《一元二次方程(一)》练习
- 格式:doc
- 大小:130.00 KB
- 文档页数:4
一元二次方程100道计算题练习(含答案)1、(x+4)=5(x+4)解:将等式两边展开,得到x+4=5x+20,移项化简得4x=-16,因此x=-4.2、(x+1)=4x解:将等式两边展开,得到x+1=4x,移项化简得3x=1,因此x=1/3.3、(x+3)=(1-2x)2解:将等式两边展开,得到x+3=1-4x+4x2,移项化简得4x2-4x-2=0,因此x=1+√3或x=1-√3.4、2x2-10x=3解:将等式两边移项化简,得到2x2-10x-3=0,利用求根公式得到x=(5+√37)/2或x=(5-√37)/2.5、(x+5)2=16解:将等式两边展开,得到x2+10x+25=16,移项化简得x2+10x+9=0,因此x=-1或x=-9.6、2(2x-1)-x(1-2x)=0解:将等式两边展开,得到4x-2-x+2x2=0,移项化简得2x2+3x-2=0,因此x=1/2或x=-2.7、x2+6x-5=0解:利用求根公式得到x=(-6±√56)/2,化简得到x=-3+√14或x=-3-√14.8、5x2-2/5=0解:将等式两边乘以5,得到25x2-2=0,移项化简得到x=±√(2/25)=±2/5.9、8(3-x)2-72=0解:将等式两边移项化简,得到8(3-x)2=72,化简得到(3-x)2=9,因此x=0或x=6.10、3x(x+2)=5(x+2)解:将等式两边移项化简,得到3x(x+2)-5(x+2)=0,因此(3x-5)(x+2)=0,因此x=5/3或x=-2.11、(1-3y)2+2(3y-1)=0解:将等式展开化简,得到9y2-18y+9+6y-2=0,移项化简得到9y2-12y+7=0,利用求根公式得到y=(6±√12)/9.12、x2+2x+3=0解:利用求根公式得到x=(-2±√(-8))/2,因为无实数解,所以方程无解。
一元二次方程(一)一、选择题1.一元二次方程2210x x --=的根的情况为( )A .有两个相等的实数根B .有两个不相等的实数根C .只有一个实数根D .没有实数根2.若关于z 的一元二次方程 2.20x x m -+=没有实数根,则实数m 的取值范围是 ( )A .m<lB .m>-1C .m>lD .m<-1 3.一元二次方程x 2+x +2=0的根的情况是 ( ) A .有两个不相等的正根 B .有两个不相等的负根 C .没有实数根D .有两个相等的实数根4.用配方法解方程2420x x -+=,下列配方正确的是( )A .2(2)2x -=B .2(2)2x +=C .2(2)2x -=-D .2(2)6x -=5.已知函数2y ax bx c =++的图象如图(7)所示,那么关于x 的方程220ax bx c +++=的根的情况是A .无实数根B .有两个相等实数根C .有两个异号实数根D .有两个同号不等实数根6.关于x 的方程20x px q ++=的两根同为负数,则( )A .0p >且q >0B .0p >且q <0C .0p <且q >0D .0p <且q <07.若关于x 的一元二次方程22430x kx k ++-=的两个实数根分别是12,x x ,且满足1212x x x x +=.则k 的值为( )A.-1或34B.-1C.34D.不存在 8.下列关于x 的一元二次方程中,有两个不相等的实数根的方程是( )A.x 2+4=0B.4x 2-4x +1=0C.x 2+x +3=0D.x 2+2x -1=09.某商品原价200元,连续两次降价a %后售价为148元,下列所列方程正确的是( )A.200(1+a%)2=148B.200(1-a%)2=148图(7)C.200(1-2a%)=148D.200(1-a 2%)=148 10.下列方程中有实数根的是( ) A.x 2+2x +3=0B.x 2+1=0C.x 2+3x +1=0D.111x x x =-- 11.已知关于x 的一元二次方程22x m x -= 有两个不相等的实数根,则m 的取值范围 是 ( ) A . m >-1 B . m <-2 C .m ≥0 D .m <0 12.如果2是一元二次方程x 2=c 的一个根,那么常数c 是( ) A.2 B.-2 C.4 D.-4二、填空题13.已知一元二次方程22310x x --=的两根为1x 、2x ,则12x x += 14.方程()214x -=的解为 。
九年级数学第21章《一元二次方程》同步练习一、选择题1.若x的一元二次方程kx2﹣2x﹣1=0有两个不相等的实数根,则k 的取值范围是()A.k≤﹣1且k≠0B.k<﹣1且k≠0C.k≥﹣1且k≠0D.k>﹣1且k≠02.若一元二次方程9x2-12x-39996=0的两根为a,b,且a<b,则a+3b 的值为()A.136 B.268 C.7963 D.39233.现定义运算“★”,对于任意实数a,b,都有a★b=a2-3a+b,如:3★5=32-3×3+5,若x★2=6,则实数x的值是()A、-1B、4C、-1或4D、1或-44.一元二次方程x2+2x-c=0中,c>0,该方程的解的情况是()A.没有实数根 B.有两个不相等的实数根C.有两个相等的实数根 D.不能确定5.关于x的方程m(x+h)2+k=0(m,h,k均为常数,m≠0)的解是x1=-3,x2=2,则方程m(x+h-3)2+k=0的解是()A.x1=-6,x2=-1 B.x1=0,x2=5C.x1=-3,x2=5 D.x1=-6,x2=26.对于任意实数a、b,定义f(a,b)=a2+5a-b,如:f(2,3)=22+5×2-3,若f(x,2)=4,则实数x的值是()A.1或-6 B.-1或6 C.-5或1 D.5或-17.用配方法解一元二次方程x2+4x-5=0,此方程可变形为()A.(x-2)2=9 B.(x+2)2=9 C.(x+2)2=1 D.(x-2)2=18.为了让山更绿、水更清,确保到实现全省森林覆盖率达到63%的目标,已知2013年全省森林覆盖率为6005%,设从2013年起全省森林覆盖率的年平均增长率为x,则可列方程()A.60.05(1+2x)=63%B.60.05(1+3x)=63C.60.05(1+x)2=63%D.60.05%(1+x)2=63%二、填空题9.网购悄然盛行,我国2012年网购交易额为1.26万亿人民币,2014年我国网购交易额达到了2.8万亿人民币.如果设2013年、2014年网购交易额的平均增长率为x,则依题意可得关于x的一元二次方程为 .10.已知(x-1)2=ax2+bx+c,则a+b+c的值为 . 11.根据图中的程序,当输入一元二次方程x2﹣2x=0的解x时,输出结果y= .12.某公司2012年的利润为160万元,到了2014年的利润达到了250万元.设平均每年利润增长的百分率为x,则可列方程为.13.方程x 2﹣x ﹣=0的判别式的值等于 .14.已知直角三角形两边x 、y 的长满足|x 2256y y -+,则第三边长为 . 三、解答题15.(本题10分)已知:关于x 的方程kx 2-(3k-1)x+2(k-1)=0, (1)求证:无论k 为何实数,方程总有实数根;(2)若此方程有两个实数根x 1,x 2,且|x 1-x 2|=2,求k 的值. 16.(9分)李明准备进行如下操作实验:把一根长40cm 的铗丝剪成两段,并把每段首尾相连各围成一个正方形.(1)要使这两个正方形的面积之和等于582cm ,李明应该怎么剪这根铁丝?(2)李明认为这两个正方形的面积之和不可能等于482cm .你认为他的说法正确吗?请说明理由.17.已知关于x 的方程24310x x a -+-=有两个实数根. (1)求实数a 的取值范围; (2)若a 为正整数,求方程的根.18.解方程(1)2230x x --=(2)、2(3)4(3)0x x x -+-=19.关于x 的一元二次方程kx 2﹣(2k ﹣2)x+(k ﹣2)=0(k ≠0). (1)求证:无论k 取何值时,方程总有两个不相等的实数根. (2)当k 取何整数时方程有整数根. 20.先化简,再求值:231(1)221x xx x x x --÷-+++,其中x 满足x 2-x-1=0. 21.物美商场于今年年初以每件25元的进价购进一批商品.当商品售价为40元时,一月份销售256件.二、三月该商品十分畅销.销售量持续走高.在售价不变的基础上,三月份的销售量达到400件.设二、三这两个月月平均增长率不变.(1)求二、三这两个月的月平均增长率;(2)从四月份起,商场采用降价促销的方式回馈顾客,经调查发现,该商品每降价1元,销售量增加5件,当商品降价多少元时,商场获利4250元?22.“大湖名城•创新高地•中国合肥”,为了让学生亲身感受合肥城市的变化,蜀山中学九(1)班组织学生进行“环巢湖一日研学游”活动,某旅行社推出了如下收费标准:(1)如果人数不超过30人,人均旅游费用为100元;(2)如果超过30人,则每超过1人,人均旅游费用降低2元,但人均旅游费用不能低于80元.该班实际共支付给旅行社3150元,问:共有多少名同学参加了研学游活动?参考答案1.D 2.A . 3.C . 4.B . 5.B . 6.A . 7.B. 8.D .9.1.26(1+x )2=2.8. 10.0. 11.﹣4或212.160×(1+x )2=250 13.414.15.(1)证明详见解析;(2) 1或13-. 16.(1)12cm 和28cm ;(2)正确.17.(1)53a ≤;(2)1222x x =+=.18.(1) x 1=3,x 2=-1.(2) x 1=3,x 2=35. 19. 20.1.21.(1) 二、三这两个月的月平均增长率为25%;(2) 商品降价5元时,商品获利4250元.22.该班共有35名同学参加了研学旅游活动.周周练(21.2.3~21.3)(时间:45分钟满分:100分)一、选择题(每小题4分,共32分)1.小新在学习解一元二次方程时,做了下面几个填空题:(1)若x2=9,则x=3;(2)方程mx2+m2x=0(m≠0),则x=-m;(3)方程2x(x+1)=x+1的解为x=-1.其中,答案完全正确的有( )A.0个 B.1个C.2个 D.3个2.已知α,β满足α+β=5,αβ=6,则以α,β为根的一元二次方程是( )A.x2-5x+6=0B.x2-5x-6=0C.x2+5x+6=0D.x2+5x-6=03.(衡阳中考)若关于x的方程x2+3x+a=0有一个根为-1,则另一个根为( )A.-2 B.2C.4 D.-34.解方程3(x-1)2=6(x-1),最适当的方法是( )A.直接求解 B.配方法C.因式分解法 D.公式法5.多项式a2+4a-10的值等于11,则a的值为( )A.3或7 B.-3或7C.3或-7 D.-3或-76.经计算整式x+1与x-4的积为x2-3x-4,则一元二次方程x2-3x-4=0的所有根是( )A.x1=-1,x2=-4B.x1=-1,x2=4C.x1=1,x2=4D.x1=1,x2=-47.某厂一月份生产产品50台,计划二、三月份共生产产品120台,设二、三月份平均每月增长率为x,根据题意,可列出方程为( ) A.50(1+x)2=60B.50(1+x)2=120C.50+50(1+x)+50(1+x)2=120D.50(1+x)+50(1+x)2=1208.(哈尔滨中考改编)今年我市计划扩大城区绿地面积,现有一块长方形绿地,它的短边长为60 m,若将短边增长到与长边相等(长边不变),使扩大后的绿地的形状是正方形,则扩大后的绿地面积比原来增加1 600 m2,那么扩大后的正方形绿地边长为( )A.120 mB.100 mC.85 mD.80 m二、填空题(每小题4分,共24分)9.(聊城中考)一元二次方程x2-2x=0的解是______________.10.一元二次方程x2+bx+c=0的两根互为倒数,则c=________.11.设一元二次方程x2-7x+3=0的两个实数根分别为x1和x2,则x1+x2=_______,x1x2=_______.12.(南昌中考)已知一元二次方程x2-4x-3=0的两根为m,n,则m2-mn+n2=________.13.已知:如图所示的图形是一无盖长方体的铁盒平面展开图.若铁盒的容积为3 m3,则根据图中的条件,可列出方程:____________.14.(巴彦淖尔中考)某校要组织一次乒乓球邀请赛,参赛的每两个队之间都要比赛一场,根据场地和时间等条件,赛程计划安排2天,每天安排5场比赛.设比赛组织者应邀请___个队参赛.三、解答题(共44分)15.(20分)用适当的方法解下列方程:(1)(徐州中考)x 2-2x -3=0;(2)(x +2)2=2x +4;(3)(3x +1)2-4=0;(4)4x 2-12x +5=0;(5)4(x -1)2-9(3-2x)2=0.16.(6分)当x 为何值时,32x 2+14(x -1)和13(x -2)互为相反数?17.(8分)向阳村2013年的人均收入为12 000元,2015年的人均收入为14 520元.求人均收入的年平均增长率.18.(10分)(淮安中考)小丽为校合唱队购买某种服装时,商店经理给出了如下优惠条件:如果一次性购买不超过10件,单价为80元;如果一次性购买多于10件,那么每增加1件,购买的所有服装的单价降低2元,但单价不得低于50元.按此优惠条件,小丽一次性购买这种服装付了1 200元.请问她购买了多少件这种服装?参考答案1.A2.A3.A4.C5.C6.B7.D8.D9.x 1=0,x 2=2 10.1 11.7 3 12.25 13.x(x +1)=3 14. 515.(1)x 1=-1,x 2=3.(2)x 1=0,x 2=-2.(3)x 1=13,x 2=-1.(4)x 1=52,x 2=12.(5)x 1=74,x 2=118. 16.∵32x 2+14(x -1)和13(x -2)互为相反数,∴32x 2+14(x -1)+13(x -2)=0.解得x 1=-1,x 2=1118.∴当x 为-1或1118时,32x 2+14(x -1)和13(x-2)互为相反数.17.设人均收入的年平均增长率为x ,根据题意得12 000(1+x)2=14 520.解得x 1=0.1=10%,x 2=-2.1(不合题意,舍去).答:人均收入的年平均增长率为10%.18.设购买了x 件这种服装,根据题意,得[80-2(x -10)]x =1 200.解得x 1=20,x 2=30.当x =30时,80-2(30-10)=40<50,不合题意,舍去.∴x =20.答:她购买了20件这种服装.章末复习(一) 一元二次方程基础题 知识点1 一元二次方程的有关概念1.(诏安模拟)已知m 是方程x 2-x -1=0的一个根,则代数式m 2-m 的值等于( )A .-1B .0C .1D .22.方程(a -2)xa 2-2+3x =0是关于x 的一元二次方程,则a 的值为________.知识点2 一元二次方程的解法3.(宁夏中考)一元二次方程x(x -2)=2-x 的根是( )A .-1B .2C .1和2D .-1和24.(随州中考)用配方法解一元二次方程x 2-6x -4=0,下列变形正确的是( )A .(x -6)2=-4+36B .(x -6)2=4+36C .(x -3)2=-4+9D .(x -3)2=4+95.(深圳校级模拟)一元二次方程4x 2-x =1的解是( )A .x =0B .x 1=0,x 2=4C .x 1=0,x 2=14D .x 1=1+178,x 2=1-1786.解下列一元二次方程:(1)(2x +3)2-81=0;(2)x 2-6x -2=0;(3)5x(3x +2)=6x +4.知识点3 一元二次方程根的判别式及根与系数的关系 7.(湘西中考)下列方程中,没有实数根的是( )A .x 2-4x +4=0B .x 2-2x +5=0C .x 2-2x =0D .x 2-2x -3=08.(张家界中考)若关于x 的一元二次方程kx 2-4x +3=0有实数根,则k 的非负整数值是( )A.1 B.0,1C.1,2 D.1,2,39.(怀化中考)设x1,x2是方程x2+5x-3=0的两个根,则x21+x22的值是( )A.19 B.25 C.31 D.3010.(内江中考)已知关于x的方程x2-6x+k=0的两根分别是x1,x2,且满足1x1+1x2=3,则k的值是________.知识点4 用一元二次方程解决实际问题11.(佛山中考)如图,将一块正方形空地划出部分区域进行绿化,原空地一边减少了2 m,另一边减少了3 m,剩余一块面积为20 m2的矩形空地,则原正方形空地的边长是( )A.7 mB.8 mC.9 mD.10 m12.(东营中考)2013年东营市某楼盘以每平方米6 500元的均价对外销售.因为楼盘滞销,房地产开发商为了加快资金周转,决定进行降价促销,经过连续两年下调后,2015年的均价为每平方米 5 265元.(1)求平均每年下调的百分率;(2)假设2016年的均价仍然下调相同的百分率,张强准备购买一套100平方米的住房,他持有现金20万元,可以在银行贷款30万元,张强的愿望能否实现?(房价每平方米按照均价计算)中档题13.(安顺中考)三角形两边的长是3和4,第三边的长是方程x2-12x +35=0的根,则该三角形的周长为( )A.14 B.12C.12或14 D.以上都不对14.(安顺中考)若一元二次方程x2-2x-m=0无实数根,则一次函数y=(m+1)x+m-1的图象不经过第象限( )A.四 B.三C.二 D.一15.已知x=1是关于x的方程(1-k)x2+k2x-1=0的根,则常数k 的值为________.16.(随州中考)观察下列图形规律:当n=________时,图形“●”的个数和“△”的个数相等.17.(毕节中考)一个容器盛满纯药液40 L ,第一次倒出若干升后,用水加满;第二次又倒出同样体积的溶液,这时容器里只剩下纯药液10 L ,则每次倒出的液体是________L.18.(日照中考)如果m ,n 是两个不相等的实数,且满足m 2-m =3,n 2-n =3,那么代数式2n 2-mn +2m +2 015=________.19.(乌鲁木齐中考)某商品现在的售价为每件60元,每星期可卖出300件.市场调查反映:每降价1元,每星期可多卖出20件.已知商品的进价为每件40元,在顾客得实惠的前提下,商家还想获得6 080元的利润,应将销售单价定为多少元?20.阅读下列例题的解答过程:解方程:3(x -2)2+7(x -2)+4=0.解:设x -2=y ,则原方程化为:3y 2+7y +4=0. ∵a =3,b =7,c =4,∴b 2-4ac =72-4×3×4=1. ∴y =-7±12×3=-7±16.∴y 1=-1,y 2=-43.当y =-1时,x -2=-1,∴x =1;当y =-43时,x -2=-43,∴x =23.∴原方程的解为:x 1=1,x 2=23.请仿照上面的例题解一元二次方程:2(x -3)2-5(x -3)-7=0. 综合题21.(广元中考)李明准备进行如下操作实验:把一根长40 cm 的铁丝剪成两段,并把每段首尾相连各围成一个正方形.(1)要使这两个正方形的面积和等于58 cm 2,李明应该怎么剪这根铁丝?(2)李明认为这两个正方形的面积之和不可能等于48 cm 2.你认为他的说法正确吗?请说明理由.参考答案基础题1.C2.-23.D4.D5.D6.(1)(2x +3)2=81.x 1=3,x 2=-6. (2)x 1=3+11,x 2=3-11.(3)(3x +2)(5x -2)=0.x 1=-23,x 2=25.7.B 8.A 9.C 10.2 11.A12.(1)设平均每年下调的百分率为x ,根据题意,得6 500(1-x)2=5 265.解得x 1=0.1=10%,x 2=1.9(不合题意,舍去).答:平均每年下调的百分率为10%.(2)如果下调的百分率相同,2016年的房价为:5 265×(1-10%)=4 738.5(元/m 2).则100平方米的住房的总房款为:100×4 738.5=473 850(元)=47.385(万元).∵20+30>47.385,∴张强的愿望可以实现.中档题13.B 14.D 15.0或1 16.5 17.20 18.2 02619.设降价x 元,则售价为(60-x)元,销售量为(300+20x)件,根据题意,得(60-x -40)(300+20x)=6 080,解得x 1=1,x 2=4,又因为顾客得实惠,故取x =4,即定价为56元.答:应将销售单价定为56元.20.设x -3=y.则原方程化为:2y 2-5y -7=0.∵a =2,b =-5,c =-7,∴b 2-4ac =(-5)2-4×2×(-7)=81.∴y =5±812×2=5±94.∴y 1=-1,y 2=72.当y =-1时,x -3=-1,∴x =2;当y =72时,x-3=72,∴x =132.∴原方程的解为:x 1=2,x 2=132.综合题21.(1)设其中一个正方形的边长为x cm ,则另一个正方形的边长为(10-x)cm ,由题意得x 2+(10-x)2=58.解得x 1=3,x 2=7,∴这两个正方形的周长分别为4×3=12(cm),4×7=28(cm),∴李明应该把铁丝剪成12 cm 和28 cm 的两段.(2)李明的说法正确.设其中一个正方形的边长为y cm ,则另一个正方形的边长为(10-y)cm ,由题意得y 2+(10-y)2=48,整理得y 2-10y +26=0,∵Δ=(-10)2-4×1×26=-4<0,∴此方程无实数根.即这两个正方形的面积之和不能等于48 cm 2.∴李明的说法是正确的.。
一元二次方程练习题及答案一元二次方程练习题及答案《一元二次方程》是初中数学的重点内容之一,同样也是初中数学计算的基础。
以下是一元二次方程练习题及答案,欢迎阅读。
一、选择题(每小题3分,共30分)1、已知方程x2-6x+q=0可以配方成(x-p)2=7的形式,那么x2-6x+q=2可以配方成下列的( )A、(x-p)2=5B、(x-p)2=9C、(x-p+2)2=9D、(x-p+2)2=52、已知m是方程x2-x-1=0的一个根,则代数式m2-m的值等于( )A、-1B、0C、1D、23、若、是方程x2+2x-2005=0的两个实数根,则2+3+的值为( )A、2005B、2003C、-2005D、40104、关于x的方程kx2+3x-1=0有实数根,则k的取值范围是( )A、k-B、k- 且k0C、k-D、k- 且k05、关于x的一元二次方程的两个根为x1=1,x2=2,则这个方程是( )A、 x2+3x-2=0B、x2-3x+2=0C、x2-2x+3=0D、x2+3x+2=06、已知关于x的`方程x2-(2k-1)x+k2=0有两个不相等的实根,那么k的最大整数值是( )A、-2B、-1C、0D、17、某城2004年底已有绿化面积300公顷,经过两年绿化,绿化面积逐年增加,到2006年底增加到363公顷,设绿化面积平均每年的增长率为x,由题意所列方程正确的是( )A、300(1+x)=363B、300(1+x)2=363C、300(1+2x)=363D、363(1-x)2=3008、甲、乙两个同学分别解一道一元二次方程,甲因把一次项系数看错了,而解得方程两根为-3和5,乙把常数项看错了,解得两根为2+ 和2- ,则原方程是( )A、 x2+4x-15=0B、x2-4x+15=0C、x2+4x+15=0D、x2-4x-15=09、若方程x2+mx+1=0和方程x2-x-m=0有一个相同的实数根,则m的值为( )A、2B、0C、-1D、10、已知直角三角形x、y两边的长满足|x2-4|+ =0,则第三边长为( )A、 2 或B、或2C、或2D、、2 或二、填空题(每小题3分,共30分)11、若关于x的方程2x2-3x+c=0的一个根是1,则另一个根是 .12、一元二次方程x2-3x-2=0的解是 .13、如果(2a+2b+1)(2a+2b-1)=63,那么a+b的值是 .14、等腰△ABC中,BC=8,AB、AC的长是关于x的方程x2-10x+m=0的两根,则m的值是 .15、2005年某市人均GDP约为2003年的1.2倍,如果该市每年的人均GDP增长率相同,那么增长率为 .16、科学研究表明,当人的下肢长与身高之比为0.618时,看起来最美,某成年女士身高为153cm,下肢长为92cm,该女士穿的高根鞋鞋根的最佳高度约为 cm.(精确到0.1cm)17、一口井直径为2m,用一根竹竿直深入井底,竹竿高出井口0.5m,如果把竹竿斜深入井口,竹竿刚好与井口平,则井深为 m,竹竿长为 m.18、直角三角形的周长为2+ ,斜边上的中线为1,则此直角三角形的面积为 .19、如果方程3x2-ax+a-3=0只有一个正根,则的值是 .20、已知方程x2+3x+1=0的两个根为、,则 + 的值为 .三、解答题(共60分)21、解方程(每小题3分,共12分)(1)(x-5)2=16 (2)x2-4x+1=0(3)x3-2x2-3x=0 (4)x2+5x+3=022、(8分)已知:x1、x2是关于x的方程x2+(2a-1)x+a2=0的两个实数根,且(x1+2)(x2+2)=11,求a的值.23、(8分)已知:关于x的方程x2-2(m+1)x+m2=0(1) 当m取何值时,方程有两个实数根?(2) 为m选取一个合适的整数,使方程有两个不相等的实数根,并求这两个根.24、(8分)已知一元二次方程x2-4x+k=0有两个不相等的实数根(1) 求k的取值范围(2) 如果k是符合条件的最大整数,且一元二次方程x2-4x+k=0与x2+mx-1=0有一个相同的根,求此时m的值.25、(8分)已知a、b、c分别是△ABC中A、B、C所对的边,且关于x的方程(c-b)x2+2(b-a)x+(a-b)=0有两个相等的实数根,试判断△ABC的形状.26、(8分)某工程队在我市实施棚户区改造过程中承包了一项拆迁工程,原计划每天拆迁1250m2,因为准备工作不足,第一天少拆迁了20%,从第二天开始,该工程队加快了拆迁速度,第三天拆迁了1440m2求:(1)该工程队第二天第三天每天的拆迁面积比前一天增长的百分数相同,求这个百分数.27、(分)某水果批发商场经销一种高档水果,如果每千克盈利10元,每天可售出500千克,经市场调查发现,在进货价不变的情况下,若每千克涨价1元,日销售量将减少20千克(1) 现该商场要保证每天盈利6000元,同时又要顾客得到实惠,那么每千克应涨价多少元?(2) 若该商场单纯从经济角度看,每千克这种水果涨价多少元,能使商场获利最多?一元二次方程单元测试题参考答案一、选择题1~5 BCBCB 6~10 CBDAD提示:3、∵是方程x2+2x-2005=0的根,2+2=2005又+=-2 2+3+=2005-2=2003二、填空题11~15 4 25或16 10%16~20 6.7 , 4 3提示:14、∵AB、AC的长是关于x的方程x2-10x+m=0的两根在等腰△ABC中若BC=8,则AB=AC=5,m=25若AB、AC其中之一为8,另一边为2,则m=1620、∵△=32-411=50又+=-30,0,0,0三、解答题21、(1)x=9或1(2)x=2 (3)x=0或3或-1(4)22、解:依题意有:x1+x2=1-2a x1x2=a2又(x1+2)(x2+2)=11 x1x2+2(x1+x2)+4=11a2+2(1-2a)-7=0 a2-4a-5=0a=5或-1又∵△=(2a-1)2-4a2=1-4a0aa=5不合题意,舍去,a=-123、解:(1)当△0时,方程有两个实数根[-2(m+1)]2-4m2=8m+40 m-(2)取m=0时,原方程可化为x2-2x=0,解之得x1=0,x2=224、解:(1)一元二次方程x2-4x+k=0有两个不相等的实数根△=16-4k0 k4(2)当k=3时,解x2-4x+3=0,得x1=3,x2=1当x=3时,m= - ,当x=1时,m=025、解:由于方程为一元二次方程,所以c-b0,即bc又原方程有两个相等的实数根,所以应有△=0即4(b-a)2-4(c-b)(a-b)=0,(a-b)(a-c)=0,所以a=b或a=c所以是△ABC等腰三角形26、解:(1)1250(1-20%)=1000(m2)所以,该工程队第一天拆迁的面积为1000m2(2)设该工程队第二天,第三天每天的拆迁面积比前一天增长的百分数是x,则1000(1+x)2=1440,解得x1=0.2=20%,x2=-2.2,(舍去),所以,该工程队第二天、第三天每天的拆迁面积比前一天增长的百分数是20%.27、解:(1)设每千克应涨价x元,则(10+x)(500-20x)=6000解得x=5或x=10,为了使顾客得到实惠,所以x=5(2)设涨价x元时总利润为y,则y=(10+x)(500-20x)=-20x2+300x+5000=-20(x-7.5)2+6125当x=7.5时,取得最大值,最大值为6125答:(1)要保证每天盈利6000元,同时又使顾客得到实惠,那么每千克应涨价5元.(2)若该商场单纯从经济角度看,每千克这种水果涨价7.5元,能使商场获利最多.。
完整版)一元二次方程100道计算题练习(附答案)1、(x+4)=5(x+4)^22、(x+1)=4x3、(x+3)=(1-2x)^24、2x^2-10x=35、x^2=646、(x+5)^2=167、2(2x-1)-x(1-2x)=08、5x^2-2/5=09、8(3-x)^2-72=010、3x(x+2)=5(x+2)11、(1-3y)^2+2(3y-1)=012、x^2+2x+3=013、x^2+6x-5=014、x^2-4x+3=015、x^2-2x-1=016、2x^2+3x+1=017、3x^2+2x-1=018、5x^2-3x+2=019、3x-3=020、-2x+12=021、x^2-6x+9=022、3x-2=2x+323、x-2x-4=024、x=3/425、3x^2+8x-3=026、3x^2+11x+14=027、x=-9 or x=-228、2(x-3)^2=x^2-929、-3x^2+22x-24=030、4t^2-4t+1=031、(2x-3)^2-121=032、x^2-4x=033、(x+2)^2=8x34、x=1/3 or x=-235、7x^2+2x-36=036、x=1 or x=-1 or x=3/237、4(x-3)^2+x(x-3)=038、6x^2-31x+35=039、x=1/2 or x=140、2x^2-23x+65=0这是一组一元二次方程的计算题练,需要用不同的方法来解决这些问题。
为了方便,我们可以将这些方程按照不同的方法分类。
一种方法是因式分解法,另一种方法是开平方法,还有一种方法是配方法,最后一种方法是公式法。
根据不同的题目,我们可以选择不同的方法来解决问题。
例如,对于方程(x-2)^2=(2x-3)^2,我们可以使用因式分解法来解决。
将方程化简后,得到x=5/3或x=-1/3.对于方程2x^2-5x+2=0,我们可以使用配方法来解决。
将方程化简后,得到x=1/2或x=2.对于方程-3x^2+22x-24=0,我们可以使用公式法来解决。
《一元二次方程》基础知识反馈卡·第一份时间:10分钟满分:25分一、选择题(每小题3分,共6分)1.若(a-1)x2+bx+c=0是关于x的一元二次方程,则( )A.a≠0 B.a≠1C.a=1 D.a≠-12.一元二次方程2x2-(m+1)x+1=x(x-1)化成一般形式后二次项的系数为1,一次项的系数为-1,则m的值为( )A.-1 B.1 C.-2 D.2二、填空题(每小题4分,共12分)3.方程(m+2)x|m|+3mx+1=0是关于x的一元二次方程,则m=_______________.4.若关于x的方程mx2+(m-1)x+5=0有一个解为2,则m的值是______.5.把一元二次方程(x-3)2=5化为一般形式为________________,二次项为________,一次项系数为__________,常数项为________.三、解答题(共7分)6.已知关于x的一元二次方程(2m-1)x2+3mx+5=0有一根是x=-1,求m的值.时间:10分钟 满分:25分一、选择题(每小题3分,共6分)1.用配方法解方程x 2-23x -1=0,正确的配方为( )A.⎝ ⎛⎭⎪⎫x -132=89B.⎝ ⎛⎭⎪⎫x -232=59C.⎝ ⎛⎭⎪⎫x -132+109=0D.⎝⎛⎭⎪⎫x -132=1092.一元二次方程x 2+x +14=0的根的情况是( )A .有两个不等的实数根B .有两个相等的实数根C .无实数根D .无法确定二、填空题(每小题4分,共12分)3.方程x 2-4x -12=0的解x 1=________,x 2=________. 4.x 2+2x -5=0配方后的方程为____________. 5.用公式法解方程4x 2-12x =3,得到x =________. 三、解答题(共7分)6.已知关于x 的一元二次方程x 2-mx -2=0.(1)对于任意实数m ,判断此方程根的情况,并说明理由; (2)当m =2时,求方程的根.时间:10分钟 满分:25分一、选择题(每小题3分,共6分) 1.一元二次方程x 2=3x 的根是( ) A .x =3 B .x =0C .x 1=0,x 2=3D .x 1=0,x 2=-32.方程4(x -3)2+x (x -3)=0的根为( )A .x =3B .x =125C .x 1=-3,x 2=125D .x 1=3,x 2=125二、填空题(每小题4分,共12分)3.方程x 2-16=0的解是____________.4.如果(m +n )(m +n +5)=0,则m +n =______. 5.方程x (x -1)=x 的解是________. 三、解答题(共7分)6.解下列一元二次方程:(1)2x 2-8x =0; (2)x 2-3x -4=0.时间:10分钟满分:25分一、选择题(每小题3分,共6分)1.若x1,x2是一元二次方程x2+4x+3=0的两个根,则x1x2的值是( ) A.4 B.3 C.-4 D.-32.如果关于x的一元二次方程x2+px+q=0的两根分别为x1=2,x2=1,那么p,q的值分别是( )A.-3,2 B.3,-2 C.2,-3 D.2,3二、填空题(每小题4分,共12分)3.已知一元二次方程的两根之和为7,两根之积为12,则这个方程为____________________.4.已知方程x2-3x+m=0的一个根是1,则它的另一个根是______,m的值是______.5.已知x1,x2是方程x2-3x-3=0的两根,不解方程可求得x21+x22=________.三、解答题(共7分)6.已知关于x的一元二次方程x2+(2m-3)x+m2=0的两个不相等的实数根α,β满足1α+1β=1,求m的值.时间:10分钟满分:25分一、选择题(每小题3分,共9分)1.某品牌服装原价173元,连续两次降价x%后售价为127元,下面所列方程中正确的是( )A.173(1+x%)2=127 B.173(1-2x%)=127C.173(1-x%)2=127 D.127(1+x%)2=1732.某城市为绿化环境,改善城市容貌,计划经过两年时间,使绿地面积增加44%,这两年平均每年绿地面积的增长率是( )A.19% B.20% C.21% D.22%3.一个面积为120 cm2的矩形花圃,它的长比宽多2 m,则花圃的长是( ) A.10 m B.12 m C.13 m D.14 m二、填空题(每小题4分,共8分)4.已知一种商品的进价为50元,售价为62元,则卖出8件所获得的利润为__________元.5.有一个两位数等于其数字之和的4倍,其十位数字比个位数字小2,则这个两位数是________.三、解答题(共8分)6.某西瓜经营户以2元/千克的进价购进一批小型西瓜,以3元/千克的价格出售,每天可售出200千克.为了促销,该经营户决定降价销售,经调查发现,这种小型西瓜每降价0.1元/千克,每天可多售出40千克,另外,每天的房租等固定成本共24元,该经营户要想每天赢利200元,应将每千克小型西瓜的售价降低多少元?参考答案基础知识反馈卡·21.11.B 2.B 3.2 4.-125.x 2-6x +4=0 x 2 -6 4 6.解:把x =-1代入原方程,得2m -1-3m +5=0,解得m =4. 基础知识反馈卡·21.2.1 1.D 2.B 3.6 -24.(x +1)2=6 5.3±2 326.解:(1)Δ=b 2-4ac =m 2+8, ∵对于任意实数m ,m 2≥0, ∴m 2+8>0.∴对于任意的实数m ,方程总有两个不相等的实数根.(2)当m =2时,原方程变为x 2-2x -2=0, ∵Δ=b 2-4ac =(-2)2-4×1×(-2)=12,∴x =2±122.解得x 1=1+3,x 2=1- 3. 基础知识反馈卡·21.2.2 1.C 2.D3. x =±44.0或-55.0或2 6.(1)x 1=0,x 2=4 (2)x 1=4,x 2=-1基础知识反馈卡·*21.2.3 1.B 2.A3.x 2-7x +12=0(答案不唯一) 4.2 2 5.156.解:∵方程有两个不相等的实数根,∴Δ>0.∴(2m -3)2-4m 2>0.解得m <34.∵1α+1β=1,即α+βαβ=1. ∴α+β=αβ.又α+β=-(2m -3),αβ=m 2. 代入上式,得3-2m =m 2. 解得m 1=-3,m 2=1.∵m 2=1>34,故舍去.∴m =-3.基础知识反馈卡·21.31.C 2.B 3.B 4.96 5.24 6.解:设每千克小型西瓜的售价降低x 元,根据题意,得(3-2-x )·⎝ ⎛⎭⎪⎫200+x0.1×40-24=200,整理,得50x -25x +3=0, 解得x 1=0.2,x 2=0.3.答:应将每千克小型西瓜的售价降低0.2元或0.3元.。
初三《一元二次方程》练习题一一、填空题:(每空3分,共36分)1、方程(x –1)(2x +1)=2化成一般形式是 ,它的二次项系数是 .2、关于x 的方程是(m 2–1)x 2+(m –1)x –2=0,那么当m 时,方程为一元二次方程; 当m 时,方程为一元一次方程.3、方程0322=+x x 的根是 .4、当k = 时,方程0)1(2=+++k x k x 有一根是0.5、若x 1 =23-是二次方程x 2+ax +1=0的一个根,则a = , 该方程的另一个根x 2 = .6、分解因式:122--x x = ,2232y xy x --= . 7、请写出一个一元二次方程使它有一个根为3 , . 8、已知点C 为线段AB 的黄金分割点,且AC=1㎝,则线段AB 的长为 二、选择题:(每小题3分,共18分) 1、方程012=--kx x 的根的情况是( )(A )方程有两个不相等的实数根 (B )方程有两个相等的实数根(C )方程没有实数根 (D )方程的根的情况与k 的取值有关 2、已知方程062=--kx x 的两个根都是整数,则k 的值可以是( )(A )—1 (B )1 (C )5 (D )以上三个中的任何一个 3、若(b - 1)2+a 2 = 0 下列方程中是一元二次方程的只有( )(A ) ax 2+5x – b=0(B ) (b 2 – 1)x 2+(a+4)x+ab=0 (C )(a+1)x – b=0 (D )(a+1)x 2 – bx+a=0 4、8块相同的长方形地砖拼成面积为2400㎝2的矩形ABCD (如图),则矩形ABCD 的周长为( )(A ) 200㎝(B )220 ㎝(C )240 ㎝(D )280㎝5、如图,在矩形ABCD 中,AB=1,BC=2,将其折叠,使AB 边落在对角线AC 上,得到折痕AE ,则点E 到点B 的距离为( ) (A )212-(B ) 213- (C )215- (D )216-6、下列方程中,不含一次项的是( )(A )3x 2 – 5=2x (B ) 16x=9x 2(C )x(x –7)=0 (D )(x+5)(x-5)=0 三、解下列方程:(每小题6分,共36)(1)9)12(2=-x (2)42)2)(1(+=++x x x(3) 3x 2–4x –1=0 (4)4x 2–8x +1=0(用配方法)(5). 0542=-+x x (配方法) (6) 025)2(10)2(2=++-+x x (因式分解法) 四、(本题10分)某商店4月份销售额为50万元,第二季度的总销售额为182万元,,求月平均增长率.清华初三《一元二次方程》练习题二 (试卷满分:100分,完卷时间:40分钟)班级 座号 姓名 成绩 .一、填空题:(每空2分,共30分)⒈ 把方程9)2)(2()1(3+-+=-x x x x 化成一般式是 ;2.关于x 的方程)0(0)(2≠=-+-ab ab x b a abx 中, 二次项是 ; 常数项是 ; 一次项是 ;⒊ 方程0162=-x 的根是 ; ⒋ 方程 9)12(2=-x 的根是 ; ⒌ 方程 0)2)(1(=-+x x 的根是 ;⒍ 22___)(_____6+=++x x x ⒎ 22____)(_____3-=+-x x x ⒏ 22____)(_____+=++x x x ⒐ 22____)(_____-=+-x px x 二、选择题(3分×8=24分) 1.在选择方程82,0105,1,5)2)(1(42222=+=-=+=+-x x x y x x x ,12121,0432242+=+=+-x x x x x 中,应选一元二次方程的个数为-------------------( )A 3 个B 4 个C 5 个D 6 个⒉ 方程02=x 的实数根的个数是------------------------------------------------------------------- ( ) A 1个 B 2 个 C 0 个 D 以上答案都不对 ⒊ 方程)0()(2>=-b b a x 的根是 ----------------------------------------------------------------( ) A b a ± B )(b a +± C b a +± D b a ±±4. 方程07)1(82=----k x k x 的一个根为零,则=k --------------------------------------( ) A 1- B163C 4D 7 5.已知0和1-都是某个方程的解,此方程是A. 012=-xB. 0)1(=+x xC. 02=-x x D. 1+=x x6.等腰三角形的两边的长是方程091202=+-x x 的两个根,则此三角形的周长为 A. 27 B. 33 C. 27和33 D. 以上都不对 7.如果01)3(2=+-+mx x m 是一元二次方程,则A. 3-≠mB. 3≠mC. 0≠mD. 03≠-≠m m 且 8.关于x 的方程0)()(=---x b b x ax 的解为A. b a ,B.b a ,1 C. b a,1- D. b a -, 三、解下列方程 ( 6分×5=30分)1.0672=+-x x (因式分解法) 2。
一元二次方程100道计算题练习1、)4(5)4(2+=+x x 2、x x 4)1(2=+ 3、22)21()3(x x -=+4、31022=-x x 5、(x+5)2=16 6、2(2x -1)-x (1-2x )=07、x 2 =64 8、5x 2 - 52=0 9、8(3 -x )2 –72=010、3x(x+2)=5(x+2) 11、(1-3y )2+2(3y -1)=0 12、x 2+ 2x + 3=013、x 2+ 6x -5=0 14、x 2-4x+ 3=0 15、x 2-2x -1 =016、2x 2+3x+1=0 17、3x 2+2x -1 =0 18、5x 2-3x+2 =019、7x 2-4x -3 =0 20、 -x 2-x+12 =0 21、x 2-6x+9 =022、22(32)(23)x x -=- 23、x 2-2x-4=0 24、x 2-3=4x25、3x 2+8 x -3=0(配方法) 26、(3x +2)(x +3)=x +14 27、(x+1)(x+8)=-1228、2(x -3) 2=x 2-9 29、-3x 2+22x -24=0 30、(2x-1)2+3(2x-1)+2=031、2x 2-9x +8=0 32、3(x-5)2=x(5-x) 33、(x +2) 2=8x34、(x -2) 2=(2x +3)2 35、2720x x += 36、24410t t -+=37、()()24330x x x -+-= 38、2631350x x -+= 39、()2231210x --=40、2223650x x -+=补充练习:一、利用因式分解法解下列方程(x -2) 2=(2x-3)2 042=-x x 3(1)33x x x +=+x 2 ()()0165852=+---x x二、利用开平方法解下列方程51)12(212=-y 4(x-3)2=25 24)23(2=+x三、利用配方法解下列方程25220x x -+= 012632=--x x01072=+-x x四、利用公式法解下列方程-3x 2+22x -24=0 2x (x -3)=x -3. 3x 2+5(2x+1)=0五、选用适当的方法解下列方程(x +1) 2-3 (x +1)+2=0 22(21)9(3)x x +=- 2230x x --=21302x x ++= 4)2)(1(13)1(+-=-+x x x x--xx x(x+1)-5x=0. 3x(x-3) =2(x-1) (x+1).23(=)2)(11应用题:1、某商场销售一批名牌衬衫,平均每天可售出20件,每件盈利40元,为扩大销售增加盈利,尽快减少库存,商场决定采取适当的降价措施,经调查发现,如果每件衬衫每降价一元,市场每天可多售2件,若商场平均每天盈利1250元,每件衬衫应降价多少元?2、两个正方形,小正方形的边长比大正方形的边长的一半多4 cm,大正方形的面积比小正方形的面积的2倍少32平方厘米,求大小两个正方形的边长.3、如图,有一块梯形铁板ABCD,AB∥CD,∠A=90°,AB=6 m,CD=4 m,AD=2 m,现在梯形中裁出一内接矩形铁板AEFG,使E在AB上,F在BC上,G在AD上,若矩形铁板的面积为5 m2,则矩形的一边EF长为多少?4、如右图,某小在长32米,区规划宽20米的矩形场地ABCD上修建三条同样宽的3条小路,使其中两条与AD平行,一条与AB平行,其余部分种草,若使草坪的面积为566米2,问小路应为多宽?5、某商店经销一种销售成本为每千克40元的水产品,据市场分析,若按每千克50元销售一个月能售出500千克;销售单价每涨1元,月销售量就减少10千克,商店想在月销售成本不超过1万元的情况下,使得月销售利润达到8000元,销售单价应定为多少?6.某工厂1998年初投资100万元生产某种新产品,1998年底将获得的利润与年初的投资的和作为1999年初的投资,到1999年底,两年共获利润56万元,已知1999年的年获利率比1998年的年获利率多10个百分点,求1998年和1999年的年获利率各是多少? 思考:1、关于x 的一元二次方程()04222=-++-a x x a 的一个根为0,则a 的值为 。
2.6 应用一元二次方程(一)一、选择题(每题4分,共24分)1.大成游乐园规定:如果一个人参加游戏,则给这个人一个奖品;如果两个人参加游戏,则给每人两个奖品;如果三个参加游戏,则给每个人三个奖品;……如果设x 个人参加游戏,给出奖品一共有36个,则参加游戏的人数为【 】A .4B .6C .8D .102.如图1所示,在一边靠墙(墙足够长)空地上,修建一个面积为672m 2的矩形临时仓库,仓库一边靠墙,另三边用总长为76米的栅栏围成,若设栅栏AB 的长为xm ,则下列各方程中,符合题意的是【 】A . x (76-x )=672;B . x (76-2x )=672;C .x (76-2x )=672;D . x (76-x )=672.3.裕丰商店一月份的利润为50万元,二、三月份的利润平均增长率为m ,下列各式中,正确表示这个商店第一季度的总利润的是【 】A .50[m 2+3m +3] 万元;B .50+50(1+m )2万元;C .50+50(1+2m )万元;D .50+50(1+m )+50(1+m )2万元.4.两个连续奇数的积是255.下列的各数中,是这两个数中的一个的是【 】A .-19B .5C .17D .515.小明用一根长为30厘米的铁丝围成一个直角三角形,使斜边长为13厘米,则该三角形的面积等于【 】.A .15厘米2B .30厘米2C .45厘米2D .60厘米26.如图2,在△ABC 中,∠ABC =90°, AB =8cm ,BC =6cm .动点P 、Q 分别 从点A 、B 同时开始移动,点P 的速度为1 cm /秒,点Q 的速度为2 cm /秒,点Q 移动到点C 后停止,点P 也随之停止运动。
下列时间瞬间中,能使△PBQ 的面积为15cm 2的是【 】 A .2秒钟 B .3秒钟 C . 4秒钟 D . 5秒钟 二、填空题(每题4分,共24分)7.如图3所示,在一块正方形空地上,修建一个正方形休闲广场,其余部分铺设草坪,已知休闲广场的边长是正方形空地边长的一半,草坪的面积为是 m 。
一元二次方程100道计算题练习(附答案)(1)x^2+17x+72=0答案:x1=-8x2=-9(2)x^2+6x-27=0答案:x1=3x2=-9(3)x^2-2x-80=0答案:x1=-8x2=10(4)x^2+10x-200=0答案:x1=-20x2=10(5)x^2-20x+96=0答案:x1=12x2=8(6)x^2+23x+76=0答案:x1=-19x2=-4(7)x^2-25x+154=0答案:x1=14x2=11(8)x^2-12x-108=0答案:x1=-6x2=18(9)x^2+4x-252=0答案:x1=14x2=-18(10)x^2-11x-102=0答案:x1=17x2=-6(11)x^2+15x-54=0答案:x1=-18x2=3(12)x^2+11x+18=0答案:x1=-2x2=-9(13)x^2-9x+20=0答案:x1=4x2=5(14)x^2+19x+90=0答案:x1=-10x2=-9(15)x^2-25x+156=0答案:x1=13x2=12(16)x^2-22x+57=0答案:x1=3x2=19(17)x^2-5x-176=0答案:x1=16x2=-11(18)x^2-26x+133=0答案:x1=7x2=19(19)x^2+10x-11=0答案:x1=-11x2=1(20)x^2-3x-304=0答案:x1=-16x2=19(21)x^2+13x-140=0答案:x1=7x2=-20(23)x^2+5x-176=0答案:x1=-16x2=11(24)x^2+28x+171=0答案:x1=-9x2=-19(25)x^2+14x+45=0答案:x1=-9x2=-5(26)x^2-9x-136=0答案:x1=-8x2=17(27)x^2-15x-76=0答案:x1=19x2=-4(28)x^2+23x+126=0答案:x1=-9x2=-14(29)x^2+9x-70=0答案:x1=-14x2=5(30)x^2-1x-56=0答案:x1=8x2=-7(31)x^2+7x-60=0答案:x1=5x2=-12(32)x^2+10x-39=0答案:x1=-13x2=3(33)x^2+19x+34=0答案:x1=-17x2=-2(34)x^2-6x-160=0答案:x1=16x2=-10(35)x^2-6x-55=0答案:x1=11x2=-5(36)x^2-7x-144=0答案:x1=-9x2=16(37)x^2+20x+51=0答案:x1=-3x2=-17(38)x^2-9x+14=0答案:x1=2x2=7(39)x^2-29x+208=0答案:x1=16x2=13(40)x^2+19x-20=0答案:x1=-20x2=1(41)x^2-13x-48=0答案:x1=16x2=-3(42)x^2+10x+24=0答案:x1=-6x2=-4(43)x^2+28x+180=0答案:x1=-10x2=-18(45)x^2+23x+90=0答案:x1=-18x2=-5(46)x^2+7x+6=0答案:x1=-6x2=-1(47)x^2+16x+28=0答案:x1=-14x2=-2(48)x^2+5x-50=0答案:x1=-10x2=5(49)x^2+13x-14=0答案:x1=1x2=-14(50)x^2-23x+102=0答案:x1=17x2=6(51)x^2+5x-176=0答案:x1=-16x2=11(52)x^2-8x-20=0答案:x1=-2x2=10(53)x^2-16x+39=0答案:x1=3x2=13(54)x^2+32x+240=0答案:x1=-20x2=-12(55)x^2+34x+288=0答案:x1=-18x2=-16(56)x^2+22x+105=0答案:x1=-7x2=-15(57)x^2+19x-20=0答案:x1=-20x2=1(58)x^2-7x+6=0答案:x1=6x2=1(59)x^2+4x-221=0答案:x1=13x2=-17(60)x^2+6x-91=0答案:x1=-13x2=7(61)x^2+8x+12=0答案:x1=-2x2=-6(62)x^2+7x-120=0答案:x1=-15x2=8(63)x^2-18x+17=0答案:x1=17x2=1(64)x^2+7x-170=0答案:x1=-17x2=10(65)x^2+6x+8=0答案:x1=-4x2=-2(67)x^2+24x+119=0答案:x1=-7x2=-17(68)x^2+11x-42=0答案:x1=3x2=-14(69)x^20x-289=0答案:x1=17x2=-17(70)x^2+13x+30=0答案:x1=-3x2=-10(71)x^2-24x+140=0答案:x1=14x2=10(72)x^2+4x-60=0答案:x1=-10x2=6(73)x^2+27x+170=0答案:x1=-10x2=-17(74)x^2+27x+152=0答案:x1=-19x2=-8(75)x^2-2x-99=0答案:x1=11x2=-9(76)x^2+12x+11=0答案:x1=-11x2=-1(77)x^2+17x+70=0答案:x1=-10x2=-7(78)x^2+20x+19=0答案:x1=-19x2=-1(79)x^2-2x-168=0答案:x1=-12x2=14(80)x^2-13x+30=0答案:x1=3x2=10(81)x^2-10x-119=0答案:x1=17x2=-7(82)x^2+16x-17=0答案:x1=1x2=-17(83)x^2-1x-20=0答案:x1=5x2=-4(84)x^2-2x-288=0答案:x1=18x2=-16(85)x^2-20x+64=0答案:x1=16x2=4(86)x^2+22x+105=0答案:x1=-7x2=-15(87)x^2+13x+12=0答案:x1=-1x2=-12(89)x^2+26x+133=0答案:x1=-19x2=-7(90)x^2-17x+16=0答案:x1=1x2=16(91)x^2+3x-4=0答案:x1=1x2=-4(92)x^2-14x+48=0答案:x1=6x2=8(93)x^2-12x-133=0答案:x1=19x2=-7(94)x^2+5x+4=0答案:x1=-1x2=-4(95)x^2+6x-91=0答案:x1=7x2=-13(96)x^2+3x-4=0答案:x1=-4x2=1(97)x^2-13x+12=0答案:x1=12x2=1(98)x^2+7x-44=0答案:x1=-11x2=4(99)x^2-6x-7=0答案:x1=-1x2=7 (100)x^2-9x-90=0答案:x1=15x2=-6。
一元二次方程(一)选用作业设计
一、选择题
1.将二次三项式x2-4x+1配方后得().
A.(x-2)2+3 B.(x-2)2-3 C.(x+2)2+3 D.(x+2)2-3
2.已知x2-8x+15=0,左边化成含有x的完全平方形式,其中正确的是().A.x2-8x+(-4)2=31 B.x2-8x+(-4)2=1 C.x2+8x+42=1 D.x2-4x+4=-11 3.如果mx2+2(3-2m)x+3m-2=0(m≠0)的左边是一个关于x的完全平方式,则m等于().A.1 B.-1 C.1或9 D.-1或9
二、填空题
1.方程x2+4x-5=0的解是________.
2.代数式
2
2
2
1
x x
x
--
-
的值为0,则x的值为________.
3.已知(x+y)(x+y+2)-8=0,求x+y的值,若设x+y=z,则原方程可变为_______,•所以求出z的值即为x+y的值,所以x+y的值为______.
三、综合提高题
1.已知三角形两边长分别为2和4,第三边是方程x2-4x+3=0的解,求这个三角形的周长.
2.如果x2-4x+y2,求(xy)z的值.
3.新华商场销售某种冰箱,每台进货价为2500•元,市场调研表明:•当销售价为2900元时,平均每天能售出8台;而当销售价每降50元时,平均每天就能多售出4台,商场要想使这种冰箱的销售利润平均每天达5000元,每台冰箱的定价应为多少元?
四、选择题
1.配方法解方程2x2-4
3
x-2=0应把它先变形为().
A.(x-1
3
)2=
8
9
B.(x-
2
3
)2=0 C.(x-
1
3
)2=
8
9
D.(x-
1
3
)2=
10
9
2.下列方程中,一定有实数解的是().
A.x2+1=0 B.(2x+1)2=0 C.(2x+1)2+3=0 D.(1
2
x-a)2=a
3.已知x2+y2+z2-2x+4y-6z+14=0,则x+y+z的值是().A.1 B.2 C.-1 D.-2
五、填空题
1.如果x 2+4x-5=0,则x=_______.
2.无论x 、y 取任何实数,多项式x 2+y 2-2x-4y+16的值总是_______数. 3.如果16(x-y )2+40(x-y )+25=0,那么x 与y 的关系是________. 六、综合提高题
1.用配方法解方程.
(1)9y 2-18y-4=0 (2)x 2
2.已知:x 2+4x+y 2-6y+13=0,求
22
2x y
x y -+的值.
3.某商场销售一批名牌衬衫,平均每天可售出20件,每件赢利40元,•为了扩大销售,增加盈利,尽快减少库存,商场决定采取适当降价措施,经调查发现,•如果每件衬衫每降价一元,商场平均每天可多售出2件.
①若商场平均每天赢利1200元,每件衬衫应降价多少元?
②每件衬衫降价多少元时,商场平均每天赢利最多?请你设计销售方案.
七、选择题
1.用公式法解方程4x 2-12x=3,得到( ).
A .
B .
C .
D .
2.方程2的根是( ).
A .x 1x 2
B .x 1=6,x 2
C .x 1x 2
D .x 1=x 2 3.(m 2-n 2)(m 2-n 2-2)-8=0,则m 2-n 2的值是( ).
A .4
B .-2
C .4或-2
D .-4或2 八、填空题
1.一元二次方程ax 2+bx+c=0(a ≠0)的求根公式是________,条件是________. 2.当x=______时,代数式x 2-8x+12的值是-4.
3.若关于x 的一元二次方程(m-1)x 2+x+m 2+2m-3=0有一根为0,则m 的值是_____.
九、综合提高题
1.用公式法解关于x 的方程:x 2-2ax-b 2+a 2=0.
2.设x 1,x 2是一元二次方程ax 2+bx+c=0(a ≠0)的两根,(1)试推导x 1+x 2=-b a ,x 1·x 2=c
a
;
(2)求代数式a (x 13+x 23)+b (x 12+x 22)+c (x 1+x 2)的值.
3.某电厂规定:该厂家属区的每户居民一个月用电量不超过A 千瓦时,•那么这户居民这个月只交10元电费,如果超过A 千瓦时,那么这个月除了交10•元用电费外超过部分还要按
每千瓦时100
A
元收费.
(1)若某户2月份用电90千瓦时,超过规定A 千瓦时,则超过部分电费为多少元?(•用A 表示)
(2
答案:
一、1.B 2.B 3.C
二、1.x1=1,x2=-5 2.2 3.z2+2z-8=0,2,-4
三、1.(x-3)(x-1)=0,x1=3,x2=1,
∴三角形周长为9(∵x2=1,∴不能构成三角形)
2.(x-2)2+(y+3)2
,
∴x=2,y=-3,z=-2,(xy)z=(-6)-2=1 36
3.设每台定价为x,则:(x-2500)(8+2900
50
x
-
×4)=5000,
x2-5500x+7506250=0,解得x=2750
答案:
一、1.D 2.B 3.B
二、1.1,-5 2.正3.x-y=5 4
三、1.(1)y2-2y-4
9
=0,y2-2y=
4
9
,(y-1)2=
13
9
,
y-1=
±,y1
=+1,
y2
=1-
3
(2)x2
(
2=•0,x
1
=x2
2.(x+2)2+(y-3)2=0,x1=-2,y2=3,
∴原式=
268 1313 --
=-
3.(1)设每件衬衫应降价x元,则(40-x)(20+2x)=1200,
x2-30x+200=0,x1=10,x2=20 (2)设每件衬衫降价x元时,商场平均每天赢利最多为y,
则y=-2x2+60x+800=-2(x2-30x)+800=-2[(x-15)2-225]+800=-2(x-15)2+1250 ∵-2(x-15)2≤0,
∴x=15时,赢利最多,y=1250元.答:略答案:
一、1.D 2.D 3.C
二、1.
b2-4ac≥0 2.4 3.-3 三、1.
x=
2
2
a
=a±│b│2.(1)∵x1、x2是ax2+bx+c=0(a≠0)的两根,∴x1
x2
∴x1+x2
=
2
b b
a
-
=-
b
a
,x1·x2
c
a (2)∵x1,x2是ax2+bx+c=0的两根,∴ax12+bx1+c=0,ax22+bx2+c=0
原式=ax13+bx12+c1x1+ax23+bx22+cx2
=x1(ax12+bx1+c)+x2(ax22+bx2+c)
=0
3.(1)超过部分电费=(90-A)·
100
A
=-
1
100
A2+
9
10
A
(2)依题意,得:(80-A)·
100
A
=15,A1=30(舍去),A2=50。