m钢箱梁计算书
- 格式:docx
- 大小:529.95 KB
- 文档页数:17
30m箱梁预应力张拉计算书一、工程概述本次预应力张拉计算针对的是 30m 箱梁,该箱梁采用后张法预应力施工工艺。
箱梁的设计承载能力和使用性能在很大程度上取决于预应力的施加效果,因此准确的预应力张拉计算至关重要。
二、设计参数1、箱梁混凝土强度等级为 C50,弹性模量 Ec = 345×10^4 MPa。
2、预应力钢绞线采用高强度低松弛钢绞线,规格为 1×7 152 1860,其标准强度 fpk = 1860 MPa,弹性模量 Ep = 195×10^5 MPa。
3、每束钢绞线的根数和布置根据设计要求确定。
4、锚具采用 OVM 系列锚具,锚下控制应力σcon = 075 fpk =1395 MPa。
三、预应力损失计算1、锚具变形和钢筋内缩引起的预应力损失σl1对于夹片式锚具,根据规范取值计算。
2、预应力钢筋与孔道壁之间的摩擦引起的预应力损失σl2考虑孔道偏差系数 k 和摩擦系数μ,通过计算公式得出。
3、混凝土加热养护时,受张拉的钢筋与承受拉力的设备之间温差引起的预应力损失σl3若施工过程中存在此项情况,按照实际温差计算。
4、预应力钢筋的应力松弛引起的预应力损失σl4根据规范规定的松弛系数和张拉控制应力计算。
5、混凝土的收缩和徐变引起的预应力损失σl5综合考虑混凝土的强度、龄期、环境条件等因素计算。
四、张拉力计算1、单根钢绞线的张拉力 P =σcon × Ap其中 Ap 为单根钢绞线的截面积。
2、每束钢绞线的张拉力为单根张拉力乘以束内钢绞线根数。
五、理论伸长值计算1、根据公式ΔL = Pp × L /(Ap × Ep) 计算其中 Pp 为平均张拉力,L 为预应力筋的长度。
2、考虑孔道曲线部分对伸长值的影响,进行修正计算。
六、实际伸长值测量与计算1、测量初始伸长值ΔL1,从千斤顶开始加载至初应力(一般为10%σcon)时的伸长量。
2、测量最终伸长值ΔL2,从初应力加载至控制应力时的伸长量。
30m组合箱梁上部结构计算书Ⅰ、设计资料和结构尺寸 (2)一、设计资料 (2)二、结构尺寸 (3)三、箱梁的横截面几何特性计算 (4)Ⅱ、荷载计算 (5)一、电算模型 (5)二、恒载作用计算 (6)三、活载作用计算 (6)四、内力组合 (8)Ⅲ、预应力钢束的估算和布置 (10)一、截面钢束的估算与确定 (10)二、预应力钢束的布置 (10)三、预加应力后荷载组合(持久状况承载能力极限组合) (11)Ⅳ、普通钢筋配筋估算 (11)一、截面普通钢筋的估算与确定 (11)二、普通钢筋的布置 (11)Ⅴ、持久状况承载能力极限状态计算 (12)一、结果显示单元号的确定 (12)二、正截面抗弯承载力计算 (12)三、斜截面抗剪承载力计算 (15)Ⅶ、持久状况正常使用极限状态计算 (17)一、电算应力结果 (17)二、截面抗裂验算 (19)Ⅷ、持久状况和短暂状况构件的应力验算 (20)一、混凝土最大拉应力 (20)二、受拉区预应力钢筋最大拉应力 (20)三、最大主拉应力计算 (21)四、压应力计算 (23)Ⅸ、结论 (23)Ⅰ、设计资料和结构尺寸一、设计资料1.标准跨径:30.0m;2.计算跨径:边跨29.24m,中跨29m;3.桥面宽度:全宽2×(0.5+11.5+0.75)+0.5=26m;净宽2×11.5m;4.设计荷载:公路-I级;5.材料及特性(1)混凝土:预应力混凝土预制箱梁、横梁及现浇接头湿接缝混凝土均为C50。
6cm 调平层混凝土为C40,桥面铺装层采用10cm厚沥青混凝土。
(2)钢绞线:采用符合GB/T 5224-1995技术标准的低松弛钢绞线。
(3)非预应力钢筋:采用符合新规范的R235,HRB335钢筋。
凡钢筋直径≥12毫米者,采用HRB335(20MnSi)热轧螺纹钢;凡钢筋直径<12毫米者,采用R235钢。
(4)钢板应符合GB700-88规定的Q235钢板。
天桥钢箱梁计算书一、概述大王店互通ZSK190+557.544 车行天桥跨越京港澳高速,桥梁布跨(18+3×24+18)m,全长114m,桥梁宽度8.5m,桥面宽度组成为2×0.5m防撞护栏+7.5m行车道。
该桥上部结构原设计采用现浇预应力混凝土连续箱梁,下部结构采用柱式墩,肋板台,钻孔灌注桩基础。
由于本桥所跨京昆高速公路交通繁重,为避免支架施工对下穿高速公路交通造成过大的干扰,应相关部门要求,将本桥上部结构由现浇预应力混凝土连续箱梁变更为钢箱梁,桥跨布置及下部结构维持原设计不变。
本次变更设计的钢箱梁顶宽8.5m,单箱双室断面,翼缘悬臂2m,梁高取1.2m,顶板、腹板厚16mm,底板厚20mm,纵向按跨间梁段按间距2.4m左右设置横隔板保证结构的整体性、提高横向刚度并限制箱梁发生扭转畸变等,桥墩位置根据支座布置调整横隔板位置并适当加密隔板。
顶板、底板沿纵向设置U形加劲肋保证结构局部受力及稳定,U形加劲肋厚8mm。
钢箱梁主要受力板件采用Q345钢,加劲肋、中间隔板等次要板件采用Q235钢。
桥梁设计荷载为公路-II级,按2车道计算。
二、结构计算(一)结构离散化模型本次复算按空间有限单元法对箱梁进行分析,采用MIDASCivil2006进行计算,箱梁按板单元进行分析。
本钢箱梁跨径组合为(18+3×24+18)m,由于由于空间计算模型过于庞大计算不便,考虑本桥3个24m中跨受力相当,结构模型中只取一个中跨进行建模(即计算模型跨度组合为18+24+18m)。
结构离散化分析模型如下图所示:结构计算模型(俯视图)结构计算模型(透视图)(二)计算条件及参数说明1.恒载钢材容重按77kN/m3计,按实际用料计算重量。
二期恒载包括护栏、桥面铺装根据实际作用情况加在箱梁顶板上。
2.活载设计荷载:公路-II级。
结构整体受力分析按车道荷载进行计算,局部受力分析按汽车轮压进行计算。
3.支座沉降支座不均匀沉降按0.5cm计,并考虑各墩的最不利组合。
30m箱梁预应力张拉计算书一、工程概述本工程为_____桥梁项目,其中 30m 箱梁采用预应力混凝土结构。
箱梁预应力钢束的布置和张拉是确保箱梁结构承载能力和耐久性的关键环节。
本次计算旨在确定预应力钢束的张拉控制应力、张拉力以及伸长量等参数,为施工提供准确的技术依据。
二、设计参数1、箱梁混凝土强度等级:C502、预应力钢绞线规格:采用高强度低松弛钢绞线,规格为 1×7-1520mm,标准强度 fpk = 1860MPa,弹性模量 Ep = 195×10⁵MPa。
3、管道摩擦系数:μ = 0254、管道偏差系数:k = 000155、锚具变形和钢绞线回缩值:一端锚具回缩量为 6mm,两端共计12mm。
三、预应力钢束布置本箱梁共设置了_____束预应力钢束,分别为 N1、N2、N3 等。
每束钢绞线的根数和布置位置根据箱梁的受力要求进行设计。
四、张拉控制应力计算根据设计要求,预应力钢绞线的张拉控制应力σcon 为:σcon = 075fpk = 075×1860 = 1395MPa五、张拉力计算每束钢绞线的张拉力 P 按下式计算:P =σcon×Ap其中,Ap 为每根钢绞线的截面积,1×7-1520mm 钢绞线的截面积Ap = 140mm²。
例如,对于 N1 束钢绞线,假设根数为 n,则其张拉力为:P = 1395×n×140依次计算出各束钢绞线的张拉力。
六、理论伸长量计算预应力钢绞线的理论伸长量ΔL 按下式计算:ΔL =(P×L)/(Ap×Ep)式中,L 为预应力钢绞线的有效长度。
以 N1 束为例,详细计算其理论伸长量。
首先确定 N1 束钢绞线的有效长度,然后代入公式进行计算。
依次计算出各束钢绞线的理论伸长量。
七、实际伸长量计算实际伸长量的测量应在初应力(一般为10%σcon)下测量伸长量ΔL1,然后在20%σcon 下测量伸长量ΔL2,最后在100%σcon 下测量伸长量ΔL3。
钢箱梁起吊设备立柱支架受力分析计算书钢箱梁制造起吊设备安装立柱及基础受力分析报告目录1计算依据 (2)2计算说明 (2)3.立柱受力分析 (5)4.基础设计及受力分析 (10)1计算依据(1)《钢结构设计规范》 GB50017-2003(2)《建筑结构荷载规范》 GB50009-2001(4)《建筑桩基技术规范》 JGJ 94-2008(4)相关结构设计图纸2计算说明2.1 工程概况本桥理论桥跨为2x40米,为两跨等截面连续钢箱梁桥,是连接呼和浩特至锡林浩特跨线改建桥,钢桥纵向位于1.6%的上坡及R3500米的凸竖向曲线上,安装时在桥跨中部设置1.625cm预拱度;钢桥横坡由梁段绕中轴线旋转而成.如下图。
全桥单幅桥共分4个吊装节段,拟采用40-160型架桥机梁作为龙门吊轨道梁,上面布置两台2-40型的龙门吊进行钢箱节段吊装。
钢箱节段先在引桥位置将其预制完毕,然后采用龙门吊将其吊装至桥位。
为保证轨道梁有足够的强度,在跨距30米位置设置立柱,基本布置如下图。
现场平面及立面布置示意图2.2计算荷载(1)龙门吊自重:30T/台,共2台;(2)产品最大吊重:160T;(3)轨道梁重:0.6T/m(4)风压:0.55KN/m^2(50年一遇)(5)砼自重按26.0KN/m^3 计。
2.3材料性能指标(1) C30砼材料性能轴心抗压强度:f=20.1Mpa轴心抗拉强度:f=2.01Mpa弹性模量:Ec=3×104N/mm22.4 立柱结构设计立柱全部采用钢管和工字钢焊接而成;根据不同的安装位置,高度由5.8米-13米不等,由于桥中间隔离带仅1米宽,因此,隔离带位置中间的3个支墩采用变截面结构形式,基本结构如下图。
等截面立柱结构示意图变截面立柱结构示意图由于现场的立柱结构基本相似,此处仅对高L=13.5m的两种截面立柱进行受力分析。
3.立柱受力分析3.1 立柱各分项载荷计算(1)单个立柱承受轨道梁产生的风荷载根据立柱布置形式,单个立柱需承30米轨道梁产生的风荷载,轨道梁迎风面积合计约30平方米,对立柱产生约0.55*30=16.5kN的集中荷载。
2 -60m 钢箱梁桥顶推施工设计与计算某国道上跨高速,采用2-60m钢箱梁跨越,施工方案为顶推施工。
桥梁全宽32.5m,半幅宽度16m,中分带宽0.5m,角度0度。
一、结构设计上部结构采用等高度直腹板钢箱梁,16.0m等宽箱梁。
钢箱梁标准段梁高为3.0m。
两侧悬臂为2.3m。
箱梁设4道腹板,主体结构为单箱三室截面。
钢箱梁采用顶面设置单向2%的横坡,底面与顶面平行设置。
顶板、底板及腹板使用了标准U型加劲肋与板式加劲肋。
U型加劲肋上口宽为300mm,高280mm,厚度为8mm。
板式加劲肋的高为160mm,厚度为14mm。
T式加劲肋板厚12mm。
横隔板为实腹板式横隔板与框架式横隔板间隔布置。
标准间距为2m,以保证钢箱梁具有足够的横向刚度与抗扭刚度。
在钢箱梁腹板处,横隔板断开,与腹板焊接。
下部结构采用两柱式桥墩,墩柱直径为2.0m,桩基直径为2.2m。
二、计算参数选取(主桥结构采用MIDAS CIVIL2020进行结构计算)1)计算荷载a.恒载:恒载包括主梁的自重以及铺装和护栏的自重。
b.活载:按《公路桥涵设计通用规范》第4.3条取值。
c.温度荷载:整体升降温:±25°C;主梁内温差效应考虑了由于太阳辐射引起上部结构顶层温度增加时产生的正温差及由于在辐射由上部结构顶层散失时产生的负温差,其取值按《公路桥涵设计通用规范》(JTG D06-2015)第4.3.12条取用。
d.基础变位边墩基础沉降1cm,中墩基础沉降1.5cm。
2)荷载组合根据《公路桥涵设计通用规范》(JTG D06-2015)的规定,主要考虑以下组合:a.恒载+活载+温度+基础变位b.恒载+活载c.恒载+0.5活载三、钢箱梁计算钢箱梁主体结构的强度验算:计算在竖向荷载、横向荷载和温度荷载的单项和组合作用下,按照《公路钢结构桥梁设计规范》(JTG D64-2015)的要求,对结构可能产生的弯矩作用正应力、剪力作用剪应力、扭矩作用剪应力和畸变正应力以及换算应力验算。
关于L=30m预制箱梁二期恒载计算
L=30米二期恒载计算
1、砼重量75.97 m3×2.5t/ m3=189.93t
2、沥青混凝土重量12.90 m3×2.3 t/ m3=29.67t
3、钢筋等重量10622Kg=10.62t
合计:230.22t
每片箱梁二期恒载承重230.22t/4=58T
L=30m箱梁压载后观测步骤如下:
1、先观测箱梁:从预制那天至今挠度是多少?
即L/4、2L/4、3 L/4点的挠度值记录
2、视起拱度多少而定加载数量
10t、15t、20t……58t
同样观测L/4、2L/4、3 L/4点的挠度值记录
3、观测该三点挠度值决定加载多少?
4、从现在预制开始至10月末为预制期
5、从2011年11月12月;2012年1、2、3、4、5月末为止大约7个月后可以架梁。
6、在此期间每15天观测一次,视情况决定加载多少?
L=30米预制箱梁预压计算书
高速总监办
2011年8月29日。
520m先简支后连续小箱梁计算书装配式小箱梁上部结构通用图计算书结构型式:先简支后连续跨径: 20m桥面宽度: 12m荷载等级:公路—Ⅰ级计算资料1.1桥跨布置跨径布置:中跨跨径:20m,边跨跨径:19.92m。
桥梁横断面1.2设计荷载1.3计算材料材料设计参数表2纵梁计算2.1 计算资料边箱线形荷载表汽车荷载冲击系数表2.2 边箱计算结构的静力计算分析采用平面杆系理论,以主梁轴线为基准线划分结构离散图,按施工步骤划分数个施工阶段和运营阶段进行计算,验算主梁的内力、应力等,计算采用《桥梁博士3.2》进行计算。
结构共划分85个节点、主梁单元84个,永久约束单元6个,临时约束单元7个。
结构离散图2.2.1 持久状况承载能力极限状态抗弯强度验算-2.53-165.37-1.68e3-1.68e3 1.13e34.99e35.03e35.03e3-3.56e3-5.88e3163.45838.15209.144.38e34.39e34.39e3-106.4-3.51e3-5.88e3-5.88e3371.264.31e34.39e34.39e3-3.26e3-5.88e3135.03838.15257.284.39e34.39e34.4e3-50.28-3.7e3-5.88e3-5.88e3 1.06e34.89e35.03e35.03e3-154.18-162.37-1.68e31.133.58e3持久状况承载能力极限状态抗弯强度图承载能力极限状态特征断面抗弯强度验算表位置(m)最大正弯矩最大负弯矩设计弯矩 Md抗弯强度 Mud是否满足设计弯矩 Md抗弯强度 Mud是否满足 0.3 -2.5 -1680.3 是 -165.4 -1680.3 是 9.92 4985.3 5034.1 是 1128.9 5034.1 是 19.92 163.5 838.1 是 -3561 -5883.6 是29.92 4375.9 4391 是 209.1 4391 是 39.92 -106.4 -5883.6 是 -3515 -5883.6 是 49.92 4309.8 4391 是 371.3 4391 是 59.92 135 838.1 是-3258.5 -5883.6 是 69.92 4379.9 4391 是 257.3 4391 是 79.92 -50.3 -5883.6 是 -3696.5 -5883.6 是 89.92 4892.4 5034.1 是 1064.9 5034.1 是 99.541.13584.5是-162.4-1680.3是2.2.2持久状况承载能力极限状态抗剪强度验算持久状况承载能力极限状态抗剪强度图承载能力极限状态特征断面抗剪强度验算表(kN)2.2.3持久状况正常使用极限状态验算长期效应组合混凝土正应力包络图短期效应组合混凝土正应力包络图(压应力取标准值组合)短期效应组合混凝土主应力包络图(压应力取标准值组合)持久状况长期效应组合特征断面混凝土应力验算汇总表持久状况标准效应组合特征断面混凝土应力验算汇总表2.2.4短暂状况应力验算短暂状况混凝土正应力包络图短暂状况特征断面混凝土正应力最值汇总表2.2.5钢束引伸量计算计算钢束示意图钢束引伸量计算表2.2.6支座反力汇总2.2.7五跨一联边梁计算主要结论(1) 规范强制性条款:持久状况极限状态承载能力验算(见《公路桥涵设计通用规范》(JTG D60-2004)4.1.6),截面极限状态承载能力均满足要求。
40m组合梁上部结构计算书一、概述一跨简支,标准跨径:40m,计算跨径38.5m,斜交角77°,主梁中心高1.8m,采用预弯钢-砼组合箱梁结构,钢箱梁中心高1.5m,采用Q345C钢材,现浇混凝土C50钢纤维混凝土,厚30cm。
桥型截面布置如下(单位:mm):单幅桥主梁断面图1二、主梁材料及参数1.主梁Q345C钢,工厂预制。
Q345C钢物理-力学性能如下:弹性模量: E s=2.06x105 MPa剪切模量: G s=0.79x105 MPa质量密度: r=78.5 kN/m3线膨胀系数: a s=1.2 x10-5/℃泊松比: m s=0.3应力松弛: s=1.5%局部次要钢结构采用Q235C钢钢材基本容许应力(MPa):钢材型号轴向应力[σ]弯曲应力[σw]剪应力[τ]Q345C 200(189)210(198.5)120(113.4)Q235C 140 145 85对于Q345C钢材,厚度δ≤16mm钢板采取上表括号外数值,对于16<δ≤25mm钢板,其屈服强度取σs=324MPa,其相应的基本容许应力乘以折减系数324/343=0.945,折减后见上表括号内数值。
2. C50混凝土抗压标准强度:f ck=32.4MPa、抗压设计强度为f cd=22.4MPa;抗拉标准强度:ft k=2.65MPa、抗拉设计强度为f td=1.83MPa;弹性模量Ec=3.45x104MPa3.普通钢筋:R235钢筋的抗拉(抗压)设计强度:f sd=195MPa;HRB335钢筋的抗拉(抗压)设计强度:f sd=280MPa;三、荷载计算1、主梁自重边梁1#、3#梁宽5.1m、2#梁宽4.8m一片钢箱梁自重(每延米):q=863.7*1.05/40=22.67 kN/m现浇层自重(每延米):1#、3#梁 q=5.1*0.3*26=39.78 kN/m2#梁 q=4.8*0.3*26=37.44 kN/m2、二期恒载铺装自重(每延米):1#、3#梁 q=5.1*0.1*24=12.24 kN/m2#梁 q=4.8*0.1*24=11.52 kN/m地袱及盖板(每延米): q=16 kN/m栏杆(每延米): q=2 kN/m防撞墙(每延米): q=8 kN/mD500mm水管及支撑板: q=2.9 kN/m(※钢箱梁、现浇层、附属构造具体尺寸详见施工图※)3、可变作用1)温度荷载简支梁整体温差按±30℃考虑,温度梯度按《公路桥涵设计通用规范》(JTG D60-2004)的规定计算。
箱梁受力计算书箱梁支架计算书一、荷载计算1、箱梁自重:G=V*R=1170.5*26=30433KNV:箱梁砼体积,计算得知V=1170.5m3。
R:新浇砼容重,取常数,r=26KN/m3则箱梁荷载:F1=G*r/S= G*r/(A*B)r:安全系数,取安全系数1.2;S:支架底面积,S=A*B;A:支架横向宽度;B:支架长度,即桥梁长度;代入数值:F1 = 30433*1.2/(12+0.5*2)*130.08=21.596KN/m22、施工荷载:取常数,F2=2.5KN/m2;3、砼倾倒荷载:浇筑采用砼输送泵输送,取倾倒荷载F3=2.0KN/m2;4、砼振捣荷载:取常数F4=2.0KN/m2;5、箱梁芯模:芯模为厚2.5cm的杉木,容重为5KN/m3,则F5=R*V/S= R*dR:芯模容重,单位5KN/m3;V:芯模单位体积,单位m3;S:芯模底截面积,单位m2;d:芯模厚度,单位m;代入数值:F5 =5*0.025=0.125KN/m26、底模:底模为厚1.5cm的竹胶板,容重为5KN/m3,则F6= R*V/S = R*dR:芯模容重,单位5KN/m3;V:芯模单位体积,单位m3;S:芯模底截面积,单位m2;d:芯模厚度,单位m;代入数值:F6=5*0.015=0.075KN/m27、方木:底模为厚10cm的杉木,容重为5KN/m3,则F7= R*V/S = R*dR:芯模容重,单位5KN/m3;V:芯模单位体积,单位m3;S:芯模底截面积,单位m2;d:芯模厚度,单位m;代入数值:F7= 5*0.1=0.5KN/m2二、底模板强度计算箱梁底模采用高强度竹胶板,板厚t=15mm,竹胶板方木背肋间距为300mm,所以验算模板强度采用宽b=300mm平面竹胶板1、模板力学性能弹性模量:E=0.1×105MPa截面惯性矩:I=b*h3/12=30×1.53/12=8.44cm4截面抵抗矩:W= bh2/6=30×1.52/6=11.25cm3底模截面积:A=b*h=30×1.5=45cm22、模板受力计算底模板均布荷载:F= F1+F2+F3+F4+F5代入数值:F =21.596+2.5+2.0+2.0+0.125=28.221KN/m2q=F×bF:底模板均布荷载,单位KN/m2;b:底模板宽度,单位m;代入数值:q =28.221×0.3=8.463KN/m跨中最大弯矩:M=qL2/8q:底模板均布荷载值,单位KN/m;L:底模板跨度,单位m。
42m钢箱梁计算书(总16页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--ES匝道钢箱梁上部结构计算书目录一、概述.................................................................. 错误!未定义书签。
桥梁简介............................................................. 错误!未定义书签。
模型概况............................................................ 错误!未定义书签。
1 设计规范...................................................... 错误!未定义书签。
2 参考规范...................................................... 错误!未定义书签。
3 主要材料及性能指标............................................ 错误!未定义书签。
4 荷载.......................................................... 错误!未定义书签。
二、模型概述.............................................................. 错误!未定义书签。
第一体系建模........................................................ 错误!未定义书签。
第二体系建模........................................................ 错误!未定义书签。
三、结果验算.............................................................. 错误!未定义书签。
顶底板强度验算....................................................... 错误!未定义书签。
1 计算结果...................................................... 错误!未定义书签。
2 强度验算...................................................... 错误!未定义书签。
腹板验算............................................................ 错误!未定义书签。
1 厚度验算...................................................... 错误!未定义书签。
2 腹板强度验算.................................................. 错误!未定义书签。
3 腹板纵向加劲肋构造验算........................................ 错误!未定义书签。
4 腹板横向加劲肋构造验算........................................ 错误!未定义书签。
构件设计验算........................................................ 错误!未定义书签。
1 加劲肋构造验算................................................ 错误!未定义书签。
2 受压板加劲肋刚度验算.......................................... 错误!未定义书签。
3 闭口肋几何尺寸验算............................................ 错误!未定义书签。
4 支承加劲肋验算................................................ 错误!未定义书签。
刚度验算............................................................. 错误!未定义书签。
1 车道荷载挠度值................................................ 错误!未定义书签。
2 正交异形板桥面顶板挠跨比...................................... 错误!未定义书签。
3 横隔板刚度验算................................................ 错误!未定义书签。
整体稳定验算........................................................ 错误!未定义书签。
疲劳验算............................................................ 错误!未定义书签。
四、结论.................................................................. 错误!未定义书签。
一、概述桥梁简介ES匝道桥为一单跨42m简支钢箱梁桥。
截面采用等截面形式,梁宽,梁高2m。
主梁线型为圆曲线,中心线位于半径R=682m的圆弧上。
顶板厚18mm,腹板和底板厚20mm,顶板U 肋厚8mm,开口肋厚20mm。
材料采用Q345C材质。
图典型钢箱梁横断面(mm)模型概况1 设计规范《公路工程结构可靠度设计统一标准》(GB/T 50283-1999);《公路工程技术标准》(JTG B01-2014)《公路桥涵设计通用规范》(JTG D60-2015)《公路钢结构桥梁设计规范》(JTG D64-2015)《钢结构设计规范》(GB50017-2014)《公路钢筋混凝土及预应力混凝土桥涵设计规范》(JTG D62-2004)2 参考规范《道路桥示方书·同解说》(日本道路协会,平成8年12月)3 主要材料及性能指标主梁采用Q345C钢材,其主要力学性能见下表。
4 荷载恒荷载:包括自重和二期荷载。
横隔板和加劲肋重力以点荷载形式加在实际位置。
二期荷载包括9cm沥青铺装和2道防撞墙,均布荷载分别按m和m考虑。
温度作用:升温按25℃考虑,降温按-25℃考虑;由于中国规范未对钢箱梁桥温度梯度有明确规定,故参考BS5400,正温度梯度为℃,负温度梯度为℃。
支座沉降:支座沉降取并按照每个地基及基础的最大沉降量的最不利的荷载组合进行计算。
汽车荷载:公路-I级。
对于汽车荷载纵向整体冲击系数μ,按照《公路桥涵通用设计规范》第条,冲击系数μ可按下式计算:当f<时,μ=;当≤f≤14Hz时,μ=(f)-;当f>14Hz时,μ=;根据程序计算的基频为,计算得汽车荷载冲击系数为。
图车道布载离心力:根据《公路桥涵设计通用规范》(JTG D60-2015)第条,离心力系数:C=C2 127C由v=60km/h,R=682m算得C=。
将离心力也均布于全跨,方向为径向向外。
算得q=m。
二、模型概述第一体系建模第一体系整体模型采用Midas Civil 2017软件建立,主梁工划分为34个单元,38个节点,桥梁采用盆式支座,以弹性连接中输入各方向刚度模拟,支座径向布置,支座与主梁采用刚性连接。
支座布置和计算模型如图所示。
图支座布置示意图图整体计算模型示意图图钢箱梁标准断面模型示意图考虑剪力滞影响计算,根据《公路钢结构桥梁设计规范》(JTG D64-2015)条,计算剪力滞有效分布宽度。
经过上述计算可知,有效宽度仍然为截面翼缘宽度,截面刚度未折减。
第二体系建模取第一体系中顶板应力较大的区段,进行第二体系应力计算。
桥面板体系通过考虑纵肋和横肋的有效分布宽度,建立梁格模型计算纵肋和横肋的应力;纵肋和横肋的有效分布宽度参考《现代钢桥》确定;1)纵肋盖板有效分布宽度横隔板间距:L=3000 (mm)等效跨径:l=*L=1800(mm)纵肋间距:2b=300 (mm),故b=150 (mm)b/l=可得Cs=124 (mm)2)横隔板盖板有效分布宽度腹板间距:L=3090 (mm)等效跨径:l=3090 (mm)隔板间距:2b=3000 (mm),故b=1500(mm)b/l=可得 Cs= (mm)取最重轮轴140kN,考虑冲击系数。
轴重P=140*=196kN。
顺桥向长度取跨中附近6m长,横桥向取腹板间距宽范围内盖板建立有限元模型;车辆荷载按照车轮作用在实际位置按照影响线加载;纵肋和横隔板断面根据前面计算有效宽度取用。
模型见图。
图桥面体系模型示意图图桥面体系模型边界示意图三、结果验算顶底板强度验算1 计算结果由于桥面为正交异性钢板,在进行顶板强度验算时,尚应计入第二体系(桥面体系)在车辆单独作用的应力影响。
整体模型计算结果罗列如下:图基本组合包络(all)作用梁体顶板最大压应力(MPa)图基本组合包络(all)作用梁体底板最大拉应力(MPa)可见第一体系计算中顶板最大压应力,底板最大拉应力。
第二体系模型计算结果罗列如下:图第二体系计算桥面顶板应力包络图(MPa)图第二体系计算U肋应力包络图(MPa)可见第二体系计算中,顶板最大拉应力,最大压应力;U肋最大拉应力,最大压应力。
2 强度验算1)顶板应力第一体系作用下,顶板最大拉应力:σt =0 (Mpa);顶板压应力为:σc= (Mpa);第二体系作用下,顶板最大拉应力:σt =(Mpa);顶板压应力为:σc=(Mpa);第三体系应力较小,不予考虑则三体系叠加作用下,顶板拉应力: σt =(Mpa);顶板压应力为: σc= (Mpa);根据《公路钢结构桥梁设计规范》(JTG D64-2015)规定,当16<t<40时,[σt]=270 (Mpa),可知顶板强度满足设计要求。
2)底板应力底板应力验算仅考虑第一体系作用下的应力。
第一体系作用下,底板压应力:σt =(Mpa);底板拉应力为:σt=0(Mpa);根据《公路钢结构桥梁设计规范》(JTG D64-2015)规定,当16<t<40时,[σt]=270 (Mpa),可知底板强度满足设计要求。
腹板验算1 厚度验算腹板设置一道纵向加劲肋和一道横向加劲肋,根据第一体系计算,在基本组合作用下支点附近腹板最大剪应力如下图所示。