(完整版)1我国热处理现状发展方向
- 格式:doc
- 大小:64.01 KB
- 文档页数:30
硬质及超硬涂层的研究现状及发展趋势综述姓名:马中红学号:139024220摘要:随着现代科学技术的不断进步,普通硬质涂层和超硬涂层有了显著的发展,部分涂层已经在某些领域实现了应用。
主要介绍了氮化物、碳化物、氧化物、硼化物等普通硬质涂层和金刚石、类金刚石(DLC)、c BN、纳米多层结构涂层及纳米复合涂层等超硬涂层的性能、应用、制备技术及其发展趋势,并对部分常见涂层面临的性能改进及其今后可能的发展方向进行了探讨。
关键词:硬质涂层;超硬涂层;应用前景;研究进展Abstract:As the advancements of modern science and technology,the conventional hard and superhard coatings have achieved remarkable development.Indeed,partial coatings even have been used in some filed.The performance,applications,preparation technique and development tendency of the conventional hard coatings of nitrides,carbides,oxidates and borides have been introduced mainly,as well as superhard coatings of diamond,DLC,c BN,nano multilayer and composite coatings.Moreover,the existing problems regarding to performanceimprovement and feasible development trend henceforth of the partial common coatings was pointed out.Key words:hard coating;superhard coating;application prospect;research progress1 引言硬质涂层是进行材料表面强化、发挥材料潜力提高生产效率的有效途径,它是表面涂层的一种,是指通过物理或化学的方法在基底的表面沉积的厚度在微米量级,显微硬度大于某一特定值(HV=20GPa)的表面涂层。
TD处理技术TD处理(Toyota Diffusion Coating Process)技术是由日本丰田中央研究所开发的,是用熔盐浸镀法、电解法及粉末法进行表面强化(硬化)处理技术的总称。
过去的一些文献将TD 处理称为渗金属处理。
实际应用最为广泛的是熔盐浸镀法(或称熔盐浸渍法、盐浴沉积法)在模具表面形成VC、NbC、Cr23C6-Cr7C3等碳化物超硬“涂层”(实为渗层)。
由于这些碳化物具有很高的硬度,所以经TD法处理的模具可获得特别优异的力学性能。
一般来说,采用TD处理与采用CVD(化学气相沉积)、PVD(物理气相沉积)、PCVD(等离子化学气相沉积)等方法进行的表面硬化处理效果相近似,但由于TD法设备简单、操作简便、成本低廉,所以是一种很有发展前途的表面强化处理技术。
TD处理在国外应用已相当普遍,但在国内报道并不多见。
1.设备及盐浴成分TD处理所用设备有普通外热式坩埚盐浴炉和采用将坩埚置入一内热式电极盐浴炉炉膛内的设备,后者不仅增大了设备体积及设备功率,而且这种电极盐浴炉还需配备专用变压器,故这种设备并不多用。
盐浴成分:耐热坩埚中的盐浴,70-90%是硼砂(Na2B4O7),根据涂覆层的组织成分要求,再加入能形成不同碳化物的物质,如:涂覆VC时,加入Fe-V合金粉末或V2O5粉末。
无水硼砂的熔点为740℃,其分解温度高达1573℃,在高温状态非常稳定。
熔融硼砂具有溶解金属氧化物的能力,使工件表面保持洁净,有利于工件表面吸附活性金属原子。
硼砂盐浴中的添加剂是V、Nb、Cr及其Fe合金或氧化物粉末。
目前,工具钢多采用VC涂层。
如需涂覆NbC、Cr—C,则在硼砂中加入Fe-Nb、Fe-Cr合金粉末或Nb2O5、Cr2O3氧化物粉末。
添加剂的数量要适当,既要满足渗入元素的浓度和扩散速度要求,又要使盐浴具有较好的流动性。
如盐浴组成中含有金属氧化物,则需添加Al、Ca、Ti、Fe- Ti、Fe-Al等物质,以提高并保持盐浴的活性,使活性金属原子得以在盐浴中被还原出来。
引言本文在归纳研究国内外压力容器技术发展现状的基础上,指出了当前国内压力容器制造业现状,总结了压力容器的生产制造技术。
根据经济全球化和标准国际化的趋向,提出了我国压力容器技术发展和标准化方向。
丙烷储罐是一种典型的LPG存储压力容器,随着丙烷作为民用燃料被广泛应用,丙烷的运输、存储带动了压力容器行业的发展。
本文正文部分根据目前国内压力容器的生产现状而编写的,以丙烷储罐车间设计为例,旨在为压力容器制造提供一个参考,指导压力容器生产一线的焊接工人规范焊接工艺,以此提高焊接压力容器的产品质量,保证压力容器安全使用。
目录一、文献综述1.1压力容器技术概述与发展现状 (1)1.1.1压力容器的定义 (1)1.1.2压力容器的概述 (1)1.1.3压力容器行业发展现状 (1)1.2 压力容器的制造技术 (4)1.2.1压力容器的分类 (4)1.2.1.1按压力等级分类 (4)1.2.1.2按工艺用途分类 (4)1.2.1.3按介质的危害程度分类 (5)1.2.1.4按安全重要程度分类 (5)1.2.1.5压力容器的代号标注 (6)1.2.2压力容器的制造 (7)1.2.2.1成形与装配 (7)1.2.2.2焊接 (8)1.2.2.3焊接缺陷 (9)1.2.2.4压力容器的组装缺陷 (11)1.2.3压力容器的检验 (12)1.2.3.1加工成形检验 (12)1.2.3.2焊缝检验 (13)1.2.3.3焊接试板和试验 (14)1.2.3.4力学性能试验 (16)1.2.3.5无损探伤 (16)1.2.3.6压力试验和气密性试验 (18)1.3 焊接前后的热处理技术 (20)1.3.1 预热 (20)1.3.2 后热 (20)1.3.3 焊后热处理 (21)1.3.3.1炉内焊后热处理 (21)1.3.3.2炉外焊后热处理 (21)1.4 压力容器制造和技术标准发展方向 (23)1.4.1行业技术进步与方向 (23)1.4.2技术标准发展方向 (25)二、设计正文2.1技术要求 (27)2.1.1储罐特性 (27)2.1.2制造依据 (27)2.1.3相关标准 (27)2.1.4焊接方法及所用焊材 (27)2.2储罐各部件选用钢材 (27)2.2.1筒体选材 (28)2.2.2封头选材 (28)2.2.3接管选材 (28)2.2.4管法兰 (28)2.2.5支座 (28)2.3材料尺寸的计算 (28)2.3.1壁厚的确定 (28)2.3.2封头尺寸的选择 (29)2.4焊缝的分析与设计 (30)2.4.1焊缝分析 (30)2.4.2焊缝的设计 (32)2.5丙烷储罐制作工艺 (33)2.6.1钢材预处理 (34)2.6.2钢材矫正 (34)2.6.3放样、划线 (34)2.6.4切割 (34)2.6.5卷板 (34)2.6.6筒体组装 (35)2.6.7焊接 (35)2.6.8热处理 (35)2.6.9耐压实验 (35)2.6.10安全措施 (36)2.6.11除锈刷油 (36)2.7设备及设备数量计算 (37)2.7.1年时基数的确定 (37)2.7.2设备的确定与数量 (37)2.7.2.1矫平机 (37)2.7.2.2数控火焰切割机 (38)2.7.2.3卷板机 (39)2.7.2.4手工电弧焊设备 (39)2.7.2.5埋弧焊设备 (41)2.7.2.6碳弧气刨机 (42)2.7.2.7探伤设备 (43)2.7.2.8起重机 (44)2.7.2.9平板车 (44)2.8工作班次的确定 (45)2.8.1单件产品各工序生产时间 (45)2.8.2工作班次 (46)2.9车间人员的配置 (47)2.9.1生产工人的确定 (47)2.9.2 辅助工人的确定 (47)2.9.3其余人员的确定 (48)2.10动力及材料需要消耗计算 (48)2.10.1焊接时电能消耗计算 (48)2.10.2产品原材料需要量 (49)2.10.3焊材需要量 (49)2.11车间平面图的绘制 (50)2.11.1布置方案 (50)2.11.2车间平面布置 (50)2.11.2.1跨间数量的确定 (50)2.11.2.2起重高度的确定 (50)2.11.2.3车间高度和跨度的确定 (51)2.11.2.4车间长度的确定 (51)三、参考文献 (53)一、文献综述1.1压力容器技术概述与发展现状1.1.1压力容器的定义器壁两侧存在着一定压力差的所有容器,统称压力容器。
可编辑修改精选全文完整版1.热处理工艺:通过加热,保温和冷却的方法使金属和合金内部组织结构发生变化,以获得工件使用性能所要求的组织结构,这种技术称为热处理工艺。
2.热处理工艺的分类:(1)普通热处理(退火、正火、回火、淬火)(2)化学热处理(3)表面热处理(3)复合热处理3.由炉内热源把热量传给工件表面的过程,可以借辐射,对流,传导等方式实现,工件表面获得热量以后向内部的传递过程,则靠热传导方式。
4.影响热处理工件加热的因素:(1)加热方式的影响,加热速度按随炉加热、预热加热、到温入炉加热、高温入炉加热的方向依次增大;(2)加热介质及工件放置方式的影响:①加热介质的影响;②工件在炉内排布方式的影响直接影响热量传递的通道;③工件本身的影响:工件的几何形状、表面积与体积之比以及工件材料的物理性质等直接影响工件内部的热量传递及温度场。
5.金属和合金在不同介质中加热时常见的化学反应有氧化,脱碳;物理作用有脱气,合金元素的蒸发等。
6.脱碳:钢在加热时不仅表面发生氧化,形成氧化铁,而且钢中的碳也会和气氛作用,使钢的表面失去一部分碳,含碳量降低,这种现象称为脱碳。
7.碳势:即纯铁在一定温度下于加热炉气中加热时达到既不增碳也不脱碳并与炉气保持平衡时表面的含碳量。
8.退火:将组织偏离平衡状态的金属或合金加热到适当的温度,保持一定时间,然后缓慢冷却以达到接近平衡状态组织的热处理工艺称为退火。
退火的目的在于均匀化学成分,改善机械性能及工艺性能,消除或减少内应力,并为零件最终热处理准备合适的内部组织。
9.钢件退火工艺按加热温度分类:(1)在临界温度以上的退火,又称相变重结晶退火,包括完全退火,不完全退火。
扩散退火和球化退火。
(2)在临界温度以下的退火,包括软化退火,再结晶退火及去应力退火。
按冷却方式可分为连续冷却退火及等温退火。
10.正火:是将钢材或钢件加热到Ac3(或Accm)以上适当温度,保温适当时间后在空气中冷却,得到珠光体类组织的热处理工艺。
zg15cr2mo1钢的热处理工艺研究随着现代工业的不断发展,高强度、高韧性的钢材越来越被广泛应用于各种机械设备和结构件中。
而在这些钢材中,zg15cr2mo1钢作为一种优质的工具钢,在机械制造、汽车制造、航空航天等领域都有着广泛的应用。
然而,zg15cr2mo1钢的热处理工艺对其性能的影响却一直是人们关注的焦点。
本文将从热处理工艺的角度对zg15cr2mo1钢进行研究,以期为工程实践提供参考。
一、zg15cr2mo1钢的化学成分及其组织结构zg15cr2mo1钢是一种高强度、高韧性的工具钢,其化学成分主要包括C、Si、Mn、Cr、Mo等元素。
其中,C的含量为0.12%-0.18%,Si的含量为0.20%-0.40%,Mn的含量为0.20%-0.50%,Cr的含量为1.50%-2.00%,Mo的含量为0.90%-1.20%。
该钢材的组织结构为马氏体和小量的残余奥氏体。
二、zg15cr2mo1钢的热处理工艺(一)淬火工艺淬火是zg15cr2mo1钢的主要热处理工艺之一,其目的是使钢材达到高硬度和高强度。
淬火工艺的具体流程为:将钢材加热至860℃-900℃,保温一段时间,然后迅速放入油中进行淬火。
淬火后,钢材的硬度达到HRC60-63,强度也得到了显著提高。
(二)回火工艺回火是淬火后必不可少的热处理工艺,其目的是消除淬火过程中产生的应力和脆性,提高钢材的韧性和塑性。
回火工艺的具体流程为:将淬火后的钢材加热至400℃-600℃,保温一段时间,然后冷却至室温。
回火后,钢材的硬度和强度有所下降,但韧性和塑性得到了显著提高。
(三)正火工艺正火是一种介于淬火和回火之间的热处理工艺,其目的是在保持钢材硬度和强度的同时提高其韧性和塑性。
正火工艺的具体流程为:将钢材加热至860℃-900℃,保温一段时间,然后冷却至室温。
正火后,钢材的硬度和强度略微下降,但韧性和塑性得到了显著提高。
三、zg15cr2mo1钢的热处理工艺对其性能的影响(一)淬火工艺对性能的影响淬火工艺是zg15cr2mo1钢的主要热处理工艺之一,其对钢材的硬度和强度有着显著的影响。
一、名词解释:1热强性:在室温下,钢的力学性能与加载时间无关,但在高温下钢的强度及变形量不但与时间有关,而且与温度有关,这就是耐热钢所谓的热强性。
2形变热处理:是将塑性变形同热处理有机结合在一起,获得形变强化和相变强化综合效果的工艺方法。
3热硬性:热硬性是指钢在较高温度下,仍能保持较高硬度的性能。
4等温淬火:工件淬火加热后,若长期保持在下贝氏体转变区的温度,使之完成奥氏体的等温转变,获得下贝氏体组织,这种淬火称为等温淬火。
5热疲劳:金属材料由于温度梯度循环引起的热应力循环(或热应变循环),而产生的疲劳破坏现象,称为热疲劳。
6渗氮:是在一定温度下一定介质中使氮原子渗入工件表层的化学热处理工艺。
7淬透性:淬透性是使钢强化的基本手段之一,将钢淬火成马氏体,随后回火以提高韧性是使钢获得高综合机械性能的传统方法。
8回火脆性:是指淬火钢回火后出现韧性下降的现象。
9二次硬化:二次硬化:某些铁碳合金(如高速钢)须经多次回火后,才进一步提高其硬度。
10回火稳定性:淬火钢在回火时,抵抗强度、硬度下降的能力称为回火稳定性。
11球化退火:是使钢中碳化物球化而进行的退火,得到在铁素体基体上均匀分布的球状或颗粒状碳化物的组织。
12化学热处理:是利用化学反应、有时兼用物理方法改变钢件表层化学成分及组织结构,以便得到比均质材料更好的技术经济效益的金属热处理工艺。
13淬硬性:指钢在淬火时硬化能力,用淬成马氏体可能得到的最高硬度表示。
14水韧处理:将钢加热至奥氏体区温度(1050-1100℃,视钢中碳化物的细小或粗大而定)并保温一段时间(每25mm壁厚保温1h),使铸态组织中的碳化物基本上都固溶到奥氏体中,然后在水中进行淬火,从而得到单一的奥氏体组织。
.15分级淬火:将钢加热至奥氏体区温度(1050-1100℃,视钢中碳化物的细小或粗大而定)并保温一段时间(每25mm壁厚保温1h),使铸态组织中的碳化物基本上都固溶到奥氏体中,然后在水中进行淬火,从而得到单一的奥氏体组织。
第一、二、三代轴承钢及其热处理技术的研究进展(六)朱祖昌; 杨弋涛【期刊名称】《《热处理技术与装备》》【年(卷),期】2019(040)005【总页数】9页(P60-68)【作者】朱祖昌; 杨弋涛【作者单位】上海工程技术大学上海201620; 上海大学上海200072【正文语种】中文【中图分类】TG142.723.2.4 国内外碳化物均匀度检测标准及对照本文以相当的篇幅阐述了高碳铬轴承钢的高温扩散退火热处理,控制轧制和控制冷却,超快速冷却技术及其应用,其目的是说明这些技术的应用首先是为了减轻轴承钢的碳化物液析、碳化物带状偏析和网状二次碳化物的缺陷组织的出现和提高轴承钢中碳化物的均匀度,这一问题是提高轴承钢质量和延长轴承使用寿命的第一个重要问题。
实际上,高碳铬轴承钢的碳化物均匀度还应包括其球化退火后的基体组织中碳化物颗粒的大小和均匀分布,我们对这个问题将在下一部分作重点详加阐明。
轴承钢中碳化物均匀度的提高、轴承钢热处理后减轻基体显微组织强韧化和非金属夹杂物的冶金缺陷以及均匀分布同样都是对轴承使用性能和使用寿命提高起很大影响的重要因素。
对于提高高碳铬轴承钢中碳化物的均匀度这个问题,人们早就有所认识。
本文前述也已有所提及。
翁宇庆等[84]也指出,高温扩散热处理是消除共晶碳化物,减轻树枝状偏析的有效方法,采用轧后控冷技术可以减小网状碳化物等级和得到良好的球化退火预备组织。
现在人们已愈来愈认识到,组成高碳铬轴承钢的非金属夹杂物体系、碳化物体系和Fe-C-Cr多元合金体系的3个体系中,前二个体系中非金属夹杂物的组成、含量、形态分布和大小以及碳化物的含量、形态分布和大小是轴承钢质量极其重要的影响因素。
现在,随着钢冶炼技术水准提高和轴承钢纯净度的提高,非金属夹杂物缺陷的影响已经能够在得到很大程度改善的情况下,碳化物体系的影响逐渐占据愈益关键的地位。
关于上述讲的合金基体显微组织的问题实际上涉及的是Fe-C-Cr多元合金体系如何使用热处理技术进行强韧化,这个问题当然是本文以后重点要加以阐明的。
我国热处理的现状及发展方向(1>发布日期:2008-5-21来源:舟山北化点击:100文字大小大中小热处理是机械工业的一项重要基础技术,通常像轴、轴承、齿轮、连杆等重要的机械零件和工模具都是要经过热处理的,而且,只要选材合适,热处理得当,就能使机械零件和工模具的使用寿命成倍、甚至十几倍的提高,实现“搞好热处理,零件一顶几”的目标,收到事半功倍的效果。
热处理对于充分发挥金属材料的性能潜力,提高产品的内在质量,节约材料,减少能耗,延长产品的使用寿命,提高经济效益都具有十分重要的意义。
建国以来,我国的热处理技术有了很大的发展,现有热处理生产厂点一万余家,职工15万人,专业科技人员约1000余人,热处理加热设备11万台,年生产能力660万吨钢件,年产值约50亿元,全员劳动生产率约3万元/人*年。
目前我国在热处理的基础理论研究和某些热处理新工艺、新技术研究方面,与工业发达国家的差距不大,但在热处理生产工艺水平和热处理设备方面却存在着较大的差距,还没有完全扭转热处理生产工艺和热处理设备落后、工件氧化脱碳严重、产品质量差、生产效率低、能耗大、成本高、污染严重的局面。
为促进我国热处理技术的发展,我们应全面了解热处理技术的现状和水平,掌握其发展趋势,大力发展先进的热处理新技术、新工艺、新材料、新设备,用高新技术改造传统的热处理技术,实现“优质、高效、节能、降耗、无污染、低成本、专业化生产”,力争到 2000年时达到工业发达国家八十年代中期的水平。
1大力发展多参数热处理和复合热处理工艺传统的热处理,就主要控制的参数而言,多为常压下的温度时间两个参数的热处理;就工艺方式而言,多为单一的热处理。
这样热处理的效果也只能是单一化。
为此,要大力发展多参数热处理和复合热处理工艺[1]。
1.1多参数热处理(1> 真空热处理:这是一种附加压力的多参数热处理。
它具有无氧化、无脱碳、工件表面光亮、变形小、无污染、节能、自动化程度高、适用范围广等优点,是近年来发展最快的热处理新技术之一,特别是在进行材料表面改性方面获得了很大的进展,许多新近开发的先进热处理技术,如真空高压气淬、真空化学热处理等,也需在真空下方能实施。
采用真空热处理技术可使结构材料、工模具的质量和使用寿命得到大幅度的提高,尤其适合于一些精密零件的热处理。
在工业发达国家,真空热处理的比例已达到20%左右,而我国目前约有真空热处理炉1200台,占热处理炉总数的1%左右,与国外的差距很大。
预计今后随着热处理行业的技术进步和对热处理工件质量要求的越来越高,真空热处理将会有较大的发展。
(2> 化学热处理:这是一种附加成分的多参数热处理。
普通化学热处理,如渗碳、碳氮共渗、碳氮硼共渗等,分别属于附加单成分、双成分和三成分的多参数热处理。
近年来,又发展了许多利用新技术的新型化学热处理,如真空化学热处理,流态床化学热处理、离子渗金属、离子注入、激光表面合金化等,均可提高工件的耐磨损及耐腐蚀等使用性能。
稀土在化学热处理中的应用(即与稀土共渗>,能显著提高渗速,缩短处理周期,并可提高渗层的耐磨性和耐腐蚀性,这是我国的一大特色。
此外,固溶化学热处理也是一个值得注意的动向,内蒙农机研究所黄建洪等人开发了含氮马氏体化处理(N*M处理>工艺,这是第一个以获得固溶N的含氮马氏体为目的的渗氮工艺,已成功地应用于剪毛机刀片生产[2]。
(3> 形变热处理:这是一种附加应力的多参数热处理。
采用压力加工和热处理相结合的工艺,把形变强化和相变强化结合起来,使材料达到成型与复合强化的双重目的。
形变热处理能提高材料的综合力学性能,并可以简化工序,利用余热,节约能源及材料消耗,经济效益显著。
形变热处理的应用广泛,从结构钢、轴承钢到高速钢都适用。
目前工业上应用最多的是锻造余热淬火和控制轧制。
美国采用控制轧制来生产高硬度装甲钢板,可提高抗弹性能。
我国兵器工业系统开展了火炮、炮弹零件热模锻余热淬火、炮管旋转精锻形变热处理、枪弹钢芯斜轧余热淬火等实验研究,取得了很好的效果。
1.2复合热处理复合热处理是将两种或两种以上的热处理工艺复合,或将热处理与其它加工工艺复合,这样就能得到参与组合的几种工艺的综合效果,使工件获得优良的性能,并节约能源,降低成本,提高生产效率。
如渗氮与高频淬火的复合、淬火与渗硫的复合、渗硼与粉末冶金烧结工艺的复合等。
前述的锻造余热淬火和控制轧制也属于复合热处理,它们分别是锻造与热处理的复合、轧制与热处理的复合。
还有一些新的复合表面处理技术,如激光加热与化学气相沉积(CVD>、离子注入与物理气相沉积(PVD>、物理化学气相沉积(PCVD>等,均具有显著的表面改性效果,在国内外的应用也日益增多。
需要指出的是,复合热处理并不是几种单一热处理工艺的简单叠加,而是要根据工件使用性能的要求和每一种热处理工艺的特点将它们有机地组合在一起,以达到取长补短、相得益彰的目的。
例如,由于各种热处理工艺的处理温度不同,就需要考虑参加组合的热处理工艺的先后顺序,避免后道工序对前道工序的抵消作用。
2采用新的加热源和新的加热方式2.1新的加热源在新的加热源中,以高能率热源最为引人注目。
高能率热源主要有激光束、电子束、等离子体电弧等。
高能率热处理就是利用高能率热源定向地对工件表面施加非常高的能量密度(10 3 ~10 8 w/cm 2 >,从而获得很快的加热速度(甚至能达到10 11 ℃/s>,这样在极短的时间内(1~10 -7 S>,将工件欲处理区的表层加热到相变温度以上或熔融状态,使之发生物理和化学变化,然后依靠工件自身冷却实现表面硬化或凝固,达到表面改性的目的。
高能率热处理在减小工件变形、获得特殊组织性能和表面状态方面具有很大的优越性,可以提高工件表面的耐磨性、耐蚀性,延长其使用寿命。
高能率热处理近年来发展很快,是金属材料表面改性技术最活跃的领域之一,其中激光热处理和离子注入表面改性技术在国外已进入生产阶段。
我国一汽、二汽、西安内燃机配件厂等单位,都已建立了汽车发动机缸套的激光表面淬火生产线,但由于高能率热处理的设备费用昂贵等原因,目前我国尚未大量应用,但其发展前景广阔,今后将会成为很有前途的热处理工艺。
2.2新的加热方式在热处理时实现少无氧化加热,是减少金属氧化损耗、保证工件表面质量的必备条件,而采用真空和可控气氛则是实现少无氧化加热的主要途径。
在表面加热方面,感应加热具有加热速度快、工件表面氧化脱碳少、变形小、节能、公害小、生产率高、易实现机械化和自动化等优点,是一种经济节能的表面加热手段,主要用于工件的表面加热淬火。
高能率加热具有加热速度快、表面质量好、变形小、能耗低、无污染等优点,也是一种极为有效的表面加热方式。
在整体加热方面,有真空加热、高压加热、流态床加热等方式。
流态床加热虽然能量密度不高,但加热快且均匀、工件变形小、表面光洁、处理后不需清洗、工艺转换容易、能提高产品质量、节能、公害小、成本低、并可以与化学热处理相结合,是一种很好的加热方式,特别适宜于多品种、小批量和周期性生产,可用来取代传统的盐浴热处理,其发展前景令人瞩目。
我国热处理的现状及发展方向(1>发布日期:2008-5-21来源:舟山北化点击:100文字大小大中小热处理是机械工业的一项重要基础技术,通常像轴、轴承、齿轮、连杆等重要的机械零件和工模具都是要经过热处理的,而且,只要选材合适,热处理得当,就能使机械零件和工模具的使用寿命成倍、甚至十几倍的提高,实现“搞好热处理,零件一顶几”的目标,收到事半功倍的效果。
热处理对于充分发挥金属材料的性能潜力,提高产品的内在质量,节约材料,减少能耗,延长产品的使用寿命,提高经济效益都具有十分重要的意义。
建国以来,我国的热处理技术有了很大的发展,现有热处理生产厂点一万余家,职工15万人,专业科技人员约1000余人,热处理加热设备11万台,年生产能力660万吨钢件,年产值约50亿元,全员劳动生产率约3万元/人*年。
目前我国在热处理的基础理论研究和某些热处理新工艺、新技术研究方面,与工业发达国家的差距不大,但在热处理生产工艺水平和热处理设备方面却存在着较大的差距,还没有完全扭转热处理生产工艺和热处理设备落后、工件氧化脱碳严重、产品质量差、生产效率低、能耗大、成本高、污染严重的局面。
为促进我国热处理技术的发展,我们应全面了解热处理技术的现状和水平,掌握其发展趋势,大力发展先进的热处理新技术、新工艺、新材料、新设备,用高新技术改造传统的热处理技术,实现“优质、高效、节能、降耗、无污染、低成本、专业化生产”,力争到 2000年时达到工业发达国家八十年代中期的水平。
1大力发展多参数热处理和复合热处理工艺传统的热处理,就主要控制的参数而言,多为常压下的温度时间两个参数的热处理;就工艺方式而言,多为单一的热处理。
这样热处理的效果也只能是单一化。
为此,要大力发展多参数热处理和复合热处理工艺[1]。
1.1多参数热处理(1> 真空热处理:这是一种附加压力的多参数热处理。
它具有无氧化、无脱碳、工件表面光亮、变形小、无污染、节能、自动化程度高、适用范围广等优点,是近年来发展最快的热处理新技术之一,特别是在进行材料表面改性方面获得了很大的进展,许多新近开发的先进热处理技术,如真空高压气淬、真空化学热处理等,也需在真空下方能实施。
采用真空热处理技术可使结构材料、工模具的质量和使用寿命得到大幅度的提高,尤其适合于一些精密零件的热处理。
在工业发达国家,真空热处理的比例已达到20%左右,而我国目前约有真空热处理炉1200台,占热处理炉总数的1%左右,与国外的差距很大。
预计今后随着热处理行业的技术进步和对热处理工件质量要求的越来越高,真空热处理将会有较大的发展。
(2> 化学热处理:这是一种附加成分的多参数热处理。
普通化学热处理,如渗碳、碳氮共渗、碳氮硼共渗等,分别属于附加单成分、双成分和三成分的多参数热处理。
近年来,又发展了许多利用新技术的新型化学热处理,如真空化学热处理,流态床化学热处理、离子渗金属、离子注入、激光表面合金化等,均可提高工件的耐磨损及耐腐蚀等使用性能。
稀土在化学热处理中的应用(即与稀土共渗>,能显著提高渗速,缩短处理周期,并可提高渗层的耐磨性和耐腐蚀性,这是我国的一大特色。
此外,固溶化学热处理也是一个值得注意的动向,内蒙农机研究所黄建洪等人开发了含氮马氏体化处理(N*M处理>工艺,这是第一个以获得固溶N的含氮马氏体为目的的渗氮工艺,已成功地应用于剪毛机刀片生产[2]。
(3> 形变热处理:这是一种附加应力的多参数热处理。
采用压力加工和热处理相结合的工艺,把形变强化和相变强化结合起来,使材料达到成型与复合强化的双重目的。