动网格
- 格式:doc
- 大小:135.00 KB
- 文档页数:10
fluent 案例
- 电池仿真计算:该案例使用Fluent中的电池仿真模块,基于前期实验获取的数据,根据NTGK模型模拟稳定的充放电过程。
计算原理是需要提供不同倍率下的DOD与电压曲线。
- 动网格实例:动网格模型可以用来模拟由于流域边界运动引起流域形状随时间变化的流动情况,如汽车发动机中的气缸运动、阀门的开启与关闭、机翼的运动、飞机投弹等。
- 离心泵空化:利用Fluent中的Mixture多相流模型仿真计算离心泵内的空化情况。
案例描述为离心泵入口总压0.6MPa,出口静压0.2MPa,叶轮旋转速度1200RPM。
流体域内介质为液态水,其在当前工作条件下饱和蒸汽压为3540Pa。
- 板式换热器CFD仿真:本案例在ANSYS2019R3中演示了如何利用Fluent进行板式换热器CFD仿真。
首先在SpaceClaim中建立几何模型,并进行命名边界条件,接着导入Fluent Meshing进行网格划分,然后利用Fluent进行求解,最后在CFD-POST中进行后处理。
这些案例展示了Fluent在不同领域的应用,如果你对其中某个案例感兴趣,可以继续向我提问。
搅拌桨底部十字挡板流场分析动网格实例教程搅拌设备在各个行业运用的十分广泛,搅拌就是为了更够更快速更高效的将物质与介质充分混合,发生充分的反应,而搅拌中存在着许多不利于混合的情况,比如液体旋流。
为了解决这个问题,之前很多人提出在罐体的侧壁上增加挡板,可以抵消大部分旋流,然后大部分都是研究侧挡板的,对于底部挡板的研究十分少,本文就在椭圆底部挡板增加十字型挡板,对罐体中进行流场分析。
1.Gambit建模首先用Gambit建模图形如下:图1:Gambit建立的模型分为两个区域,里面的圆柱为动区域,外面包着的大圆柱设为静区域,静区域划分网格大,划分粗糙,内部动区域划分网格小,划分精细。
边界条件主要设置了轴,搅拌桨,底部挡板,上层液面。
以下就是fluent进行数值模拟。
2.fluent数值模拟2.1导入case文件2.2对网格进行检查Minimum volume的数值大于0即可。
图2网格检查2.3调节比例单位选择mm单位。
图3比例调节2.4定义求解器参数设置如图4所示图4设置求解器参数2.5设置能量线图5能量线2.6设置粘度模型,选择k-e模型k-e模型对该模型模拟十分实用。
图6粘度模型2.7定义材料介质选择液体水。
2.8定义操作条件由于存在着终于,建模时的方向向上,所以在Z轴增加一个重力加速度。
图8操作条件2.9定义边界条件在边界设置重,动区域如图所示,将材料设成水,motion type设成moving reference frame (相对滑动),转速设为10rad/s,单位可在Define中的set unit中的angular-velocity设置。
而在在轴的设置中,如上图所示,将wall motion设成moving wall,motion设成Absolute,速度设成-10,由于轴跟动区域速度是相对的,所以设成反的。
图9动区域边界条件图10轴边界条件2.10设置求解器求解器的设置如图11需将momentum改成0.5即可图11求解器2.11初值初始化在Slove中选择solution initialiation设置一下,初值全为0.2.12设置残留控制将plot点上,其他参数如图12所示。
适用于临近空间飞行器大变形的动网格策略佚名【摘要】对于超大展弦比构型的低速临近空间飞行器而言,由于其在飞行过程中结构变形非常显著,因此基于计算流体力学的分析方法对于动网格提出了非常高的要求。
为此,提出了一种适用于边界大变形的动网格策略,该种动网格基于映射的思想,将边界网格的位置变化以某种权重反映到流场网格,并更新网格节点位置。
选取距离倒数的n次方作为权重,研究不同的权重指数n对网格变形的影响规律,然后开展了二维与三维动网格实例分析。
结果表明,这种动网格方法能够很好地适用于大变形的情形,并能很好地保证变形后的网格质量。
%The high-aspect-ratio low-speed near-space aircrafts may undergo very large deformation during flight,so a high demand of moving mesh is required for the analysis method based on computational fluid dynamics.To this end,a moving mesh strategy for large deformation of the boundary was presented.The strategy which is based on the mapping interpolation method reflects the displacement of boundary mesh to flow field mesh using a certain kind of weight and then updates the position of mesh nodes.Inverse distance’s nth-power was chosen as the weighting factor and the influence of different weight index n on the mesh deformation was studied,then the analysis of some two-dimensional and three-dimensional moving mesh cases was carried out.The results suggest that this method is capable of handling the large deformation and ensuring the quality of deformed mesh.【期刊名称】《国防科技大学学报》【年(卷),期】2015(000)004【总页数】6页(P19-24)【关键词】动网格;大变形;变形策略【正文语种】中文【中图分类】V211.3在军用和民用领域巨大需求的牵引下,高空长航时(High Altitude Long Endurance,HALE)飞行器得到快速的发展,特别的以“太阳神”[1]“微风”“阳光动力”等为代表的一系列太阳能飞机的发展,大大促进了该技术的提升。
在FLUENT中进行公转与自转的动网格设定,若运动情况较简单且运动规律比较特殊时,可以应用滑移网格解决。
在FLUENT13.0之后的版本中,支持在动网格中同时包容MRF模型,这也为复杂运动建模提供了条件。
1、模型准备本例中的模型需要利用ICEM CFD创建分界面的技术,前面已有介绍,这里不再累述。
建立的网格模型如不图所示。
整个模型共包含三个域,从外到内我们依次命名为:outer_domain,mid_domain,inner_domain。
其中区域3(inner_domain)中包含一个搅拌器。
区域3以速度1rad/s绕圆心旋转,搅拌器以角速度10rad/s旋转。
三个计算域以两对interface进行连接。
区域1的外部为wall边界类型(即整个区域是密闭的)。
图1 图22、模型设置将网格文件导入至FLUENT中,进行sacle,将模型尺度调整至满足我们需求的尺度。
设置求解类型为瞬态,使用RNG K-epsilon模型,采用增强壁面函数。
从材料数据库中添加材料水。
3、inner_domain区域设置本例的重点在于区域设置。
需要进行设置的区域为inner_domain与mid_domain。
进入Cell Zone Conditioons面板,选择inner_domain区域,设置区域类型为fluid,点击按钮edit…进入区域设置。
如图2所示。
在弹出的设置框中进行图3高亮部分的设置。
需要注意的是:设置相对区域为mid_domain,再设置旋转中心后,则设置的旋转中心为局部坐标。
4、mid_domain区域设置采用与inner_domain类似的设置,如下图所示。
设置mid_domain的旋转中心为(0,0),旋转速度1rad/s。
5、outer_domain设置outer_domain没有运动方面的设置,只需设置材料为水即可。
6、边界条件设置只有两个wall边界,一个是搅拌器壁面,一个是out_domain的外壁面。
f l u e n t被动运动6D O F总结利用CFD软件解决动网格问题,通常可分为以下两类:(1)主动型动网格主动型动网格问题通常指的是边界运动规律及运动状态已知,通常可由软件使用者通过函数或程序进行描述。
在程序计算过程中,求解器调用边界运动轨迹描述程序实现边界运动。
这类动网格例子很多,如各类泵、风扇等。
(2)被动型动网格还有一类动网格问题,其边界运动规律往往是未知的,常常需要通过计算边界上的力或力矩,以此来求取边界的运动。
在这类动网格计算设置中,网格变化规律难以预料,导致网格参数经常需要进行多次调整才能达到目的。
这类例子在现实中其实也很多,比如风力发电机的叶轮、水轮机等。
解决主动型动网格问题比较容易,利用CFD软件提供的动网格模拟能力很容易解决。
需要关注的地方是边界运动后,网格节点如何重新布置和生成。
如在FLUENT软件中,其动网格主要包括三种网格功能:弹簧光顺、动态层及网格重构。
利用网格重构功能几乎可以解决所有主动型动网格问题。
那被动型动网格问题怎么处理呢?一般来说,这类边界的运动都是由于内部流体对其压力所造成的,那么就涉及到力和力矩计算的问题。
对于这类问题,在FLUENT软件中可以采用6DOF模型进行计算。
需要注意的是,以上所有类型动网格计算均建立在边界为刚性的情况下。
即不会计算由于流动产生的力的作用导致的边界变形。
若要计算边界变形,则需要采用流固耦合方法,利用固体求解器计算。
被动型动网格中的力和力矩均是压力对面的积分计算而来。
1、6DOF UDF宏在FLUENT中利用6DOF是需要定义UDF宏的。
该宏的定义形式如下:DEFINE_SDOF_PROPERTIES(name, properties, dt ,time ,dtime)函数中:Name:宏名称Real *properties:存储6DOF属性的数组Dynamic_Thread *dt:存储制定的动网格属性Real time:当前时间Real dtime:时间步长该UDF宏没有返回值。
在Fluent动网格中,DEFINE_GRID_MOTION宏允许用户定义网格节点的运动。
要使用DEFINE_GRID_MOTION宏指定边界节点的运动,可以参考以下步骤:
1. 在CASE设置中,选择动网格模型(Dynamic Mesh Model),然后启用DEFINE_GRID_MOTION宏。
2. 在宏定义中,可以使用DEFINE_TRANSLATION、DEFINE_ROTATION 等宏来定义网格节点的运动类型。
3. 对于边界节点的运动,可以使用DEFINE_TRANSLATION宏来定义节点在三个方向上的平移运动,或者使用DEFINE_ROTATION宏来定义节点的旋转运动。
4. 根据需要,可以定义多个边界节点的运动,并使用相应的宏来指定每个节点的运动类型和运动参数。
5. 完成宏定义后,可以保存CASE设置并开始模拟计算。
需要注意的是,在使用DEFINE_GRID_MOTION宏时,需要仔细考虑网格质量和运动边界的设置,以确保模拟结果的准确性和可靠性。
此外,还需要根据具体的问题和模拟需求选择合适的动网格模型和算法,并进行相应的调整和优化。
CAE联盟论坛精品讲座系列FLUENT中被动型动网格问题求解方案:6DOF主讲人:流沙 CAE联盟论坛—总版主利用CFD软件解决动网格问题,通常可分为以下两类:(1)主动型动网格主动型动网格问题通常指的是边界运动规律及运动状态已知,通常可由软件使用者通过函数或程序进行描述。
在程序计算过程中,求解器调用边界运动轨迹描述程序实现边界运动。
这类动网格例子很多,如各类泵、风扇等。
(2)被动型动网格还有一类动网格问题,其边界运动规律往往是未知的,常常需要通过计算边界上的力或力矩,以此来求取边界的运动。
在这类动网格计算设置中,网格变化规律难以预料,导致网格参数经常需要进行多次调整才能达到目的。
这类例子在现实中其实也很多,比如风力发电机的叶轮、水轮机等。
解决主动型动网格问题比较容易,利用CFD软件提供的动网格模拟能力很容易解决。
需要关注的地方是边界运动后,网格节点如何重新布置和生成。
如在FLUENT软件中,其动网格主要包括三种网格功能:弹簧光顺、动态层及网格重构。
利用网格重构功能几乎可以解决所有主动型动网格问题。
那被动型动网格问题怎么处理呢?一般来说,这类边界的运动都是由于内部流体对其压力所造成的,那么就涉及到力和力矩计算的问题。
对于这类问题,在FLUENT软件中可以采用6DOF 模型进行计算。
需要注意的是,以上所有类型动网格计算均建立在边界为刚性的情况下。
即不会计算由于流动产生的力的作用导致的边界变形。
若要计算边界变形,则需要采用流固耦合方法,利用固体求解器计算。
被动型动网格中的力和力矩均是压力对面的积分计算而来。
1、6DOF UDF宏在FLUENT中利用6DOF是需要定义UDF宏的。
该宏的定义形式如下:DEFINE_SDOF_PROPERTIES(name, properties, dt ,time ,dtime)函数中:Name:宏名称Real *properties:存储6DOF属性的数组Dynamic_Thread *dt:存储制定的动网格属性Real time:当前时间Real dtime:时间步长该UDF宏没有返回值。
CAE联盟论坛精品讲座系列FLUENT中被动型动网格问题求解方案:6DOF主讲人:流沙 CAE联盟论坛—总版主利用CFD软件解决动网格问题,通常可分为以下两类:(1)主动型动网格主动型动网格问题通常指的是边界运动规律及运动状态已知,通常可由软件使用者通过函数或程序进行描述。
在程序计算过程中,求解器调用边界运动轨迹描述程序实现边界运动。
这类动网格例子很多,如各类泵、风扇等。
(2)被动型动网格还有一类动网格问题,其边界运动规律往往是未知的,常常需要通过计算边界上的力或力矩,以此来求取边界的运动。
在这类动网格计算设置中,网格变化规律难以预料,导致网格参数经常需要进行多次调整才能达到目的。
这类例子在现实中其实也很多,比如风力发电机的叶轮、水轮机等。
解决主动型动网格问题比较容易,利用CFD软件提供的动网格模拟能力很容易解决。
需要关注的地方是边界运动后,网格节点如何重新布置和生成。
如在FLUENT软件中,其动网格主要包括三种网格功能:弹簧光顺、动态层及网格重构。
利用网格重构功能几乎可以解决所有主动型动网格问题。
那被动型动网格问题怎么处理呢?一般来说,这类边界的运动都是由于内部流体对其压力所造成的,那么就涉及到力和力矩计算的问题。
对于这类问题,在FLUENT软件中可以采用6DOF 模型进行计算。
需要注意的是,以上所有类型动网格计算均建立在边界为刚性的情况下。
即不会计算由于流动产生的力的作用导致的边界变形。
若要计算边界变形,则需要采用流固耦合方法,利用固体求解器计算。
被动型动网格中的力和力矩均是压力对面的积分计算而来。
1、6DOF UDF宏在FLUENT中利用6DOF是需要定义UDF宏的。
该宏的定义形式如下:DEFINE_SDOF_PROPERTIES(name, properties, dt ,time ,dtime)函数中:Name:宏名称Real *properties:存储6DOF属性的数组Dynamic_Thread *dt:存储制定的动网格属性Real time:当前时间Real dtime:时间步长该UDF宏没有返回值。
题记:在学习使用Fluent的时候,有不少朋友需要使用动网格模型(Dynamic Mesh Model),因此,本版推出这个专题,进行大讨论,使大家在使用动网格时尽量少走弯路,更快更好地掌握;也欢迎使用过的版友积极参与讨论指导,谢谢! 该专题主要包括以下的主要内容:
##1. 动网格的相关知识介绍; ##2. 以NACA0012翼型俯仰振荡实例进行讲解动网格的应用过程; ##3. 与动网格应用有关的参考文献; ##4. 使用动网格进行计算的一些例子。
##1. 动网格的相关知识介绍 有关动网格基础方面的东西,请具体参考FLUENT User’s Guide或FLUENT全攻略的相关章节,这里只给出一些提要性的知识要点。 1、简介 动网格模型可以用来模拟流场形状由于边界运动而随时间改变的问题。边界的运动形式可以是预先定义的运动,即可以在计算前指定其速度或角速度;也可以是预先未做定义的运动,即边界的运动要由前一步的计算结果决定。网格的更新过程由FLUENT根据每个迭代步中边界的变化情况自动完成。在使用动网格模型时,必须首先定义初始网格、边界运动的方式并指定参予运动的区域。可以用边界型函数或者UDF定义边界的运动方式。FLUENT要求将运动的描述定义在网格面或网格区域上。如果流场中包含运动与不运动两种区域,则需要将它们组合在初始网格中以对它们进行识别。那些由于周围区域运动而发生变形的区域必须被组合到各自的初始网格区域中。不同区域之间的网格不必是正则的,可以在模型设置中用FLUENT软件提供的非正则或者滑动界面功能将各区域连接起来。
注:一般来讲,在Fluent中使用动网格,基本上都要使用到UDF,所以你最好具备一定的
C语言编程基础。 2、动网格更新方法 动网格计算中网格的动态变化过程可以用三种模型进行计算,即弹簧近似光滑模型(spring-based smoothing)、动态分层模型(dynamic layering)和局部重划模型(local remeshing)
。 弹簧近似光滑模型 在弹簧近似光滑模型中,网格的边被理想化为节点间相互连接的弹簧。移动前的网格间距相当于边界移动前由弹簧组成的系统处于平衡状态。在网格边界节点发生位移后,会产生与位移成比例的力,力量的大小根据胡克定律计算。边界节点位移形成的力虽然破坏了弹簧系统原有的平衡,但是在外力作用下,弹簧系统经过调整将达到新的平衡,也就是说由弹簧连接在一起的节点,将在新的位置上重新获得力的平衡。从网格划分的角度说,从边界节点的位移出发,采用虎克定律,经过迭代计算,最终可以得到使各节点上的合力等于零的、新的网格节点位置,这就是弹簧光顺法的核心思想。 原则上弹簧光顺模型可以用于任何一种网格体系,但是在非四面体网格区域(二维非三角形),最好在满足下列条件时使用弹簧光顺方法: (1)移动为单方向。 (2)移动方向垂直于边界。 如果两个条件不满足,可能使网格畸变率增大。另外,在系统缺省设置中,只有四面体网格(三维)和三角形网格(二维)可以使用弹簧光顺法,如果想在其他网格类型中激活该模型,需要在dynamic-mesh-menu下使用文字命令spring-on-all-shapes?,然后激活该选项即可。
动态层模型 对于棱柱型网格区域(六面体和或者楔形),可以应用动态层模型。动态层模型的中心思想是根据紧邻运动边界网格层高度的变化,添加或者减少动态层,即在边界发生运动时,如果紧邻边界的网格层高度增大到一定程度,就将其划分为两个网格层;如果网格层高度降低到一定程度,就将紧邻边界的两个网格层合并为一个层: 如果网格层j扩大,单元高度的变化有一临界值: H_min>(1+alpha_s)*h_0 式中h_min为单元的最小高度,h_0为理想单元高度,alpha_s为层的分割因子。在满足上述条件的情况下,就可以对网格单元进行分割,分割网格层可以用常值高度法或常值比例法。在使用常值高度法时,单元分割的结果是产生相同高度的网格。在采用常值比例法时,网格单元分割的结果是产生是比例为alpha_s的网格。 若对第j层进行压缩,压缩极限为: H_min式中alpha_c为合并因子。在紧邻动边界的网格层高度满足这个条件时,则将这一层网格与 外面一层网格相合并。 动网格模型的应用有如下限制: (1)与运动边界相邻的网格必须为楔形或者六面体(二维四边形)网格。 (2)在滑动网格交界面以外的区域,网格必须被单面网格区域包围。 (3)如果网格周围区域中有双侧壁面区域,则必须首先将壁面和阴影区分割开,再用 滑动交界面将二者耦合起来。 (4)如果动态网格附近包含周期性区域,则只能用FLUENT的串行版求解,但是如果周期性区域被设置为周期性非正则交界面,则可以用FLUENT的并行版求解。 如果移动边界为内部边界,则边界两侧的网格都将作为动态层参与计算。如果在壁面上只有一部分是运动边界,其他部分保持静止,则只需在运动边界上应用动网格技术,但是动网格区与静止网格区之间应该用滑动网格交界面进行连接。
局部重划模型 在使用非结构网格的区域上一般采用弹簧光顺模型进行动网格划分,但是如果运动边界的位移远远大于网格尺寸,则采用弹簧光顺模型可能导致网格质量下降,甚至出现体积为负值的网格,或因网格畸变过大导致计算不收敛。为了解决这个问题,FLUENT在计算过程中将畸变率过大,或尺寸变化过于剧烈的网格集中在一起进行局部网格的重新划分,如果重新划分后的网格可以满足畸变率要求和尺寸要求,则用新的网格代替原来的网格,如果新的网格仍然无法满足要求,则放弃重新划分的结果。 在重新划分局部网格之前,首先要将需要重新划分的网格识别出来。FLUENT中识别不合乎要求网格的判据有二个,一个是网格畸变率,一个是网格尺寸,其中网格尺寸又分最大尺寸和最小尺寸。在计算过程中,如果一个网格的尺寸大于最大尺寸,或者小于最小尺寸,或者网格畸变率大于系统畸变率标准,则这个网格就被标志为需要重新划分的网格。在遍历所有动网格之后,再开始重新划分的过程。局部重划模型不仅可以调整体网格,也可以调整动边界上的表面网格。 需要注意的是,局部重划模型仅能用于四面体网格和三角形网格。在定义了动边界面以后,如果在动边界面附近同时定义了局部重划模型,则动边界上的表面网格必须满足下列条件: (1)需要进行局部调整的表面网格是三角形(三维)或直线(二维)。 (2)将被重新划分的面网格单元必须紧邻动网格节点。 (3)表面网格单元必须处于同一个面上并构成一个循环。 (4)被调整单元不能是对称面(线)或正则周期性边界的一部分。 动网格的实现在FLUENT中是由系统自动完成的。如果在计算中设置了动边界,则FLUENT会根据动边界附近的网格类型,自动选择动网格计算模型。如果动边界附近采用的是四面体网格(三维)或三角形网格(二维),则FLUENT会自动选择弹簧光顺模型和局部重划模型对网格进行调整。如果是棱柱型网格,则会自动选择动态层模型进行网格调整。在静止网格区域则不进行网格调整。 动网格问题中对于固体运动的描述,是以固体相对于重心的线速度和角速度为基本参数加以定义的。既可以用型函数定义固体的线速度和角速度,也可以用UDF来定义这两个参数。同时需要定义的是固体在初始时刻的位置。
注:这一小节主要讲述了动网格的更新方法,最好能掌握,尤其是各种方法的适用范围,通
常来讲,在一个case中,我们使用的更新方法都是根据网格类型以及和要实现的运动来选择的,很多时候都是几种更新方法搭配起来使用的。 总结一下: 使用弹簧近似光滑法网格拓扑始终不变,无需插值,保证了计算精度。但弹簧近似光滑法不适用于大
变形情况,当计算区域变形较大时,变形后的网格会产生较大的倾斜变形,从而使网格质量变差,严重影响计算精度。动态分层法在生成网格方面具有快速的优势,同时它的应用也受到了一些限制。它要求运动边界附近的网格为六面体或楔形,这对于复杂外形的流场区域是不适合的。使用局部网格重划法要求网格为三角形(二维)或四面体(三维),这对于适应复杂外形是有好处的,局部网格重划法只会对运动边界附近区域的网格起作用。 3、动网格问题的建立 设置动网格问题的步骤如下: (1)在Solver(求解器)面板中选择非定常流(unsteady)计算。 (2)设定边界条件,即设定壁面运动速度。 (3)激活动网格模型,并设定相应参数,菜单操作如下: Define -> Dynamic Mesh -> Parameters... (4)指定移动网格区域的运动参数,菜单操作如下: Define -> Dynamic Mesh -> Zones... (5)保存算例文件和数据文件。 (6)预览动网格设置,菜单操作为: Solve -> Mesh Motion... (7)在计算活塞问题时,设定活塞计算中的事件: Define -> Dynamic Mesh -> Events... 并可以通过显示阀与活塞的运动,检查上述设置是否正确: Display -> IC Zone Motion... (8)应用自动保存功能保存计算结果。 File -> Write -> Autosave... 在动网格计算中,因为每个计算步中网格信息都会改变,而网格信息是储存在算例文件中的,所以必须同时保存算例文件和数据文件。 (9)如果想建立网格运动的动画过程,可以在Solution Animation(计算结果动画)面板中进行相关设置。
注:在这一步中,需要提醒一下,使用动网格进行正式计算之前,最好养成预览动网格更新
的习惯;就是在正式计算前,浏览一下动网格的更新情况,这样可以避免在计算过程中出现动网格更新本身的问题。在预览更新时,很多人都说会出现负体积的警告,更新不成功,出现这样的问题时,最好先把时间步长改的更小点儿试试,一般来讲,排除UDF本身的原因,出现更新出错的原因都与时间步长有关,这需要结合所使用的更新方法多琢磨。 4、设定动网格参数 为了使用动网格模型,需要在dynamic mesh(动网格)面板中激活Dynamic Mesh(动网格)选项。如果计算的是活塞运动,则同时激活In-Cylinder(活塞)选项。然后选择动网格模型,并设置相关参数。
1)选择网格更新模型 在Mesh Methods(网格划分方法)下面选择Smothing(弹簧光顺模型),Layering(动态层模型)和(或)Remshing(局部重划模型)。
2)设置弹簧光顺参数 激活弹簧光顺模型,相关参数设置位于Smoothing(光顺)标签下,可以设置的参数包括Spring Constant Factor(弹簧弹性系数)、Boundary Node Relaxation(边界点松弛因子)、 Convergence Tolerance(收敛判据)和Number of Iterations(迭代次数)。 弹簧弹性系数应该在0到1之间变化,弹性系数等于0时,弹簧系统没有耗散过程,在图中算例中,靠近壁面的网格没有被改变,而是保持了原来的网格形状和密度;在弹性系数等于1时,弹簧系统的耗散过程与缺省设置相同,从图中可以发现壁面发生变形,壁面附近网格因