当前位置:文档之家› TFT LCD液晶显示器的驱动原理(doc 11页)_New

TFT LCD液晶显示器的驱动原理(doc 11页)_New

TFT LCD液晶显示器的驱动原理(doc 11页)_New
TFT LCD液晶显示器的驱动原理(doc 11页)_New

TFT LCD液晶显示器的驱动原理(doc 11页)_New

TFT LCD液晶显示器的驱动原理(doc 11页)

如果图不清楚,请看https://www.doczj.com/doc/ae10977417.html,/album/43/69/51466943/431163.jpg

圖1就是這兩種儲存電容架構,圖中可以很明顯地知道,Cs on gate由於不必像Cs on common需要增加一條額外的common走線,所以其開口率(Aperture ratio)比較大。而開口率的大小是影響面板的亮度與設計的重要因素,所以現今面板的設計大多使用Cs on gate的方式。但是由於Cs on gate 方式的儲存電容是由下一條的gate走線與顯示電極之間形成的(請見圖2中Cs on gate與Cs on common的等效電路),

src="https://www.doczj.com/doc/ae10977417.html,/album/43/69/51466943/431250.jpg" border=0>

而gate走線就是接到每一個TFT的gate端的走線,主要是作為gate driver 送出信號來打開TFT,好讓TFT對顯示電極作充放電的動作。所以當下一條gate走線送出電壓要打開下一個TFT時,便會影響到儲存電容上儲存電壓的大小。不過由於下一條gate走線打開到關閉的時間很短(以1024 x 768解析度,60Hz更新頻率的面板來說。一條gate走線打開的時間約為20μs,而顯示畫面更新的時間約為16ms,所以相較下影響有限),所以當下一條gate 走線關閉,回復到原先的電壓,則Cs儲存電容的電壓,也會隨之恢復到正常。這也是為什麼大多數的儲存電容設計都是採用Cs on gate的方式的原因。

至於common走線,在這邊也需要順便介紹一下。從圖2中可以發現,不管

採用怎樣的儲存電容架構,Clc的兩端都是分別接到顯示電極與common。既然液晶是充滿在上下兩片玻璃之間,而顯示電極與TFT都是位在同一片玻璃上,則common電極很明顯的就是位在另一片玻璃之上。如此一來,由液晶所形成的平行板電容Clc,便是由上下兩片玻璃的顯示電極與common 電極所形成。而位於Cs儲存電容上的common電極則是另外利用位於與顯示電極同一片玻璃上的走線,這跟Clc上的common電極是不一樣的,只不過它們最後都是接到相同的電壓就是了。

src="https://www.doczj.com/doc/ae10977417.html,/album/43/69/51466943/431260.jpg" border=0>

整塊面板的電路架構

從圖3中可以看到整片面板的等效電路,其中每一個TFT與Clc跟Cs所並連的電容代表一個顯示的點。而一個基本的顯示單元pixel則需要三個這樣顯示的點,分別代表RGB三原色。以一個1024 x 768解析度的TFT LCD 來說,共需要1024 x 768 x 3個這樣的點組合而成。整片面板的大致結構就是這樣,然後再藉由如圖3中gate driver所送出的波形,依序將每一行的TFT打開,好讓整排的source driver同時將一整行的顯示點充電到各自所需的電壓,以顯示不同的灰階。當這一行充好電時,gate driver便將電壓關閉,然後下一行的gate driver便將電壓打開,再由相同的一排source driver

對下一行的顯示點進行充放電。如此依序下去,當充好了最後一行的顯示點,便又回過來從頭從第一行再開始充電。

以一個1024 x 768 SVGA解析度的液晶顯示器來說,總共會有768行的gate 走線,而source走線則共需要1024 x 3=3072條。以一般的液晶顯示器多為60Hz的更新頻率來說,每一個畫面的顯示時間約為1/60=16.67ms。由於畫面的組成為768行的gate走線,所以分配給每一條gate走線的開關時間約為16.67ms/768=21.7μs。所以在圖3 gate driver送出的波形中,就可以看到這些波形為一個接著一個寬度為21.7μs的脈波,依序打開每一行的TFT。而source driver則在這21.7μs的時間內,經由source走線,將顯示電極充放電到所需的電壓,好顯示出相對應的灰階。

面板的各種極性變換方式

由於液晶分子還有一種特性,就是不能夠一直固定在某一個電壓不變,不然時間久了,即使將電壓取消掉,液晶分子會因為特性的破壞而無法再因應電場的變化來轉動,以形成不同的灰階。所以每隔一段時間,就必須將電壓恢復原狀,以避免液晶分子的特性遭到破壞。

但是如果畫面一直不動,也就是說畫面一直顯示同一個灰階的時候怎麼辦?所以液晶顯示器內的顯示電壓就分成了兩種極性,一個是正極性,而另一個

是負極性。當顯示電極的電壓高於common電極電壓時,就稱之為正極性。而當顯示電極的電壓低於common電極的電壓時,就稱之為負極性。不管是正極性或是負極性,都會有一組相同亮度的灰階。所以當上下兩層玻璃的壓差絕對值是固定時,不管是顯示電極的電壓高,或是common電極的電壓高,所表現出來的灰階是一模一樣的。不過這兩種情況下,液晶分子的轉向卻是完全相反,也就可以避免掉上述當液晶分子轉向一直固定在一個方向時,所造成的特性破壞。也就是說,當顯示畫面一直不動時,我們仍然可以藉由正負極性不停的交替,達到顯示畫面不動,同時液晶分子不被破壞掉特性的結果。所以當您所看到的液晶顯示器畫面雖然靜止不動,其實裡面的電壓正在不停的作更換,而其中的液晶分子正不停的一次往這邊轉,另一次往反方向轉呢!

src="https://www.doczj.com/doc/ae10977417.html,/album/43/69/51466943/431266.jpg" border=0>

圖4就是面板各種不同極性的變換方式,雖然有這麼多種的轉換方式,它們有一個共通點,都是在下一次更換畫面資料的時候來改變極性。以60Hz的更新頻率來說,亦即每16ms更改一次畫面的極性。也就是說,對於同一點而言,它的極性是不停的變換的。而相鄰的點是否擁有相同的極性,那可就依照不同的極性轉換方式來決定了。首先是frame inversion,其整個畫面所有相鄰的點,都是擁有相同的極性;而row inversion與column inversion 則各自在相鄰的行與列上擁有相同的極性;另外在dot inversion上,則是每

個點與自己相鄰的上下左右四個點,是不一樣的極性;最後是delta inversion,由於它的排列比較不一樣,所以它是以RGB三個點所形成的pixel 作為一個基本單位,當以pixel為單位時,它就與dot inversion很相似了,也就是每個pixel與自己上下左右相鄰的pixel,是使用不同的極性來顯示的。

Common電極的驅動方式

src="https://www.doczj.com/doc/ae10977417.html,/album/43/69/51466943/431284.jpg" border=0>

圖5及圖6為兩種不同的Common電極的電壓驅動方式,圖5中Common 電極的電壓是一直固定不動的,而顯示電極的電壓卻是依照其灰階的不同,不停的上下變動。圖5中是256灰階的顯示電極波形變化,以V0這個灰階而言,如果您要在面板上一直顯示V0這個灰階的話,則顯示電極的電壓就必須一次很高,但是另一次卻很低的這種方式來變化。為什麼要這麼複雜呢?如同前面所提到的原因一樣,這是為了讓液晶分子不會一直保持在同一個轉向,而導致物理特性的永久破壞。因此在不同的frame中,以V0這個灰階來說,其顯示電極與common電極的壓差絕對值是固定的,所以它的灰階也一直不曾更動。只不過位在Clc兩端的電壓,一次是正的,稱之為正極性,而另一次是負的,稱之為負極性。

為了達到極性不停變換這個目的,也可以讓common電壓不停地變動,同樣也可以達到讓Clc兩端的壓差絕對值固定不變,而灰階也不會變化的效果,而這種方法,就是圖6所顯示的波形變化。這個方法只是將common電壓一次很大、一次很小的變化。當然啦,它一定要比灰階中最大的電壓還大,而電壓小的時候則要比灰階中最小的電壓還要小才行。而各灰階的電壓與圖5中的一樣,仍然要一次大一次小的變化。

這兩種不同的Common驅動方式影響最大的就是source driver的使用。以圖7中的不同Common電壓驅動方式的穿透率來說,當common電極的電壓是固定不變的時候,顯示電極的最高電壓需要到達common電極電壓的兩倍以上。而顯示電極電壓的提供,則是來自於source driver。

src="https://www.doczj.com/doc/ae10977417.html,/album/43/69/51466943/s_431285.jpg.gif" border=0>

如果土不清楚:请参阅:https://www.doczj.com/doc/ae10977417.html,/album/43/69/51466943/s_431285.jpg.gif

以圖7中common電極電壓若是固定於5伏特的話,則source driver所能提供的工作電壓範圍就要到10伏特以上。但是如果common電極的電壓是變動的話,假使common電極電壓最大為5伏特,則source driver的最大工作電壓也只要為5伏特就可以了。就source driver的設計製造來說,需要越高電壓的工作範圍,製程與電路的複雜度相對會提高,成本也會因此而加

高。

面板極性變換與common電極驅動方式的選用

並不是所有的面板極性轉換方式都可以搭配上述兩種common電極的驅動方式。當common電極電壓固定不變時,可以使用所有的面板極性轉換。但如果common電壓是變動的話,則面板極性轉換就只能選用frame inversion 與row inversion。(請見表1)也就是說,如果想使用column inversion或是dot inversion的話,就只能選用common電極電壓固定不動的驅動方式。為什麼呢?

之前曾經提到common電極是位於跟顯示電極不同的玻璃上,在實際的製作上時,其實這一整片玻璃都是common電極。也就是說,在面板上所有顯示點的common電壓是全部接在一起的。其次由於gate driver的操作方式是將同一行的所有TFT打開,好讓source driver去充電,而這一行的所有顯示點,它的common電極都是接在一起的,所以如果選用common電極電壓是可變動的方式,是無法在一行TFT上同時做到顯示正極性與負極性的。而column inversion與dot inversion的極性變換方式,在一行的顯示點上要求每個相鄰的點擁有不同的正負極性。這也就是為什麼common電極電壓變動的方式僅能適用於frame inversion與row inversion的緣故。而common 電極電壓固定的方式就沒有這些限制,因為其common電壓一直固定,只要

source driver能將電壓充到比common大就可以得到正極性,比common 電壓小就可以得到負極性,所以common電極電壓固定的方式,可以適用於各種面板極性的變換方式。

各種面板極性變換的比較

現在常見使用在個人電腦上的液晶顯示器,所使用的面板極性變換方式大部分都是dot inversion。為什麼呢?原因無它,因為dot inversion的顯示品質相對於其他的面板極性變換方式好太多了。表2是各種面板極性變換方式的比較表。

所謂Flicker的現象,就是當你看液晶顯示器的畫面上時,畫面會有閃爍的感覺。它並不是故意讓顯示畫面一亮一滅來做出閃爍的視覺效果,而是因為顯示的畫面灰階在每次更新畫面時,會有些微的變動,讓人眼感受到畫面在閃爍。這種情況最容易發生在使用frame inversion的極性變換方式,因為frame inversion整個畫面都是同一極性,當這次畫面是正極性時,下次整個畫面就都變成了是負極性。假若使用common電壓固定的方式來驅動,而common電壓又有了一點誤差(請見圖8),

如果土不清楚:请参阅:

https://www.doczj.com/doc/ae10977417.html,/album/43/69/51466943/s_431289.jpg.gif

這時候正負極性的同一灰階電壓便會有差別,當然灰階的感覺也就不一樣。在不停切換畫面的情況下,由於正負極性畫面交替出現,就會感覺到Flicker 的存在。而其它面板的極性變換方式雖然也會有此flicker的現象,但由於不像frame inversion是同時整個畫面一齊變換極性,只有一行或是一列,甚至是一個點變化極性而已,以人眼的感覺來說,比較不明顯。至於crosstalk 的現象,就是相鄰的點之間要顯示的資料會影響到對方,以致於顯示的畫面會有不正確的狀況。雖然crosstalk的現象成因有很多種,只要相鄰點的極性不一樣,便可以減低此一現象的發生。綜合這些特性可知,為何大多數人都使用dot inversion了。

面板極性變換方式,對於耗電也有不同的影響。不過它在耗電上需要考量其搭配的common電極驅動方式。一般來說,common電極電壓若是固定,其驅動common電極的耗電會比較小。但是由於搭配common電壓固定方式的source driver其所需的電壓比較高,反而在source driver的耗電會比較大。但如果使用相同的common電極驅動方式,source driver的耗電就要考量其輸出電壓的變動頻率與變動電壓大小。在此種情形下,source driver的耗電會有dot inversion>row inversion>column inversion>frame inversion 的狀況。不過現今由於dot inversion的source driver多是使用PN型的OP,而不是像row inversion是使用rail to rail OP,在source driver中OP的耗電就會比較小。也就是說由於source driver在結構及電路上的改進,雖然先

天上它的輸出電壓變動頻率最高也最大(變動電壓最大接近10伏特,而row inversion面板由於多是使用common電極電壓變動的方式,其source driver 的變動電壓最大只有5伏特,耗電上會比較小),但dot inversion面板的整體耗電已經減低很多了。這也就是為什麼大多數的液晶顯示器都是使用dot inversion的方式。

相关主题
文本预览
相关文档 最新文档