月球软着陆轨道的时间逼近法快速优化设计
- 格式:pdf
- 大小:377.56 KB
- 文档页数:7
基于直接配点法的月球软着陆轨道快速优化涂良辉;袁建平;罗建军;方群【期刊名称】《中国空间科学技术》【年(卷),期】2008(028)004【摘要】介绍了直接配点法在月球探测器软着陆轨道快速优化问题中的应用.首先给出了软着陆最优化控制问题模型,其中状态方程为量纲为1的三自由度模型,性能指标选为燃料消耗最小,控制变量则为推力攻角和推力.终端状态受到速度和高度的约束.然后,应用直接配点法将最优控制问题离散化为非线性规划问题,即将动态优化问题转化为静态参数最优化问题.选取各节点和配点上的状态量和控制量作为优化参数.最后应用基于Matlab语言的SNOPT软件包对参数最优化问题进行求解,该软件包对于求解大型非线性规划问题具有很好的收敛性.仿真结果表明直接配点法对于月球探测器软着陆轨道初始状态量和控制量的取值不敏感,且求解过程具有一定的实时性.因此,直接配点法对于再入轨迹优化问题的求解是可行的.【总页数】7页(P19-24,39)【作者】涂良辉;袁建平;罗建军;方群【作者单位】西北工业大学航天学院,西安,710072;西北工业大学航天学院,西安,710072;西北工业大学航天学院,西安,710072;西北工业大学航天学院,西安,710072【正文语种】中文【中图分类】V4【相关文献】1.基于伪光谱方法月球软着陆轨道快速优化设计 [J], 王明光;裴听国;袁建平2.月球软着陆轨道的时间逼近法快速优化设计 [J], 赵吉松;谷良贤;高原3.基于伪光谱方法的月球软着陆轨道快速优化 [J], 罗建军;王明光;袁建平4.基于直接配点法的滑翔轨迹快速优化设计 [J], 陈小庆;侯中喜;刘建霞5.基于广义乘子法的月球软着陆轨道快速优化设计 [J], 赵吉松;谷良贤因版权原因,仅展示原文概要,查看原文内容请购买。
嫦娥三号软着陆轨道设计与控制策略的优化模型一、本文概述随着航天技术的飞速发展,人类对月球的探索和利用进入了全新的阶段。
嫦娥三号作为我国探月工程的重要组成部分,其成功软着陆于月球表面,不仅标志着我国航天技术的重大突破,也为后续深空探测任务奠定了坚实的基础。
然而,软着陆过程作为探月任务中的关键环节,其轨道设计与控制策略的优化问题一直是航天领域的研究热点和难点。
本文旨在探讨嫦娥三号软着陆轨道设计与控制策略的优化模型,通过对现有研究成果的综述和深入分析,以期为我国未来探月工程及深空探测任务的轨道设计与控制提供理论支持和实践指导。
本文将对嫦娥三号软着陆任务进行简要介绍,包括任务背景、软着陆过程的关键技术难点以及面临的挑战。
在此基础上,重点阐述轨道设计与控制策略在软着陆过程中的重要性,以及优化模型建立的必要性。
文章将综述国内外在月球软着陆轨道设计与控制策略方面的研究成果,包括轨道优化方法、制导与控制策略、以及着陆精度与稳定性等方面的研究现状。
通过对比分析,总结现有研究成果的优点和不足,为后续的优化模型建立提供理论依据。
本文将提出一种针对嫦娥三号软着陆轨道设计与控制策略的优化模型。
该模型将综合考虑轨道动力学特性、制导与控制算法、着陆环境等多因素,通过数学建模和仿真分析,实现对轨道设计与控制策略的优化。
还将对优化模型进行验证和评估,以确保其在实际应用中的可行性和有效性。
本文的研究不仅有助于提升我国探月工程及深空探测任务的技术水平,还可为其他航天器在复杂环境下的轨道设计与控制提供有益的借鉴和参考。
二、月球环境及轨道特性分析在进行嫦娥三号软着陆轨道设计与控制策略的优化之前,首先需要对月球的环境和轨道特性进行深入的分析。
月球,作为地球的唯一天然卫星,其表面环境复杂多变,重力场分布不均,且没有大气层保护,这些特点对嫦娥三号的软着陆轨道设计和控制策略提出了更高的要求。
月球的重力场分布对轨道设计有着直接的影响。
由于月球内部质量分布不均,其重力场呈现出复杂的特性,尤其是月球表面附近的重力梯度变化较大。
2014高教社杯全国大学生数学建模竞赛承诺书我们仔细阅读了《全国大学生数学建模竞赛章程》和《全国大学生数学建模竞赛参赛规如此》〔以下简称为“竞赛章程和参赛规如此〞,可从全国大学生数学建模竞赛下载〕。
我们完全明白,在竞赛开始后参赛队员不能以任何方式〔包括、电子、网上咨询等〕与队外的任何人〔包括指导教师〕研究、讨论与赛题有关的问题。
我们知道,抄袭别人的成果是违反竞赛章程和参赛规如此的,如果引用别人的成果或其他公开的资料〔包括网上查到的资料〕,必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。
我们X重承诺,严格遵守竞赛章程和参赛规如此,以保证竞赛的公正、公平性。
如有违反竞赛章程和参赛规如此的行为,我们将受到严肃处理。
我们授权全国大学生数学建模竞赛组委会,可将我们的论文以任何形式进展公开展示〔包括进展网上公示,在书籍、期刊和其他媒体进展正式或非正式发表等〕。
我们参赛选择的题号是〔从A/B/C/D中选择一项填写〕: A 我们的报名参赛队号为〔8位数字组成的编号〕:所属学校〔请填写完整的全名〕:某某海事大学参赛队员 (打印并签名) :1.2.3.指导教师或指导教师组负责人 (打印并签名):教师组〔论文纸质版与电子版中的以上信息必须一致,只是电子版中无需签名。
以上内容请仔细核对,提交后将不再允许做任何修改。
如填写错误,论文可能被取消评奖资格。
〕日期 2014 年 9 月 14 日赛区评阅编号〔由赛区组委会评阅前进展编号〕:2014高教社杯全国大学生数学建模竞赛编号专用页赛区评阅编号〔由赛区组委会评阅前进展编号〕:赛区评阅记录〔可供赛区评阅时使用〕:全国统一编号〔由赛区组委会送交全国前编号〕:全国评阅编号〔由全国组委会评阅前进展编号〕:嫦娥三号软着陆轨道设计与控制策略摘要月球是距离地球最近的天体,对月球资源和环境进展科学研究和考察,是人类走出地球,探索未知世界所必需经历的重要步骤。
由于月球外表没有大气 ,因此在月球外表实现软着陆是月球勘探的重要前提。
嫦娥三号软着陆轨道设计与控制策略引言嫦娥三号(Chang'e-3)是中国国家航天局(CNSA)于2013年发射的探月任务。
作为中国首个实现月面软着陆的任务,嫦娥三号的轨道设计与控制策略至关重要。
本文将探讨嫦娥三号的软着陆轨道设计以及相应的控制策略。
一、轨道设计1.1 软着陆的定义软着陆是指在着陆过程中,飞船的速度和加速度较小,从而减小着陆冲击力,降低着陆事故的风险。
嫦娥三号软着陆的主要目标是保证飞船及上面搭载的月球车的安全着陆。
1.2 轨道选择嫦娥三号选择了椭圆轨道进行软着陆。
这是因为椭圆轨道在进入月球表面前可以实现速度和加速度的逐渐减小,从而使得软着陆更加稳定和可控。
1.3 轨道参数设计在确定椭圆轨道之后,嫦娥三号需要确定相应的轨道参数。
这些参数包括轨道离心率、轨道倾角和轨道高度等。
通过科学计算和仿真分析,嫦娥三号确定了具体的轨道参数,以便使得软着陆能够满足任务要求。
二、控制策略2.1 控制模式嫦娥三号软着陆的控制策略采取了主动控制模式。
这意味着在着陆过程中,飞船将根据实时数据进行主动调整,以保证软着陆的稳定和安全。
2.2 触发条件在软着陆的控制策略中,触发条件是十分重要的。
嫦娥三号采取了多个触发条件,包括高度、速度和倾斜度等。
当这些条件满足一定的阈值时,控制系统将自动开始软着陆程序。
2.3 控制手段嫦娥三号软着陆采用了多种控制手段,以确保着陆过程的精确控制。
其中包括推力控制、姿态控制和舵控制等。
这些控制手段能够对飞船的速度、姿态和角度进行实时调整,以实现软着陆的最佳效果。
2.4 控制算法为了实现软着陆的精确控制,嫦娥三号采用了高级的控制算法。
这些算法包括PID控制、模糊控制和神经网络控制等。
通过这些算法,嫦娥三号能够根据实时数据进行精确的控制,并及时作出调整,以确保软着陆的成功。
结论嫦娥三号软着陆轨道设计与控制策略在实现月面软着陆任务中起到了重要的作用。
通过适当的轨道设计和精确的控制策略,嫦娥三号成功实现了月球表面的软着陆,并为未来的探月任务提供了宝贵的经验。
嫦娥三号软着陆轨道设计与控制策略摘要本文首先在变推力发动机使加速度线性变化的条件下,给出了位置速度状态参数以及推力加速度、推力和秒流量的计算模型,建立了软着陆过程的运动方程,并根据质量计算公式得出了速度增量最小时燃耗最小的结论,此时满足着陆轨道最优的条件,并由上述结论求出该轨道下最小速度增量为1749m/s, 近月点到着陆点的月心角为 8.7,即确定了近月点的位置,根据近月点、远月点和月心在一条直线上也就确定了远月点的位置,然后根据开普勒定律的速度计算公式,确定了椭圆轨道中近月点和远月点的速度。
近地点速度为 1.691km/s,方向与月心和近地点连线方向垂直,即速度方向与月心和着陆点连线的夹角为82.2 ;远地点速度为1.612km/s,方向与月心和远月点的连线方向垂直,且与近月点速度方向相反。
其次,为了确定软着陆过程6个阶段的最优控制策略,本文根据不同阶段的运动特性建立了模型并给出了3种控制方案,并分别进行了误差分析和敏感性分析,分析了各方案中不同因素对方案的影响,得到可靠的误差范围,并进行了优化。
其中,方案一是针对主减速和快速调整段提出的。
由于在主减速和快速调整段中,着陆器距离月面相对较高且着陆器走过的月面距离较长,将月球视为平面建立模型会带来较大的偏差。
因此,本文将月球视为球体建立了三维动力学模型,表示出着陆器下降速度在坐标系三轴上的分量。
然后给定初值进行迭代,从而求得协状态变量或中间变量,最终获得最优控制方案。
然后采用蒙特卡洛打靶,假设各误差均符合正态分布,得出了着陆误差分布在1km范围内的结论且在绝大多数情况下着陆的水平速度不大于1m/s。
方案二是针对粗避障和精避障段提出的。
为了避开障碍物,本文采用了基于最大类间方差法的故障检测法,通过这种方法,利用MATLAB对距离月面2400m和100m 处的数字高程图进行分析,从而确定故障区域和安全区域。
由于存在多个满足条件的区域可以保证着陆器安全着陆,本文又采用了基于螺旋搜索的着陆点选择方法,该方法可以在存在多个满足条件的安全着陆区域的情况下,兼顾能量消耗最少的原则,选择距离当前位置较近的区域实施着陆,但是该方法的误差范围较大,可能会对着陆区域的选择造成较大的偏差。
2014高教社杯全国大学生数学建模竞赛承诺书我们仔细阅读了《全国大学生数学建模竞赛章程》和《全国大学生数学建模竞赛参赛规则》(以下简称为“竞赛章程和参赛规则”,可从全国大学生数学建模竞赛网站下载)。
我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。
我们知道,抄袭别人的成果是违反竞赛章程和参赛规则的,如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。
我们郑重承诺,严格遵守竞赛章程和参赛规则,以保证竞赛的公正、公平性。
如有违反竞赛章程和参赛规则的行为,我们将受到严肃处理。
我们授权全国大学生数学建模竞赛组委会,可将我们的论文以任何形式进行公开展示(包括进行网上公示,在书籍、期刊和其他媒体进行正式或非正式发表等)。
我们参赛选择的题号是(从A/B/C/D中选择一项填写): A 我们的报名参赛队号为(8位数字组成的编号):25001113所属学校(请填写完整的全名):云南大学参赛队员(打印并签名) :1. 林博文2. 张竞文3. 方春晖指导教师或指导教师组负责人(打印并签名):李海燕(论文纸质版与电子版中的以上信息必须一致,只是电子版中无需签名。
以上内容请仔细核对,提交后将不再允许做任何修改。
如填写错误,论文可能被取消评奖资格。
)日期:2014年9月15日赛区评阅编号(由赛区组委会评阅前进行编号):2014高教社杯全国大学生数学建模竞赛编号专用页赛区评阅编号(由赛区组委会评阅前进行编号):全国统一编号(由赛区组委会送交全国前编号):全国评阅编号(由全国组委会评阅前进行编号):嫦娥三号软着陆轨道设计与控制策略优化摘 要 嫦娥三号是中国国家航天局嫦娥工程第二阶段的登月探测器,包括着陆器和玉兔号月球车。
嫦娥三号在高速飞行的情况下,要保证准确地在月球预定区域内实现软着陆,关键问题是着陆轨道与控制策略的设计。
DOI:10.16660/ki.1674-098X.2019.13.016探月着陆器软着陆轨道设计与控制策略①赵晓旭 高聪 于丰韬(华北理工大学理学院 河北唐山 063210)摘 要:嫦娥三号的软着陆,标志着我国实现了通过程序编码实现机器自主避障着陆地外星体的伟大成就,而着陆轨道与控制策略的制定与设计则是成功软着陆过程中极为重要因素。
本文以嫦娥三号探月着陆相关数据利用迭代计算,微分方程等方法,建立落月着陆轨道与控制策略的模型,并根据安全原则与燃耗最小原则对模型进行合理的轨道设计与着陆路径优化,为探月飞行器的软着陆与轨道设计提供方法。
关键词:软着陆 迭代法 微分方程 非线性规划 最优控制策略中图分类号:V463 文献标识码:A 文章编号:1674-098X(2019)05(a)-0016-02①作者简介:赵晓旭(1997,7—),男,汉族,河南遂平人,本科,研究方向:统计与数学建模。
月球是地球周围唯一的天然卫星,其表面蕴含着丰富的矿物资源,开采月球资源成为解决现今能源问题的一种方法。
由于月球上没有大气层的包裹,飞行器的着陆必须完全依赖发动机的制动。
1 软着陆轨道设计与控制模型建立与求解1.1 减速模型1.1.1 主减速阶段在确定了嫦娥三号卫星近、远月点速度大小与方向后,根据嫦娥三号着陆器参数建立动态微分方程:边界条件:x (t 0)=0,y (t 0)=15000+R ,v x (t 0)=v 0=1614.4,v y (t0)=0,由于主减速运时主推动器需全功率运行,即F 取最大推力7200N且推动器不会频繁改变角度,因此a (t )是一光滑函数。
可将求解控制函数a (t )问题转换为求解最优参数及最短时间问题。
我们采用迭代的方法计算可得最优参数P =(4.862*10-6,-1.079*10-4,,4.785*10-2),时间最短为445s,在主减速结束时刻的水平速度为26.2320m/s,竖直方向速度为53.5072m/s,消耗燃料质量为1132.7kg。