(完整word版)量子力学考试知识点(良心出品必属精品)
- 格式:doc
- 大小:896.00 KB
- 文档页数:37
1.爱因斯坦关系是什么?什么是波粒二象性?答:爱因斯坦关系:⎪⎩⎪⎨⎧========k n n h n c h n c E p h hv E ρηρηρρρρηηλπλνπω22 其中波粒二象性:光不仅具有波动性,而且还具有质量、动量、能量等粒子的内禀属性,就是说光具有波粒二象性。
2.α粒子散射与夫兰克-赫兹实验结果验证了什么?答:α粒子散射实验验证了原子的核式结构,夫兰克-赫兹实验验证了原子能量的量子化3.波尔理论的内容是什么?波尔氢原子理论的局限性是什么?答:波尔理论:(1)原子能够而且只能够出于一系列分离的能量状态中,这些状态称为定态。
出于定态时,原子不发生电磁辐射。
(2)原子在两个定态之间跃迁时,才能吸收或者发射电磁辐射,辐射的频率v 由式12E E hv -=决定(3)原子处于定态时,电子绕原子核做轨道运动,轨道角动量满足量子化条件:ηn r m = υ局限性:(1)不能解释较复杂原子甚至比氢稍复杂的氦原子的光谱;(2)不能给出光谱的谱线强度(相对强度);(3)从理论上讲,量子化概念的物理本质不清楚。
4.类氢体系量子化能级的表示,波数与光谱项的关系?答:类氢体系量子化能级的表示:()22202442nZ e E n ηπεμ-= 波数与光谱项的关系Λ,4,5.3,3,5.2,121ˆ22=⎪⎭⎫ ⎝⎛-=n n R v5.索莫菲量子化条件是什么,空间取向量子化如何验证? 答:索莫菲量子化条件是nh q p =⎰d空间取向量子化通过史特恩-盖拉赫(Stern-Gerlach )实验验证。
、6.碱金属的四个线系,选择定则,能级特点及形成原因?答:碱金属的四个线系:主线系、第一辅线系(漫线系)、第二辅线系(锐线系)、柏格曼系(基线系)碱金属的选择定则:1,0,1±=∆±=∆j l碱金属的能级特点:碱金属原子的能级不但与主量子数n 有关,还和角量子数l 有关;且对于同一n ,都比氢(H)能级低。
)(Et r p i p Ae-⋅=ρϖηϖψ《量子力学》复习 提纲一、基本假设 1、(1)微观粒子状态的描述 (2)波函数具有什么样的特性 (3)波函数的统计解释2、态叠加原理(说明了经典和量子的区别)3、波函数随时间变化所满足的方程 薛定谔方程4、量子力学中力学量与算符之间的关系5、自旋的基本假设 二、三个实验1、康普顿散射(证明了光子具有粒子性) 第一章2、戴维逊-革末实验(证明了电子具有波动性) 第三章3、史特恩-盖拉赫实验(证明了电子自旋) 第七章 三、证明1、粒子处于定态时几率、几率流密度为什么不随时间变化;2、厄密算符的本征值为实数;3、力学量算符的本征函数在非简并情况下正交;4、力学量算符的本征函数组成完全系;5、量子力学测不准关系的证明;6、常见力学量算符之间对易的证明;7、泡利算符的形成。
四、表象算符在其自身的表象中的矩阵是对角矩阵。
五、计算1、力学量、平均值、几率;2、会解简单的薛定谔方程。
第一章 绪论1、德布洛意假设: 德布洛意关系:戴维孙-革末电子衍射实验的结果: 2、德布洛意平面波:3、光的波动性和粒子性的实验证据:4、光电效应:5、康普顿散射:∑=nnn c ψψ1d 2=⎰τψ(全)0=⋅∇+∂∂j tϖρ⎥⎦⎤⎢⎣⎡+∇-=),(222t r V H ϖημ)(,)(),(r er t r n tE i n n n ϖϖϖηψψψ-=n n n E H ψψ=()ψψψψμ∇-∇2=**ηϖi j 附:(1)康普顿散射证明了光具有粒子性(2)戴维逊-革末实验证明了电子具有波动性 (3)史特恩-盖拉赫实验证明了电子自旋第二章 波函数和薛定谔方程1.量子力学中用波函数描写微观体系的状态。
2.波函数统计解释:若粒子的状态用()t r ,ρψ描写,τψτψψd d 2*=表示在t 时刻,空间r ρ处体积元τd 内找到粒子的几率(设ψ是归一化的)。
3.态叠加原理:设ΛΛn ψψψ,,21是体系的可能状态,那么,这些态的线性叠加∑=nnn c ψψ也是体系的一个可能状态。
物理量子高考必背知识点引言:物理量子是现代物理学中的重要分支,涉及到微观世界的粒子行为。
在高考物理考试中,物理量子也是一个重要的考点。
本文将介绍一些物理量子的必备知识点,帮助学生们在考试中取得好成绩。
一、光电效应光电效应是指当光照射到金属表面时,金属会发射出电子的现象。
根据爱因斯坦的光量子说,光是由具有能量的光子组成的,而光子的能量与波长呈反比。
光线照射金属时,如果光子的能量大于金属的逸出功,就会发生光电效应。
光电效应与光的频率有关,而与光的强度无关。
二、德布罗意波德布罗意波是由路易斯·德布罗意提出的,他认为物质不仅具有粒子性,还具有波动性。
德布罗意波的波长与物体的质量和速度有关,可以用德布罗意波公式λ=h/mv表示(其中λ为波长,h为普朗克常数,m为物体的质量,v为物体的速度)。
德布罗意波的提出,为揭示微观世界的奇妙行为提供了新的角度。
三、不确定性原理不确定性原理是由海森堡提出的,它表明,在观测微观粒子时,我们无法准确知道粒子的位置和动量,只能获得一个概率分布。
不确定性原理是量子力学中的基本原理之一,标志着传统物理学的破产。
它告诉我们,微观世界的粒子并不像我们想象的那样可预测,而是具有一定的随机性。
四、量子隧道效应量子隧道效应是指微观粒子在经典力学下无法通过的能垒,在量子力学中却能够通过。
这一现象可以解释一些实际问题,比如核反应中氢原子的聚变等。
量子隧道效应的发现使得科学家们对微观世界的认识更加深入,也为一些实际应用提供了理论基础。
五、量子纠缠量子纠缠是指两个或多个微观粒子之间由于相互作用而产生的状态纠缠。
在这种状态下,无论这些粒子之间有多么远的距离,它们之间的信息传递是瞬时的,即使处于相隔很远的两个地方,改变一个粒子的状态会立即影响到另一个粒子的状态。
这一现象被称为“量子纠缠的非局域性”。
量子纠缠是量子力学中的一个重要概念,也是量子通信和量子计算的基础之一。
结语:物理量子是一个令人神秘而充满挑战的领域,在高考物理考试中也起到了重要作用。
量子力学复习提纲2008级材料物理专业《量子力学》复习提纲要点之一1. 20世纪初,经典理论在解释黑体辐射、光电效应和原子光谱的线状结构等实验结果时遇到了严重的困难。
爱因斯坦在普朗克“ 能量子”假设的启发下,提出了“光量子”的概念,认为光是由一颗颗具有一定能量的粒子组成的粒子流。
2. 描述光的粒子性的能量E 和动量P与描述其波动性的频率(或角频率)和波矢K由 Planck- Einstein 方程联系起来,即: h E ;K n h P。
3. 德布罗意提出,一切物质粒子(原子、电子、质子等)都具有粒子、波动二重性,在一定条件下,表现出粒子性,在另一些条件下体现出波动性。
4. 描述微观粒子(如原子、电子、质子等)粒子性的物理量为能量E 和动量P ,描述其波动性的物理量为频率(或角频率)和波长,它们间的关系可用德布罗意关系式表示,即: h E ; K n h P。
5. 微观粒子因具有波粒二象性,其运动状态不能用坐标、速度、加速度等物理量来描述,而是用波函数来描述。
描述自由粒子的波是具有确定能量和动量的平面波,即:)(),(Et r p i p Ae t r。
6. 波函数在空间某点的强度,即波函数模的平方,与在该点找到粒子的几率成正比例,即描写粒子的波可认为是几率波,反映了微观粒子运动的统计规律。
7. 波函数在全空间每一点应满足单值、有限、连续三个条件,该条件称为波函数的标准条件。
8. 通常将在无穷远处为零的波函数所描写的状态称为束缚态,属于不同能级的束缚定态波函数彼此正交,可表示为)(0*n m dx n m 。
9. 设G ??和F的对易关系为k i G F ?]?,?[ ,且G G G F F F ??,??,则G ??和F 的测不准关系式为:4)?()?(222k G F;如果k 不等于零,则的均方偏差不会同时为零,它们的乘积要大于一正数,这意味着F和G ?不能同时测定。
10. 当体系处于定态时,则体系有:1)能量有确定值;2)粒子在空间几率密度与时间无关;3)几率流密度与时间无关。
量子力学复习提纲第一章 绪论 1.德布罗意关系, E h νω==(1)hp n k λ==(2)2.微观粒子的波粒二象性.3. 电子被V 伏电压加速,则电子的德布罗意波长为12.25hA λ=≈(3)第二章 波函数和薛定谔方程 1.波函数的统计解释:波函数在空间某一点的强度()2,r t ψ和在该处找到粒子的几率成正比,描写粒子的波是几率波. 其中2w *=ψψ=ψ代表几率密度.2.态叠加原理:如果1ψ和2ψ是体系的可能状态,那么它们的线性叠加 1122c c ψ=ψ+ψ,也是体系的一个可能状态.3. 薛定谔方程和定态薛定谔方程薛定谔方程()(),ˆ,r t i H r t t∂ψ=ψ∂ (4)定态薛定谔方程()()ˆHr E r ψ=ψ (5) 其中()22ˆ2H U r μ=-∇+ (6)为哈密顿算符,又称为能量算符,4. 波函数的标准条件: 有限性,连续性(包括ψ及其一阶导数)和单值性.5. 波函数的归一化,1d τ*∞ψψ=⎰(9)6.求解一维薛定谔方程的几个例子.一维无限深势阱及其变种, 一维线性谐振子; 势垒贯穿.第三章 量子力学中的力学量1. 坐标算符, 动量算符及角动量算符;构成量子力学力学量的法则;2. 本征值方程,本征值,本征函数的概念ˆF ψλψ= (10)3. 厄密算符的定义,性质及与力学量的关系.ˆF dx ψφ*=⎰()ˆF dx ψφ*⎰(11)实数性: 厄密算符的本征值是实数.正交性: 厄密算符的属于不同本征值的两个本征函数 相互正交.完全性: 厄密算符ˆF的本征函数()n x φ和()x λφ组成完全系, 即任一函数()x ψ可以按()n x φ和()x λφ展开为级数:()()()n n nx c x c x d λλψφφλ=+∑⎰ (12)展开系数: ()()nnc x x dx φψ*=⎰, (13)()()c x x dx λλφψ*=⎰. (14)2nc 是在()x ψ态中测量力学量F 得到nλ的几率,2c d λλ是在()x ψ态中测量力学量F ,得到测量结果在λ到d λλ+范围内的几率.4. 2ˆL 和ˆZL 算符的本征值方程,本征值和本征函数. ()22ˆ1L l l ψψ=+, ˆzL m ψψ= 本征函数 (),lm Y θφ.5. 氢原子的哈密顿算符及其本征值,本征函数nlm ψ的数学结构, ()()(),,,nlmnl lm r R r Y ψθφθφ= (15)主量子数n ,角量子数l 和磁量子数m 的取值范围,简并态的概念.6. 氢原子的能级公式和能级的简并度.422,1,2,3,...2s n e E n nμ=-= (16)不考虑电子的自旋是2n 度简并的;考虑电子的自旋是22n 度简并的.7. 给定电子波函数的表达式,根据电子在(),,r θφ点周围的体积元内的几率()22,,sin nlm r r drd d ψθφθθφ(17)计算电子几率的径向分布和角分布.计算在半径r 到r dr +的球壳内找到电子的几率. 8. 给定态函数,计算力学量平均值,平均值的计算公式.()()ˆF x F x dx ψψ*=⎰(18) 注意(11)式对波函数所在的空间作积分. 9. 算符的对易关系及测不准关系.(1) 如果一组算符相互对易,则这些算符所表示的力学量同时具有确定值(即对应的本征值), 这些算符有组成完全系的共同的本征函数.例如: 氢原子的哈密顿算符ˆH ,角动量平方算符2ˆL 和角动量算符ˆz L 相互对易, 则(i) 它们有共同的本征函数nlm ψ, (ii) 在态nlm ψ中,它们同时具有确定值:4222s n e E n μ=-,()21l l +,m.(2) 测不准关系:如果算符ˆF和ˆG 不对易,则一般来说它们不能同时有确定值. 设ˆFˆG -ˆG ˆF =ˆik 则算符ˆF和ˆG 的均方偏差满足:()_______2ˆF ∆⋅()_______22ˆ4k G ∆≥(19)其中 ()()________________________2222222F F F F FF F F F ∆=-=-+=-()__________222F F F ∆=-, ()__________222G G G ∆=-(a) 利用测不准关系估计氢原子的基态能量, 线性谐振子的零点能等.(b) 给定态函数ψ,计算两个力学量ˆF和ˆG 的均方偏差的乘积()_______2ˆF∆⋅()_______2ˆ?G ∆=(20)第四章 态和力学量的表象 1. 对表象的理解(1) 状态ψ: 态矢量(2) Q 表象:力学量Q 的本征函数 ()()()12,,...,...n u x u x u x构成无限维希耳伯特空间(坐标系)的基矢量 (4) 将态矢量按照上述基矢量展开:()()(),n n nx t a t u x ψ=∑()()()12,,...,...n a t a t a t 是态矢量ψ在Q 表象中沿各基矢量的分量.(5) ()2n a t 是在(),x t ψ所描写的态中,测量力学量Q 得到结果为n Q 的几率. 2. 算符在Q 表象中的表示(i)算符ˆF在Q 表象中是一个矩阵, nm F 称为矩阵元 ()(),nm nm F u x F x u x dx i x *∂⎛⎫≡ ⎪∂⎝⎭⎰(ii) 算符在自身表象中是一个对角矩阵,其对角矩阵元为该算符对应的本征值. 3. 量子力学公式的矩阵表述 (1) 平均值公式:†F F =ψψ (21)(2) 本征值方程 → 久期方程()()()()()()1111121222122212 ... ... ... ... : : : ... ... : : :m m n n nm mm a t a t F F F a t a t F F F F F F a t a t λ⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎪= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭→ 111212122212 ... ... ... ... 0... ... ..............................n n n n nn F F F F F F F F F λλλ--=-(3) 薛定谔方程的矩阵形式di H dtψ=ψ (22) 4. 么正变换的概念(1) 么正变换是两个表象基矢量之间的变换矩阵. (2) 么正变换的矩阵元由两个表象的基矢量共同确定,()()()(),.n n m m S x x dx S x x dx ββααψϕψϕ***⎫=⎪⎬=⎪⎭⎰⎰(3) 态矢量由A 表象变换到B 表象的公式1b S a -= (23)(4) 力学量ˆF由A 表象变换到B 表象的公式: 1F S FS -'= (24)5. 么正变换的性质(i) 么正变换不改变算符的本征值; (ii) 么正变换不改变矩阵F 的迹; (iii) 么正变换不改变力学量的平均值.第五章 微扰理论(I) 求解非简并定态微扰问题 (1) 确定微扰的哈密顿算符ˆH'. ()0ˆˆˆHH H '=+, 及与()0ˆH对应的零级近似能量()0n E 和零级近似波函数()0nψ;(2) 计算能量的一级修正:()()()100ˆn nn E H d ψψτ*'=⎰ (25)(3) 计算波函数的一级修正:()()()()10'00mn n m mn mH E E ψψ'=-∑(26) (4) 计算能量的二级修正:()22'0nln ln l H E E E '=-∑ (27)(II) 求解非简并定态微扰问题 (只要求能量的一级修正) 求解步骤(1) 确定微扰的哈密顿算符ˆH'. (2) 确定微扰算符的矩阵元:ˆliH '=ˆl i H d φφτ*'⎰(28)(3) 求解久期方程得到能量的一级修正()()()111121121222112.........................................................n k n k kkkkn H E H H H H E H H H H E '''-'''-='''- (29)(III) 变分法不作要求 (IV) 含时微扰论 (1) 基本步骤设0ˆH 的本征函数为n φ为已知:0ˆn n nH φεφ=(30)将ψ按照0ˆH 的定态波函数n itn n e εφ-Φ=展开:()n nna t ψ=Φ∑(31)展开系数的表达式:()01mk ti t m mka t H e dt iω'''=⎰(32)其中ˆmn m n H H d φφτ*''=⎰(33)是微扰矩阵元,()1m n mn ωεε=-(34)为体系由n ε能级跃迁到m ε能级的玻尔频率. 在t 时刻发现体系处于m Φ态的几率是()2m a t , 体系在微扰的作用下,由初态k Φ跃迁到终态m Φ的几率为()2k m m W a t →= (35)(2) 用于周期微扰()()ˆˆi t i t H t F e e ωω-'=+得到 ()()()11mk mk i t i t mk m mk mk F e e a t ωωωωωωωω''+-⎡⎤--=-+⎢⎥+-⎣⎦ (36)由(36)式,讨论并理解发生跃迁的条件是mkωω=±或m k m kεεω=±(37)(i) 表明只有外界的微扰含有频率mk ω时,体系才能从k Φ态跃迁到m Φ态,这时体系吸收和发射的能量是mk ω;(ii)跃迁是一个共振现象.(3) 能量时间的测不准关系的含义E t ∆∆ (38)(4) 了解原子的跃迁几率和三个爱因斯坦系数:mk A , mkB 和km B 及相互关系. (5) 了解用含时微扰理论计算爱因斯坦发射和吸收系数(6) 记住对角量子数和磁量子数的选择定则1,0, 1.l l l m m m '∆=-=±⎫⎬'∆=-=±⎭(39) 第六章 散射只要求理解微分散射截面的概论, 不作计算要求.第七章 自旋与全同粒子1. 电子的自旋角动量S ,它在空间任何方向的投影只能取 2z S =± (40)2. 自旋算符的矩阵形式01ˆ210x S ⎛⎫= ⎪ ⎪⎝⎭, 0ˆ20y i S i ⎛⎫-= ⎪ ⎪⎝⎭, 10ˆ201z S ⎛⎫= ⎪ ⎪-⎝⎭(41) 3.泡利矩阵01ˆ10x σ⎛⎫= ⎪ ⎪⎝⎭, 0ˆ0y i i σ⎛⎫-= ⎪ ⎪⎝⎭, 10ˆ01z σ⎛⎫= ⎪ ⎪-⎝⎭(42)(1) 求力学量在某个自旋态的平均值和均方偏差.†G G =ψψ (43)()11121†1222122G G G G G G **⎛⎫ψ⎛⎫=ψψ=ψψ ⎪ ⎪ ⎪ψ⎝⎭⎝⎭ (44)(2)求解自旋角动量算符的本征值方程, 本征值和本征函数4. 自旋与轨道角动量的耦合及产生光谱的精细结构的原因.5.6. 全同性原理的表述6. 描写全同粒子体系状态的波函数只能是对称或反对称的,它们的对称性不随时间改变.实验证明,微观粒子按照其波函数的对称性可以分为两类: (I) 费米子: 波函数是反对称的;(II) 玻色子: 波函数是对称的. 2的奇数倍20, 1, 或2的偶数倍7.泡利不相容原理:不能有两个或两个以上的费米子处于同一状态.。
量子力学期末复习完美总结一、 填空题1.玻尔-索末菲的量子化条件为:pdq nh =⎰,(n=1,2,3,....),2.德布罗意关系为:hE h p k γωλ====; 。
3.用来解释光电效应的爱因斯坦公式为:212mV h A υ=-, 4.波函数的统计解释:()2r t ψ,代表t 时刻,粒子在空间r 处单位体积中出现的概率,又称为概率密度。
这是量子力学的基本原理之一。
波函数在某一时刻在空间的强度,即其振幅绝对值的平方与在这一点找到粒子的几率成正比,和粒子联系的波是概率波。
5.波函数的标准条件为:连续性,有限性,单值性 。
6.,为单位矩阵,则算符的本征值为:1± 。
7.力学量算符应满足的两个性质是 实数性和正交完备性 。
8.厄密算符的本征函数具有: 正交性,它们可以组成正交归一性。
即()m n mn d d λλφφτδφφτδλλ**''==-⎰⎰或。
9.设 为归一化的动量表象下的波函数,则 的物理意义为:表示在()r t ψ,所描写的态中测量粒子动量所得结果在p p dp →+范围内的几率。
10.i ;ˆxi L ;0。
11.如两力学量算符有共同本征函数完全系,则_0__。
12.坐标和动量的测不准关系是: ()()2224x x p ∆∆≥。
自由粒子体系,_动量_守恒;中心力场中运动的粒子__角动量__守恒13.量子力学中的守恒量A 是指:ˆA不显含时间而且与ˆH 对易,守恒量在一切状态中的平均值和概率分布都不随时间改变。
14.隧道效应是指:量子力学中粒子在能量E 小于势垒高度时仍能贯穿势垒的现象称为隧道效应。
15. 为氢原子的波函数,的取值范围分别为:n=1,2,3,… ;l=0,1,…,n -1;m=-l,-l+1,…,0,1,…l 。
16.对氢原子,不考虑电子的自旋,能级的简并为: 2n ,考虑自旋但不考虑自旋与轨道角动量的耦合时,能级的简并度为 22n ,如再考虑自旋与轨道角动量的耦合,能级的简并度为 12+j 。
量子力学复习提纲1. 粒子的双缝实验的结论是什么? 答:粒子具有波动性2. 在量子力学中,波函数的波动方程是什么?它是定态薛定谔方程吗?答:量子力学中波函数的波动方程是),()](2[),(22t r r V mt r t i →→→+∇-=∂∂ψψ ,它不是定态薛定谔方程,定态薛定谔方程是假设势能V 不显含时间t ,其形式是:)()](2[)(22→→→+∇-=r r V mr E ψψ3. 波函数除了归一化要求之外的三个标准条件是什么?答:单值、连续、有限。
4. 写出一维无限深方势阱的能量本征函数及能量本征值。
答:5. 写出一维线性谐振子的能量本征函数及能量本征值。
222220,0(),ˆ,()()2()sin(),1,2,3,,1,2,3ˆ(2,2ˆ)n n n n nx x a U x x others H x E x n xx n a an E n P U x a H ψψπψπμμ<<⎧=⎨∞∈⎩=⎧⎫⎪⎪==⎨⎬⎪⎪⎩⎭==+=6. 动量算符的本征函数和本征值是什么?其本征函数如何归一? 答:动量算符的本征函数是:)ex p()2(1)(23r p ir p ⋅=πψ,其本征值为p 。
其只能归以为函数δ函数,即)()()('*'p p d r r pp -=⎰∞δτϕϕ。
7. 在三维直角坐标系中,角动量算符的表示式是什么?动量(矢量)算符的本征函数和本征值是什么?答:ˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆxz y yx z zy x L yp zp i y z z y Lzp xp i z x xz L xp yp i x y yx ⎛⎫∂∂=-=-- ⎪∂∂⎝⎭∂∂⎛⎫=-=-- ⎪∂∂⎝⎭⎛⎫∂∂=-=-- ⎪∂∂⎝⎭ 动量算符的本征函数和本征值如上。
8. 在球坐标系中,角动量平方算符的表示式又是什么?它的本征函数和本征值是什么?其中什么是轨道角动量量子数(角量子数)?取值范围是哪些数值?答:()22222222222222222222ˆˆˆˆ,11sinsin sinˆ11ˆsinsin sinx y zL L L Lctg ctgDDθϕθθθϕϕθθθθθθϕθθθθθϕ=++⎛⎫∂∂∂∂=-+++⎪∂∂∂∂⎝⎭⎡⎤∂∂∂⎛⎫=-+⎪⎢⎥∂∂∂⎝⎭⎣⎦=⎡⎤∂∂∂⎛⎫=-+⎪⎢⎥∂∂∂⎝⎭⎣⎦22ˆ(,)(1)(,)ˆ(,)(,)lm lmz lm lmL Y l l YL Y m Yθϕθϕθϕθϕ=+=l表征轨道角动量的大小,称为轨道角动量角量子数,l=0,1,2,……m则称为轨道角动量的磁量子数,对应于一个l的值,m可取(2l+1)个值,m=l,l-1,l-2,…,1,0,-1,-2,…,-l9.在球坐标系中,角动量在极轴上的投影算符如何表达?其本征函数和本征值是什么?其中什么是轨道角动量磁量子数(磁量子数)?取值范围是哪些数值?答:答案如上10.量子力学中关于波函数与力学量的两个假设,告诉你什么结论,试用你自己的语言归纳出5条结论。
量子力学知识总结认真、努力、坚持、反思、总结…物理111 杨涛量子力学知识点小结一、绪论1.光的粒子性是由黑体辐射、光电效应和康普顿效应(散射)三个实验最终确定的。
2.德布罗意假设是任何物质都具有波粒二象性,其德布罗意关系为E h ν=和h p n κλ==v v h3.波尔的三个基本假设是定态条件假设、n mE E h ν-=频率条件假设、化条件)(索末菲等推广的量子21或量子化条件假设⎰⎰+==h n pdq nh pdq )(4.自由粒子的波函数()i p r Et Aeψ⋅-=v vh5.戴维孙革末的电子在晶体上衍射实验证明了电子具有波动性。
二、波函数及薛定谔方程(一)波函数的统计解释(物理意义)A.波函数(,)r t ψv 的统计解释2(,)r t d t r ψτv v 表示时刻在点位置处单位体积内找2sin d r drd d τθϕθ=到粒子的几率(注:)。
B. 波函数(,,,)x y z t ψ的统计解释2(,,,),,x y z t dxdydz t x y z ψ表示时刻在点()位置处单位体积没找到粒子的几率。
例:已知体系处于波函数(,,)x y z ψ所描写的状态,则在区间[,]x x dx +内找到粒子的概率是2(,,)x y z dydz dx ψ+∞+∞-∞-∞⎡⎤⎢⎥⎣⎦⎰⎰.已知体系处于波函数(,,)r ψθϕ所描写的状态,则在球壳r r dr →+内找到粒子的概率是22200(,,)sin r d d r dr ππψθϕθϕθ⎡⎤⎢⎥⎣⎦⎰⎰,在立体角d Ω内找到粒子的概率是220(,,)r r dr d ψθϕ∞⎡⎤Ω⎢⎥⎣⎦⎰.(注:sin d d d θϕθΩ=) (二)态叠加原理: 如果1ψ和2ψ是体系的可能状态,那么它们的线性叠加1122c c ψψψ=+(12c c 、为复数)也是这个体系可能的状态。
含义:当体系处于1ψ和2ψ的线性叠加态1122c c ψψψ=+(12c c 、为复数)时,体系既处于1ψ态又处于态2ψ,对应的概率为21c 和22c .(三)概率密度(分布)函数2()()x x x ψωψ=若波函数为,则其概率密度函数为()(四)薛定谔方程:22()2i U r t m∂ψ=-∇ψ+ψ∂h vh 22222222222222222()21cos 1 ()sin sin x y zr r r r r θθθθθϕ∂∂∂∇=+∂∂∂⎛⎫∂∂∂∂∂∇=+++ ⎪∂∂∂∂∂⎝⎭拉普拉斯算符直角坐标球坐标问题:1.描写粒子(如电子)运动状态的波函数对粒子(如电子)的描述是统计性的.2. 薛定谔方程是量子力学的一个基本假设,不是通过严格的数学推导而来的(五)连续性方程:()**0( )2J ti J mω∂+∇⋅=∂≡ψ∇ψ-ψ∇ψv v h 注:问题:波函数的标准条件单值、连续、有界。
1 《量子力学》考试知识点 第一章: 绪论―经典物理学的困难 考核知识点: (一)、经典物理学困难的实例 (二)、微观粒子波-粒二象性 考核要求: (一)、经典物理困难的实例 1.识记:紫外灾难、能量子、光电效应、康普顿效应。 2.领会:微观粒子的波-粒二象性、德布罗意波。 第二章:波函数和薛定谔方程 考核知识点: (一)、波函数及波函数的统计解释 (二)、含时薛定谔方程 (三)、不含时薛定谔方程 考核要求: (一)、波函数及波函数的统计解释 1.识记:波函数、波函数的自然条件、自由粒子平面波 2.领会:微观粒子状态的描述、Born几率解释、几率波、态叠 2
加原理 (二)、含时薛定谔方程 1.领会:薛定谔方程的建立、几率流密度,粒子数守恒定理 2.简明应用:量子力学的初值问题 (三)、不含时薛定谔方程 1. 领会:定态、定态性质 2. 简明应用:定态薛定谔方程 第三章: 一维定态问题 一、考核知识点: (一)、一维定态的一般性质 (二)、实例 二、考核要求: 1.领会:一维定态问题的一般性质、束缚态、波函数的连续性条件、反射系数、透射系数、完全透射、势垒贯穿、共振 2.简明应用:定态薛定谔方程的求解、无限深方势阱、线性谐振子 第四章 量子力学中的力学量 一、考核知识点: (一)、表示力学量算符的性质 3
(二)、厄密算符的本征值和本征函数 (三)、连续谱本征函数“归一化” (四)、算符的共同本征函数 (五)、力学量的平均值随时间的变化 二、考核要求: (一)、表示力学量算符的性质 1.识记:算符、力学量算符、对易关系 2.领会:算符的运算规则、算符的厄密共厄、厄密算符、厄密算符的性质、基本力学量算符的对易关系 (二)、厄密算符的本征值和本征函数 1.识记:本征方程、本征值、本征函数、正交归一完备性 2.领会:厄密算符的本征值和本征函数性质、坐标算符和动量算符的本征值问题、力学量可取值及测量几率、几率振幅。 (三)、连续谱本征函数“归一化” 1.领会:连续谱的归一化、箱归一化、本征函数的封闭性关系 (四)、力学量的平均值随时间的变化 1.识记:好量子数、能量-时间测不准关系 2.简明应用:力学量平均值随时间变化 第五章 态和力学量的表象 4
一、考核知识点: (一)、表象变换,幺正变换 (二)、平均值,本征方程和Schrodinger equation的矩阵形式 (三)、量子态的不同描述 二、考核要求: (一)、表象变换,幺正变换 1.领会:幺正变换及其性质 2.简明应用:表象变换 (二)、平均值,本征方程和Schrodinger equation的矩阵形式 1.简明应用:平均值、本征方程和Schrodinger equation的矩阵形式 2.综合应用:利用算符矩阵表示求本征值和本征函数 (三)、量子态的不同描述 第六章:微扰理论 一、考核知识点: (一)、定态微扰论 (二)、变分法 (三)、量子跃迁 二、考核要求: 5
(一)、定态微扰论 1.识记:微扰 2.领会:微扰论的思想 3.简明应用:简并态能级的一级,二级修正及零级近似波函数 4.综合应用:非简并定态能级的一级,二级修正、波函数的一级修正。 (二)、变分法 1.领会:变分原理 2.简明应用:用Ritz变分法求体系基态能级及近似波函数 (三)、量子跃迁 1. 识记:跃迁、跃迁几率、自发辐射、受激辐射、费米黄金规则 2.领会:跃迁理论与不含时微扰的关系 3.简明应用:简单微扰体系跃迁几率的计算、常微扰、周期微扰 第七章 自旋与全同粒子 一、考核知识点: (一)、电子自旋 (二)、总角动量 6
(三)、碱金属的双线结构 (四)、自旋单态和三重态 (五)、全同粒子交换不变性 二、考核要求: (一)、电子自旋 1.识记:自旋存在的实验事实、二分量波函数 2.领会:电子自旋的内禀磁矩、对易关系、泡利表象、矩阵表示(泡利矩阵)、自旋态的表示 3.简明应用:考虑自旋后,状态和力学量的描述、考虑自旋后,电子在中心势场中的薛定谔方程 (二)、总角动量 1.识记:自旋-轨道耦合 2.领会:总角动量、力学量完全集22(,,,)zHljj的共同本征值问题 (三)、碱金属的双线结构 1.领会:碱金属原子光谱的双线结构及反常塞曼效应的现象及形成原因 (四)、自旋单态和三重态 1.领会:自旋单态和三重态 7
2.简明应用:在)S,S(z2z1和)Sˆ,Sˆ(z2表象中两自旋为21的粒子的自旋波函数 (五)、全同粒子交换不变性 1.领会:全同粒子体系与波函数的交换对称性、费米子和玻色子体系的描述、泡利不相容原理 2.简明应用:两全同粒子体系、全同粒子体系波函数的结构 1、 波函数与薛定谔方程 理解波函数的统计解释,态迭加原理,薛定鄂方程,粒子流密度和粒子数守恒定律 定态薛定谔方程。掌握一维无限深势阱,线性谐振子。 2、 力学量的算符表示 理解算符与力学量的关系。掌握动量算符和角动量算符,厄米算符本征函数的正交性,算符的对易关系, 两力学量同时有确定值的条件 测不准关系,力学量平均值随时间的变化 守恒定律。 氢原子 3、 态和力学量的表象 理解态的表象,掌握算符的矩阵表示,量子力学公式的矩阵表述 么正变换,了解狄喇克符号,线性谐振子与占有数表象。 4、 定态近似方法 掌握非简并定态微扰理论,简并情况下的微扰理论,理解薛定鄂方程的变分原理及变分法。 5、 含时微扰论 掌握与时间有关的微扰理论,跃迁几率,光的发散和吸收及 8
选择定则。 6、 自旋与角动量 理解电子自旋,掌握电子的自旋算符和自旋函数。 7、 全同粒子体系 理解两个角动量的耦合,光谱的精细结构和全同粒子的特性。掌握全同粒子体系的波函数,泡利原理,两个电子的自旋函数。了解氦原子(微扰法)。 周世勋,《量子力学教程》,高等教育出版社,1979年第 1 版 曾谨言,《量子力学教程》,科学出版社,2003年版 参考书目:《量子力学导论》,北京大学出版社,曾谨言
我认为考试前要清楚报考单位对《量子力学》这门课的基本要求以及主要考查内容是什么,应当按照其要求出发,有目的性、针对性的进行的复习。中科院《量子力学》考试的重点是要求熟练把握波函数的物理解释,薛定谔方程的建立、基本性质和精确的以及一些重要的近似求解方法,理解这些解的物理意义,熟悉其实际的应用。把握量子力学中一些非凡的现象和问题的处理方法,包括力学量的算符表示、对易关系、不确定度关系、态和力学量的表象、电子的自旋、粒子的全同性、泡利原理、量子跃迁及光的发射与吸收的半经典处理方法等,并具有综合运用所学知识分析问题和解决问题的能力。再者,中科院对量子力学这门课考查主要包括以下9大内容:①波函数和薛定谔方程②一维势场中的粒子③力学量用算 9
符表示④中心力场⑤量子力学的⑥自旋⑦定态问题的近似方法⑧量子跃迁⑨多体问题,复习过程中应当主要对这些内容下功夫。 第一阶段:首先按照中科院硕士研究生入学考试《量子力学》考试大纲中的要求将参考书目看了一遍。中科院《量子力学考试大纲》中指定的参考书目是《量子力学教程》,这本书是由曾谨言编著的。此阶段看书以理解为主,不必纠缠于细节,将不懂的知识点做上记号。 第二阶段:我对大纲中要求了解的内容,熟练把握的内容以及理解的内容进行了分类,并且按相关要求对将这门课进行了第二轮复习。另外我认为在这一遍复习中一定要把历年试题弄到手并且仔细分析,因为真题体现了命题单位的出题特点以及出题趋势等。另外,我认为真题要比大纲更有用,因为从大纲中看不出的有价值的东西可以从真题中得到。当然,需要注重的是,单纯把握真题也是不理智的做法,假如一个考生仅仅把握了历年真题的内容,那么考试后他会得出这样一个结论:今年的题真偏。其实,不是题偏,而是他没有把参考书上的东西完全把握好。所以在这个阶段中我仍然以看指定的参考书为主,着重解决了在第一遍复习中留下的疑问和 10
在做真题中自己不会的题目。对了,此轮复习一定要做一份笔记,将主要内容归纳出一份比较简洁的提纲,以便于下轮复习。 第三阶段:将专业课过第三遍,这一轮注重结合上一轮的笔记和提纲有重点的,系统的理解和记忆,由于专业课要求答的深入,所以可以找一些专业方面的期刊杂志来看下,扩大下自己的视野范围。这一阶段大家也可以找些习题集来做下,不断巩固自己把握了的知识点。 第四阶段:这一轮要将参考书快速翻几遍,以便对整个知识体系有全面的把握并且牢记于心,同时要进行查缺补漏,不要放过一个疑点,要注重的是此时不能执着于细小的知识点,要懂得抓大放小,把握最重要的知识点。另外可以根据对历年试题的分析以及对本年度的专业考试做出一些猜测,并对考试的时间安排及如何进行考中心理调节做下演练。 (中科大2003) 一、试证明: (1)投影算符||nnP是厄密算符;它在任意态|中的平均值是正定的,即0||P。 (2)设|是归一化波函数,对于线性厄密算符A以下等式成