻R很快放电,囫囵过程中漏感能量消耗很快,在Q开通前钳位电阻则成为变压器的负载,消耗变压器存储的能量,降低效率,电容C两端波形 3(b)所示。
RCD吸收回路的計算方式
1.關於單端反激式RCD吸收網路的計算方法討論:
計算吸收網路時需要知道變壓器的漏電感。
一個簡便的方法就是取其為初級電感的某一百分數;另一個方法就是短路次級,在初級實際測量漏電感。
如果變壓器結構合理,所用導線適合,由此得出的結果很理想。
所需緩衝電壓計算公式如下:
此處V R是由次級到初級的反射電壓。
通常我們設定此值約為100V。
二極體需要能夠承受住最小緩衝電壓與最大DC匯流排電壓的和電壓。
因此:
電流的額定值不需要與緩衝器中的均方根電流一樣大,它通常相對較小,所以常常使用1-2A 的二極體。
二極體應是快恢復型的以便在FET導通時減小反向流通電流。
吸收電容和電阻的計算公式如下:
此處f DCmax是最大DC匯流排電壓時的頻率,一般地f DCmax是f min的2倍。
關於輸出整流二極體的吸收網路的計算方法:
如圖所示,整流二極體的吸收網路假如選取不當,會造成輸出濾波器的設計失敗。
因此,應該給整流二極體選取合理的的吸收網路。
我現在採用的是實驗法,感覺比較麻煩,希望能得到大師們的指導。
反激电路和RCD电路是电子工程中常见的电路类型,它们的设计和实现需要考虑许多因素,包括电源电压、负载电流、电路效率、电磁干扰等。
下面将详细介绍反激电路和RCD 电路的设计过程。
一、反激电路设计反激电路是一种常见的电源转换电路,它可以将输入的交流电压转换为直流电压,同时提供电流和电压的调节功能。
在设计反激电路时,需要考虑以下因素:输入电压和电流:输入电压和电流的大小直接影响到反激电路的效率和性能。
因此,在设计反激电路时,需要根据实际需求选择合适的输入电压和电流。
输出电压和电流:输出电压和电流的大小需要根据实际应用来确定。
一般来说,输出电压越高,输出电流越小,反之亦然。
因此,在设计反激电路时,需要根据实际需求选择合适的输出电压和电流。
开关频率:开关频率是反激电路中开关管的工作频率,它直接影响到反激电路的体积、重量和效率。
一般来说,开关频率越高,反激电路的体积越小、重量越轻、效率越高。
但是,开关频率过高也会导致电磁干扰和噪声问题。
因此,在设计反激电路时,需要根据实际需求选择合适的开关频率。
磁芯材料:磁芯材料是反激电路中的重要元件,它直接影响到反激电路的效率和性能。
一般来说,磁芯材料的磁导率越高、饱和磁感应强度越大,反激电路的效率越高、性能越好。
但是,磁芯材料的价格也越高。
因此,在设计反激电路时,需要根据实际需求选择合适的磁芯材料。
二、RCD电路设计RCD电路是一种常见的过电压保护电路,它可以在电源电压过高或过低时切断电源,保护电路免受损坏。
在设计RCD电路时,需要考虑以下因素:输入电压范围:输入电压范围是RCD电路的重要参数之一,它直接影响到RCD电路的工作范围和性能。
因此,在设计RCD电路时,需要根据实际需求选择合适的输入电压范围。
输出电压范围:输出电压范围是RCD电路的重要参数之一,它直接影响到RCD电路的保护效果和性能。
因此,在设计RCD电路时,需要根据实际需求选择合适的输出电压范围。
电阻值和电容值:电阻值和电容值是RCD电路中的重要元件参数之一,它们直接影响到RCD电路的保护效果和性能。
一种有效的反激钳位电路设计方法0 引言单端反激式开关电源具有结构简单、输入输出电气隔离、电压升/降范围宽、易于多路输出、可靠性高、造价低等优点,广泛应用于小功率场合。
然而,由于漏感影响,反激变换器功率开关管关断时将引起电压尖峰,必须用钳位电路加以抑制。
由于RCD钳位电路比有源钳位电路更简洁且易实现,因而在小功率变换场合RCD钳位更有实用价值。
1 漏感抑制变压器的漏感是不可消除的,但可以通过合理的电路设计和绕制使之减小。
设计和绕制是否合理,对漏感的影响是很明显的。
采用合理的方法,可将漏感控制在初级电感的2%左右。
设计时应综合变压器磁芯的选择和初级匝数的确定,尽量使初级绕组可紧密绕满磁芯骨架一层或多层。
绕制时绕线要尽量分布得紧凑、均匀,这样线圈和磁路空间上更接近垂直关系,耦合效果更好。
初级和次级绕线也要尽量靠得紧密。
2 RCD钳位电路参数设计2.1 变压器等效模型图1为实际变压器的等效电路,励磁电感同理想变压器并联,漏感同励磁电感串联。
励磁电感能量可通过理想变压器耦合到副边,而漏感因为不耦合,能量不能传递到副边,如果不采取措施,漏感将通过寄生电容释放能量,引起电路电压过冲和振荡,影响电路工作性能,还会引起EMI问题,严重时会烧毁器件,为抑制其影响,可在变压器初级并联无源RCD钳位电路,其拓扑如图2所示。
2.2 钳位电路工作原理引入RCD钳位电路,目的是消耗漏感能量,但不能消耗主励磁电感能量,否则会降低电路效率。
要做到这点必须对RC参数进行优化设计,下面分析其工作原理:当S1关断时,漏感Lk释能,D导通,C上电压瞬间充上去,然后D截止,C 通过R放电。
均是将反射电压吸收了部分实验表明,C 越大,这儿就越平滑1)若C 值较大,C 上电压缓慢上升,副边反激过冲小,变压器能量不能迅速传递到副边,见图3(a);2)若C 值特别大,电压峰值小于副边反射电压,则钳位电容上电压将一直保持在副边反射电压附近,即钳位电阻变为死负载,一直在消耗磁芯能量,见图3(b);3)若RC 值太小,C 上电压很快会降到副边反射电压,故在St 开通前,钳位电阻只将成为反激变换器的死负载,消耗变压器的能量,降低效率,见图3(c):4)如果RC 值取得比较合适,使到S1开通时,C 上电压放到接近副边反射电压,到下次导通时,C 上能量恰好可以释放完,见图3(d),这种情况钳位效果较好,但电容峰值电压大,器件应力高。
反激式开关电源RCD吸收电路的设计power1956原创wang1jin收藏.个人博客: /blog/wang1jin/推荐网站: /推荐网站: /bbs对于一位开关电源工程师来说,在一对或多对相互对立的条件面前做出选择,那是常有的事。
而我们今天讨论的这个话题就是一对相互对立的条件。
(即要限制主MOS管最大反峰,又要RCD吸收回路功耗最小)在讨论前我们先做几个假设,①开关电源的工作频率范围:20~200KHZ;②RCD中的二极管正向导通时间很短(一般为几十纳秒);③在调整RCD回路前主变压器和MOS管,输出线路的参数已经完全确定。
有了以上几个假设我们就可以先进行计算:一﹑首先对MOS管的V D进行分段:ⅰ,输入的直流电压V DC;ⅱ,次级反射初级的V OR;ⅲ,主MOS管V D余量V DS;ⅳ,RCD吸收有效电压V RCD1。
二﹑对于以上主MOS管V D的几部分进行计算:ⅰ,输入的直流电压V DC。
在计算V DC时,是依最高输入电压值为准。
如宽电压应选择AC265V,即DC375V。
V DC=V AC *√2ⅱ,次级反射初级的V OR。
V OR是依在次级输出最高电压,整流二极管压降最大时计算的,如输出电压为:5.0V±5%(依V o=5.25V计算),二极管V F为0.525V(此值是在1N5822的资料中查找额定电流下V F值).V OR=(V F+V o)*Np/Nsⅲ,主MOS管V D的余量V DS.V DS是依MOS管V D的10%为最小值.如KA05H0165R的V D=650应选择DC65V.V DC=V D* 10%ⅳ,RCD吸收V RCD.MOS管的V D减去ⅰ,ⅲ三项就剩下V RCD的最大值。
实际选取的V RCD应为最大值的90%(这里主要是考虑到开关电源各个元件的分散性,温度漂移和时间飘移等因素得影响)。
V RCD=(V D-V DC -V DS)*90%注意:①V RCD是计算出理论值,再通过实验进行调整,使得实际值与理论值相吻合.②V RCD必须大于V OR的1.3倍.(如果小于1.3倍,则主MOS管的V D值选择就太低了)③MOS管V D应当小于V DC的2倍.(如果大于2倍,则主MOS管的V D值就过大了)④如果V RCD的实测值小于V OR的1.2倍,那么RCD吸收回路就影响电源效率。
一种有效的反激钳位电路设计方法0 引言单端反激式开关电源具有结构简单、输入输出电气隔离、电压升/降范围宽、易于多路输出、可靠性高、造价低等优点,广泛应用于小功率场合。
然而,由于漏感影响,反激变换器功率开关管关断时将引起电压尖峰,必须用钳位电路加以抑制。
由于RCD钳位电路比有源钳位电路更简洁且易实现,因而在小功率变换场合RCD钳位更有实用价值。
1 漏感抑制变压器的漏感是不可消除的,但可以通过合理的电路设计和绕制使之减小。
设计和绕制是否合理,对漏感的影响是很明显的。
采用合理的方法,可将漏感控制在初级电感的2%左右。
设计时应综合变压器磁芯的选择和初级匝数的确定,尽量使初级绕组可紧密绕满磁芯骨架一层或多层。
绕制时绕线要尽量分布得紧凑、均匀,这样线圈和磁路空间上更接近垂直关系,耦合效果更好。
初级和次级绕线也要尽量靠得紧密。
2 RCD钳位电路参数设计2.1 变压器等效模型图1为实际变压器的等效电路,励磁电感同理想变压器并联,漏感同励磁电感串联。
励磁电感能量可通过理想变压器耦合到副边,而漏感因为不耦合,能量不能传递到副边,如果不采取措施,漏感将通过寄生电容释放能量,引起电路电压过冲和振荡,影响电路工作性能,还会引起EMI问题,严重时会烧毁器件,为抑制其影响,可在变压器初级并联无源RCD钳位电路,其拓扑如图2所示。
2.2 钳位电路工作原理引入RCD钳位电路,目的是消耗漏感能量,但不能消耗主励磁电感能量,否则会降低电路效率。
要做到这点必须对RC参数进行优化设计,下面分析其工作原理:当S1关断时,漏感Lk释能,D导通,C上电压瞬间充上去,然后D截止,C通过R放电。
就是反射电压实验表明,C越大,这儿就越平滑均是将反射电压吸收了部分实验表明R或C值越小就会这样,R太小,放电就快,C太小很快充满,小到一定程度就会这样回到零。
1)若C值较大,C上电压缓慢上升,副边反激过冲小,变压器能量不能迅速传递到副边,见图3(a);此句有道理,因为初级电流下降时次级电流开始上升。
第30卷第33期中国电机工程学报V ol.30 No.33 Nov.25, 20102010年11月25日Proceedings of the CSEE ©2010 Chin.Soc.for Elec.Eng. 9 文章编号:0258-8013 (2010) 33-0009-07 中图分类号:TM 464 文献标志码:A 学科分类号:470·40RCD钳位反激变换器的回馈能耗分析及设计考虑刘树林,曹晓生,马一博(西安科技大学电气与控制工程学院,陕西省 西安市 710054)Design and Analysis on Feedback Energy Loss of RCD Clamping Flyback ConvertersLIU Shulin, CAO Xiaosheng, MA Yibo(School of Electircal and Control Engineering, Xi’an University of Science & Technology, Xi’an 710054, Shaanxi Province, China)ABSTRACT: The energy transfer process of the flyback converter with RCD clamp circuit was analyzed. It was concluded that the clamp voltage (U C) of the clamp capacitor must be higher than the feedback voltage (U f) to avoid too much energy loss resulted from the feedback voltage providing energy to the RCD clamp circuit during the period of switch turn-off. The expression of the feedback energy (W f) generated by the feedback voltage (U f) was deduced. It was indicated that W f decreases with the increment of U C, moreover, the total energy loss caused by the RCD clamp circuit is equal to the summation of W f and W lk, the energy from the leakage inductor. Let W f=W lk, the critical clamp voltage of the clamp capacitor, U CK=2.6U f, can be obtained. On this basis, the design methods for the element parameters of the RCD clamp circuit were proposed. The validity of the theoretical analysis and the feasibility of the proposed design methods were verified with the simulation and experimental results.KEY WORDS: flyback converter; RCD clamp circuit; feedback voltage; feedback energy; critical clamp voltage摘要:对RCD钳位反激变换器的能量传输过程进行深入分析,指出为避免反馈电压U f在整个开关管关断期间向RCD 钳位电路提供能量而增大能耗,钳位电容电压U C必须大于U f;推导得出反馈电压产生的回馈能量W f的解析表达式,并指出W f随着U C的增加而减小,且RCD钳位电路的总能耗等于W f与变压器漏感储能W lk之和。
RCD 吸收电路计算:对于理想的钳位电路工作方式,见图3(e)。
S1关断时,漏感释能,电容快速充电至峰值max c V ,之后RC 放电。
由于充电过程非常短,可假设RC 放电过程持续整个开关周期。
RC 值的确定需按最小输入电压,最大负载(指负载上的最大电流),即最大占空比条件工作选取,否则,随着D 的增大,副边导通时间也会增加,钳位电容电压波形会出现平台,钳位电路将消耗主励磁电感能量。
max c V 只有最小值限制,必须大于副边反射电压o s pV N N V =2max cmax D T t V V N N on o s p ==o s p c V Dc N N V max max =(1)为保证S1开通时C 上电压刚好放到o s p V N N V =2需满足: ()o s pRC TD c V N N e V =⨯-m ax -1max (2)将(1)式代入(2)式可得:()()max max ln 1D D T RC --=(3)对整个周期RC 放电过程分析,有:min max c RC Tc V e V =⨯-(4)根据能量关系有()2min 2max 22121c c k pk V V C L I -=(5) 式中:Ipk /Lk 释能给C 的电流峰值将式(1)和式(4)代人式(5),得()()⎪⎪⎪⎪⎭⎫ ⎝⎛-=max max -1ln 22max 21D D c kpk e V L I C (6)结合式(3),得()()max max ln 1D C D T R ⨯--=(7)电阻功率选取依据:fs I L P pk k R 221=(8) 输入电压最小时是其最恶劣的时候,此时占空比最大,并且平均电流()D I I O L-=1最大。
即在实际设计中,完全不用考虑INMAX V ——这只是完全不相干的限制。
占空比:3218D =+-=g O gONV V V V =0.561L L I I =o I D N-+=11=7*0.25/o.5=3.5A电流纹波率4.0=r⎪⎭⎫⎝⎛+=21r I I L pk =1.2*3.5=4.2 Afs 为变换器的工作频率,r :电流纹波率,k L :漏感()()k pk D D c L I e V D D T R ⨯⎪⎪⎪⎪⎭⎫⎝⎛-⨯⨯--=-21ln 22max max max max max 1ln 1os pc VDc N NV max max =⎪⎪⎪⎪⎭⎫⎝⎛-⨯⨯=-max max 1ln 22max 21D D c kpk e V L I C。
反激电路RCD参数确定一、首先对MOS管的VD进行分段:ⅰ,输入的直流电压VDC;ⅱ,次级反射初级的VOR;ⅲ,主MOS管VD余量VDS;ⅳ,RCD吸收有效电压VRCD1。
二、对于以上主MOS管VD的几部分进行计算:ⅰ,输入的直流电压VDC。
在计算VDC时,是依最高输入电压值为准。
如宽电压应选择AC265V,即DC375V。
VDC=VAC *√2ⅱ,次级反射初级的VOR。
VOR是依在次级输出最高电压,整流二极管压降最大时计算的,如输出电压为:5.0V±5%(依Vo =5.25V计算),二极管VF为0.525V(此值是在1N5822的资料中查找额定电流下VF值).VOR=(VF +Vo)*Np/Nsⅲ,主MOS管VD的余量VDS.VDS是依MOS管VD的10%为最小值.如KA05H0165R的VD=650应选择DC65V.VDC=VD* 10%ⅳ,RCD吸收VRCD.MOS管的VD减去ⅰ,ⅲ三项就剩下VRCD的最大值。
实际选取的VRCD应为最大值的90%(这里主要是考虑到开关电源各个元件的分散性,温度漂移和时间飘移等因素得影响)。
VRCD=(VD-VDC -VDS)*90%注意:①VRCD是计算出理论值,再通过实验进行调整,使得实际值与理论值相吻合.②VRCD必须大于VOR的1.3倍.(如果小于1.3倍,则主MOS管的VD值选择就太低了)③MOS管VD应当小于VDC的2倍.(如果大于2倍,则主MOS管的VD 值就过大了)④如果VRCD的实测值小于VOR的1.2倍,那么RCD吸收回路就影响电源效率。
⑤VRCD是由VRCD1和VOR组成的ⅴ,RC时间常数τ确定.τ是依开关电源工作频率而定的,一般选择10~20个开关电源周期。
三、试验调整VRCD值首先假设一个RC参数,R=100K/RJ15, C=10nF/1KV。
再上市电,应遵循先低压后高压,再由轻载到重载的原则。
在试验时应当严密注视RC元件上的电压值,务必使VRCD小于计算值。
一种有效的反激钳位电路设计方法0 引言单端反激式开关电源具有结构简单、输入输出电气隔离、电压升/降范围宽、易于多路输出、可靠性高、造价低等优点,广泛应用于小功率场合。
然而,由于漏感影响,反激变换器功率开关管关断时将引起电压尖峰,必须用钳位电路加以抑制。
由于RCD钳位电路比有源钳位电路更简洁且易实现,因而在小功率变换场合RCD钳位更有实用价值。
1 漏感抑制变压器的漏感是不可消除的,但可以通过合理的电路设计和绕制使之减小。
设计和绕制是否合理,对漏感的影响是很明显的。
采用合理的方法,可将漏感控制在初级电感的2%左右。
设计时应综合变压器磁芯的选择和初级匝数的确定,尽量使初级绕组可紧密绕满磁芯骨架一层或多层。
绕制时绕线要尽量分布得紧凑、均匀,这样线圈和磁路空间上更接近垂直关系,耦合效果更好。
初级和次级绕线也要尽量靠得紧密。
2 RCD钳位电路参数设计2.1 变压器等效模型图1为实际变压器的等效电路,励磁电感同理想变压器并联,漏感同励磁电感串联。
励磁电感能量可通过理想变压器耦合到副边,而漏感因为不耦合,能量不能传递到副边,如果不采取措施,漏感将通过寄生电容释放能量,引起电路电压过冲和振荡,影响电路工作性能,还会引起EMI问题,严重时会烧毁器件,为抑制其影响,可在变压器初级并联无源RCD钳位电路,其拓扑如图2所示。
2.2 钳位电路工作原理引入RCD钳位电路,目的是消耗漏感能量,但不能消耗主励磁电感能量,否则会降低电路效率。
要做到这点必须对RC参数进行优化设计,下面分析其工作原理:当S1关断时,漏感Lk释能,D导通,C上电压瞬间充上去,然后D截止,C通过R放电。
就是反射电压实验表明,C越大,这儿就越平滑均是将反射电压吸收了部分实验表明R或C值越小就会这样,R太小,放电就快,C太小很快充满,小到一定程度就会这样回到零。
1)若C值较大,C上电压缓慢上升,副边反激过冲小,变压器能量不能迅速传递到副边,见图3(a);此句有道理,因为初级电流下降时次级电流开始上升。
2)若C值特别大,电压峰值小于副边反射电压,则钳位电容上电压将一直保持在副边反射电压附近,即钳位电阻变为死负载,一直在消耗磁芯能量,见图3(b);实验表明R或C值越小就会这样,但不一定会到零,R太小,放电就快,C太小很快充满,小到一定程度就会这样回到零。
3)若RC值太小,C上电压很快会降到副边反射电压,故在St开通前,钳位电阻只将成为反激变换器的死负载,消耗变压器的能量,降低效率,见图3(c):4)如果RC值取得比较合适,使到S1开通时,C上电压放到接近副边反射电压,到下次导通时,C上能量恰好可以释放完,见图3(d),这种情况钳位效果较好,但电容峰值电压大,器件应力高。
第2)和第3)种方式是不允许的,而第1)种方式电压变化缓慢,能量不能被迅速传递,第4)种方式电压峰值大,器件应力大。
可折衷处理,在第4)种方式基础上增大电容,降低电压峰值,同时调节R,,使到S1开通时,C上电压放到接近副边反射电压,之后RC继续放电至S1下次开通,如图3(e)所示。
本人认为此分析清楚地说明RC放电时间常数要大于开关周期,至少要大于截止时间,也就是RC振荡频率小于开关频率。
2.3 参数设计S1关断时,Lk释能给C充电,R阻值较大,可近似认为Lk与C发生串联谐振,谐振周期为TLC=2π、LkC,经过1/4谐振周期,电感电流反向,D截止,这段时间很短。
由于D存在反向恢复,电路还会有一个衰减振荡过程,而且是低损的,时间极为短暂,因此叮以忽略其影响。
总之,C充电时间是很短的,相对于整个开关周期,可以不考虑。
本人认为这讲的极有道理,开关管截止时间里充电过后就要放电,所以在实际实验中如果R太小还没到开关管导通C的电已放完了,故出现了一个平台,这时会消耗反射电压的能量,所以R的取值一定要使C的放电电压在开关管导通时不小于反射电压。
在进入到导通时间后C的电压为负值,千万不要认为是某个电压对C反向充电,本人认为是开关管导通后呈现的低电位。
对于理想的钳位电路工作方式,见图3(e)。
S1关断时,漏感释能,电容快速充电至峰值Vcmax,之后RC放电。
由于充电过程非常短,可假设RC放电过程持续整个开关周期。
RC值的确定需按最小输入电压(但有的书上说是按最大值,实际测试表明似乎应是最大值),最大负载,即最大占空比条件工作选取,否则,随着D的增大,副边导通时间也会增加,钳位电容电压波形会出现平台,钳位电路将消耗主励磁电感能量。
对图3(c)工作方式,峰值电压太大,现考虑降低Vcmax。
Vcmax只有最小值限制,必须大于副边反射电压可做线性化处理来设定Vcmax,如图4所示,由几何关系得此公式一时难以理解为保证S1开通时,C上电压刚好放到需满足将(1)式代入(2)式可得这个公式有误,应该是对整个周期RC放电过程分析,有根据能量关系有式中:Ipk/Lk释能给C的电流峰值将式(1)和式(4)代人式(5),得同理这公式有错误应是除以LnDon.结合式(3),得应是电阻功率选取依据式中:fs为变换器的工作频率。
3 实验分析输入直流电压.30(1±2%)v,输出12V/lA,最大占空比Dmax=0.45,采用UC3 842控制,工作于DCM方式,变压器选用CER28A型磁芯,原边匝数为24匝,副边取13匝。
有关实验波形如图5~图8所示。
图7显示在副边反射电压点没有出现平台,说明结果与理论分析吻合。
4 结语按照文中介绍的方法设计的钳位电路,可以较好地吸收漏感能量,同时不消耗主励磁电感能量。
经折衷优化处理,既抑制了电容电压峰值,减轻了功率器件的开关应力,又保证了足够电压脉动量,磁芯能量可以快速、高效地传递,为反激变换器的设计提供了很好的依据。
网上相关人员讨论:1.关于吸收电路的问题,很有分析的必要,我也曾对此仔细分析过。
我再分析一下,你可以按照这个思路自己进行计算。
开关管漏极上的电压由三部分组成:电源电压,反击感应电压(等于输出电压除以杂比),漏感冲击电压。
吸收电路,一定要让他只吸收漏感冲击电压,而不要对另外电压起作用,那样不仅会增大吸收电阻的负担,还会降低开关电源的效率。
首先计算吸收电阻的功耗,如果能做到只对漏感能量吸收,那么他的功率容量应该是漏感功率的1.5-2倍。
漏感的量能为0.5*Ls*Ip*Ip*f,f=工作频率,Ls=漏感,Ip关断时的开关管峰值电流,这样算出来的结果是很准确的。
由于吸收电容的另一端是接在正电源上的,所以它的电压只有两部分:反击感应电压(等于输出电压除以杂比),漏感冲击电压。
电压是一个微分波形,也就是电容放电波形,随着放电,电压会越来越低,当开关管的截止期结束时,一定不要让电压下降到反激感应电压以下,否则就会损耗“本体”能量。
再计算吸收元件的数值,电容太小时,漏感能量灌入后,电压会突升的太高,有可能击穿开关管,可以根据你的开关管耐压,和你希望的振铃高度,确定一个峰值电压,比如100伏,截止期结束时,我们给他定一个终止电压,比如50伏,这样,就可以计算出吸收电容的数值来:原理是,电容电压变化量所导致的能量差= 一个周期的漏感能量。
(上面的公式5)假设反激感应电压为U,那么电容电压的最大值就是(U+100),最小值就是(U+50),电容中的能量有一个计算公式,Ec=0.5*C*U*U,所以,能量差就是:Ech-Ecl=0.5*C*((U+100)*(U+100)-(U+50)*(U+50)),U是已知的,能量差也是已知的,电容还算不出来吗?最后计算吸收电阻。
电容放电公式:u=Uo*exp(-t/τ),t/τ=-ln((U+50)/(U+100))经本人推算应是t/τ=-ln((U+100)/(U+50)),或-t/τ=-ln((U+50)/(U+100)),掉了个负号原文作者在发贴时可能笔误,t=截止期时间(按正常工作时的截止时间计算),可以算出τ,τ=RC吸收时间常数,那么吸收电阻不也就出来吗?本人认为这个讲的有道理.2.按上述理论进行计算:变压器初级电感L=632uH,漏感Llou= 29uH。
先算Ip: 假定最大输出功率时是DCM模式.则 Pin = 0.5*Ls*Ip*Ip*fIp = (Pin/0.5*Ls*f)(0.5) = (P0/η*0.5*Ls*f)(0.5)= (150/0.85*0.5*623*10(-6)*70*10(3))= 2.7A漏感的能量为0.5*Ls*Ip*Ip*f,f=工作频率,Ls=漏感,Ip关断时的开关管峰值电流Wlou= 0.5*Ls*Ip*Ip*f= 0.5 * 29*10(-6) * 2.7 * 2.7 * 70*10(3) = 7.3 W由上面漏感能量数值可看出,漏感能量太大了,如果此能量全都由电阻来消耗,按两倍功率计算,要15W的电阻。
这是无法办到的。
这么大的功耗,从上面计算可以看出,是由于初级Ip太大造成的。
如果是几十W的电源,那么功耗就可以接受了。
对以上结果,请问计算有问题没有?有什么办法?3.是的,这个功耗是太大,漏感功耗没有别的去处,只能消耗在吸收电阻上。
像这种功率较大的开关电源,一般都是工作在连续状态,否则,开关管的功率容量和磁芯的功率容量都得不到充分利用,还有一个问题,就是工作在不连续或者临界状态的变压器,由于其磁通变化量太大,变压器的发热量也是个不容忽视的问题。
我上面没说,你的初级电感量太小,变压器可能工作在非连续状态。
增大电感量,初级电流自然就降下来了。
你可以这样计算:让磁通的变化量(p-p)/磁通平均值=0.3左右。
另外,如果电源的安全系数要求不是太高(医疗仪器要求高),可以适当减小初次级之间的绝缘厚度,以减小漏感,你的漏感量在正常的数值范围内,但不是特别的小,大功率的电源,漏感就是个很麻烦的问题4.你好,非常感谢。
初级电感和漏感的数值在上面第十贴中写出来了,我是刚测的数据。
测时发现,初次级间不加铜皮屏蔽漏感小。
这应是正常的吧。
也可能是漏感加大的缘故,加了屏蔽后尖峰反而大了。
5. 初次级间不加铜皮屏蔽漏感小,是正常的。
所谓漏感是通过本线圈的磁力线没有完全通过另一线圈所产生的,增加铜皮屏蔽,相当于线圈之间的耦合难度增大,故漏感增大,分布电容减少。
想减少尖峰,最好的办法是减少变压器漏感,其次是在MOS管漏极加磁珠,这样都会减少损耗,还有就是无损吸收,最后就是用RCD这种有损吸收的方式。
6. 是的,铜箔不是磁性材料,它只对电场起作用,对磁场而言,它和绝缘材料差不多.网上有人这样讲: rcd的rc时间常数必须长于开关周期,也就是rc震荡频率要小于开关频率,这样子防止在管子未开通前放电完毕而导致二极管再次开通,造成系统的震荡.本人仔细分析了一下,这样讲有一定的道理, 但<开关电源设计指南>P126里讲RC时间常数等于第一个尖峰和第二个尖峰时间的3倍就够了,这个我认为有点错,因为有人讲振荡频率是指第一个脉冲以后的,从图上看基本差不多,第一个脉冲是漏感往C里面充电的过程,然后根据回复时间D有一个关断过程,当然认为是一个振荡也可以,只是时间和后面的振荡相比就太长了。