反激式开关电源设计详解
- 格式:pdf
- 大小:1.26 MB
- 文档页数:69
反激式开关电源设计详解一、工作原理1.开关管控制:反激式开关电源中,开关管起到了关键的作用。
当输入电压施加在开关管上时,开关管处于导通状态,此时电流流经变压器和输出电路,能量存储在变压器核心中。
当输入电压施加在开关管上时,开关管处于截止状态,此时能量释放,通过一对二极管和电容器形成输出脉冲电流。
2.变压器作用:反激式开关电源中的变压器主要用于将输入电压转换为所需的输出电压。
在导通状态下,输入电压施加在变压器的一侧,能量存储在变压器的磁场中。
在截止状态下,变压器的磁场崩溃,能量释放到输出电路中。
3.输出电路过滤:输出电流通过一对二极管和电容器形成脉冲电流。
为了使输出电流更加稳定,需要通过电容器对输出电流进行滤波,降低脉冲幅度,使输出电压更加平稳。
二、基本结构1.输入滤波电路:由于输入电源通常含有较多的噪声和干扰,为了保障开关电源的正常工作,需要在输入端添加一个滤波电路,通过滤波电容和电感将输入电压的尖峰和噪声滤除。
2.开关控制电路:开关控制电路用于对开关管进行控制,使其在合适的时机打开和关闭。
常见的控制方式有定时控制和反馈控制两种。
3.开关管:开关管在反激式开关电源中起到了关键的作用。
常见的开关管有MOS管、IGBT管等,其特性包括导通损耗、截止损耗和开关速度等。
4.变压器:变压器用于将输入电压变换为所需的输出电压。
同时,变压器还能起到隔离输入电源和输出负载的作用,保护负载。
5.输出整流滤波电路:输出整流滤波电路用于对输出电流进行整流和滤波,使输出电压更加稳定。
三、常见设计方法1.脉冲宽度调制(PWM)控制:PWM是一种常用的反激式开关电源控制方法,通过控制开关管的导通时间来调节输出电压和电流。
PWM控制能够实现较高的效率和较低的输出波纹,但需要一定的控制电路。
2.变压器匹配设计:在设计反激式开关电源时,需要合理选择变压器的匝数比,以实现所需的输入输出电压转换。
同时,还需要考虑变压器的大小和功耗。
反激式开关电源(flyback)是一种常见的电源结构,广泛应用于电子设备中。
它具有结构简单、成本低廉、效率高等优点,在消费电子、工业控制和通信设备等领域被广泛应用。
本文旨在介绍反激式开关电源环路设计的基础知识,包括工作原理、设计步骤和注意事项。
一、反激式开关电源的工作原理1.1 反激式开关电源的基本结构反激式开关电源由输入滤波器、整流桥、高频变压器、功率开关器件、输出整流滤波器、控制电路等组成。
其中,高频变压器是反激式开关电源的关键部件,通过变压器实现输入电压的隔离和变换,功率开关器件则控制变压器的工作状态,实现电源的调节和稳定输出。
1.2 反激式开关电源的工作原理反激式开关电源通过功率开关器件周期性地将输入电压斩波,将输入电能存储在变压器的磁场中,然后再将其转换为输出电压。
在工作周期的后半段,存储的能量释放到输出负载上,从而实现对输出电压的调节。
通过控制功率开关器件的导通时间和断态时间,可以实现对输出电压的调节和稳定。
二、反激式开关电源环路设计的基础知识2.1 反激式开关电源的设计步骤(1)确定电源的输入输出参数:包括输入电压范围、输出电压、输出电流、负载调整范围等;(2)选择功率开关器件和高频变压器:根据电源的输入输出参数和工作频率选择合适的功率开关器件和高频变压器;(3)设计反激式开关电源的控制电路:根据所选的功率开关器件和高频变压器设计相应的控制电路,包括PWM控制电路、电源启动电路等;(4)设计输入输出滤波器和保护电路:设计输入输出滤波器,保证电源的输入输出稳定和干净,设计过压、过流、过温等保护电路,保证电源的安全稳定工作。
2.2 反激式开关电源环路设计的注意事项(1)磁性元件的设计:高频变压器和输出感应元件的设计是整个反激式开关电源设计的关键,应合理设计磁芯、线圈匝数等参数,保证磁性元件承载功率、效率和体积的平衡;(2)功率开关器件的选择和驱动:应选择合适的功率开关器件,并设计合理的驱动电路,保证功率开关器件的可靠工作和转换效率;(3)控制电路的设计:应根据功率开关器件的工作特性和工作频率设计合适的PWM控制电路和反馈控制电路,保证电源的稳定可调;(4)输入输出滤波器和保护电路的设计:应合理设计输入输出滤波器和保护电路,保证电源的输入输出稳定和安全可靠。
反激式开关电源的电路设计与参数计算_陈建林
一、反激式开关电源的电路设计
据报道,反激式开关电源可以提供高效率、小型体积和低成本的解决方案,它在电脑、消费电子产品以及数字电路系统中应用较为广泛。
反激式开关电源是指在典型的AC/DC转换过程中,通过开关电路,从交流电源抽取能量进行直流转换的电路。
下面将详细介绍反激式开关电源的电路设计。
(1)反激式开关电源电路的主要组件
交流输入电路:交流输入电路是反激式开关电源电路的起始模块,它的功能是把电源电压提供给其他组件。
开关功率电路:开关功率电路的最重要的组件是开关元件,它们是把AC输入电压装入到电源系统中的基础,通常可以使用MOSFET、差动管、晶闸管等。
控制电路:控制电路是反激式开关电源电路的关键组件,它的功能是控制开关管的开合以实现输入电压的正常转换。
一般来说,控制电路通过一系列的电路元件,如比较器、占空比调节器、稳压器、脉冲发生器和定时器等实现诸如占空比调节,稳压、启动和保护等功能。
反激式开关电源设计波形分析应力计算回路布局
一、反激式开关电源设计波形分析
1.开关信号波形:
反激式开关电源的主要工作是利用开关控制器的输出,控制MOSFET 的开启和关闭,从而实现交流波的改变。
MOSFET的开启和关闭状态,只受开关控制器输出信号的影响。
因此,开关控制器输出的波形是反激开关电源设计的重要参数。
一般情况下,开关控制器输出的波形有脉冲宽度调制波形(PWM)和恒定周期调制波形(FPWM)两种。
PWM波形由正弦波组成,经过两个对称的截止点,形成周期性正方形波,控制MOSFET的端极变化产生脉冲宽度调制波形,以控制交流波形。
而FPWM波形,在它的正弦波上增加了一个脉冲,形成了一个在宽度上恒定的正弦波,控制MOSFET的端极变化产生恒定周期调制波形,来控制交流波形。
2.交流波形:
当MOSFET开启和关闭时,变压器的交流波形会随之发生变化,其形式可以用下式表示:
Vac(t)=Vm*sin(ωt+θm)
其中Vm为交流波形的最大电压,ω为开关控制器输出信号的频率,θm为交流相位角。
电力电子技术实操技能训练CR6853控制的反激式开关电源设计系别专业班级学生姓名指导教师王志强提交日期2012年9月20日一、 反激稳压电源的工作原理1、 设计要求:(1) 输入直流电压为90V~220V; (2) 输出直流电压为12V,功率为30W; (3) 开关频率为65KHz。
2、 CR6853控制的反激式开关电源原理分析:图1 CR6853控制的反激式开关电源原理图(1) 输入滤波电路开关电源的输入滤波器的主要作用是抑制电网中的噪声,使电子设备抗干扰能力大大加强,仅使电源工作频率附近的频率成分顺利通过,衰减高次频率成分。
它还能抑制开关电源所产生的共模干扰和差模干扰进入交流电网,避免干扰其他电气电子设备。
开关电源输入滤波器的结构如图2所示:图2 入滤波器的结构输入滤波器主要是由电容和电感组成。
(2) 整流滤波电路一般情况下的交流电压输入的电源,其整流器大多为桥式整流电路,每半个周期里,有两个整流二极管参与导电。
整流滤波电路如图3所示:图3 整流滤波电路(3) RCD吸收电路MOSEFT关断时,当 超过RCD缓冲电路中的电容两端的电压 时,缓冲二极管导通,尖峰电流被RCD电路吸收时,从而削减尖峰电流。
缓冲电容一定要足够大,才能保证在一个开关周期内电容两端的电压没有显著变化。
但吸收电容太大,也会增加缓冲电路的损耗,必须折中。
图4 RCD 吸收电路(4) 电压反馈控制电路反激电源原副边隔离,电压调节需要采样副边输出电压,经过调节后需要控制原边开关管的门极驱动,因此电压反馈控制涉及到采样隔离和PI 调节。
采用TL431 和TLP521 的控制电路如下:图5 TL431控制电路T L431提供参考电压,并与Rf1,Rf2,Rf4,Cf1构成PI 调节器,Rf3用于增加TL431的偏置电流,使其工作在稳压状态。
TLP521用于隔离模拟信号,在一定范围内可以等效为比例环节。
+-V DCV RO+-图6 TL431控制电路(5) 逆变电路反激式变换器是一种电气隔离的升压/降压变换器,也是最简单的隔离型直流变换器。
反激式开关电源电路设计一、反激式开关电源的基本原理1.输入滤波电路:用于对输入电压进行滤波,消除噪声和干扰。
2.整流电路:将输入交流电压转换为直流电压。
3.开关变压器:通过变压器实现电压的升降。
4.开关管:通过快速开关控制电源的输出。
5.输出滤波电路:对输出电压进行滤波,减小纹波。
二、反激式开关电源的设计步骤1.确定需求:首先需要确定设计要求,包括输出电压和电流、负载稳定性要求、效率要求等。
2.选择开关管和变压器:根据需求选择合适的开关管和变压器,考虑其最大工作电流和功率损耗。
3.转换频率的选择:根据应用的具体要求,选择合适的转换频率。
较高的频率可以减小变压器的尺寸,但也会增加开关管的功耗。
4.控制电路设计:设计开关管的控制电路,包括驱动电路和保护电路,确保开关管的正常工作和保护电路的可靠性。
5.输出滤波电路设计:设计输出滤波电路,用于滤除输出电压中的高频噪声和纹波,提高稳定性和负载能力。
6.开关电路设计:设计开关电路,确保开关管的快速开关和可靠性。
7.其他辅助电路设计:如过温保护电路、过流保护电路等。
8.电路板布局和布线:根据电路设计和要求进行电路板布局和布线,提高电路的可靠性和稳定性。
9.电路仿真和调试:使用仿真软件对设计的电路进行仿真分析,并进行实际的电路调试,确保电路的可靠性和稳定性。
三、反激式开关电源设计的注意事项1.高效率设计:选择合适的元件和电路设计,减小功率损耗,提高电源的整体效率。
2.稳定性设计:考虑负载稳定性的要求,选择合适的控制策略和滤波电路,提高电源的稳定性和负载能力。
3.保护设计:考虑过温、过流、短路等保护功能的设计,保护电源和负载器件的安全。
4.电磁兼容设计:反激式开关电源中产生的高频噪声易对其他电子设备产生干扰,需要采取适当的电磁屏蔽和滤波措施。
5.安全性设计:合理设置安全保护电路和安全措施,确保电源在故障情况下能够及时切断电源,保护用户的安全。
通过以上步骤和注意事项,可以设计出一台高效、稳定、安全的反激式开关电源,满足不同应用领域的需求。
反激式开关电源设计资料前言反激式开关电源的控制芯片种类非常丰富,芯片厂商都有自己的专用芯片,例如UC3842、UC3845、OB2262、OB2269、TOPSWITCH 等等。
虽然控制芯片略有不同,但是反激式开关电源的拓扑结构和电路原理基本上是一样的,本资料以UC3842为控制芯片设计了一款反激式开关电源。
单端反激式开关稳压电源的基本工作原理如下:D1ET ON T OFFL P L STI PQ1C O R L图1 反激式开关电源原理图当加到原边主功率开关管Q1的激励脉冲为高电平使Q1导通时,直流输入电压V IN加载原边绕组N P两端,此时因副边绕组相位是上负下正,使整流管D1反向偏置而截止;当驱动脉冲为低电平使Q1截止时,原边绕组N P两端电压极性反向,使副边绕组相位变为上正下负,则整流管被正向偏置而导通,此后存储在变压器中的磁能向负载传递释放。
因单端反激式电源只是在原边开关管到同期间存储能量,当它截止时才向负载释放能量,故高频变压器在开关工作过程中,既起变压隔离作用,又是电感储能元件。
因此又称单端反激式变换器是一种“电感储能式变换器”。
学习了反激式开关电源的工作原理之后,我们可以自行设计一款电源进行调试。
开关电源是一门实验科学,理论知识的学习是必不可少的,但是光掌握了理论知识是远远不够的,还要多做实验,测试不同环境不同参数下的电源工作情况,这样才能对电源有更深的认识。
除此之外,掌握大量的实验数据可以对以后设计电源和电源的优化提供很大帮助,可以更快速更合理的设计出一款新电源或者排除一些电源故障。
通过阅读下面的章节,可以使你对电源从原理理解到设计能力有一个快速的提升。
第一章电源参数的计算第一步,确定系统的参数。
我们设计一个电源首先要确定电源工作在一个什么样的环境,比如说输入电压的范围、频率、网侧电压是否纯净,接下来是电源的输出能力包括输出电压、电流和纹波大小等等。
先要确定这些相关因素,才能更好的设计出符合标准的电源。
反激式开关电源设计方法1.工作原理反激式开关电源是一种将线性变压器替换为变压器型电感器的开关电源。
它的工作原理是通过开关管周期性的打开和关闭,将直流电源的电能经过变压器转化为需要的输出电压。
当开关管打开时,电流从电源流入变压器进行储能;当开关管关闭时,储存在变压器中的电能会通过二次侧电容器得以释放,并输出到负载上。
2.主要组成部分(1)输入滤波电路:用来消除电源输入端的干扰信号,保证稳定的输入电压。
(2)整流电路:将交流输入电压转化为直流电压,常采用整流桥整流。
(3)激励电路:用来控制开关管的导通和关闭,以实现变压器的能量转移。
(4)变压器:用来完成电能的变换和隔离,将输入端的电能转换为所需的输出电能。
(5)输出电路:包括输出电容和输出滤波电路,用来滤除开关产生的高频脉冲,以得到稳定的输出电压。
3.设计要点在进行反激式开关电源设计时(1)确定输出电压和电流需求:根据实际应用需求,确定所需的输出电压和电流,并根据负载特性选择合适的功率等级。
(2)选择合适的开关管和变压器:根据负载需求和电路参数,选择合适的开关管和变压器,以保证输出电压和效率的要求。
(3)控制开关频率和占空比:根据负载要求和电路特性,选择合适的开关频率和占空比,以保证输出电压的稳定性和整体效果。
(4)进行热设计和保护措施:由于开关管会产生较高的温度,需要进行合理的热设计,同时添加保护电路,如过流保护、过温保护等,以保证电路的安全性和可靠性。
(5)进行EMC设计和测试:由于开关电源会产生较大的电磁干扰,需要进行EMC设计和测试,以满足相关的国际标准要求。
总结:反激式开关电源是一种常用的电源设计方案,其设计方法包括确定输出需求、选择合适的器件、控制开关频率和占空比、进行热设计和保护措施,以及进行EMC设计和测试。
通过合理的设计和选择,可以实现高效率、小型化的电源方案,满足各种电子设备的需求。
电子科技大学杨忠孝(下)反激开关电源特点优点成本低,外围元件少,低耗能,可设置多组输出。
缺点输出纹波比较大。
弥补缺陷的方法输出加低内阻滤波电容或加LC噪声滤波器可以改善电动自行车电源电路原理图次级侧电路原理图次级整流二极管的选型•为了降低输出整流损耗,次级整流二极管一般选用肖特基二极管,肖特基二极管有较低的正向导通压降Vf,能通过较大的电流。
输出整流二极管的耐压值二极管的平均电流值二极管的峰值电流值次级整流管的热设计•二极管的热损耗包括正向导通损耗、反向漏电流损耗及恢复损耗。
因为选用的是肖特基二极管,反向恢复时间短和漏电流比较小,可忽略不记。
•二极管的PN结对环境的热阻可以通过DATASHEET查得Rthjc=1.2°C/W•Tj=Rthjc*Vf*Id_rms+TaTa为工作的环境温度Tj为二极管工作温度理论值Vf表示二极管的正向导通压降Id_rms表示通过二极管的平均电流•吸收的本质,什么是吸收?•在拓扑电路的原型上是没有吸收回路的,实际电路中都有吸收,由此可以看出吸收是工程上的需要,不是拓扑需要。
•吸收一般都是和电感有关,这个电感不是指拓扑中的感性元件,而是指诸如变压器漏感、布线杂散电感。
•吸收是针对电压尖峰而言,电压尖峰从何而来?电压尖峰的本质是什么?•电压尖峰的本质是一个对结电容的dv/dt充放电过程,而dv/dt是由电感电流的瞬变(di/dt)引起的,所以,降低di/dt或者dv/dt的任何措施都可以降低电压尖峰,这就是吸收。
•吸收的作用?•1、降低尖峰电压•2、缓冲尖峰电流•3、降低di/dt和dv/dt,即改善EMI品质•4、减低开关损耗,即实现某种程度的软开关。
•5、提高效率。
提高效率是相对而言的,若取值不合理不但不能提高效率,弄不好还可能降低效率。
•RC吸收的特点:•1、双向吸收。
一个典型的被吸收电压波形中包括上升沿、上升沿过冲、下降沿这三部分,RC吸收回路在这三各过程中都会产生吸收功率。
反激式开关电源原理与工程设计讲解反激式开关电源原理与工程设计一.反激式开关电源的原理分析二.反激式开关电源实际电路的主要部件及其作用三.反激式开关电源电路各主要器件的参数选择四.反激式开关电源pcb排板原则五.变压器的设计六.反激式开关电源的稳定性问题反激式开关电源原理与工程设计一.反激式开关电源的原理分析1.反激式开关电源电路拓扑2.为什么是反激式a.变压器的同名端相反b.利用了二极管的单向导电特性3.电感电流的变化为何不是突变电压加在有电感的闭合回路上,流过电感上电流不是突变的,而是线性增加。
愣次定律:a.当电感线圈流过变化的电流时会产生感生电动势,其大小于与线圈中电流的变化率成正比;b.感生电动势总是阻碍原电流的变化4.变压器的主要作用与能量的传递理想变压器与反激式变压器的区别反激式变压器的作用a.电感(储能)作用遵守的是安匝比守恒(而不是电压比守恒)储存的能量为1/2×L×Ip2b.限流的作用c.变压作用初次级虽然不是同时导通,它们之间也存在电压转换关系,也是初级按匝比变换到次级,次级按变比折射回初级。
d.变压器的气隙作用扩展磁滞回线,能使变压器更不易饱和磁饱和的原理图电感值跟导磁率成正比,导磁率=B/HB是磁通密度H是磁场强度简单一点,H跟外加电流成正比就是了,增加电流,磁流密度会跟着增加, 当加电流至某一程度时,我们会发现,磁通密度会增加得很慢, 而且会趋近一渐近线.当趋近这一渐近线时,这时的磁通密度,我们就称為饱和磁通密度,电感值跟导磁率成正比,导磁率=B/HB是磁通密度,H是磁场强度(电流增加,H会增加.) H会增加,但B不会增加, 导磁率变化量会趋近零啦!电感值跟导磁率变化量成正比, 导磁率变化量趋近零,那电感值会是多少? 零5.开关管漏极电压的组成a. 高压为基础部分b. 折射回来的电压部分c. 漏感产生的尖峰部分波形6.反激式拓扑开关电源有两种工作模式:(1) 完全能量转换,也叫做非连续导通模式。
一步一步精通单端反激式开关电源设计————————————————————————————————作者:————————————————————————————————日期:一步一步精通单端反激式开关电源设计目录■系统应用需求 (5)■步骤1_确定应用需求 (5)■步骤2_根据应用需求选择反馈电路和偏置电压VB (6)■步骤3_确定最小和最大直流输入电压VMIN和VMAX,并基于输入电压和PO选择输入存储电容CIN的容量 (8)3.1、选择输入存储电容CIN的容量 (8)3.2、确定最小和最大直流输入电压VMIN和VMAX (11)■步骤4_输入整流桥的选择 (11)■步骤5_确定发射的输出电压VOR以及钳位稳压管电压VCLO (13)■步骤6_对应相应的工作模式及电流波形设定电流波形参数KP:当KP≤1时,KP=KRP;当KP≥1时,KP=KDP (16)■步骤7_根据VMIN和VOR确定DMAX (18)■步骤8_计算初级峰值电流IP、输入平均电流IAVG和初级RMS电流IRMS (18)■步骤9_基于AC输入电压,VO、PO以及效率选定MOS管芯片 (20)■步骤10_设定外部限流点降低的ILIMIT降低因数KI (20)■步骤11_通过IP和ILIMIT的比较验证MOS芯片选择的正确性 (20)■步骤12_计算功率开关管热阻选择散热片验证MOS芯片选择的正确性 (20)■步骤13_计算初级电感量LP (21)■步骤14_选择磁芯和骨架,再从磁芯和骨架的数据手册中得到,,和BW的参考值 (22)■步骤15_设定初级绕组的层数L以及次级绕组圈数(可能需要经过迭代的过程) (29)■步骤16_计算次级绕组圈数以及偏置绕组圈数 (29)■步骤17_确定初级绕组线径参数OD、DIA、AWG (29)■步骤18_步骤23-检查。
如果有必要可以通过改变L、或磁芯/骨架的方法对其进行迭代,知道满足规定的范围 (30)■步骤24 –确认4200高斯。
反激式开关电源变压器的设计反激式开关电源变压器是一种常见的变压器类型,广泛应用于电子设备和通信设备中。
它具有体积小、效率高以及输出电压稳定等优点。
本文将分别从设计原理、工作方式和设计步骤等方面对反激式开关电源变压器的设计进行详细介绍。
一、设计原理二、工作方式反激式开关电源变压器的工作方式可以分为两个阶段:储能和传输。
在储能阶段,开关管打开,电流通过变压器一侧的绕组进行储能;在传输阶段,开关管关闭,储存的能量被转移到变压器另一侧的绕组上,最后输出所需的电压。
三、设计步骤1.确定输入电压和输出电压的需求。
根据实际应用需求确定输入电压和输出电压的范围。
2.计算变压器的变比。
根据输入电压和输出电压的比例计算变压器的变比N。
3.计算变压器的功率。
根据输出电压和输出电流计算变压器的功率,确保变压器能够承受所需的功率。
4.确定变压器的工作频率。
根据实际应用需求选择合适的工作频率,通常在20kHz到200kHz之间。
5.计算变压器的参数。
根据变压器的变比、工作频率和功率计算变压器的参数,包括绕组的匝数、铁芯的尺寸等。
6.选择合适的磁性材料。
根据变压器的参数选择适合的磁性材料,常用的材料有软磁合金和磁性氧化铁等。
7.进行原型设计和测试。
根据上述设计参数制作变压器的原型,并进行测试以验证设计结果的准确性。
8.进行参数调整和优化。
根据原型测试结果进行参数调整和优化,以实现更好的性能和效果。
9.进行批量生产。
当设计满足要求时,可以进行批量生产并进行产品验证和测试。
总结:。
1 设计步骤:1.1 产品规格书制作1.2 设计线路图、零件选用.1.3 PCB Layout.1.4 变压器、电感等计算.1.5 设计验证.2 设计流程介绍:2.1 产品规格书制作依据客户的要求,制作产品规格书。
做为设计开发、品质检验、生产测试等的依据。
2.2 设计线路图、零件选用。
2.3 PCB Layout.外形尺寸、接口定义,散热方式等。
2.4 变压器、电感等计算.变压器是整个电源供应器的重要核心,所以变压器的计算及验证是很重要的,2.4.1 决定变压器的材质及尺寸:依据变压器计算公式Gauss x NpxAeLpxIp B 100(max ) ➢ B(max) = 铁心饱合的磁通密度(Gauss)➢ Lp = 一次侧电感值(uH)➢ Ip = 一次侧峰值电流(A)➢ Np = 一次侧(主线圈)圈数➢ Ae = 铁心截面积(cm 2)➢B(max) 依铁心的材质及本身的温度来决定,以TDK FerriteCore PC40为例,100℃时的B(max)为3900 Gauss ,设计时应考虑零件误差,所以一般取3000~3500 Gauss 之间,若所设计的power 为Adapter(有外壳)则应取3000 Gauss 左右,以避免铁心因高温而饱合,一般而言铁心的尺寸越大,Ae 越高,所以可以做较大瓦数的Power 。
2.4.2 决定一次侧滤波电容:滤波电容的决定,可以决定电容器上的Vin(min),滤波电容越大,Vin(win)越高,可以做较大瓦数的Power ,但相对价格亦较高。
2.4.3 决定变压器线径及线数:变压器的选择实际中一般根据经验,依据电源的体积、工作频率,散热条件,工作环境温度等选择。
当变压器决定后,变压器的Bobbin 即可决定,依据Bobbin 的槽宽,可决定变压器的线径及线数,亦可计算出线径的电流密度,电流密度一般以6A/mm 2为参考,电流密度对变压器的设计而言,只能当做参考值,最终应以温升记录为准。
反激式开关电源的设计1.反激式开关电源的基本原理与拓扑结构2.反激式开关电源的设计步骤(1)选择合适的开关器件:根据设计需求确定开关器件的额定电流和电压。
应选择满足设计需求的高效开关器件,以确保电源的稳定性和可靠性。
(2)设计变压器:变压器是反激式开关电源中非常重要的组成部分,其设计影响着整个电源的性能。
变压器的设计应根据输入电压、输出电压及负载电流等确定变比。
(3)设计输入滤波器:输入滤波器主要用于去除输入电源的高频噪声和电磁干扰。
应根据设计要求选择合适的滤波器元件。
(4)选择输出滤波器:输出滤波器用于去除输出电压中的高频噪声和波动。
应选择满足设计要求的输出滤波器元件。
(5)选择控制器和反馈电路:反激式开关电源需要一个控制器来控制开关器件的开关频率和占空比。
应根据具体设计需求选择合适的控制器和反馈电路。
(6)设计保护电路:反激式开关电源应设计有相应的保护电路,以防止过流、过压和过温等情况的发生,保证电源的安全可靠运行。
(7)进行电路仿真和调试:应使用电子设计自动化工具进行电路仿真和调试,以验证电源设计的正确性和稳定性。
3.注意事项和常见问题(1)电源设计应考虑效率和性能的平衡,既要保持高效率,又要满足设计要求。
(2)电源设计时要合理布局电路板,降低电磁干扰和噪声。
(3)电源设计应注意选择合适的元件,在成本和性能之间进行权衡。
(4)在进行电路仿真和调试时,应注意保护器件和测试仪器的安全,避免电源短路和电流过大导致元器件损坏。
(5)设计完成后,应进行严格的测试和质量控制,确保电源的稳定性和可靠性。
总结:反激式开关电源是一种常见的开关电源拓扑结构,在设计中需要考虑元件选择、变压器设计、滤波器设计、控制器和反馈电路选择等多个因素。
合理的设计和调试能够确保电源的稳定性和可靠性,满足设备的电源需求。
反激式开关电源的设计方法反激式开关电源是一种常用于电子设备中的高效率电源。
它通过将输入电源的直流电压转换为高频脉冲信号,再进行变压、整流和滤波等处理,最终得到所需要的输出电压。
本文将介绍反激式开关电源的设计方法,包括主要元件的选择、电路的设计和调试等内容。
一、元件的选择1.变压器:反激式开关电源的核心元件之一、在选择变压器时,需要根据设计好的输入和输出电压来确定变比。
同时,还需要考虑变压器的工作频率、功率损耗、功率因数等参数。
一般情况下,选择具有较高工作频率和较低损耗的变压器效果会更好。
2.开关管:开关管主要用于开关电源中的开关操作。
在选择开关管时,需要考虑电流和电压的要求,以及其承受功率和导通损耗等参数。
常见的开关管有MOSFET和IGBT等。
3.控制芯片:控制芯片用于控制开关管的导通和关闭时间,以及输入输出电压的稳定性等。
选择合适的控制芯片需要考虑芯片的工作频率、控制方式、保护功能等参数。
4.输出电容和滤波电感:输出电容和滤波电感用于平滑输出电压和滤除高频噪声。
在选择时,需要考虑电容和电感的电压和电流容量,以及使用寿命等因素。
二、电路的设计1.输入滤波电路:输入滤波电路主要用于去除输入电源中的高频噪声和波动。
常见的输入滤波电路包括滤波电容和滤波电感的串联组合,以及降压电感和降压二极管的并联组合。
2.开关电路:开关电路是反激式开关电源的核心部分,它通过开关管的导通和关闭操作,将输入电源的直流电压转换为高频脉冲信号。
开关电路一般由开关管、变压器、滤波电容和滤波电感等元件组成。
3.输出调整电路:输出调整电路用于稳定输出电压,并提供过载、过流和短路等保护功能。
常见的输出调整电路包括反馈电路、比较电路和控制芯片等。
4.反馈电路:反馈电路用于检测输出电压,并通过控制芯片对开关管的导通和关闭时间进行调节,从而稳定输出电压。
反馈电路一般由分压电阻、运放和电压比较器等组成。
三、电路的调试1.输出电压调节:利用调整反馈电路中的分压电阻,可以实现对输出电压的调节。
反激式开关电源设计(徐辉)概述:在反激拓扑中,开关导同时,变压器储存能量,负载电流由输出滤波电容提供;开关关断时,变压器存储的能量传送到负载和输出滤波电容,以补偿电容单独提供负载电流时消耗的能量。
应用范围:这种拓扑在输出功率为5~150W电源中应用非常广泛。
它最大的特点是不在次级接储能电感(但需加较小的滤波电感),使成本降低,体积较小。
电源电路原理图:一、输入部分电路设计:电路原理图如下:◆输入部分主要由下列几部分组成:保险丝F1(3A/250V)、热敏电阻N1(5D-9)、压敏电阻ZN1(7D471K)、共模电感L1(22mH/2A)、整流二极管BD1~BD4(1N5399)和C6(47U/400V)组成。
◆输入整流器:在选择整流器是应注意下面一些重要参数:1)最大正向整流电流:它主要由输出功率决定,所以整流二极管的稳态电流容量至少应是计算值的2倍。
2)峰值反向截止电压:由于整流器处在高电压的环境中,它必须有较高的反向截止电压,一般应为600V以上。
3)能承受较高的浪涌电流能力:浪涌电流是由开关管导通时的峰值电流所产生的。
◆滤波电容的计算:1)正确的选择电容很重要,它影响输出端的低频纹波和输出电压保持时间这两个参数。
计算滤波电容的公式如下:C=I×t /ΔV (C:电容值(F);I:负载电流(A);t:电容提供电流的时间(s);ΔV:允许的纹波电压(V)。
)备注:一般根据输出功率算:1W用1uF的电容2)电容的纹波电流对电源的寿命有很大影响,流经直流输入回路的平均电流Idc由下公式决定:Idc=Ids×Dmax;这里的,Ids:输入Np(MOS管)电流;Dmax:最大占空比。
3)这里也给出与上面公式不一样求C值的公式:按经验值:C=(400~600)×Idc(单位:uF)4)流经C的纹波电压Vcr:Vcr=(Idc×t)/C (t:为整流器的非导通时间,由二极管资料得到;)◆流经开关元件的有效电流值:Irms=Ids×√(Ton/T)(Ton为开关导通时间,T为整个周期。