冀教版数学七年级下册三角形单元测试卷
- 格式:doc
- 大小:95.34 KB
- 文档页数:3
冀教版七年级数学下册第9章三角形单元测试题一、选择题(每题2分,共20分)1.三角形的三边分别为3,1-2a,8,则a的取值范围是()A.-6<a<-3B.-5<a<-2C.2<a<5D.a<-5或a>-22.如果三角形的一个内角等于其它两个内角的差,这个三角形是()A.锐角三角形B.钝角三角形C.直角三角形D. 斜三角形3.把三角形的面积分为相等的两部分的是()A.三角形的角平分线B.三角形的中线C.三角形的高D.以上都不对4.三角形的一个外角大于相邻的一个内角,则它是()A.直角三角形B.锐角三角形C.钝角三角形D.不能确定5.在ΔABC中,如果∠A-∠B=90°,那么ΔABC是()A.直角三角形B.钝角三角形C.锐角三角形D.斜三角形6.下列不属于命题的是()A.两直线平行,同位角相等;B.如果x2=y2,则x=y;C.过C点作CD∥EF ;D.不相等的角就不是对顶角.7.四条线段的长度分别为4、6、8、10,可以组成三角形的组数为()A.4B.3C.2D.18.已知如图,∠A=32°,∠B=45°,∠C=38°则ΔDFE等于()A.120°B.115°C.110°D.105°9.如图所示,在△ABC中,已知点D,E,F分别为边BC,AD,CE 的中点, 且S △ABC=4cm2,则S阴影等于()A.2cm2B.1cm2C.12cm2 D.14cm2A(第8题)(第9题)10. 已知三角形的三个外角的度数比为2:3:4,则它的最大内角的度数为()A.90°B.110°C.100°D.120°二、填空题(每题2分,共20分)11.三角形的最小角不大于________度,最大角不小于________度.12.三角形的一边是8,另一边是1,第三边如果是整数,则第三边是________,这个三角形是________三角形.13.已知a,b,c为ΔABC的三条边,化简(a+b-c)2-|b-a-c|=______________.14.ΔABC的周长是36,a+b=2c,a∶b=1∶2,则a=________,b=________,c=________.15.等腰△ABC 中,AB =AC ,BC =6cm ,则△ABC 的周长的取值范围是______________.16. 在△ABC 中,∠A =21∠B =31∠C ,则∠B =______________. 17.写出“对顶角相等”的逆命题_______________________________.18.工人师傅在做完门框后.为防止变形常常像图中所示的那样钉上两条斜拉的木条(即图中的AB ,CD 两根木条),这样做根据的数学道理是_______________________________.19.直角三角形的两个锐角的平分线所交成的角的度数是______________.20.等腰三角形一腰上的中线把这个三角形的周长分为15厘米和6厘米两部分,则此三角形的底边长为_________.三、解答题(每题10分,共60分)21.在ΔABC 中,∠A +∠B =∠C ,∠B =2∠A ,⑴求∠A 、∠B 、∠C 的度数;⑵△ABC 按边分类,属于什么三角形?△ABC 按角分类,属于什么三角形?22.△ABC 的三边长分别为4、9、x,⑴求x 的取值范围;⑵求△ABC 周长的取值范围;⑶当x 为偶数时,求x ;⑷当△ABC 的周长为偶数时,求x ;⑸若△ABC 为等腰三角形,求x .23.如图,在△ABC 中,∠BAC 是钝角,完成下列画图,并用适当的符号在图中表示:⑴ ∠BAC 的平分线;⑵ AC 边上的中线;⑶ AC 边上的高;C B A24.已知:∆ABC 中, ∠ABC 和∠ACB 的平分线BD ,CE 相交于点O ,∠ABC=40°,∠ACB=80°, 求∠BOC 的度数.25.如图,说明∠A+∠B +∠C +∠D +∠E=180°的理由.26.证明:两条平行直线被第三条直线所截,一对同旁内角的平分线互相垂直.测试卷答案 A CB D E O E DC B A一、选择题1. B2.C3.B4.D5.B6.C7. B8.B9.B 10.C二、填空题11.60, 60;12.8, 等腰;13.2b-2c;14.8,16,12;15.△ABC的周长>12cm;16.60°;17.如果两个角相等,那么这两个角是对顶角;18.三角形的稳定性;19.45°或135°;20.1.三、解答题21.⑴∠A=30°,∠B=60°,∠C=90°;⑵△ABC按边分类,属于不等边三角形,△ABC按角分类,属于直角三角形.22.△ABC的三边长分别为4、9、x,⑴5<x<13;⑵18<△ABC的周长<26;⑶当x为偶数时,x=6、8、10、12;⑷当△ABC的周长为偶数时,x=7、9、11;⑸若△ABC为等腰三角形,x=9.23.⑴∠BAC的平分线为AD;⑵ AC边上的中线为BD;⑶ AC边上的高BE.图略.24. ∠BOC=120°.25.转化为一个三角形的内角和.26.要画图,写已知、求证、证明.。
第九章三角形一、单选题1.下列长度的三根小木棒能构成三角形的是()A.2cm,3cm,5cm B.7cm,4cm,2cm C.3cm,4cm,8cm D.3cm,3cm,4cm 2.如图,一个三角形只剩下一个角,这个三角形为()A.锐角三角形B.钝角三角形C.直角三角形D.以上都有可能3.下列图形中,不是运用的三角形的稳定性的是()4.如图所示,△ABC 中AB 边上的高线是()A.线段DA B.线段CAC.线段CD D.线段BD5.如图,在△ABC中,已知点E,F分别是AD,CE边上的中点,且S△BEF=4cm2,则S△ABC 的值为()A .1cm 2B .2cm 2C .8cm 2D .16cm 26.下列说法错误的是( )A .三角形三条高交于三角形内一点B .三角形三条中线交于三角形内一点C .三角形三条角平分线交于三角形内一点D .三角形的中线、角平分线、高都是线段 7.如图,一副分别含有60︒和45︒角的两个直角三角板,拼成如下图形,其中90C =o ∠,45BAC ∠=o ,60EDC ∠=o ,则BFD ∠的度数是( )A .15°B .25°C .30°D .10°8.如图,BD 是△ABC 的角平分线,AE ⊥BD ,垂足为F .若∠ABC =35°,∠C =50°,则∠CDE 的度数为( )A. 35°B. 40°C. 45°D. 50°A .30oB .35oC .40oD .60o9.在下列条件中:①∠A +∠B =∠C ,②∠A :∠B :∠C =1:2:3,③∠A =2∠B =3∠C ,④12A B C ∠=∠=∠中,能确定△ABC 是直角三角形的条件有( )A .1个B .2个C .3个D .4个 10.如图,在ABC ∆中,A α∠=.ABC ∠与ACD ∠的平分线交于点1A ,得1A ∠;1A BC ∠与1A CD ∠的平分线相交于点2A ,得2A ∠,...,6A BC ∠与6A CD ∠的平分线相交于点7A ,得7A ∠,则7A ∠=( )A .32αB .64αC .128αD .256α二、填空题11.已知三角形的两边长分别为2和7,则第三边x 的范围是_______.12.如图,在△ABC 中,∠B = 60°,∠C = 40°,AE 平分∠BAC ,AD ⊥BC ,垂足为点D ,那么∠DAE =______度.13.如图,在△ABC 中,D ,E 分别是BC ,AC 的中点,AD 与BE 相交于点G ,若DG =1,则AD =________.14.如图,在△ABC 中,∠B=∠C, ∠CDE=12∠BAD,∠CAD=70°则∠AED=____° .三、解答题15.用一根长度为20cm 的细绳围成一个等腰三角形.(1)如果所围等腰三角形的腰长是底边长的2倍,则此时的底边长度是多少? (2)所围成的等腰三角形的腰长不可能等于4cm ,请简单说明原因.(3)若所围成的等腰三角形的腰长为a ,请求出a 的取值范围.16.如图,在,ABC 中,,A =60º,,B =70º,,ACB 的平分线交AB 于D ,DE,BC 交AC 于E ,求,BDC 、,EDC 的度数。
冀教版七年级下册数学第九章三角形含答案一、单选题(共15题,共计45分)1、如图,将一副三角尺叠放在一起,使直角的顶点重合于点O,AB∥OC,DC与OB交于点E,则∠DEO的度数为( )A.85°B.70°C.75°D.60°2、如图,的面积为1.分别倍长(延长一倍),BC,CA得到.再分别倍长A1B1, B1C1, C1A1得到.…… 按此规律,倍长2018次后得到的的面积为()A. B. C. D.3、已知a、b、c是△ABC三边的长,则+|a+b-c|的值为()A.2aB.2bC.2cD. 一4、有3cm,6cm,8cm,9cm的四条线段,任选其中的三条线段组成一个三角形,则最多能组成三角形的个数为()A.1B.2C.3D.45、如图,点B是△ADC的边AD的延长线上一点,DE∥AC,若∠C=50°,∠BDE=60°,则∠CDB的度数等于()A.70°B.100°C.110°D.120°6、若等腰三角形中有一个角等于50°,则其它两个角的度数为()。
A.70°B.50°和80或65°和65°C.65°和65°D.50°和80°7、如图,在直角△ABC中,,AB=AC,点D为BC中点,直角绕点D旋转,DM,DN分别与边AB,AC交于E,F两点,下列结论:①△DEF是等腰直角三角形;② AE=CF;③△BDE≌△ADF;④BE+CF=EF,其中正确结论是()A.①②④B.②③④C.①②③D.①②③④8、若一个三角形三个内角度数的比为1:2:3,那么这个三角形是()A.锐角三角形B.等边三角形C.钝角三角形D.直角三角形9、中,,,的对边分别记为a,b,c,由下列条件不能判定为直角三角形的是()A. B. C. D.10、ABCD是边长为1的正方形,△BPC是等边三角形,则△BPD的面积为()A. B. C. D.11、下列长度的三根小木棒不能构成三角形的是()A.1,1,1B.3,4,5C.2,2,3D.3,8,412、如图,△ABC中,∠A=α°,BO,CO分别是∠ABC,∠ACB的平分线,则∠BOC的度数是()A.2α°B.(α+60)°C.(α+90)°D.(α+90)°13、等腰三角形的一边长为5,一边为11,则它的周长为( )A.21B.27C.21或27D.1614、如图,△ABC中,AB=AC=2,∠B=30°,△ABC绕点A逆时针旋转α(0<α<120°)得到,与BC,AC分别交于点D,E.设,的面积为,则与的函数图象大致为( )A. B. C. D.15、下列条件能确定△ABC是直角三角形的条件有( )。(1) ∠A+∠B=∠C;(2) ∠A:∠B:∠C=1:2:3;(3) ∠A=90°-∠B;(4) ∠A=∠B=∠C;A.1个B.2个C.3个D.4个二、填空题(共10题,共计30分)16、已知△ABC≌△DEF,∠A=30°,∠B=80°,则∠F=________.17、如图,△ABC 中,∠B=∠C,FD⊥BC 于 D,DE⊥AB 于 E,∠AFD=158°,则∠EDF 等于________度.18、如图,已知等边三角形ABC的高为7cm,P为△ABC内一点,PD⊥AB于点D,PE⊥AC于点E,PF⊥BC于点F.则PD+PE+PF=________.19、如图,点A是反比例函数y=的图象上的一点,过点A作AB⊥x轴,垂足为B,点C为y轴上的一点,连接AC、BC.若△ABC的面积为3,则k的值=________.20、如图,在中,,,的垂直平分线交于点,交于点,则的度数是________.21、已知等腰三角形的两边长分别为5cm和8cm,则等腰三角形的周长为________.22、如图所示,在下列三角形中,若AB=AC,则能被一条直线分成两个小等腰三角形的是________(填序号).23、如图,点在的边的延长线上,点在边上,连接交于点,若,,则________.24、年月日凌晨,宝岛高雄发生级地震,得知消息后,中国派出武警部队探测队,探测队探测出某建筑物下面有生命迹象,他们在生命迹象上方建筑物的一侧地面上的两处,用仪器探测生命迹象,已知探测线与地面的夹角分别是和(如图),则的度数是________.25、如图,已知△ABC的面积为20,AB=AC=8,点D为BC边上任一点,过D作DE⊥AB于点E.作DF⊥AC于点F,则DE+DF=________.三、解答题(共5题,共计25分)26、化简•﹣,并求值,其中a与2、3构成△ABC的三边,且a为整数.27、如图,已知等边中,,连接并延长,交的延长线于点,求的度数.28、如图,已知直线y=x-2与双曲线交于点A(3,m),与x轴交于点B.(1)求反比例函数的解析式;(2)连结OA,求△AOB的面积.29、已知:如图,P是△ABC内任一点,求证:AB+AC>BP+PC。
第九章三角形检测题(时间:90分钟,满分:100分)一、选择题(每小题3分,共30分)1. 以下列各组线段长为边,能组成三角形的是()A.1 cm,2 cm,4 cm B.8 cm,6 cm,4 cm C.12 cm,5 cm,6 cm D.2 cm,3 cm ,6 cm2. 等腰三角形的两边长分别为5 cm和10 cm,则此三角形的周长是()A.15 cm B.20 cm C.25 cm D.20 cm或25 cm3. 下列长度的三条线段,不能组成三角形的是()A.3,8,4B.4,9,6C.15,20,8D.9,15,84.已知在△ABC中,∠ABC和∠ACB的平分线交于点O,则∠BOC一定()A.小于直角B.等于直角C.大于直角D.不能确定5. 下列命题中正确的是()A.三角形可分为斜三角形、直角三角形和锐角三角形B.等腰三角形任意一个内角都有可能是钝角或直角C.三角形外角一定是钝角D.△ABC中,如果∠A>∠B>∠C,那么∠A>60°,∠C<60°6. 某同学手里拿着长为3和2的两个木棍,想要找一个木棍,用它们围成一个三角形,那么他所找的这根木棍长满足条件的整数解是()A.1,3,5B.1,2,3C.2,3,4D.3,4,57. 已知一个三角形的两边长分别是2和3,则下列数据中,可作为第三边长的是()A.1B.3C.5D.78. 已知在△ABC 中,,周长为12,,则b为()A.3 B.4 C.5 D.69. 小华在电话中问小明:“已知一个三角形三边长分别是4,9,12,如何求这个三角形的面积?”小明提示说:“可通过作最长边上的高来求解.”小华根据小明的提示作出的图形正确的是()A. B.C. D.10. 直角三角形的两锐角平分线相交成的角的度数是()A.45° B.135°C.45°或135°D.以上答案均不对二、填空题(每小题3分,共24分)11. 若一个三角形的三个内角之比为4∶3∶2,第12题图则这个三角形的最大内角为 .12. 如图,一个直角三角形纸片,剪去直角后,得到一个四边形,则∠1+∠2= 度. 13. 如图,在△ABC 中,AB =AC =3cm ,AB 的垂直平分线交AC 于点N ,△BCN 的周长是5cm ,则BC 的长等于 cm .14. 已知一个等腰三角形两内角的度数之比为1∶4,则这个等腰三角形顶角的度数为 .15.设为△ABC 的三边长,则.16.如图所示,AB =29,BC =19,AD =20,CD =16,若AC =,则的取值范围为 .17.如图所示,在△ABC 中,∠ABC =∠ACB ,∠A = 40°,点P 是△ABC 内一点,且∠1 = ∠2.则∠BPC =________.18.“直角三角形有两个角是锐角”这个命题的逆命题是 ,它是一个 命题.三、解答题(共46分)19.(6分)认真阅读下面关于三角形内、外角平分线所夹的探究片段,完成所提出的问题.探究1:如图1,在△ABC 中,O 是∠ABC 与∠ACB 的平分线BO 和COB ACD 第16题图 21P C B A 第17题图 第13题的交点,通过分析发现∠BOC =90°+,理由如下:∵BO和CO分别是∠ABC和∠ACB的角平分线,∴.∴.又∵∠ABC+∠ACB=180°﹣∠A,∴.∴∠BOC =180°﹣(∠1+∠2)=180°﹣(90°﹣∠A)=.探究2:如图2中,O是∠ABC与外角∠ACD的平分线BO和CO的交点,试分析∠BOC与∠A有怎样的关系?请说明理由.探究3:如图3中,O是外角∠DBC与外角∠ECB的平分线BO和CO的交点,则∠BOC与∠A有怎样的关系?(只写结论,不需证明)结论:.20. (6分)如图所示,在△ABC中,AB =AC,AC上的中线把三角形的周长分为24 cm和30 cm的两个部分,求三角形各边的长.21. (6分)有人说,自己的步子大,一步能走四第20题图第19题米多,你相信吗?用你学过的数学知识说明理由.22. (6分)已知一个三角形有两边长均为,第三边长为,若该三角形的边长都为整数,试判断此三角形的形状.23. (6分)如图所示,武汉有三个车站A、B、C成三角形,一辆公共汽车从B站前往到C站.(1)当汽车运动到点D时,刚好BD=CD,连接线段AD,AD这条线段是什么线段?这样的线段在△ABC中有几条呢?此时有面积相等的三角形吗?(2)汽车继续向前运动,当运动到点E时,发现∠BAE=∠CAE,那么AE这条线段是什么线段呢?在△ABC中,这样的线段又有几条呢?(3)汽车继续向前运动,当运动到点F时,发现∠AFB=∠AFC=90°,则AF是什么线段?这样的线段在△ABC中有几条?24. (8分)已知:如图,DG⊥BC,AC⊥BC,EF⊥AB,∠1=∠2,求证:CD⊥AB.25. (8分)规定,满足(1)各边互不相第23题图第24题图等且均为整数,(2)最短边上的高与最长边上的高的比值为整数k,这样的三角形称为比高三角形,其中k叫做比高系数.根据规定解答下列问题:(1)求周长为13的比高系数k的值.(2)写出一个只有4个比高系数的比高三角形的周长.第九章三角形检测题参考答案1.B 解析:根据三角形中任何两边的和大于第三边可知能组成三角形的只有B,故选B.2.C 解析:因为三角形中任何两边的和大于第三边,所以腰只能是10 cm,所以此三角形的周长是10+10+5=25(cm).故选C.3. A 解析:根据三角形三边关系定理:三角形两边之和大于第三边,进行判定即可.∵ 3+4<8,∴不能构成三角形;B.∵ 4+6>9,∴能构成三角形;C.∵ 8+15>20,∴能构成三角形;D.∵ 8+9>15,∴能构成三角形.故选A.点评:此题主要考查学生对运用三角形三边关系判定三条线段能否构成三角形的掌握情况,注意只要两条较短的线段长度之和大于第三条线段的长度即可判定这三条线段能构成一个三角形.4.C 解析:因为在△ABC中,∠ABC+∠ACB<180°,所以所以∠BOC>90°.故选C.5.D 解析:A、三角形包括直角三角形和斜三角形,斜三角形又包括锐角三角形和钝角三角形,所以A错误;B、等腰三角形只有顶角可能是钝角或直角,所以B错误;C、三角形的外角可能是锐角也可能是直角,所以C错误;D、因为△ABC中,∠A>∠B>∠C,若∠A<60°或∠C>60°,则与三角形的内角和为180°相矛盾,所以原结论正确,故选D.6. C 解析:设他所找的这根木棍长为x,由题意得:3﹣2<x<3+2,∴1<x<5,∵x为整数,∴x=2,3,4,故选C.点评:此题主要考查了三角形三边关系,掌握三角形三边关系定理是解题的关键.7. B 解析:设这个三角形的第三边为x.根据三角形的三边关系定理,得:3﹣2<x<3+2,解得1<x<5.故选B.点评:本题考查了三角形的三边关系定理.一定要注意构成三角形的条件:两边之和>第三边,两边之差<第三边.8.B 解析:因为,所以.又,所以故选B.9. C 解析:∵42+92=97<122,∴三角形为钝角三角形,∴最长边上的高是过最长边所对的角的顶点,作对边的垂线,垂足在最长边上.故选C.点评:本题考查了三角形高的画法.当三角形为锐角三角形时,三条高在三角形的内部;当三角形是直角三角形时,两条高是三角形的直角边,一条高在三角形内部;当三角形为钝角三角形时,两条高在三角形外部,一条高在内部.10.C 解析:如图所示:∵AE、BD是直角三角形中两锐角平分线,∴∠OAB+∠OBA=90°÷2=45°.第10题答图两角平分线组成的角有两个:∠BOE与∠EOD互补,根据三角形外角和定理,∠BOE=∠OAB+∠OBA=45°,∴∠EOD=180°-45°=135°,故选C.11.80°解析:这个三角形的最大内角为180°×=80°.12.270 解析:如图,根据题意可知∠5=90°,∴∠3+∠4=90°,第12题答图∴∠1+∠2=180°+180°-(∠3+∠4)=360°-90°=270°.13. 2 解析:∵AB的垂直平分线交AC于点N,∴NA=NB,又∵△BCN的周长是5cm,∴BC+BN+NC=5cm,∴BC+AN+NC=5cm,而AC=AN+NC=3cm,∴BC=2cm.故答案为2.14.120°或20°解析:设两个角分别是,4,①当是底角时,根据三角形的内角和定理,得=180°,解得=30°,4=120°,即底角为30°,顶角为120°;②当是顶角时,则=180°,解得=20°,从而得到顶角为20°,底角为80°.所以该三角形的顶角为120°或20°.15.解析:因为为△ABC的三边长,所以,,所以原式=16.10<<36 解析:在△ABC中,AB-BC<AC<AB+BC,所以10<<48;在△ADC中,AD-DC<AC<AD+DC,所以4<<36.所以10<<36.17.110°解析:因为∠A =40°,∠ABC= ∠ACB,所以∠ABC= ∠ACB =(180°-40°)=70°.又因为∠1=∠2,∠1+∠PCB =70°,所以∠2+∠PCB =70°,所以∠BPC =180°-70°=110°.18.有两个锐角的三角形是直角三角形假解析:“直角三角形有两个角是锐角”这个命题的逆命题是“有两个锐角的三角形是直角三角形”,假设三角形一个角是30°,一个角是45°,有两个角是锐角,但这个三角形不是直角三角形.故是假命题.19.分析:(1)根据提供的信息,根据三角形的一个外角等于与它不相邻的两个内角的和,用∠A与∠1表示出∠2,再利用∠O与∠1表示出∠2,然后整理即可得到∠BOC与∠O的关系;(2)根据三角形的一个外角等于与它不相邻的两个内角的和以及角平分线的定义表示出∠OBC与∠OCB,然后再根据三角形的内角和定理列式整理即可得解.解:(1)探究2结论:∠BOC=∠A,理由如下:∵BO和CO分别是∠ABC和∠ACD的角平分线,∴∠1=∠ABC,∠2=∠ACD,又∵∠ACD是△ABC的一外角,∴∠ACD=∠A+∠ABC,∴∠2=(∠A+∠ABC)=∠A+∠1,∵∠2是△BOC的一外角,∴∠BOC=∠2﹣∠1=∠A+∠1﹣∠1=∠A;(2)探究3:∠OBC=(∠A+∠ACB),∠OCB=(∠A+∠ABC),∠BOC=180°﹣∠0BC﹣∠OCB,=180°﹣(∠A+∠ACB)﹣(∠A+∠ABC),=180°﹣∠A﹣(∠A+∠ABC+∠ACB),结论∠BOC=90°﹣∠A.20.分析:因为BD是中线,所以AD=DC,造成所分两部分不等的原因就在于腰与底的不等,故应分情况讨论.解:设AB=AC=2,则AD=CD=,(1)当AB+AD=30,BC+CD=24时,有2=30,∴=10,2 =20,BC=24-10=14.三边分别为:20 cm,20 cm,14 cm.(2)当AB+AD=24,BC+CD=30时,有=24,∴=8,,BC=30-8=22.三边分别为:16 cm,16 cm,22 cm.21.分析:人的两腿可以看作是两条线段,走的步子也可看作是线段,则这三条线段正好构成三角形的三边,就应满足三边关系定理.解:不能.如果此人一步能走四米多,由三角形三边的关系得,此人两腿长的和大于4米,这与实际情况不符.所以他一步不能走四米多.22.分析:已知三角形的三边长,根据三角形的三边关系定理,列出不等式,再求解.解:根据三角形的三边关系定理,得<<,0<<6-,0<<.因为2是正整数,所以=1.所以三角形的三边长分别是2,2,2.因此,该三角形是等边三角形.23.分析:(1)由于BD =CD,则点D是BC的中点,AD是中线,三角形的中线把三角形分成两个面积相等的三角形;(2)由于∠BAE =∠CAE,所以AE是三角形的角平分线;(3)由于∠AFB =∠AFC=90°,则AF是三角形的高线.解:(1)AD是△ABC中BC边上的中线,三角形中有三条中线.此时△ABD与△ADC的面积相等.(2)AE是△ABC中∠BAC的角平分线,三角形中角平分线有三条.(3)AF是△ABC中BC边上的高线,高线有时在三角形外部,三角形中有三条高线.24.分析:灵活运用垂直的定义,注意由垂直可得90°角,由90°角可得垂直,结合平行线的判定和性质,只要证得∠ADC=90°,即可得CD⊥AB.证明:∵DG⊥BC,AC⊥BC(已知),∴∠DGB=∠ACB=90°(垂直定义),∴DG∥AC(同位角相等,两直线平行).∴∠2=∠ACD(两直线平行,内错角相等).∵∠1=∠2(已知),∴∠1=∠ACD(等量代换),∴EF∥CD(同位角相等,两直线平行).∴∠AEF=∠ADC(两直线平行,同位角相等).∵EF⊥AB(已知),∴∠AEF=90°(垂直定义),∴∠ADC=90°(等量代换).∴CD⊥AB(垂直定义).25.分析:(1)根据定义结合三角形的三边关系“任意两边之和>第三边,任意两边之差<第三边”,进行分析;(2)根据比高三角形的知识点结合三角形三边关系的知识点,进行判断只有四个比高系数的三角形的周长.解:(1)根据定义和三角形的三边关系,知此三角形的三边是2,5,6或3,4,6,则k=3或2.(2)如周长为37的三角形,只有四个比高系数,当比高系数为2时,这个三角形三边分别为9、10、18,当比高系数为3时,这个三角形三边分别为6、13、18,当比高系数为6时,这个三角形三边长分别为3、16、18,当比高系数为9时,这个三角形三边分别为2、17、18.。
冀教版七年级数学下册第九章三角形综合测试考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,在△ABC中,AD是△ABC的中线,△ABD的面积为3,则△ABC的面积为()A.8 B.7 C.6 D.52、王师傅用4根木条钉成一个四边形木架,如图,要使这个木架不变形,他至少还要再钉上几根木条?()A.0根B.1根C.2根D.3根3、下列四个图形中,线段BE是△ABC的高的是()A.B.C.D.4、如图,∠A=α,∠DBC=3∠DBA,∠DCB=3∠DCA,则∠BDC的大小为()A.3454a︒+B.2603a︒+C.3454a︒-D.2603a︒-5、已知ABC的三边长分别为a,b,c,则a,b,c的值可能分别是()A.1,2,3 B.3,4,7C.2,3,4 D.4,5,106、定理:三角形的一个外角等于与它不相邻的两个内角的和.已知:如图,∠ACD是△ABC的外角.求证:∠ACD=∠A+∠B.下列说法正确的是()A.证法1用特殊到一般法证明了该定理B.证法1只要测量够100个三角形进行验证,就能证明该定理C.证法2还需证明其他形状的三角形,该定理的证明才完整D.证法2用严谨的推理证明了该定理7、数学课上,同学们在作ABC中AC边上的高时,共画出下列四种图形,其中正确的是().A.B.C.D.8、如图,工人师傅在安装木制门框时,为防止变形,常常钉上两条斜拉的木条,这样做的数学依据是()A .两点确定一条直线B .两点之间,线段最短C .三角形具有稳定性D .三角形的任意两边之和大于第三边9、如图,在ABC ∆中,若点D 使得BD DC =,则AD 是ABC ∆的( )A .高B .中线C .角平分线D .中垂线10、如图,90C A ∠=∠=︒,25B ∠=︒,则D ∠的度数是( )A .55°B .35°C .45°D .25°第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,在ABC 中,AB AC =,40A ∠=︒,E 为BC 延长线上一点,ABC ∠与ACE ∠的平分线相交于点D ,则∠D 的度数为______.2、在ABC 中,20A ∠=︒,60B ∠=︒,100C ∠=︒,那么ABC 是______三角形.(填“锐角”、“钝角”或“直角” )3、如图,△ABC 的面积等于35,AE =ED ,BD =3DC ,则图中阴影部分的面积等于 _______4、如图,ABC 中,已知点D 、E 、F 分别为BC 、AD 、CE 的中点,设ABC 的面积为1S ,BEF 的面积为2S ,则12:S S =______.5、如图,已知AB CD ∥,21BAF FED ∠=∠=︒,17CDE ∠=︒,则AFC ∠=______°.三、解答题(5小题,每小题10分,共计50分)1、如图,在△ABC中,∠BAC=90°,AB=AC,射线AE交BC于点P,∠BAE=15°;过点C作CD⊥AE于点D,连接BE,过点E作EF∥BC交DC的延长线于点F.(1)求∠F的度数;(2)若∠ABE=75°,求证:BE∥CF.2、已知射线CD是ABC的外角平分线.(1)如图1,当射线CD 与BA 的延长线能交于一点时,则BAC ∠ B (选填“>”“<”或“=”),并说明理由;(2)如图2,当CD BA ∥时,请判断BAC ∠与B 的数量关系,并证明.3、如图,在ABC 中,点D 、E 分别在边AB 、AC 上,BE 与CD 交于点F ,62A ∠=︒,25ACD ∠=︒,53EFC ∠=︒.求BDC ∠和DBE ∠的度数.4、一个零件形状如图所示,按规定A ∠应等于75°,B 和C ∠应分别是18°和22°,某质检员测得114BDC ∠=︒,就断定这个零件不合格,请你运用三角形的有关知识说明零件不合格的理由.5、如图,ABC 中,AE 是角平分线,且52B ∠=︒,78C ∠=︒,求BAE ∠的度数.-参考答案-一、单选题1、C【解析】【分析】根据三角形的中线将三角形的面积分成相等的两部分即可求解.【详解】解:∵△ABC中,AD是BC边上的中线,△ABD的面积为3,∴△ABC的面积=3×2=6.故选:C.【点睛】考查了三角形的面积,关键是熟悉三角形的中线将三角形的面积分成相等的两部分的知识点.2、B【解析】【分析】根据三角形的稳定性即可得.【详解】解:要使这个木架不变形,王师傅至少还要再钉上1根木条,将这个四边形木架分成两个三角形,如图所示:或故选:B.【点睛】本题考查了三角形的稳定性,熟练掌握三角形的稳定性是解题关键.3、D【解析】【分析】根据三角形高的画法知,过点B 作AC 边上的高,垂足为E ,其中线段BE 是ABC ∆的高,再结合图形进行判断.【详解】解:线段BE 是ABC ∆的高的图是选项D .故选:D .【点睛】本题主要考查了三角形的高,解题的关键是掌握三角形的高是指从三角形的一个顶点向对边作垂线,连接顶点与垂足之间的线段.4、A【解析】【分析】根据题意设,ABD ACD βθ∠=∠=,根据三角形内角和公式定理βθ+,进而表示出α,进而根据三角形内角和定理根据()1803BDC βθ∠=︒-+即可求解【详解】解:∵∠A =α,∠DBC =3∠DBA ,∠DCB =3∠DCA ,设,ABD ACD βθ∠=∠=,∴3,3DBC DCB βθ∠=∠=180A ABC ACB ∠+∠+∠=︒即44180αβθ++=︒454αβθ∴+=︒-∴()1803BDC βθ∠=︒-+31803454544αα⎛⎫=︒-⨯︒-=︒+ ⎪⎝⎭ 故选A【点睛】本题考查了三角形内角和定理,掌握三角形内角和定理是解题的关键.5、C【解析】【分析】三角形的三边应满足两边之和大于第三边,两边之差小于第三边,据此求解.【详解】解:A 、1+2=3,不能组成三角形,不符合题意;B 、3+4=7,不能组成三角形,不符合题意;C 、2+3>4,能组成三角形,符合题意;D 、4+5<10,不能组成三角形,不符合题意;故选:C .【点睛】本题考查了三角形的三边关系,满足两条较小边的和大于最大边即可.6、D【解析】【分析】利用测量的方法只能是验证,用定理,定义,性质结合严密的逻辑推理推导新的结论才是证明,再逐一分析各选项即可得到答案.【详解】解:证法一只是利用特殊值验证三角形的一个外角等于与它不相邻的两个内角的和,证法2才是用严谨的推理证明了该定理,故A不符合题意,C不符合题意,D符合题意,证法1测量够100个三角形进行验证,也只是验证,不能证明该定理,故B不符合题意;故选D【点睛】本题考查的是三角形的外角的性质的验证与证明,理解验证与证明的含义及证明的方法是解本题的关键.7、A【解析】【分析】满足两个条件:①经过点B;②垂直AC,由此即可判断.【详解】解:根据垂线段的定义可知,A选项中线段BE,是点B作线段AC所在直线的垂线段,故选:A.【点睛】本题考查作图-复杂作图,垂线的定义等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.8、C【解析】【分析】根据三角形具有稳定性进行求解即可.【详解】解:工人师傅在安装木制门框时,为防止变形,常常钉上两条斜拉的木条,这样做的数学依据是三角形具有稳定性,故选C.【点睛】本题主要考查了三角形的稳定性,熟知三角形具有稳定性是解题的关键.9、B【解析】【分析】根据三角形的中线定义即可作答.【详解】解:∵BD=DC,∴AD是△ABC的中线,故选:B.【点睛】本题考查了三角形的中线概念,三角形一边的中点与此边所对顶点的连线叫做三角形的中线.10、D【解析】【分析】根据三角形的内角和定理和对顶角相等求解即可.【详解】解:设AD与BC相交于O,则∠COD=∠AOB,∵∠C+∠COD+∠D=180°,∠A+∠AOB=∠B=180°,∠C=∠A=90°,∴∠D=∠B=25°,【点睛】本题考查三角形的内角和定理、对顶角相等,熟练掌握三角形的内角和是180°是解答的关键.二、填空题1、20°##20度【解析】【分析】 根据角平分线的性质得到1,122DBC ABC DCE ACE ∠=∠∠=∠,再利用三角形外角的性质计算. 【详解】解:∵ABC ∠与ACE ∠的平分线相交于点D , ∴1,122DBC ABC DCE ACE ∠=∠∠=∠, ∵∠ACE=∠A+∠ABC ,∠DCE=∠D +∠DBC ,∴∠D=∠DCE-∠DBC =11()2022ACE ABC A ∠-∠=∠=︒,故答案为:20°.【点睛】此题考查了三角形的外角性质及角平分线的性质,熟记三角形外角的性质定理是解题的关键.2、钝角【解析】根据三角形按角的分类可得结论.【详解】解:在ABC ∆中,20A ∠=︒,60B ∠=︒,100C ∠=︒,10090C ∠=︒>︒,ABC ∴∆是钝角三角形,故答案为:钝角.【点睛】本题考查三角形的分类,熟知三角形按角分为锐角三角形、直角三角形和钝角三角形是解题关键. 3、15【解析】【分析】连接DF ,根据AE =ED ,BD =3DC ,可得12ABE BDE ABD SS S == ,AEF DEF S S =,3ABD ADC S S = ,3BDF CDF S S =,然后设△AEF 的面积为x ,△BDE 的面积为y ,则DEF S x =△,BDF S x y =+,ABE S y =,()13CDF S x y =+,再由△ABC 的面积等于35,即可求解. 【详解】解:如图,连接DF ,∵AE =ED ,∴12ABE BDE ABD S S S == ,AEF DEF S S =,∵BD =3DC ,∴3ABD ADC S S = ,3BDF CDF S S =设△AEF 的面积为x ,△BDE 的面积为y ,则DEF S x =△,BDF S x y =+,ABE S y =,()13CDF S x y =+, ∵△ABC 的面积等于35,∴()1353x x y y x y +++++= , 解得:15x y += .故答案为:15【点睛】本题主要考查了与三角形中线有关的面积问题,根据题意得到12ABE BDE ABD SS S == ,AEF DEF S S =,3ABD ADC S S = ,3BDF CDF S S =是解题的关键.4、4:1##4【解析】 【分析】利用三角形的中线的性质证明22,BCE SS 再证明22,ABE ACE BCE S S S S 124,ABE ACE BCE S S S S S 从而可得答案.【详解】解: 点F 为CE 的中点,22,BCES S 点E 为AD 的中点,,,ABE BED ACE DCE S S S S ∴==22,ABE ACE BCE S S S S124,ABE ACE BCE S S S S S12:4:1,S S故答案为:4:1【点睛】本题考查的是与三角形的中线有关的面积的计算,掌握“三角形的中线把一个三角形的面积分为相等的两部分”是解本题的关键.5、59三、解答题1、(1)30F ∠=︒;(2)证明见详解..【解析】【分析】(1)根据三角形内角和及等腰三角形的性质可得75PAC ∠=︒,45ABC ACB ∠=∠=︒,由各角之间的关系及三角形内角和定理可得30PCD ∠=︒,60PDC ∠=︒,最后由平行线的性质即可得出;(2)由题意及各角之间的关系可得30CBE ∠=︒,得出DCB CBE ∠=∠,利用平行线的判定定理即可证明.【详解】解:(1)∵90BAC ∠=︒,15BAE ∠=︒,AB AC =,∴75PAC ∠=︒,45ABC ACB ∠=∠=︒,∵CD AE ⊥,∴90ADC ∠=︒,18015ACD ADC DAC ∠=︒-∠-∠=︒,∴451530PCD PCA ACD ∠=∠-∠=︒-︒=︒,∴180903060PDC ∠=︒-︒-︒=︒,∵EF BC ∥,∴60DPC PEF ∠=∠=︒,30F DCP ∠=∠=︒,∴30F ∠=︒;(2)∵75ABE ∠=︒,45ABC ∠=︒,∴754530CBE ∠=︒-︒=︒,由(1)可得30DCP ∠=︒,∴DCB CBE ∠=∠,∴BE CF ∥(内错角相等,两直线平行).【点睛】题目主要考查平行线的判定与性质,三角形内角和定理等,熟练掌握平行线的判定与性质是解题关键.2、(1)>,见解析;(2)∠BAC =∠B ,见解析【解析】【分析】(1)延长BA 与射线CD 交于点F ,根据CD 平分∠ACE ,可得∠ACD =∠ECD ,根据三角形外角性质可得∠BAC =∠ECD +∠AFC ,∠ECD =∠B +∠AFC ,得出∠BAC =∠B +2∠AFC 即可;(2)根据CD ∥BA ,可得∠BAC =∠ACD ,∠B =∠ECD ,根据CD 平分∠ACE ,解得∠ACD =∠ECD 即可.【详解】解:(1)>理由:如图,延长BA 与射线CD 交于点F ,∵CD平分∠ACE,∴∠ACD=∠ECD,∵∠BAC=∠ACD+∠AFC=∠ECD+∠AFC,∠ECD=∠B+∠AFC,∴∠BAC=∠B+2∠AFC,∴∠BAC>∠B;(2)∠BAC=∠B,证明:∵CD∥BA,∴∠BAC=∠ACD,∠B=∠ECD,∵CD平分∠ACE,∴∠ACD=∠ECD,∴∠BAC=∠B.【点睛】本题考查三角形的外角性质,角平分线定义,掌握三角形的外角性质,角平分线定义是解题关键.3、87°,40°【解析】【分析】根据三角形外角的性质可得,BDC A ACD ∠=∠+∠,代入计算即可求出BDC ∠,再根据三角形内角和定理求解即可.【详解】解:∵62A ∠=︒,25ACD ∠=︒,∴622587BDC A ACD =∠+∠=︒+︒=︒∠,∵53EFC DFB ∠=∠=︒,∴18040DBE BDC DFB ∠=︒-∠-∠=︒.【点睛】本题考查了三角形内角和和外角的性质,解题关键是准确识图,理清角之间的关系,准确进行计算.4、不合格,理由见解析【解析】【分析】延长BD 与AC 相交于点E .利用三角形的外角性质,可得1A B ∠=∠+∠,BDC BEC C ∠=∠+∠,即可求解.【详解】解:如图,延长BD 与AC 相交于点E .∵1∠是ABE △的一个外角,75A ∠=︒,18B ∠=︒,∴1751893A B ∠=∠+∠=︒+︒=︒,同理可得9322115BDC BEC C ∠=∠+∠=︒+︒=︒∵李师傅量得114BDC ∠=︒,不是115°,∴这个零件不合格.【点睛】本题主要考查了三角形的外角性质,熟练掌握三角形的一个外角等于与它不相邻的两个内角的和是解题的关键.5、25°【解析】【分析】根据三角形内角和求出∠CAB ,再根据角平分线的性质求出∠BAE 即可.【详解】解:∵∠B =52°,∠C =78°,∴∠BAC =180°-52°-78°=50°,∵AE 平分∠BAC ,∴∠BAE =12∠BAC =12×50°=25°.【点睛】本题考查了角的平分线的性质、三角形的内角和定理,熟记三角形内角和为180°是解本题的关键.。
七年级下册数学冀教版第九章三角形时间:60分钟满分:100分一、选择题(本大题共12小题,每小题3分,共36分.每小题给出的四个选项中,只有一项是符合题目要求的)1.下列长度的三条线段,能组成三角形的是()A.3,3,6B.5,6,12C.5,7,2D.6,8,102.如图,图中的直角三角形共有()A.1个B.2个C.3个D.4个第2题图第3题图第4题图3.如图,为估计池塘岸边A,B两点的距离,小明在池塘的一侧选取一点O,测得OA=15米,OB=10米,A,B 间的距离可能是()A.5米B.20米C.25米D.30米4.如图,AB∥CD,AD,BC交于点O,∠A=35°,∠BOD=76°,则∠C的度数是()A.41°B.35°C.31°D.76°5.下列说法正确的是()A.按角分类,三角形可以分为钝角三角形、锐角三角形和等腰三角形B.按边分类,三角形可分为等腰三角形、不等边三角形和等边三角形C.三角形的外角大于任何一个内角D.一个三角形中至少有一个内角不大于60°6.当三角形的一个内角α是另一个内角β的两倍时,我们称此三角形为“特征三角形”,其中α称为“特征角”.如果一个“特征三角形”的“特征角”为100°,那么这个“特征三角形”的最小内角的度数为()A.20°B.30°C.40°D.50°7.如图,∠1,∠2,∠3的大小关系为()A.∠2>∠1>∠3B.∠1>∠3>∠2C.∠3>∠2>∠1D.∠1>∠2>∠38.如图,在△ABC中,∠C=90°,D,E是AC上两点,且AE=DE,BD平分∠EBC,那么下列说法中不正确的是() A.BE是△ABD的中线 B.BD是△BCE的角平分线C.∠1=∠2=∠3D.BC是△ABE的高第8题图第9题图第10题图9.如图,点D是AB上一点,点E是AC上一点,BE,CD交于点F,∠A=62°,∠ACD=35°,∠ABE=20°,则∠BFC的度数是()A.82°B.97°C.107°D.117°10.如图,在△ABC中,∠A=40°,∠B=60°,CD⊥AB于点D,CE平分∠ACB,DF⊥CE于点F,则∠CDF的度数为()A.70°B.78°C.80°D.85°11.如图,用四条线段首尾相接连成一个框架(四个连接点可转动),其中AB=12,BC=14,CD=18,DA=24,则A,B,C,D任意两点之间的最大距离为() A.24 B.26 C.32 D.36第11题图第12题图12.如图,△ABC的角平分线CD,BE相交于点F,∠A=90°,EG∥BC,且CG⊥EG于点G,给出下列结论:①∠CEG=2∠DCB;②CA平分∠BCG;③∠ADC=∠GCD;④∠DFB=1∠CGE.其中正确的结论的个数为2()A.1B.2C.3D.4二、填空题(本大题共4小题,每小题3分,共12分)13.如图,AE是△ABC的中线,已知EC=4,DE=2,则BD的长为.第13题图第14题图第15题图第16题图14.如图,∠BDC=98°,∠C=38°,∠A=37°,则∠B的度数是.15.如图,在△ABC中,E是BC上的一点,EC=2BE,D是AC的中点,AE与BD交于点F,△ABC的面积为12,设△ADF,△BEF的面积分别为S1,S2,则S1-S2的值为.16.如图,在△ABC中,∠A=m°,∠ABC和∠ACD的平分线交于点A1;∠A1BC和∠A1CD的平分线交于点A2……∠A2 018BC和∠A2 018CD的平分线交于点A2 019,则∠A2 019=°.三、解答题(本大题共6小题,共52分.解答应写出文字说明、证明过程或演算步骤)17.(本小题满分6分)如图,一块三角形的试验田,需将该试验田划分为面积相等的四小块,种植四个不同的优良品种,请你制定出三种不同的划分方案,并给出说明.18.(本小题满分8分)已知三角形的三条边长为互不相等的整数,且两条边长分别为7和9,第三条边长为偶数.(1)请写出一个符合上述条件的第三条边长.(2)若符合上述条件的三角形共有a个,求a的值.19.(本小题满分8分)如图,在△ABC中,∠A=60°,BD,CE分别是AC,AB上的高,H是BD,CE的交点,求∠BHC的度数.20.(本小题满分8分)如图,∠BAD=∠CBE=∠ACF,∠FDE=64°,∠DEF=43°,求△ABC各内角的度数.21.(本小题满分10分)如图,AD为△ABC的中线,BE为△ABD的中线.(1)∠ABE=15°,∠BAD=40°,求∠BED的度数;(2)在△BED中作BD边上的高;(3)若△ABC的面积为40,BD=5,则△BDE中BD边上的高为多少?22.(本小题满分12分)在△ABC中,三个内角的平分线交于点O,过点O作OD⊥OB,交边BC于点D.(1)如图1,猜想∠AOC与∠ODC的关系,并说明你的理由.(2)如图2,作∠ABC外角∠ABE的平分线交CO的延长线于点F.①对BF∥OD进行说理;②若∠F=35°,求∠BAC的度数.第九章综合能力检测卷题1 2 3 4 5 6 7 8 9 10 11 12号答D C B A D B D C D C C C案13.214.23°15.216.m220191.D【解析】三条线段中两条较短线段的长度之和大于第三条线段,能组成三角形.∵3+3=6,∴3,3,6不能组成三角形,故选项A错误;∵5+6<12,∴5,6,12不能组成三角形,故选项B 错误;∵5+2=7,∴5,7,2不能组成三角形,故选项C错误.故选D.2.C【解析】如图,图中的直角三角形有△ABD,△BDC,△ABC,共3个.故选C.3.B【解析】设A,B间的距离为x米.根据三角形的三边关系,得15-10<x<15+10,解得5<x<25,结合选项知,选B.4.A【解析】∵∠BOD=76°,∠A=35°,∠BOD=∠A+∠B,∴∠B=76°-35°=41°.∵AB∥CD,∴∠C=∠B=41°.故选A.5.D【解析】按角分类,三角形可以分为钝角三角形、锐角三角形和直角三角形,所以A错误;按边分类,三角形可分为等腰三角形、不等边三角形,所以B错误;三角形的一个外角大于与它不相邻的任意一个内角,所以C错误;因为三角形的内角和等于180°,所以一个三角形中至少有一个内角不大于60°,所以D正确.故选D.6.B【解析】由题意得α=2β,α=100°,则β=50°,则第三个内角为180°-100°-50°=30°,所以这个“特征三角形”的最小内角的度数为30°.故选B.7.D【解析】如图,因为∠2是△ABF的一个外角,∠1是△AEF的一个外角,所以∠2>∠3,∠1>∠4,又因为∠4=∠2,所以∠1>∠2.所以∠1,∠2,∠3的大小关系为∠1>∠2>∠3.故选D.8.C【解析】∵AE=DE,∴BE是△ABD的中线,A正确;∵BD平分∠EBC,∴BD是△EBC的角平分线,B 正确;∵BD平分∠EBC,∴∠2=∠3,而∠1与∠2的度数未知,∴由题意得不到∠1=∠2=∠3,C不正确;∵∠C=90°,∴BC是△ABE的高,D正确.故选C.9.D【解析】∵∠A=62°,∠ACD=35°,∴∠BDC=∠A+∠ACD=97°,又∵∠ABE=20°,∴∠BFC=∠BDC+∠ABE=117°.10.C【解析】∵∠A=40°,∠B=60°,∴∠ACB=180°-∠A-∠B=80°,∵CE平分∠ACB,∴∠ACE=12∠ACB=40°,∵CD⊥AB,∴∠CDA=90°,∴∠ACD=180°-∠A-∠CDA=50°,∴∠ECD=∠ACD-∠ACE=10°,∵DF⊥CE,∴∠CFD=90°,∴∠CDF=180°-∠CFD-∠ECD=80°.故选C.11.C【解析】①选12+14,18,24作为三角形的三边长,则三边长分别为26,18,24,26-24<18<26+24,能构成三角形,此时两个端点间的最长距离为26;②选12,14+18,24作为三角形的三边长,则三边长分别为12,32,24,32-24<12<32+24,能构成三角形,此时两个端点间的最大距离为32;③选12,14,18+24作为三角形的三边长,则三边长分别为12,14,42,12<42-14,不能构成三角形;④选14,18,12+24作为三角形的三边长,则三边长分别为14,18,36,18<36-14,不能构成三角形.故选C. 12.C【解析】①∵EG∥BC,∴∠CEG=∠ACB,又∵CD是△ABC的角平分线,∴∠CEG=∠ACB=2∠DCB,故①正确;②∵∠CEG=∠ACB,而∠GEC与∠GCE不一定相等,∴CA不一定平分∠BCG,故②不正确;③∵∠A=90°,∴∠ADC+∠ACD=90°,∵CD平分∠ACB,∴∠ACD=∠BCD,∴∠ADC+∠BCD=90°.∵EG∥BC,且CG⊥EG,∴∠GCB=90°,即∠GCD+∠BCD=90°,∴∠ADC=∠GCD,故③正确;④由三角形的内角和等于180°可知∠ABC+∠ACB=90°,∵CD平分∠ACB,BE平分∠ABC,∴∠EBC=12∠ABC,∠DCB=12∠ACB,∴∠DFB=∠EBC+∠DCB=12(∠ABC+∠ACB)=45°,∵∠CGE=90°,∴∠DFB=12∠CGE,故④正确.故选C.13.2【解析】∵AE是△ABC的中线,EC=4,∴BE=EC=4.∵DE=2,∴BD=BE-DE=4-2=2.14.23°【解析】如图,延长CD交AB于点E,∵∠C=38°,∠A=37°,∴∠1=∠C+∠A=38°+37°=75°,∵∠BDC=98°,∴∠B=∠BDC-∠1=98°-75°=23°.15.2【解析】∵S△ABC=12,EC=2BE,点D是AC的中点,∴S△ABE=13S△ABC=4,S△ABD=12S△ABC=6,∴S△ABD-S△ABE=S△ADF-S△BEF=6-4=2,即S1-S2的值为2.16.m22019【解析】∵A1B平分∠ABC,A1C平分∠ACD,∴∠A1BC=12∠ABC,∠A1CD=12∠ACD,∵∠A1CD=∠A1+∠A1BC,即1 2∠ACD=∠A1+12∠ABC,∴∠A1=12(∠ACD-∠ABC),∵∠A+∠ABC=∠ACD,∴∠A=∠ACD-∠ABC,∴∠A1=12∠A,∠A2=12∠A1=122∠A,…,以此类推可知∠A2 019=122019∠A=(m22019)°.17.【解析】如图所示.(答案不唯一)18.【解析】(1)第三边长是4.(答案不唯一)设第三条边长是m,∵两条边长分别为9和7,∴9-7<m<7+9,即2<m<16.(2)∵2<m<16,∴m的值可能为4,6,8,10,12,14,共6个,∴a=6.19.【解析】因为BD,CE分别是△ABC的边AC,AB上的高,所以∠BEH=∠ADB=90°.又因为∠A=60°,所以∠ABH=30°.因为∠BHC=∠ABH+∠BEH,所以∠BHC=30°+90°=120°.20.【解析】∵∠FDE=∠BAD+∠ABD,∠BAD=∠CBE,∴∠FDE=∠CBE+∠ABD=∠ABC,∴∠ABC=64°.同理∠DEF=∠FCB+∠CBE=∠FCB+∠ACF=∠ACB,∴∠ACB=43°,∴∠BAC=180°-∠ABC-∠ACB=180°-64°-43°=73°,∴△ABC各内角的度数分别为64°,43°,73°.21.【解析】(1)在△ABE中,∵∠ABE=15°,∠BAE=40°,∴∠BED=∠ABE+∠BAE=15°+40°=55°.(2)如图,EF为BD边上的高.(3)∵AD为△ABC的中线,BE为△ABD的中线,∴S△ABD =12S△ABC,S△BDE=12S△ABD,∴S△BDE=14S△ABC,∵△ABC的面积为40,BD=5,∴S△BDE=12BD·EF=12×5×EF=14×40,解得EF=4,即△BDE中BD边上的高为4.22.【解析】(1)∠AOC=∠ODC,理由如下:∵在△ABC中,三个内角的平分线交于点O,∴∠OAC+∠OCA=12(∠BAC+∠BCA)=12(180°-∠ABC),又∵∠OBC=12∠ABC,∴∠AOC=180°-(∠OAC+∠OCA)=90°+12∠ABC=90°+∠OBC,∵OD⊥OB,∴∠BOD=90°,∴∠ODC=90°+∠OBC,∴∠AOC=∠ODC.(2)①∵BF平分∠ABE,∴∠EBF=12∠ABE=12(180°-∠ABC)=90°-∠OBD,∵∠ODB=90°-∠OBD,∴∠EBF=∠ODB,∴BF∥OD.②∵BF平分∠ABE,∴∠FBE=12∠ABE=12(∠BAC+∠ACB),∵△ABC的三个内角的平分线交于点O,∴∠FCB=12∠ACB,∵∠F=∠FBE-∠FCB=12(∠BAC+∠ACB)-12∠ACB=12∠BAC,又∵∠F=35°,∴∠BAC=2∠F=70°.。
冀教版七年级数学下册第九章三角形综合练习考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、两个直角三角板如图摆放,其中∠BAC=∠EDF=90°,∠F=45°,∠B=60°,AC与DE交于点M.若BC∥EF,则∠DMC的大小为()A.100°B.105°C.115°D.120°2、下列图形中,不具有稳定性的是()A.B.C.D.3、有下列长度的三条线段,其中能组成三角形的是()A.4,5,9 B.2.5,6.5,10 C.3,4,5 D.5,12,174、如图,已知AD AB =,C E ∠=∠,55CDE ∠=︒,则ABE ∠的度数为( )A .155°B .125°C .135°D .145°5、如图,点B 、G 、C 在直线FE 上,点D 在线段AC 上,下列是△ADB 的外角的是()A .∠FBAB .∠DBC C .∠CDBD .∠BDG6、如图,在ABC 中,∠A =55°,∠B =45°,那么∠ACD 的度数为( )A .110B .100C .55D .457、下列长度的三条线段能组成三角形的是( )A .2,3,6B .2,4,7C .3,3,5D .3,3,78、在△ABC 中,∠A =∠B =14∠C ,则∠C =( )A .70°B .80°C .100°D .120°9、如图,AD是△ABC中∠BAC的角平分线,DE⊥AB于点E,S△ABC=7,DE=2,AB=4,则AC长是( )A.6 B.5 C.4 D.310、如图,将△ABC绕点C按逆时针方向旋转至△DEC,使点D落在BC的延长线上.已知∠A=32°,∠B=30°,则∠ACE的大小是()A.63°B.58°C.54°D.56°第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,一把直尺的一边缘经过直角三角形ABC的直角顶点C,交斜AB边于点D;直尺的另一边缘分别交AB、AC于点E、F,若30∠=︒,50B∠=___________度.∠=︒,则DCBAEF2、如图,把ABC纸片沿DE折叠,使点A落在图中的A'处,若29∠'=︒,则A ECBDAA∠=︒,90∠'的大小为______.3、已知ABC 中,45A ∠=︒,高BD 和CE 所在直线交于H ,则BHC ∠的度数是________.4、一个三角形的两边长分别为2和5,则第三边的长度可取的整数值为_________(写出一个即可).5、如图,把△ABC 绕点C 顺时针旋转某个角度α得到A B C '',∠A =30°,∠1=70°,则旋转角α的度数为_____.三、解答题(5小题,每小题10分,共计50分)1、完成下面推理填空:如图,已知:AD BC ⊥于D ,EG BC ⊥于G ,1E ∠=∠.求证:AD 平分BAC ∠.解:∵AD BC ⊥于D ,EG BC ⊥(已知),∴90ADC EGC ∠=∠=︒(____①_____),∴EG AD ∥(同位角相等,两直线平行),∴_____②___(两直线平行,同位角相等)∠1=∠2(____③_____),又∵1E ∠=∠(已知),∴∠2=∠3(_____④______),∴AD 平分BAC ∠(角平分线的定义).2、如图所示,AB//CD,G为AB上方一点,E、F分别为AB、CD上两点,∠AEG=4∠GEB,∠CFG=2∠GFD,∠GEB和∠GFD的角平分线交于点H,求∠G+∠H的值.3、如图,BD是△ABC的角平分线,DE∥BC,交AB于点E,∠A=45°,∠BDC=60°,求∠BED的度数.4、如图,在△ABC中,D为BC延长线上一点,DE⊥AB于E,交AC于F,若∠A=40°,∠D=45°,求∠ACB的度数.5、如图,在△ABC中,∠BAC=40°,∠B=75°,AD是△ABC的角平分线,求∠ADB的度数.-参考答案-一、单选题1、B【解析】【分析】首先根据直角三角形两锐角互余可算出∠C和∠E的度数,再由“两直线平行,内错角相等”,可求出∠MDC的度数,在△CMD中,利用三角形内角和可求出∠CMD的度数.【详解】解:在△ABC和△DEF中,∠BAC=∠EDF=90°,∠F=45°,∠B=60°,∴∠C=90°-∠B=30°,∠E=90°-∠F=45°,∵BC∥EF,∴∠MDC=∠E=45°,在△CMD中,∠CMD=180°-∠C-∠MDC=105°.故选:B.【点睛】本题主要考查三角形内角和,平行线的性质等内容,根据图形,结合定理求出每个角的度数是解题关键.2、B【解析】【分析】由三角形的稳定性的性质判定即可.【详解】A选项为三角形,故具有稳定性,不符合题意,故错误;B选项为四边形,非三角形结构,故不具有稳定性,符合题意,故正确;C选项为三个三角形组成的图形,属于三角形结构,故具有稳定性,不符合题意,故错误;D选项为两个三角形组成的图形,属于三角形结构,故具有稳定性,不符合题意,故错误.故选B.【点睛】本题考查了三角形的稳定性,如果三角形的三条边固定,那么三角形的形状和大小就完全确定了,三角形的这个特征,叫做三角形的稳定性注意①要看图形是否具有稳定性,关键在于它的结构是不是三角形结构②除了三角形外,其他图形都不具备稳定性,因此在生产建设中,三角形的应用非常广泛.3、C【解析】【分析】根据“三角形任意两边之和大于第三边,任意两边之差小于第三边”对各选项进行逐一分析即可.【详解】解:根据三角形的三边关系,得,+=,不能够组成三角形,不符合题意;A、459+=<,不能够组成三角形,不符合题意;B、2.5 6.5910C、3475,4315+=>-=<,能够组成三角形,符合题意;D 、51217+=,不能组成三角形,不符合题意;故选:C .【点睛】此题主要考查了三角形三边关系,解题的关键是掌握判断能否组成三角形的简便方法是看较小的两个数的和是否大于第三个数.4、B【解析】【分析】根据三角形外角的性质得出55CBE A E A C ∠=∠+∠=∠+∠=︒,再求ABE ∠即可.【详解】解:∵55CDE ∠=︒,∴55A C ∠+∠=︒,∵C E ∠=∠,∴55CBE A E ∠=∠+∠=︒,∴180125ABE CBE ∠=︒-∠=︒;故选:B .【点睛】本题考查了三角形外角的性质,解题关键是准确识图,理清角之间的关系.5、C【解析】【分析】根据三角形的外角的概念解答即可.【详解】解:A.∠FBA是△ABC的外角,故不符合题意;B. ∠DBC不是任何三角形的外角,故不符合题意;C.∠CDB是∠ADB的外角,符合题意;D. ∠BDG不是任何三角形的外角,故不符合题意;故选:C.【点睛】本题考查的是三角形的外角的概念,三角形的一边与另一边的延长线组成的角,叫做三角形的外角.6、B【解析】【分析】根据三角形的外角的性质计算即可.【详解】解:由三角形的外角的性质可知,∠ACD=∠A+∠B=100°,故选:B.【点睛】本题考查了三角形外角的性质,熟练掌握三角形外角的性质是解答本题的关键.三角形的一个外角等于与它不相邻的两个内角的和,三角形的一个外角大于任何一个与它不相邻的内角.7、C【解析】【分析】根据三角形的三边关系,逐项判断即可求解.【详解】+=<,所以不能组成三角形,故本选项不符合题意;解:A、因为2356B 、因为2467+=< ,所以不能组成三角形,故本选项不符合题意;C 、因为3365+=> ,所以能组成三角形,故本选项符合题意;D 、因为3367+=< ,所以不能组成三角形,故本选项不符合题意;故选:C【点睛】本题主要考查了三角形的三边关系,熟练掌握三角形的两边之和大于第三边,两边之差小于第三边是解题的关键.8、D【解析】【分析】根据三角形的内角和,180A B C ∠+∠+∠=︒①,进而根据已知条件,将,A B ∠∠代入①即可求得C ∠【详解】解:∵在△ABC 中,180A B C ∠+∠+∠=︒,∠A =∠B =14∠C , ∴1118044C C C ∠+∠+∠=︒解得120C ∠=︒故选D【点睛】本题考查了三角形内角和定理,掌握三角形内角和定理是解题的关键.9、D【解析】【分析】过D 作DF ⊥AC 于F ,根据角平分线性质求出DF =DE =2,根据S △ADB +S △ADC =7和三角形面积公式求出即可.【详解】解:过D作DF⊥AC于F,∵AD是△ABC中∠BAC的角平分线,DE⊥AB于点E,DE=2,∴DE=DF=2,∵S△ABC=7,∴S△ADB+S△ADC=7,∴12×AB×DE+12×AC×DF=7,∴12×4×2+12×AC×2=7,解得:AC=3.故选D .【点睛】本题考查了角平分线的性质,三角形面积公式的应用,能正确作出辅助线是解此题的关键,注意:角平分线上的点到角两边的距离相等.10、C【解析】【分析】先根据三角形外角的性质求出∠ACD=63°,再由△ABC绕点C按逆时针方向旋转至△DEC,得到△ABC≌△DEC,证明∠BCE=∠ACD,利用平角为180°即可解答.【详解】解:∵∠A =33°,∠B =30°,∴∠ACD =∠A +∠B =33°+30°=63°,∵△ABC 绕点C 按逆时针方向旋转至△DEC ,∴△ABC ≌△DEC ,∴∠ACB =∠DCE ,∴∠BCE =∠ACD ,∴∠BCE =63°,∴∠ACE =180°-∠ACD -∠BCE =180°-63°-63°=54°.故选:C .【点睛】本题考查了旋转的性质,三角形外角的性质,解决本题的关键是由旋转得到△ABC ≌△DE C .二、填空题1、20【解析】【分析】利用平行线的性质求出∠1,再利用三角形外角的性质求出∠DCB 即可.【详解】解:∵EF ∥CD ,∴150AEF ∠=∠=︒,∵∠1是△DCB 的外角,∴DCB ∠=∠1-∠B =50°-30°=20º,故答案为:20.【点睛】本题考查了平行线的性质,三角形外角的性质等知识,解题的关键是熟练掌握基本知识.2、32︒##32度【解析】【分析】利用折叠性质得'45ADE A DE ∠=∠=︒,'AED A ED ∠=∠,再根据三角形外角性质得74CED ∠=︒,利用邻补角得到106AED ∠=︒,则'106A ED ∠=︒,然后利用''A EC A ED CED ∠=∠-∠进行计算即可.【详解】解:∵'90BDA ∠=︒,∴'90ADA ∠=︒,∵ABC 纸片沿DE 折叠,使点A 落在图中的A'处,∴'45ADE A DE ∠=∠=︒,'AED A ED ∠=∠,∵294574CED A ADE ∠=∠+∠=︒+︒=︒,∴106AED ∠=︒,∴'106A ED ∠=︒,∴''1067432A EC A ED CED ∠=∠-∠=︒-︒=︒.故答案为:32︒.【点睛】本题考查了折叠的性质,三角形外角的性质,三角形内角和定理等,理解题意,熟练掌握综合运用各个知识点是解题关键.3、45°或135°【解析】【分析】分两种情况讨论:①如图1,ABC 为锐角三角形,由题意知90BDA CEA ∠=∠=︒, 45ACE ∠=︒,45ABD ∠=︒,180A ABD DBC BCE ACE ∠+∠+∠+∠+∠=︒,180DBC BCE BHC ∠+∠+∠=︒,代值计算求解即可;②如图2,ABC 为钝角三角形,由题意知90BDA CEA ∠=∠=︒,在BEH △中,45ABD ∠=︒,90CEB ∠=︒,180BHC CEB ABD ∠=︒-∠-∠,代值计算求解即可.【详解】解:由题意知90BDA CEA ∠=∠=︒①如图1所示,ABC 为锐角三角形∵90BDA CEA ∠=∠=︒,45A ∠=︒∴45ACE ∠=︒,45ABD ∠=︒∵180A ABD DBC BCE ACE ∠+∠+∠+∠+∠=︒∴180********DBC BCE ∠+∠=︒-︒-︒-︒=︒∵180DBC BCE BHC ∠+∠+∠=︒∴18045135BHC ∠=︒-︒=︒;②如图2所示,ABC 为钝角三角形∵90BDA CEA ∠=∠=︒,45A ∠=︒∴45ABD ∠=︒在BEH △中,45ABD ∠=︒,90CEB ∠=︒∴180180904545BHC CEB ABD ∠=︒-∠-∠=︒-︒-︒=︒;综上所述,BHC ∠的值为45︒或135︒故答案为:45︒或135︒.【点睛】本题考查了三角形的高,三角形的内角和定理.解题的关键在于正确求解角度.4、4,5,6(写出一个即可)【解析】【分析】由构成三角形三边成立的条件可得第三条边的取值范围.【详解】设第三条长为x∵2+5=7,5-2=3∴3<x <7.故第三条边的整数值有4、5、6.故答案为:4,5,6(写出一个即可)【点睛】本题考查了构成三角形的三边关系,任意两边之和大于第三边,任意两边之差小于第三边,关键为“任意”两边均满足此关系.5、40︒##40度【解析】【分析】由旋转的性质可得30,A A 再利用三角形的外角的性质求解140,A CA A 从而可得答案.【详解】 解: 把△ABC 绕点C 顺时针旋转某个角度α得到A B C '',∠A =30°,30,A A ∠1=70°,140,A CA A40.故答案为:40︒【点睛】本题考查的是旋转的性质,三角形的外角的性质,利用性质的性质求解30A A '∠=∠=︒是解本题的关键.三、解答题1、垂直的定义;∠E =∠3;两直线平行,内错角相等;等量代换【解析】【分析】根据平行线的判定与性质进行解答即可.【详解】解:∵AD ⊥BC 于D ,EG ⊥BC (已知),∴∠ADC =∠EGC =90°(垂直的定义),∴EG ∥AD (同位角相等,两直线平行),∴∠E =∠3(两直线平行,同位角相等)∠1=∠2(两直线平行,内错角相等),又∵∠E =∠1(已知),∴∠2=∠3(等量代换),∴AD 平分∠BAC (角平分线的定义).故答案为:垂直的定义;∠E =∠3;两直线平行,内错角相等;等量代换.【点睛】本题考查的是平行线的判定与性质,用到的知识点为:同位角相等,两直线平行;两直线平行,内错角相等,同位角相等.2、∠G +∠H =36°.【解析】【分析】先设2GEB x ∠=,2GFD y ∠=,由题意可得8AEG x ∠=,4CFG y ∠=,由28180x x +=︒,24180y y +=︒,从而求出x y ,;根据题意得AEG G CFG ∠=∠+∠, AEH H CFH ∠=∠+∠, 从而得到G H ∠+∠的值.【详解】解:设2GEB x ∠=,2GFD y ∠=,由题意可得,8AEG x ∠=,4CFG y ∠=,由28180x x +=︒,24180y y +=︒,解得18x =︒,30y =︒;由靴子图AEGFC 知,AEG G CFG ∠=∠+∠,即84x G y =∠+由靴子图AEHFC 知,AEH H CFH ∠=∠+∠,即即84x G y =∠+,95x H y =∠+,179171893036G H x y ∠+∠=-=⨯︒-⨯︒=︒【点睛】本题考查平行线的性质,解题的关键是设2GEB x ∠=,2GFD y ∠=,由题意得到x y ,的关系式,正确将G H ∠+∠表示成x y ,的形式.3、150°【解析】【分析】求∠BED 的度数,应先求出∠ABC 的度数,根据三角形的外角的性质可得,∠ABD =∠BDC ﹣∠A =60°﹣45°=15°.再根据角平分线的定义可得,∠ABC =2∠ABD =2×15°=30°,根据两直线平行,同旁内角互补得∠BED 的度数.【详解】解:∵∠BDC 是△ABD 的外角,∴∠ABD =∠BDC ﹣∠A =60°﹣45°=15°.∵BD 是△ABC 的角平分线,∴∠DBC =∠ABD =15°,∴∠ABC =30°,∵DE ∥BC ,∴∠BED =180°﹣∠ABC =180°﹣30°=150°.【点睛】本题考查三角形外角的性质及角平分线的定义和平行线的性质,解答的关键是沟通外角和内角的关系.4、95°【解析】【分析】根据三角形外角与内角的关系及三角形内角和定理解答.【详解】解:∵DF ⊥AB ,∠A =40°∴∠AEF =∠CED =50°,∴∠ACB =∠D +∠CED =45°+50°=95°.【点睛】本题考查了三角形外角与内角的关系:三角形的一个外角等于和它不相邻的两个内角的和.三角形内角和定理:三角形的三个内角和为180°.5、85°【解析】【分析】根据角平分线定义求出DAB ∠,根据三角形内角和定理得出180ADB DAB B ∠=︒-∠-∠,代入求出即可.【详解】解:AD 平分CAB ∠,40BAC ∠=︒,1202DAB BAC ∴∠=∠=︒, 75B ∠=︒,180180207585ADB DAB B ∴∠=︒-∠-∠=︒-︒-︒=︒.【点睛】本题考查了三角形内角和定理,角平分线定义的应用,解题的关键是注意:三角形的内角和等于180 .。
冀教版七年级数学下册第九章 三角形单元测试考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,将ABC 的BC 边对折,使点B 与点C 重合,DE 为折痕,若65A ∠=︒,25ACD ∠=︒,则B ∠=( ).A .45°B .60°C .35°D .40°2、如图,12345∠+∠+∠+∠+∠= ( )A .180°B .360°C .270°D .300°3、如图,把△ABC 绕顶点C 按顺时针方向旋转得到△A ′B ′C ′,当A ′B ′⊥AC ,∠A =50°,∠A ′CB =115°时,∠B ′CA 的度数为( )A.30°B.35°C.40°D.45°4、如图,将一副三角板平放在一平面上(点D在BC上),则1∠的度数为()A.60︒B.75︒C.90︒D.105︒∠等于()5、如图所示,一副三角板叠放在一起,则图中αA.105°B.115°C.120°D.135°6、如图,在△ABC中,AD是△ABC的中线,△ABD的面积为3,则△ABC的面积为()A.8 B.7 C.6 D.57、若一个三角形的两边长分别为3和8,则第三边长可能是 ( )A.4 B.5 C.8 D.118、如图,在ABC 中,点D 、E 分别是AC ,AB 的中点,且=12ABC S △,则=BDE S △( )A .12B .6C .3D .29、若一个三角形的三个外角之比为3:4:5,则该三角形为( )A .直角三角形B .等腰三角形C .等边三角形D .等腰直角三角形10、如图,在ABC 中,90ACB ∠=︒,30A ∠=︒,将ABC 绕点C 逆时针旋转90°得到DEC ,则AED ∠的度数为( )A .105°B .120°C .135°D .150°第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、一个三角形的两边长分别为2和5,则第三边的长度可取的整数值为_________(写出一个即可).2、如图,在面积为48的等腰ABC 中,10AB AC ==,12BC =,P 是BC 边上的动点,点P 关于直线AB 、AC 的对称点外别为M 、N ,则线段MN 的最大值为______.3、已知两个定点A 、B 的距离为4厘米,那么到点A 、B 距离之和为4厘米的点的轨迹是____________.4、如图,△ABC 中,点D 在BC 的延长线上,A α∠=,ABC ∠与ACD ∠的平分线相交于点1A ,得1A ∠;1A BC ∠与1A CD ∠的平分线相交于点2A ,得2A ;…;2020A BC ∠与2020A CD ∠的平分线相交于点2021A ,得2021A ∠,2021A ∠=__________.5、一个零件的形状如图,按规定∠A =90°,∠B =∠D =25°,判断这个零件是否合格,只要检验∠BCD 的度数就可以了.量得∠BCD =150°,这个零件______(填“合格”不合格”).三、解答题(5小题,每小题10分,共计50分)1、如图所示,在一副三角板ABC 和三角板DEC 中,90ACB CDE ∠=∠=︒,60BAC ∠=︒,∠B =30°,∠DEC =∠DCE =45°.(1)当AB∥DC 时,如图①,DCB ∠的度数为 °;(2)当CD 与CB 重合时,如图②,判断DE 与AC 的位置关系并说明理由;(3)如图③,当DCB ∠= °时,AB∥EC ;(4)当AB∥ED 时,如图④、图⑤,分别求出DCB ∠的度数.2、如图,在同一平面内有四个点A 、B 、C 、D ,请按要求完成下列问题.(注:此题作图不要求写出画法和结论)(1)分别连接AB 、AD ,作射线AC ,作直线BD 与射线AC 相交于点O ;(2)我们容易判断出线段AB +AD 与BD 的数量关系是 ,理由是 .3、已知:如图,AB CD ∥,37,60E D ∠=︒∠=︒,求ABE ∠的度数.4、如图,AD是△ABC的高,AE平分∠BA C.(1)若∠B=62°,∠C=46°,求∠DAE的度数;(2)若30∠-∠=︒,求∠DAE的度数.B C5、已知:如图,在△ABC中,AB=3,AC=5.(1)直接写出BC的取值范围是.(2)若点D是BC边上的一点,∠BAC=85°,∠ADC=140°,∠BAD=∠B,求∠C.-参考答案-一、单选题1、A【解析】【分析】由折叠得到∠B =∠BCD ,根据三角形的内角和得∠A +∠B +∠ACB =180°,代入度数计算即可.【详解】解:由折叠得∠B =∠BCD ,∵∠A +∠B +∠ACB =180°,65A ∠=︒,25ACD ∠=︒,∴65°+2∠B +25°=180°,∴∠B =45°,故选:A .【点睛】此题考查了折叠的性质,三角形内角和定理,熟记折叠的性质是解题的关键.2、A【解析】【分析】利用三角形外角定理及三角形内角和公式求解即可.【详解】解:∵∠7=∠4+∠2,∠6=∠1+∠3,∴∠6+∠7=∠1+∠2+∠3+∠4,∵∠5+∠6+∠7=180°,∴∠1+∠2+∠3+∠4+∠5=180°.故选:A .【点睛】本题考查了三角形的一个外角等于与它不相邻的两个内角的和的性质,三角形的内角和定理,熟记性质并准确识图是解题的关键.3、B【解析】【分析】由旋转的性质可得∠A ′=∠A =50°,∠BCB '=∠ACA ',由直角三角形的性质可求∠A ′CA =40°,即可求解.【详解】解:根据旋转的性质可知∠A ′=∠A =50°,∠BCB '=∠ACA ',∴∠A ′CA =90°﹣50°=40°,∴∠BCB ′=∠A ′CA =40°,∴∠B ′CA =∠A ′CB ﹣∠A ′CA ﹣∠BCB ′=115°﹣40°﹣40°=35°.故选:B .【点睛】本题主要考查了旋转的性质,三角形内角和定理的应用,解决这类问题要找准旋转角、以及旋转后对应的线段和角.4、B【解析】【分析】根据三角尺可得45,30EDB ABC ∠=︒∠=︒,根据三角形的外角性质即可求得1∠解:45,30EDB ABC ∠=︒∠=︒175EDB ABC ∴∠=∠+∠=︒故选B【点睛】本题考查了三角形的外角性质,掌握三角形的外角性质是解题的关键.5、A【解析】【分析】根据直角三角板各角的度数和三角形外角性质求解即可.【详解】解:如图,∠C =90°,∠DAE =45°,∠BAC =60°,∴∠CAO =∠BAC -∠DAE =60°-45°=15°,∴α∠=∠C +∠CAO =90°+15°=105°,故选:A .【点睛】本题考查三角板中的度数计算、三角形的外角性质,熟知三角板各角度数,掌握三角形的外角性质是解答的关键.6、C【分析】根据三角形的中线将三角形的面积分成相等的两部分即可求解.【详解】解:∵△ABC中,AD是BC边上的中线,△ABD的面积为3,∴△ABC的面积=3×2=6.故选:C.【点睛】考查了三角形的面积,关键是熟悉三角形的中线将三角形的面积分成相等的两部分的知识点.7、C【解析】【分析】直接利用三角形三边关系得出第三边的取值范围,进而得出答案.【详解】解:∵一个三角形的两边长分别为3和8,∴5<第三边长<11,则第三边长可能是:8.故选:C.【点睛】此题主要考查了三角形的三边关系,正确得出第三边的取值范围是解题关键.8、C【解析】【分析】由于三角形的中线将三角形分成面积相等的两部分,则S△ABD=12S△ABC=6,然后利用S△BDE=12S△ABD求解.【详解】解:∵点D为AC的中点,∴S△ABD=12S△ABC=12×12=6,∵点E为AB的中点,∴S△BDE=12S△ABD=12×6=3.故选:C.【点睛】本题考查了三角形中线的性质,熟练掌握三角形中线的性质是解答本题的关键.三角形的中线把三角形分成面积相同的两部分.9、A【解析】【分析】根据三角形外角和为360°计算,求出内角的度数,判断即可.【详解】解:设三角形的三个外角的度数分别为3x、4x、5x,则3x+4x+5x=360°,解得,x=30°,∴三角形的三个外角的度数分别为90°、120°、150°,对应的三个内角的度数分别为90°、60°、30°,∴此三角形为直角三角形,故选:A .【点睛】本题考查的是三角形的外角和,掌握三角形外角和为360°是解题的关键.10、B【解析】【分析】由题意易得30,90A D ACB DCE ∠=∠=︒∠=∠=︒,然后根据三角形外角的性质可求解.【详解】解:由旋转的性质可得:30,90A D ACB DCE ∠=∠=︒∠=∠=︒,∴120AED D DCE ∠=∠+∠=︒;故选B .【点睛】本题主要考查旋转的性质及三角形外角的性质,熟练掌握旋转的性质及三角形外角的性质是解题的关键.二、填空题1、4,5,6(写出一个即可)【解析】【分析】由构成三角形三边成立的条件可得第三条边的取值范围.【详解】设第三条长为x∵2+5=7,5-2=3∴3<x<7.故第三条边的整数值有4、5、6.故答案为:4,5,6(写出一个即可)【点睛】本题考查了构成三角形的三边关系,任意两边之和大于第三边,任意两边之差小于第三边,关键为“任意”两边均满足此关系.2、19.2【解析】【分析】+>,当点P与点点P关于直线AB、AC的对称点分别为M、N,根据三角形三边关系可得PM PN MNB或点C重合时,P、M、N三点共线,MN最长,由轴对称可得BF AC=,再由三角形等面⊥,BF FN积法即可确定MN长度.【详解】解:如图所示:点P关于直线AB、AC的对称点分别为M、N,+>,由图可得:PM PN MN当点P与点B或点C重合时,如图所示,MN交AC于点F,此时P、M、N三点共线,MN最长,∴BF AC ⊥,BF FN =,∵等腰ABC 面积为48,10AB AC ==, ∴1·482AC BF =, 9.6BF =,∴219.2MN BF ==,故答案为:19.2.【点睛】题目主要考查对称点的性质及三角形三边关系,三角形等面积法等,理解题意,根据图形得出三点共线时线段最长是解题关键.3、线段AB【解析】【分析】设到定点A 、B 的距离之和为4厘米的点是点P ,若点P 不在线段AB 上,易得PA +PB >4,若点P 在线段AB 上,则PA +PB =AB =4,由此可得答案.【详解】解:设到定点A 、B 的距离之和为4厘米的点是点P ,若点P 在不在线段AB 上,则点P 在直线AB 外或线段AB 的延长线或线段BA 的延长线上,则由三角形的三边关系或线段的大小关系可得:PA +PB >AB ,即PA +PB >4,若点P 在线段AB 上,则PA +PB =AB =4,所以到点A 、B 的距离之和为4厘米的点的轨迹是线段AB .故答案为:线段AB .【点睛】本题考查了点的轨迹和三角形的三边关系,正确理解题意、掌握解答的方法是关键.4、20212α【解析】【分析】 结合题意,根据角平分线、三角形外角、三角形内角和的性质,得112A A ∠=∠,同理得212122A A α∠=∠=;再根据数字规律的性质分析,即可得到答案. 【详解】解:根据题意,A α∠=,ABC ∠与ACD ∠的平分线交于点1A ,∴∠A 1BC =12ABC ∠,∠ACA 1=12ACD ∠, ∴1111118018022A A BC ACB ACA ABC ACB ACD ∠=︒-∠-∠-∠=︒-∠-∠-∠, ∵ACD A ABC ∠=∠+∠, ∴111802A ABC ACB A ∠=︒-∠-∠-∠, ∵180A ABC ACB ∠+∠+∠=︒,∴112A A ∠=∠=2α,同理,得2121112222A A A α∠=∠=⨯∠=; 323111122222A A A α∠=∠=⨯⨯∠=; 43411111222222A A A α∠=∠=⨯⨯⨯∠=; …1122n n n A A α-∠=∠=, ∴202120212A α∠=. 故答案为:20212α.【点睛】 本题考查了三角形性质和数字规律的知识;解题的关键是熟练掌握三角形内角和、三角形外角、角平分线、数字规律的性质,从而完成求解.5、不合格【解析】【分析】连接AC 并延长,然后根据三角形的一个外角等于与它不相邻的两个内角的和可得∠3=∠1+∠B ,∠4=∠2+∠D,再求出∠BCD即可进行判定.【详解】解:如图,连接AC并延长,由三角形的外角性质可得,∠3=∠1+∠B,∠4=∠2+∠D,∴∠BCD=∠3+∠4=∠1+∠B+∠2+∠D=∠BAD+∠B+∠D=90°+25°+25°=140°,∵140°≠150°,∴这个零件不合格.故答案为:不合格.【点睛】本题考查了三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记性质并作辅助线构造出两个三角形是解题的关键.三、解答题1、(1)30;(2)DE∥AC,理由见解析;(3)15;(4)图④∠DCB=60°;图⑤∠DCB=120°;【解析】【分析】(1)根据两直线平行,内错角相等求解即可;(2)根据内错角相等,两直线平行证明即可;(3)根据AB∥EC,得到∠ECB=∠B=30°,即可得到∠DCB=∠DCE-∠ECB=15°;(4)如图④所示,,设CD与AB交于F,由平行线的性质可得∠BFC=∠EDC=90°,再由三角形内角和定理∠DCB=180°-∠BFC-∠B=60°;如图⑤所示,延长AC交ED延长线于G,由平行线的性质可得∠G=∠A=60°,再由∠ACB=∠CDE=90°,得到∠BCG=∠CDG=90°,即可求出∠DCG=180°-∠G-∠CDG=30°,则∠BCD=∠BCG+∠DCG=120°.【详解】解:(1)∵AB∥CD,∴∠BCD=∠B=30°,故答案为:30;(2)DE∥AC,理由如下:∵∠CBE=∠ACB=90°,∴DE∥AC;(3)∵AB∥EC,∴∠ECB=∠B=30°,又∵∠DCE=45°,∴∠DCB=∠DCE-∠ECB=15°,∴当∠DCB=15°时,AB∥EC,故答案为:15;(4)如图④所示,设CD与AB交于F,∵AB∥ED,∴∠BFC=∠EDC=90°,∴∠DCB=180°-∠BFC-∠B=60°;如图⑤所示,延长AC交ED延长线于G,∵AB∥DE,∴∠G=∠A=60°,∵∠ACB=∠CDE=90°,∴∠BCG=∠CDG=90°,∴∠DCG=180°-∠G-∠CDG=30°,∴∠DCB=∠BCG+∠DCG=120°.【点睛】本题主要考查了平行线的性质与判定,三角形内角和定理,邻补角互补等等,解题的关键在于能够熟练掌握平行线的性质与判定条件.2、(1)见解析;(2)AB+AD>BD,在三角形中,两边之和大于第三边.【解析】【分析】(1)根据直线,射线,线段的作图方法作图即可;(2)根据三角形三边的关系:两边之和大于第三边进行求解即可.【详解】解:(1)如图所示,即为所求;(2)我们容易判断出线段AB +AD 与BD 的数量关系是:AB +AD >BD ,理由是:在三角形中,两边之和大于第三边,故答案为:AB +AD >BD ,在三角形中,两边之和大于第三边.【点睛】本题主要考查了三角形三边的关系,作直线,射线和线段,解题的关键在于能够熟练掌握相关知识进行求解.3、97°【解析】【分析】延长AB 交DE 于点F ,根据平行线的性质可得160D ∠=∠=︒,根据三角形的外角性质即可求得ABE ∠的度数.【详解】解:如图,延长AB 交DE 于点F .∵AB ∥CD ,∠D =60°,∴160D ∠=∠=︒∵∠ABE 是△BEF 的一个外角,∴∠ABE =∠E +∠1∵∠E =37°∴∠ABE =37°+60°=97°【点睛】本题考查了平行线的性质,三角形外角的性质,掌握三角形的外角性质是解题的关键.4、(1)8°;(2)15°【解析】【分析】(1)根据 三角形内角和定理求出∠BAC 的度数,利用角平分线的性质求出∠CAE 的度数,根据垂直的定义求出答案;(2)根据角平分线的性质推出∠CAE =∠BAE ,利用垂直得到∠BAD +∠DAE =∠CAD -∠DAE ,推出2∠DAE =30B C ∠-∠=︒,计算得到答案.【详解】解:(1)∵∠B =62°,∠C =46°,∴∠BAC =180°-∠B -∠C =72°,∵AE 平分∠BA C ,∴∠CAE =1362BAC ∠=︒,∵AD ⊥BC ,∴∠ADC =90°,∴∠DAC =90°-∠C =44°,∴∠DAE=∠DAC-∠CAE=8°;(2)∵AE平分∠BA C,∴∠CAE=∠BAE,∵AD⊥BC,∴∠ADC=90°,∴∠BAD=90°-∠B,∠CAD=90°-∠C,∴∠BAD+∠DAE=∠CAD-∠DAE,∴90°-∠B+∠DAE=90°-∠C-∠DAE,∴2∠DAE=30B C∠-∠=︒,∴∠DAE=15°.【点睛】此题考查了三角形角平分线的性质,三角形内角和定理,垂直的定义,熟练掌握三角形的知识是解题的关键.5、(1)2<BC<8;(2)25°【解析】【分析】(1)根据三角形三边关系解答即可;(2)根据三角形外角性质和三角形内角和解答即可.【详解】解:(1)∵AC-AB<BC<AC+AB,AB=3,AC=5.∴2<BC<8,故答案为:2<BC<8(2)∵∠ADC是△ABD的外角∴∠ADC=∠B+∠BAD=140︒∵∠B=∠BAD∴∠B=114070 2⨯︒=︒∵∠B+∠BAC+∠C=180︒∴∠C=180︒﹣∠B﹣∠BAC即∠C=180︒﹣70︒﹣85︒=25︒【点睛】本题考查了三角形第三边的取值范围,三角形内角和定理和三角形外角的性质,能根据三角形的外角的性质求出∠B的度数是解此题的关键.。
冀教版七年级数学下册第九章三角形同步测试考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,把△ABC纸片沿DE折叠,当点A落在四边形BCDE的外面时,此时测得∠1=112°,∠A=40°,则∠2的度数为()A.32°B.33°C.34°D.38°2、如图,将△ABC沿着DE减去一个角后得到四边形BCED,若∠BDE和∠DEC的平分线交于点F,∠DFE=α,则∠A的度数是()A.180°﹣αB.180°﹣2αC.360°﹣αD.360°﹣2α3、如图,在ABC中,AD、AE分别是边BC上的中线与高,4AE ,CD的长为5,则ABC的面积为()A.8 B.10 C.20 D.404、如图,点D、E分别在∠ABC的边BA、BC上,DE⊥AB,过BA上的点F(位于点D上方)作FG∥BC,若∠AFG=42°,则∠DEB的度数为()A.42°B.48°C.52°D.58°5、BP是∠ABC的平分线,CP是∠ACB的邻补角的平分线,∠ABP=20°,∠ACP=50°,则∠P=()A.30°B.40°C.50°D.60°6、下列各组数中,不能作为一个三角形三边长的是()A.4,4,4 B.2,7,9 C.3,4,5 D.5,7,97、下列长度的三条线段能组成三角形的是()A.3,4,7 B.3,4,8 C.3,4,5 D.3,3,78、如图,已知△ABC中,BD、CE分别是△ABC的角平分线,BD与CE交于点O,如果设∠BAC=n°(0<n<180),那么∠BOE的度数是()A.90°12-n°B.90°12+n°C.45°+n°D.180°﹣n°9、如图,为估计池塘岸边A、B两点的距离,小方在池塘的一侧选取一点O,OA=15米,OB=10米,A、B间的距离不可能是()A.5米B.10米C.15米D.20米10、如图,AD∥BC,∠C=30°,∠ADB:∠BDC=1:2,∠EAB=72°,以下四个说法:①∠CDF=30°;②∠ADB=50°;③∠ABD=22°;④∠CBN=108°其中正确说法的个数是()A .1个B .2个C .3个D .4个第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、在△ABC 中,若AC =3,BC =7则第三边AB 的取值范围为________.2、如图,E 为△ABC 的BC 边上一点,点D 在BA 的延长线上,DE 交AC 于点F ,∠B =46°,∠C =30°,∠EFC =70°,则∠D =______.3、如图,1AP 为△ABC 的中线,2AP 为△1APC 的中线,3AP 为△2AP C 的中线,……按此规律,n AP 为△1n AP C 的中线.若△ABC 的面积为8,则△n AP C 的面积为_______________.4、如图,点A 、B 在直线l 上,点C 是直线l 外一点,可知CA +CB >AB ,其依据是 _____.5、一个零件的形状如图,按规定∠A=90°,∠B=∠D=25°,判断这个零件是否合格,只要检验∠BCD的度数就可以了.量得∠BCD=150°,这个零件______(填“合格”不合格”).三、解答题(5小题,每小题10分,共计50分)1、已知:如图,在△ABC中,AB=3,AC=5.(1)直接写出BC的取值范围是.(2)若点D是BC边上的一点,∠BAC=85°,∠ADC=140°,∠BAD=∠B,求∠C.2、如图,点C,B分别在直线MN,PQ上,点A在直线MN,PQ之间,MN∥PQ.(1)如图1,求证:∠A=∠MCA+∠PBA;(2)如图2,过点C作CD∥AB,点E在PQ上,∠ECM=∠ACD,求证:∠A=∠ECN;(3)在(2)的条件下,如图3,过点B作PQ的垂线交CE于点F,∠ABF的平分线交AC于点G,若∠DCE=∠ACE,∠CFB=32∠CGB,求∠A的度数.3、如图,点E为直线AB上一点,∠CAE=2∠B,BC平分∠ACD,求证:AB∥CD.4、(1)如图,AB//CD,CF平分∠DCE,若∠DCF=30°,∠E=20°,求∠ABE的度数;(2)如图,AB//CD,∠EBF=2∠ABF,CF平分∠DCE,若∠F的2倍与∠E的补角的和为190°,求∠ABE的度数.(3)如图,P为(2)中射线BE上一点,G是CD上任一点,PQ平分∠BPG,GN//PQ,GM平分∠DGP,若∠B=30°,求∠MGN的度数.5、请解答下列各题:(1)阅读并回答:科学实验证明,平面镜反射光线的规律是:射到平面镜上的光线和被反射出的光线与平面镜所夹的角相等.如图1,一束平行光线AB 与DE 射向一个水平镜面后被反射,此时12∠=∠,34∠=∠.①由条件可知:13∠=∠,依据是 ,24∠∠=,依据是 .②反射光线BC 与EF 平行,依据是 .(2)解决问题:如图2,一束光线m 射到平面镜a 上,被a 反射到平面镜b 上,又被b 镜反射,若b 射出的光线n 平行于m ,且142∠=︒,则2∠= ;3∠= .-参考答案-一、单选题1、A【解析】【分析】由折叠的性质可知40A A '∠=∠=︒,再由三角形外角的性质即可求出DFA ∠的大小,再次利用三角形外角的性质即可求出2∠的大小.【详解】如图,设线段AC 和线段A D '交于点F .由折叠的性质可知40A A '∠=∠=︒.∵1A DFA ∠=∠+∠,即11240DFA ︒=︒+∠,∴72DFA ∠=︒.∵2DFA A '∠=∠+∠,即72240︒=∠+︒,∴232∠=︒.故选A .【点睛】本题考查折叠的性质,三角形外角的性质.利用数形结合的思想是解答本题的关键.2、B【解析】【分析】根据∠DFE =α得到∠FDE +∠FED ,再根据角平分线的性质求出∠BDE +∠CED =360°-2α,利用外角的性质得到∠ADE +∠AED =2α,最后根据三角形内角和求出结果.【详解】解:∵∠DFE =α,∴∠FDE +∠FED =180°-α,由角平分线的定义可知:∠BDF=∠FDE,∠CEF=∠FED,∴∠BDE+∠CED=2∠FDE+2∠FED=360°-2α,∴∠ADE+∠AED=180°-∠BDE+180°-∠CED=2α,∴∠A=180°-(∠ADE+∠AED)=180°-2α,故选B.【点睛】本题考查了角平分线的定义,三角形内角和,三角形外角的性质,解题的关键是利用角平分线得到相等的角,根据内角和进行计算.3、C【解析】【分析】根据三角形中线的性质得出CB的长为10,再用三角形面积公式计算即可.【详解】解:∵AD是边BC上的中线,CD的长为5,∴CB=2CD=10,ABC的面积为1110420 22BC AE⨯=⨯⨯=,故选:C.【点睛】本题考查了三角形中线的性质和面积公式,解题关键是明确中线的性质求出底边长.4、B【解析】【分析】根据两直线平行,同位角相等可得42B AFG ∠=∠=︒,再由垂直的性质及三角形内角和定理即可得.【详解】解:∵FG BC ∥,∴42B AFG ∠=∠=︒,∵DE AB ⊥,∴90BDE ∠=︒,∴18048DEB BDE B ∠=︒-∠-∠=︒,故选:B .【点睛】题目主要考查平行线及垂线的性质,三角形内角和定理等,理解题意,熟练运用平行线的性质是解题关键.5、A【解析】【分析】根据角平分线的定义以及一个三角形的外角等于与它不相邻的两个内角和,可求出∠P 的度数.【详解】∵BP 是△ABC 中∠ABC 的平分线,CP 是∠ACB 的外角的平分线,∴∠ABP =∠CBP =20°,∠ACP =∠MCP =50°,∵∠PCM 是△BCP 的外角,∴∠P =∠PCM −∠CBP =50°−20°=30°,故选:A .【点睛】本题考查三角形外角性质以及角平分线的定义,解题时注意:一个三角形的外角等于与它不相邻的两个内角的和.6、B【解析】【分析】根据三角形两边之和大于第三边,两边之差小于第三边即可求解.【详解】解:选项A:4,4,4可以构成等边三角形,故选项A正确;选项B:2+7=9,两边之和等于第三边,不能构成三角形,故选项B错误;选项C:3+4>5,这三边可以构成三角形,故选项C正确;选项D:任意两边之和大于第三边,两边之差小于第三边,可以构成三角形,故选项D正确;故选:B.【点睛】本题考查了构成三角形的三边的条件:两边之和大于第三边,两边之差小于第三边,由此即可求解.7、C【解析】【分析】根据组成三角形的三边关系依次判断即可.【详解】A、 3,4,7中3+4=7,故不能组成三角形,与题意不符,选项错误.B、 3,4,8中3+4<8,故不能组成三角形,与题意不符,选项错误.C、 3,4,5中任意两边之和都大于第三边,任意两边之差都小于第三边,故能组成三角形,符合题意,选项正确.D、 3,3,7中3+3<7,故不能组成三角形,与题意不符,选项错误.故选:C .【点睛】本题考查了三角形的三边关系,在一个三角形中,任意两边之和大于第三边,任意两边之差小于第三边.8、A【解析】【分析】根据BD 、CE 分别是△ABC 的角平分线和三角形的外角,得到()12BOE ABC ACB ∠=∠+∠,再利用三角形的内角和,得到180180ABC ACB BAC n ∠+∠=︒-∠=︒-︒,代入数据即可求解.【详解】解:∵BD 、CE 分别是△ABC 的角平分线, ∴12DBC ABC ∠=∠,12ECB ACB ∠=∠, ∴BOE DBC ECB ∠=∠+∠1122ABC ACB =∠+∠ ()12ABC ACB =∠+∠, ∵180180ABC ACB BAC n ∠+∠=︒-∠=︒-︒, ∴()()11118090222BOE ABC ACB n n ∠=∠+∠=⨯︒-︒=︒-︒. 故答案选:A .【点睛】本题考查三角形的内角和定理和外角的性质.涉及角平分线的性质.三角形的内角和定理:三角形的内角和等于180︒.三角形的一个外角等于与它不相邻的两个内角之和.9、A【解析】【分析】根据三角形的三边关系得出5<AB<25,根据AB的范围判断即可.【详解】解:连接AB,根据三角形的三边关系定理得:15﹣10<AB<15+10,即:5<AB<25,∴A、B间的距离在5和25之间,∴A、B间的距离不可能是5米;故选:A.【点睛】本题主要考查对三角形的三边关系定理的理解和掌握,能正确运用三角形的三边关系定理是解此题的关键.10、D【解析】【分析】根据AD∥BC,∠C=30°,利用内错角相等得出∠FDC=∠C=30°,可判断①正确;根据邻补角性质可求∠ADC=180°-∠FDC=180°-30°=150°,根据∠ADB:∠BDC=1:2,得出方程3∠ADB=150°,解方程可判断②正确;根据∠EAB=72°,可求邻补角∠DAN=180°-∠EAB=180°-72°=108°,利用三角形内角和可求∠ABD=180°-∠NAD-∠ADB=180°-108°-50°=22°可判断③正确,利用AD∥BC,同位角相等的∠CBN=∠DAN=108°可判断④正确即可.【详解】解:∵AD∥BC,∠C=30°,∴∠FDC=∠C=30°,故①正确;∴∠ADC=180°-∠FDC=180°-30°=150°,∵∠ADB:∠BDC=1:2,∴∠BDC=2∠ADB,∵∠ADC=∠ADB+∠BDC=∠ADB+2∠ADB=3∠ADB=150°,解得∠ADB=50°,故②正确∵∠EAB=72°,∴∠DAN=180°-∠EAB=180°-72°=108°,∴∠ABD=180°-∠NAD-∠ADB=180°-108°-50°=22°,故③正确∵AD∥BC,∴∠CBN=∠DAN=108°,故④正确其中正确说法的个数是4个.故选择D.【点睛】本题考查平行线性质,角的倍分,邻补角性质,三角形内角和,一元一次方程,掌握平行线性质,邻补角性质,三角形内角和,一元一次方程地解题关键.二、填空题1、4<AB<10【解析】【分析】根据三角形的三边关系,直接求解即可.【详解】解:∵在△ABC中,AC=3,BC=7,∴BC AC AB BC AC-<<+,即7373-<<+,AC解得410<<.AB故答案为:410AB<<.【点睛】本题考查的是三角形的三边关系,熟悉相关性质是解题的关键.三角形中第三边的长大于其他两边之差,小于其他两边之和.2、34°##34度【解析】【分析】根据题意先求∠DAC,再依据△ADF三角形内角和180°可得答案.【详解】解:∵∠B=46°,∠C=30°,∴∠DAC=∠B+∠C=76°,∵∠EFC=70°,∴∠AFD=70°,∴∠D=180°-∠DAC-∠AFD=34°,故答案为:34°.【点睛】本题考查三角形内角和定理及三角形一个外角等于不相邻的两个内角的和,解题的关键是掌握三角形内角和定理.3、312n -【解析】【分析】根据三角形的中线性质,可得△1APC 的面积=182⨯,△2AP C 的面积=2182⨯,……,进而即可得到答案.【详解】由题意得:△1APC 的面积=182⨯,△2AP C 的面积=2182⨯,……,△n AP C 的面积=182n ⨯=312n -. 故答案是:312n -.【点睛】 本题主要考查三角形的中线的性质,掌握三角形的中线把三角形的面积平分,是解题的关键.4、在三角形中,两边之和大于第三边【解析】【分析】根据三角形两边之和大于第三边进行求解即可.【详解】解:∵点A 、B 在直线l 上,点C 是直线l 外一点,∴A、B 、C 可以构成三角形,∴由三角形三边的关系:在三角形中,两边之和大于第三边可以得到:CA+CB>AB,故答案为:在三角形中,两边之和大于第三边.【点睛】本题主要考查了三角形三边的关系,熟知三角形中两边之和大于第三边是解题的关键.5、不合格【解析】【分析】连接AC并延长,然后根据三角形的一个外角等于与它不相邻的两个内角的和可得∠3=∠1+∠B,∠4=∠2+∠D,再求出∠BCD即可进行判定.【详解】解:如图,连接AC并延长,由三角形的外角性质可得,∠3=∠1+∠B,∠4=∠2+∠D,∴∠BCD=∠3+∠4=∠1+∠B+∠2+∠D=∠BAD+∠B+∠D=90°+25°+25°=140°,∵140°≠150°,∴这个零件不合格.故答案为:不合格.【点睛】本题考查了三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记性质并作辅助线构造出两个三角形是解题的关键.三、解答题1、(1)2<BC<8;(2)25°【解析】【分析】(1)根据三角形三边关系解答即可;(2)根据三角形外角性质和三角形内角和解答即可.【详解】解:(1)∵AC-AB<BC<AC+AB,AB=3,AC=5.∴2<BC<8,故答案为:2<BC<8(2)∵∠ADC是△ABD的外角∴∠ADC=∠B+∠BAD=140︒∵∠B=∠BAD∴∠B=114070 2⨯︒=︒∵∠B+∠BAC+∠C=180︒∴∠C=180︒﹣∠B﹣∠BAC即∠C=180︒﹣70︒﹣85︒=25︒【点睛】本题考查了三角形第三边的取值范围,三角形内角和定理和三角形外角的性质,能根据三角形的外角的性质求出∠B的度数是解此题的关键.2、(1)见解析;(2)见解析;(3)72°.【解析】【分析】(1)过点A作平行线,证出三条直线互相平行,由平行得出与∠ACM和∠ABP相等的角即可得出结论;(2)由CD∥AB,可得同旁内角互补,再结合∠ECM与∠ECN的邻补角关系,可得结论;(3)延长CA交PQ于点H,先证明∠MCA=∠ACE=∠ECD,∠ABP=∠NCD,再设∠MCA=∠ACE=∠ECD=x,由(1)可知∠CFB=∠FCN+∠FBQ,从而∠CFB=270-2x,列出方程解得x值,则不难求得答案.【详解】解:(1)证明:过点A作AD∥MN,∵MN∥PQ,AD∥MN,∴AD∥MN∥PQ,∴∠MCA=∠DAC,∠PBA=∠DAB,∴∠CAB=∠DAC+∠DAB=∠MCA+∠PBA,即:∠A=∠MCA+∠PBA;(2)∵CD∥AB,∴∠A+∠ACD=180°,∵∠ECM+∠ECN=180°,又∠ECM=∠ACD,∴∠A =∠ECN ;(3)如图,延长CA 交PQ 于点H ,∵∠ECM =∠ACD ,∠DCE =∠ACE ,∴∠MCA =∠ACE =∠ECD ,∵MN ∥PQ ,∴∠MCA =∠AHB ,∵∠CAB =∠AHB +∠PBA ,且由(2)知∠CAB =∠ECN , ∴∠ABP =∠NCD ,设∠MCA =∠ACE =∠ECD =x ,由(1)可知∠CFB =∠FCN +∠FBQ ,∴∠CFB =270-2x ,由(1)可知∠CGB =∠MCG +∠GBP ,∴∠CGB =135°−12x ,∴270°−2x=32(135°−12x) ,解得:x=54°,∴∠AHB=54°,∴∠ABP=∠NCD=180°-54°×3=18°,∴∠CAB=54°+18°=72°.【点睛】本题考查了平行线的性质及一元一次方程在计算问题中的应用,三角形的内角和定理以及三角形的外角性质,理清题中的数量关系并正确列式是解题的关键.3、见解析【解析】【分析】根据三角形外角的性质,可得∠B=∠ACB,再由BC平分∠ACD,可得∠B=∠DCB,即可求证.【详解】证明:∵∠CAE=∠ACB+∠B,∠CAE=2∠B,∴∠B=∠ACB,又∵BC平分∠ACD,∴∠ACB=∠DCB,∴∠B=∠DCB,∴AB∥CD(内错角相等,两直线平行).【点睛】本题主要考查了平行线的判定,三角形外角的性质,角平分线的定义,熟练掌握平行线的判定定理,三角形外角的性质定理是解题的关键.4、(1)∠ABE=40°;(2)∠ABE=30°;(3)∠MGN=15°.【解析】【分析】(1)过E作EM∥AB,根据平行线的判定与性质和角平分线的定义解答即可;(2)过E作EM∥AB,过F作FN∥AB,根据平行线的判定与性质,角平分线的定义以及解一元一次方程解答即可;(3)过P作PL∥AB,根据平行线的判定与性质,三角形的内角和定理,三角形的一个外角等于与它不相邻的两个内角的和的性质,角平分线的定义解答即可.【详解】解:(1)过E作EM∥AB,∵AB∥CD,∴CD∥EM∥AB,∴∠ABE=∠BEM,∠DCE=∠CEM,∵CF平分∠DCE,∴∠DCE=2∠DCF,∵∠DCF=30°,∴∠DCE=60°,∴∠CEM=60°,又∵∠CEB=20°,∴∠BEM=∠CEM﹣∠CEB=40°,∴∠ABE=40°;(2)过E作EM∥AB,过F作FN∥AB,∵∠EBF=2∠ABF,∴设∠ABF=x,∠EBF=2x,则∠ABE=3x,∵CF平分∠DCE,∴设∠DCF=∠ECF=y,则∠DCE=2y,∵AB∥CD,∴EM∥AB∥CD,∴∠DCE=∠CEM=2y,∠BEM=∠ABE=3x,∴∠CEB=∠CEM﹣∠BEM=2y﹣3x,同理∠CFB=y﹣x,∵2∠CFB+(180°﹣∠CEB)=190°,∴2(y﹣x)+180°﹣(2y﹣3x)=190°,∴x=10°,∴∠ABE=3x=30°;(3)过P作PL∥AB,∵GM平分∠DGP,∴设∠DGM=∠PGM=y,则∠DGP=2y,∵PQ平分∠BPG,∴设∠BPQ=∠GPQ=x,则∠BPG=2x,∵PQ∥GN,∴∠PGN=∠GPQ=x,∵AB∥CD,∴PL∥AB∥CD,∴∠GPL=∠DGP=2y,∠BPL=∠ABP=30°,∵∠BPL=∠GPL﹣∠BPG,∴30°=2y﹣2x,∴y﹣x=15°,∵∠MGN=∠PGM﹣∠PGN=y﹣x,∴∠MGN=15°.【点睛】此题考查平行线的判定与性质,角平分线的定义,三角形的内角和定理,解题关键在于作辅助线和掌握判定定理.5、(1)①两直线平行,同位角相等;等量代换.②同位角相等,两直线平行.(2)84°;90°;【解析】【分析】(1)根据平行线的判定与性质逐一求解可得;(2)根据入射角等于反射角得出∠1=∠4,∠5=∠7,求出∠6,根据平行线性质即可求出∠2,求出∠5,根据三角形内角和求出∠3即可.【详解】解:(1)①由条件可知:∠1=∠3,依据是:两直线平行,同位角相等;∠2=∠4,依据是:等量代换;②反射光线BC与EF平行,依据是:同位角相等,两直线平行;故答案为:①两直线平行,同位角相等;等量代换.②同位角相等,两直线平行.(2)如图,∵∠1=42°,∴∠4=∠1=42°,∴∠6=180°-42°-42°=96°,∵m∥n,∴∠2+∠6=180°,∴∠2=84°,∴∠5=∠7=1802482︒-∠=︒,∴∠3=180°-48°-42°=90°.故答案为:84°;90°;【点睛】本题考查了平行线的性质和判定,三角形的内角和定理的应用,熟练掌握平行线的判定与性质是解题的关键.。
冀教版七年级数学下册第九章 三角形综合练习考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,90C A ∠=∠=︒,25B ∠=︒,则D ∠的度数是( )A .55°B .35°C .45°D .25°2、若三条线段中a =3,b =5,c 为奇数,那么以a 、b 、c 为边组成的三角形共有( )A .1个B .2个C .3个D .4个3、如图,已知ACD ∠为ABC 的外角,60ACD ∠=︒,20B ∠=︒,那么A ∠的度数是( )A .30°B .40°C .50°D .60°4、如图,CM 是ABC 的中线,4cm AM =,则BM 的长为( )A .3cmB .4cmC .5cmD .6cm5、若三角形的两边a 、b 的长分别为3和4,则其第三边c 的取值范围是( )A .3<c <4B .2≤c ≤6C .1<c <7D .1≤c ≤76、将一张正方形纸片ABCD 按如图所示的方式折叠,CE 、CF 为折痕,点B 、D 折叠后的对应点分别为B '、D ',若∠ECF =21°,则∠B 'CD '的度数为( )A .35°B .42°C .45°D .48°7、如图,将△ABC 沿着DE 减去一个角后得到四边形BCED ,若∠BDE 和∠DEC 的平分线交于点F ,∠DFE =α,则∠A 的度数是( )A .180°﹣αB .180°﹣2αC .360°﹣αD .360°﹣2α8、下列长度的三条线段能组成三角形的是( )A .2,3,6B .2,4,7C .3,3,5D .3,3,79、已知a b ∥,一块含30°角的直角三角板如图所示放置,250∠=︒,则1∠等于( )A.140°B.150°C.160°D.170°10、王师傅用4根木条钉成一个四边形木架,如图,要使这个木架不变形,他至少还要再钉上几根木条?()A.0根B.1根C.2根D.3根第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、在△ABC中,已知∠B是∠A的2倍,∠C比∠A大20°,则∠A=_____________.2、等腰三角形的一条边长为4cm,另一条边长为6cm,则它的周长是________.3、如图,三角形ABC的面积为1,:2:1BD DC ,E为AC的中点,AD与BE相交于P,那么四边形PDCE的面积为______.4、如图,AB=DE,AC=DF,BF=CE,点B、F、C、E在一条直线上,AB=4,EF=6,求△ABC中AC 边的取值范围.5、在ABC 中,20A ∠=︒,60B ∠=︒,100C ∠=︒,那么ABC 是______三角形.(填“锐角”、“钝角”或“直角” )三、解答题(5小题,每小题10分,共计50分)1、如图,在△ABC 中,AD ⊥BE ,∠DAC =10°,AE 是∠BAC 的外角∠MAC 的平分线,BF 平分∠ABC 交AE 于点F ,求∠AFB 的度数.2、已知直线AB ∥CD ,EF 是截线,点M 在直线AB 、CD 之间.(1)如图1,连接GM ,HM .求证:M AGM CHM ∠=∠+∠;(2)如图2,在GHC ∠的角平分线上取两点M 、Q ,使得AGM HGQ ∠=∠.请直接写出M ∠与GQH ∠之间的数量关系;(3)如图3,若射线GH 平分BGM ∠,点N 在MH 的延长线上,连接GN ,若AGM N ∠=∠,12M N HGN ∠=∠+∠,求MHG ∠的度数. 3、如图,在直角三角形ABC 中,∠BAC =90°,AD 是BC 边上的高,CE 是AB 边上的中线,AB =12cm,BC=20cm,AC=16cm,求:(1)AD的长;(2)△BCE的面积.4、如图,AD是∠BAC的平分线,CE是△ADC边AD上的高,若∠BAC=80°,∠ECD=25°,求∠ACB 的度数.5、如图,点C,B分别在直线MN,PQ上,点A在直线MN,PQ之间,MN∥PQ.(1)如图1,求证:∠A=∠MCA+∠PBA;(2)如图2,过点C作CD∥AB,点E在PQ上,∠ECM=∠ACD,求证:∠A=∠ECN;(3)在(2)的条件下,如图3,过点B作PQ的垂线交CE于点F,∠ABF的平分线交AC于点G,若∠DCE=∠ACE,∠CFB=32∠CGB,求∠A的度数.-参考答案-一、单选题1、D【解析】【分析】根据三角形的内角和定理和对顶角相等求解即可.【详解】解:设AD与BC相交于O,则∠COD=∠AOB,∵∠C+∠COD+∠D=180°,∠A+∠AOB=∠B=180°,∠C=∠A=90°,∴∠D=∠B=25°,故选:D.【点睛】本题考查三角形的内角和定理、对顶角相等,熟练掌握三角形的内角和是180°是解答的关键.2、C【解析】【分析】根据三角形的三边关系,得到合题意的边,进而求得三角形的个数.【详解】解:c的范围是:5﹣3<c<5+3,即2<c<8.∵c是奇数,∴c=3或5或7,有3个值.则对应的三角形有3个.故选:C.【点睛】本题主要考查了三角形三边关系,准确分析判断是解题的关键.3、B【解析】【分析】根据三角形的外角性质解答即可.【详解】解:∵∠ACD=60°,∠B=20°,∴∠A=∠ACD−∠B=60°−20°=40°,故选:B.【点睛】此题考查三角形的外角性质,关键是根据三角形外角性质解答.4、B【解析】【分析】直接根据三角形中线定义解答即可.【详解】解:∵CM是ABC的中线,4cmAM ,∴BM= 4cmAM=,故选:B.【点睛】本题考查三角形的中线,熟知三角形的中线是三角形的顶点和它对边中点的连线是解答的关键.5、C【解析】【分析】根据三角形的两边之和大于第三边,两边之差小于第三边,即可求解.【详解】解:∵三角形的两边a、b的长分别为3和4,∴其第三边c的取值范围是4334-<<+,c即17<<.c故选:C【点睛】本题主要考查了三角形的三边关系,熟练掌握三角形的两边之和大于第三边,两边之差小于第三边是解题的关键.6、D【解析】【分析】可以设∠ECB'=α,∠FCD'=β,根据折叠可得∠DCE=∠D'CE,∠BCF=∠B'CF,进而可求解.【详解】解:设∠ECB'=α,∠FCD'=β,根据折叠可知:∠DCE=∠D'CE,∠BCF=∠B'CF,∵∠ECF=21°,∴∠D'CE=21°+β,∠B'CF=21°+α,∵四边形ABCD是正方形,∴∠BCD=90°,∴∠D'CE+∠ECF+∠B'CF=90°∴21°+β+21°+21°+α=90°,∴α+β=27°,∴∠B'CD'=∠ECB'+∠ECF+∠FCD'=α+21°+β=21°+27°=48°则∠B'CD'的度数为48°.故选:D.【点睛】本题考查了正方形与折叠问题,解决本题的关键是熟练运用折叠的性质.7、B【解析】【分析】根据∠DFE=α得到∠FDE+∠FED,再根据角平分线的性质求出∠BDE+∠CED=360°-2α,利用外角的性质得到∠ADE+∠AED=2α,最后根据三角形内角和求出结果.【详解】解:∵∠DFE=α,∴∠FDE+∠FED=180°-α,由角平分线的定义可知:∠BDF=∠FDE,∠CEF=∠FED,∴∠BDE+∠CED=2∠FDE+2∠FED=360°-2α,∴∠ADE+∠AED=180°-∠BDE+180°-∠CED=2α,∴∠A=180°-(∠ADE+∠AED)=180°-2α,故选B.【点睛】本题考查了角平分线的定义,三角形内角和,三角形外角的性质,解题的关键是利用角平分线得到相等的角,根据内角和进行计算.8、C【解析】【分析】根据三角形的三边关系,逐项判断即可求解.【详解】+=<,所以不能组成三角形,故本选项不符合题意;解:A、因为2356B、因为2467+=<,所以不能组成三角形,故本选项不符合题意;+=>,所以能组成三角形,故本选项符合题意;C、因为3365+=<,所以不能组成三角形,故本选项不符合题意;D、因为3367故选:C【点睛】本题主要考查了三角形的三边关系,熟练掌握三角形的两边之和大于第三边,两边之差小于第三边是解题的关键.9、D【解析】【分析】利用三角形外角与内角的关系,先求出∠3,利用平行线的性质得到∠4的度数,再利用三角形外角与内角的关系求出∠1.【详解】解:∵∠C=90°,∠2=∠CDE=50°,∠3=∠C+∠CDE=90°+50°=140°.∵a∥b,∴∠4=∠3=140°.∵∠A=30°∴∠1=∠4+∠A=140°+30°=170°.故选:D.【点睛】本题考查了平行线的性质,三角形的外角的性质,熟练掌握平行线的性质是解题的关键.10、B【解析】【分析】根据三角形的稳定性即可得.【详解】解:要使这个木架不变形,王师傅至少还要再钉上1根木条,将这个四边形木架分成两个三角形,如图所示:或故选:B.【点睛】本题考查了三角形的稳定性,熟练掌握三角形的稳定性是解题关键.二、填空题1、40°##40度【解析】【分析】根据已知得出∠B=2∠A,∠C=∠A+20°,代入∠A+∠B+∠C=180°得出方程∠A+2∠A+∠A+20°=180°,求出即可.【详解】解:∵∠B是∠A的2倍,∠C比∠A大20°,∴∠B=2∠A,∠C=∠A+20°,∵∠A+∠B+∠C=180°,∴∠A+2∠A+∠A+20°=180°,∴∠A=40°,故答案为:40°.【点睛】本题考查了三角形内角和定理的应用,注意:三角形的内角和等于180°,用了方程思想.2、16cm或14cm##14cm或16cm【解析】【分析】根据题意分腰为6cm和底为6cm两种情况,分别求出即可.【详解】解:①当腰为6cm时,它的周长为6+6+4=16(cm);②当底为6cm时,它的周长为6+4+4=14(cm);故答案为:16cm或14cm.【点睛】本题考查了等腰三角形的性质的应用,注意:等腰三角形的两腰相等,注意分类讨论.3、7 30【解析】【分析】连接CP.设△CPE的面积是x,△CDP的面积是y.根据BD:DC=2:1,E为AC的中点,得△BDP的面积是2y,△APE的面积是x,进而得到△ABP的面积是4x.再根据△ABE的面积是△BCE的面积相等,得4x+x=2y+x+y,解得43y x,再根据△ABC的面积是1即可求得x、y的值,从而求解.【详解】解:连接CP,设△CPE的面积是x,△CDP的面积是y.∵BD:DC=2:1,E为AC的中点,∴△BDP的面积是2y,△APE的面积是x,1,2 ABE BCES S==∵BD:DC=2:1,CE:AC=1:2,2,ABD ACDS S∴△ABP的面积是4x.∴4x+x=2y+x+y,解得43y x =.又∵4x+x=12,解得:x=110,则412,31015y则四边形PDCE的面积为x+y=730.故答案为:730.【点睛】本题能够根据三角形的面积公式求得三角形的面积之间的关系.等高的两个三角形的面积比等于它们的底的比;等底的两个三角形的面积比等于它们的高的比.4、2<AC<10【解析】【分析】由BF =CE 得到 BC=EF=6,再根据三角形三边关系求解即可.【详解】解:∵BF=CE ,点B 、F 、C 、E 在一条直线上,∴BF+FC=CE+FC ,∴BC=EF =6,∵AB =4,∴6-4<AC <6+4,即2<AC <10,∴AC 边的取值范围为2<AC <10.【点睛】本题考查三角形的三边关系,熟知一个三角形任意两边之和大于第三边,任意两边之差小于第三边是解答的关键.5、钝角【解析】【分析】根据三角形按角的分类可得结论.【详解】解:在ABC ∆中,20A ∠=︒,60B ∠=︒,100C ∠=︒,10090C ∠=︒>︒,ABC ∴∆是钝角三角形,故答案为:钝角.【点睛】本题考查三角形的分类,熟知三角形按角分为锐角三角形、直角三角形和钝角三角形是解题关键.三、解答题1、∠AFB =40°.【解析】【分析】由题意易得∠ADC =90°,∠ACB =80°,然后可得11,22MAE MAC ABF ABC ∠=∠∠=∠,进而根据三角形外角的性质可求解.【详解】解:∵AD ⊥BE ,∴∠ADC =90°,∵∠DAC =10°,∴∠ACB =90°﹣∠DAC =90°﹣10°=80°,∵AE 是∠MAC 的平分线,BF 平分∠ABC , ∴11,22MAE MAC ABF ABC ∠=∠∠=∠, 又∵∠MAE =∠ABF +∠AFB ,∠MAC =∠ABC +∠ACB ,∴∠AFB =∠MAE ﹣∠ABF =()11111804022222MAC ABC MAC ABC ACB ∠-∠=∠-∠=∠=⨯︒=︒. 【点睛】本题主要考查三角形外角的性质及角平分线的定义,熟练掌握三角形外角的性质及角平分线的定义是解题的关键.2、 (1)见解析(2)∠GQH +∠GMH =180°,理由见解析(3)60°【解析】【分析】(1)过点M 作MI ∥AB 交EF 于点I ,可得∠AGM =∠GMI ,再由AB ∥CD ,可得MI ∥CD ,从而得到∠CHM =∠HMI ,即可求证;(2)过点M 作MP ∥AB 交EF 于点P ,同(1)可得到∠PMH =∠CHM ,∠GMP =∠AGM ,再由MH 平分∠GHC ,可得∠PHM =∠CHM ,从而得到∠PHM =∠PMH ,再由AGM HGQ ∠=∠,可得∠HGQ =∠GMP ,从而得到∠GMH =∠HGQ +∠PHM ,然后根据三角形的内角和定理,即可求解;(3)过点M 作MK ∥AB 交EF 于点K ,设,AGM N CHM αβ∠=∠=∠= ,可得902MGH α∠=︒- ,同(1),可得∠GMH =∠GMK +HMK =αβ+ ,再由12M N HGN ∠=∠+∠,可得2HGN β∠=,然后根据三角形的内角和定理,可得302αβ+=︒ ,再由AB ∥CD ,可得∠AGH +∠CHG =180°,即可求解. (1)证明:如图,过点M 作MI ∥AB 交EF 于点I ,∵MI ∥AB ,∴∠AGM =∠GMI ,∵AB ∥CD ,∴MI ∥CD ,∴∠CHM =∠HMI ,∴∠GMH =∠HMI +∠GMI = ∠AGM +∠CHM ; (2)解:∠GQH+∠GMH=180°,理由如下:如图,过点M作MP∥AB交EF于点P,∵MP∥AB,∴∠GMP=∠AGM,∵AB∥CD,∴MP∥CD,∴∠PMH=∠CHM,∵MH平分∠GHC,∴∠PHM=∠CHM,∴∠PHM=∠PMH,∠=∠,∵AGM HGQ∴∠HGQ=∠GMP,∵∠GMH=∠GMP+∠PMH,∴∠GMH=∠HGQ+∠PHM,∵∠GQH+∠HGQ+∠PHM=180°,∴∠GQH+∠GMH=180°(3)解:如图,过点M 作MK ∥AB 交EF 于点K ,设,AGM N CHM αβ∠=∠=∠= ,∵GH 平分∠BGM , ∴()1118090222MGH BGM AGM α∠=∠=︒-∠=︒- , ∵MK ∥AB ,∴GMK AGM N α∠=∠=∠= ,∵AB ∥CD ,∴MK ∥CD ,∴∠HMK =∠CHM ,∴∠GMH =∠GMK +HMK =αβ+ , ∵12M N HGN ∠=∠+∠, ∴12HGN αβαβ∠=+-=,即2HGN β∠=, ∵∠GMH +∠N +∠MGN =180°, ∴9021802ααβαβ+++︒-+=︒ ,解得:302αβ+=︒ ,∵AB ∥CD ,∴∠AGH +∠CHG =180°, 即901802MHG αβα+∠+︒-+=︒ , ∴902MHG αβ++∠=︒ ,∴∠MHG =60°.【点睛】本题主要考查了平行的判定和性质,三角形的内角和定理,角平分线的定义,做适当辅助线,构造平行线,并熟练掌握平行的判定和性质定理,三角形的内角和定理,角平分线的定义是解题的关键.3、(1)485;(2)48. 【解析】【分析】(1)利用面积法得到12AD •BC =12AB •AC ,然后把AB =12cm ,BC =20cm ,AC =16cm 代入可求出AD 的长;(2)由于三角形的中线将三角形分成面积相等的两部分,所以S △BCE =12S △ABC .【详解】解:(1)∵∠BAC =90°,AD 是BC 边上的高, ∴12AD •BC =12AB •AC ,∴AD =121620⨯=485(cm );(2)∵CE 是AB 边上的中线,∴S△BCE=12S△ABC=12×12×12×16=48(cm2).【点睛】本题考查三角形中线的性质,涉及等积法,是重要考点,掌握相关知识是解题关键.4、75°【解析】【分析】根据角平分线的定义求出∠DAC的度数,所以EDCA可求,进而求出∠ACB的度数.【详解】解:∵AD是∠BAC的平分线,∠BAC=80°,∴∠DAC=40°,∵CE是△ADC边AD上的高,∴∠ACE=90°﹣40°=50°,∵∠ECD=25°∴∠ACB=50°+25°=75°.【点睛】本题主要考查了三角形的内角和定理.解题的关键是掌握三角形的内角和定理以及角平分线的性质.5、(1)见解析;(2)见解析;(3)72°.【解析】【分析】(1)过点A作平行线,证出三条直线互相平行,由平行得出与∠ACM和∠ABP相等的角即可得出结论;(2)由CD∥AB,可得同旁内角互补,再结合∠ECM与∠ECN的邻补角关系,可得结论;(3)延长CA交PQ于点H,先证明∠MCA=∠ACE=∠ECD,∠ABP=∠NCD,再设∠MCA=∠ACE=∠ECD=x,由(1)可知∠CFB=∠FCN+∠FBQ,从而∠CFB=270-2x,列出方程解得x值,则不难求得答案.【详解】解:(1)证明:过点A作AD∥MN,∵MN∥PQ,AD∥MN,∴AD∥MN∥PQ,∴∠MCA=∠DAC,∠PBA=∠DAB,∴∠CAB=∠DAC+∠DAB=∠MCA+∠PBA,即:∠A=∠MCA+∠PBA;(2)∵CD∥AB,∴∠A+∠ACD=180°,∵∠ECM+∠ECN=180°,又∠ECM=∠ACD,∴∠A=∠ECN;(3)如图,延长CA 交PQ 于点H ,∵∠ECM =∠ACD ,∠DCE =∠ACE ,∴∠MCA =∠ACE =∠ECD ,∵MN ∥PQ ,∴∠MCA =∠AHB ,∵∠CAB =∠AHB +∠PBA ,且由(2)知∠CAB =∠ECN ,∴∠ABP =∠NCD ,设∠MCA =∠ACE =∠ECD =x ,由(1)可知∠CFB =∠FCN +∠FBQ ,∴∠CFB =270-2x ,由(1)可知∠CGB =∠MCG +∠GBP ,∴∠CGB =135°−12x ,∴270°−2x =32 (135°−12x ) ,解得:x =54°,∴∠AHB =54°,∴∠ABP =∠NCD =180°-54°×3=18°,∴∠CAB =54°+18°=72°.【点睛】本题考查了平行线的性质及一元一次方程在计算问题中的应用,三角形的内角和定理以及三角形的外角性质,理清题中的数量关系并正确列式是解题的关键.。
- 1 -
班级: 姓名: 座位号:
----------------------------- 密 --------------------- 封 --------------------- 线 ------------------------------------------------------- (答题不能超出密封装订线)
三角形单元测评试卷
( 数学 时间:100分钟 满分:120分)
一、选择题:(本题满分42分,每小题3分) 1、下列三条线段,能组成三角形的是( )
A 、3,3,3
B 、3,3,6
C 、3,2,5
D 、3,2,6 2、三角形一边上的中线把原三角形分成两个( ) A 、形状相同的三角形 B 、面积相等的三角形 C 、直角三角形 D 、周长相等的三角形 3、五边形的内角和是( )
A .180°
B .360°
C .540°
D .600°
4、从n 边形的一个顶点作对角线,把这个n 边形分成三角形的个数是( ) A. n 个 B. (n-1)个 C. (n-2)个 D. (n-3)个
5、已知△ABC 中,∠A、∠B、∠C 三个角的比例如下,其中能说明△ABC 是直角三角形的是( )
A 、2:3:4
B 、1:2:3
C 、4:3:5
D 、1:2:2 6、下列图形中有稳定性的是( )
A. 正方形
B. 直角三角形
C. 长方形
D. 平行四边形 7、已知△ABC 中,∠ABC 和∠ACB 的平分线交于点O ,则∠BOC 一定( ) A.小于直角 B.等于直角 C.大于直角 D.不能确定 8、三角形的一个外角是锐角,则此三角形的形状是( )
A.锐角三角形
B.钝角三角形
C.直角三角形
D.无 9、正多边形的每个内角都等于135º,则该多边形是正( )边形。
(A )8 (B )9 (C )10 (D )11
10、三角形一个外角小于与它相邻的内角,这个三角形( ) (A )是钝角三角形 (B )是锐角三角形 (C )是直角三角形 (D )属于哪一类不能确定。
11、六边形的对角线的条数是( ) (A )7 (B )8 (C )9 (D )10
12、如图,四个图形中,线段BE 是△ABC 的高的图是( )
13、如图11,将一副三角板叠放在一起,使直角的顶点重合于O ,则∠AOC+∠DOB=( )
A 、90 º
B 、120 º
C 、160 º
D 、180 º
14.、如图,△ABC 中,BD 是 ∠ ABC 的角平分线,DE ∥ BC,交AB 于 E, ∠A=60º, ∠BDC=95
º,则∠BED 的度数是( ) A 、35 º B 、70º C 、110 º D 、130 º
第12题图 二、填空题(本题满分16分,每小题4分)
15、若将多边形边数增加1条,则它的内角和增加__________。
16、如图,一个直角三角形纸片,剪去直角后,得到一个四
边形,则∠1+∠2= 。
题 号 一 二 三 总分 得 分
第11题图 第14题图。