11-3函数的幂级数展开,逼近定理
- 格式:ppt
- 大小:596.50 KB
- 文档页数:31
函数的幂级数展开幂级数具有良好性质。
如果一个函数在某一区间上能够表示成一个幂级数,将给理论研究和实际应用带来极大方便。
Taylor 级数由Taylor 公式,若函数f 在0x 的某个邻域上具有1+n 阶导数,那么在该邻域上成立)()(!)()(!2)())(()()(00)(200000x r x x n x f x x x f x x x f x f x f n n n +-++-''+-'+= , 其中1000)1()()!1())(()(++-+-+=n n n x x n x x x f x r θ(10<<θ)为Lagrange 余项。
因此可以用多项式n n x x n x f x x x f x x x f x f )(!)()(!2)())(()(00)(200000-++-''+-'+ 来近似)(x f 。
自然会想到,增加这种多项式的次数,就可能会增加近似的精确度。
基于这种思想,若函数f 在0x 的某个邻域),(0r x O 上任意阶可导,就可以构造幂级数∑∞=-000)()(!)(n n n x x n x f , 这一幂级数称为f 在0x 点的Taylor 级数,记为~)(x f ∑∞=-000)()(!)(n n n x x n x f 。
称!)(0)(k x f a k k = ( ,2,1,0=k ) 为f 在0x 点的Taylor 系数。
特别地,当00=x 时,常称∑∞=0)(!)0(n n n x n f 为f 的Maclaurin 级数。
假设函数f 在0x 的某个邻域),(0r x O 上可表示成幂级数∑∞=-=00)()(n n n x x a x f , ),(0r x O x ∈,即∑∞=-00)(n n n x x a 在该邻域上的和函数为f (x )。
根据幂级数的逐项可导性,f 必定在),(0r x O 上任意阶可导,且对一切∈k N +,成立∑∞=--+--=k n k n n k x x a k n n n x f )()1()1()(0)( 。
1引言函数的幂级数展开在高等数学中有着重要的地位,在研究幂级数的展开之前我们务必先研究一下泰勒级数,因为泰勒级数在幂级数的展开中有着重要的地位。
一般情况,我们用拉格朗日余项和柯西余项来讨论幂级数的展开,几乎不用积分型余项来讨论,今天我们的研究中就有着充分的体现。
2 泰勒级数泰勒定理指出:若函数f 在点0x 的某个邻域内存在直至n 阶的连续导数,则()()()()()()20''00002!x x f x f x f x x x f x -=+-+()()())00(!n nn x x f x R x n -+++ , (1)这里()x R n =()()nx x o 0-称为皮亚诺型余项。
如果增加条件“()x f 有1+n 阶连续导数”,那么()x R n 还可以写成三种形式 ()()()()1101()1!n n n R x fx x n ξ++=-+ (拉格朗日余项)()()1(1)001[()]1!n n n f x x x x x n θθ++=+--- (柯西余项)()()0(1)1!x n nx f t x t dt n +=-⎰, (积分型余项) 如果在(1)中抹去余项()x R n ,那么在0x 附近f 可用(1)式中右边的多项式来近似代替。
如果函数f 在0x x =处有任意阶的导数,这时称形式为:()()()()()()()()20000000"'2!!n n f x f x f x f x x x x x x x n +-+-++-+(2)的级数为函数f 在0x 的泰勒级数,对于级数(2)是否能够在0x 附近确切地表达f ,或说f 在0x 泰勒级数在0x 附近的和函数是否就是f ,这是我们现在要讨论的问题。
下面我们先看一个例子:例1[]1 由于函数()=x f 21,0,0,0,x e x x ⋅-⎧⎪≠⎨⎪=⎩在0x x =处的任何阶导数都为0,即()(),,2,1,00 ==n f n 所以f 在0x =处的泰勒级数为:++++⋅+n x n x x !!20002, 显然,它在()+∞∞-,上收敛,且其和函数()0=x S , 由此看到对一切0x =都有()()x S x f ≠,这说明具有任意阶导数的函数,其泰勒级数并不是都收敛于函数本身,只有()0lim =∞→x R n n时才能够。
数学物理方法_第三章_幂级数展开幂级数展开是数学物理中常用的一种方法,它是通过使用幂级数来表示一个函数,从而方便对函数进行近似计算和分析。
在许多问题中,幂级数展开可以简化计算的复杂性,帮助我们更好地理解问题的本质。
幂级数是一个无穷级数,形式为:f(x)=a0+a1(x-x0)+a2(x-x0)^2+a3(x-x0)^3+...其中,a0、a1、a2...是常数系数,x0是展开点。
幂级数展开可以将一个任意函数表示成一个级数,进而通过截断级数的方式来近似求解。
这种展开方法在物理学和工程学中得到广泛应用。
幂级数展开的理论基础是泰勒级数展开,泰勒级数展开是幂级数展开的一个特殊情况。
泰勒级数展开是指将任意可导函数在其中一点x0附近展开成幂级数。
泰勒展开的前n+1项可以用n阶导数来表示,形式如下:f(x)=f(x0)+f'(x0)(x-x0)+f''(x0)(x-x0)^2/2!+f'''(x0)(x-x0)^3/3!+...+f^n(x0)(x-x0)^n/n!+...幂级数展开的应用非常广泛,它在数学、物理、工程学和计算机科学中都有着重要的地位。
以下是幂级数展开的几个典型应用:1.函数逼近幂级数展开是一种有效的函数逼近方法。
通过截断幂级数,我们可以用其前几项来近似计算函数的值。
这对于高阶函数和复杂函数来说是非常有用的,因为我们可以通过截断级数来减少计算的复杂性。
2.微分方程的求解使用幂级数展开的方法可以求解一些特定的微分方程。
对于一些微分方程,无法找到解析解,但通过将解展开成幂级数的形式,可以将微分方程转化为代数方程,从而求得解的逼近解。
3.近似计算幂级数展开是一种常用的近似计算方法。
通过截取幂级数的前几项,我们可以将一个复杂的函数近似成一个简单的形式,从而方便我们进行数值计算。
4.解析几何的研究在解析几何中,幂级数展开是研究曲线和曲面的重要工具。
通过展开曲线或曲面,我们可以对其性质进行分析和计算,帮助我们更好地理解几何问题。
高考数学知识点精讲幂级数的展开与收敛半径高考数学知识点精讲:幂级数的展开与收敛半径在高考数学中,幂级数是一个重要的知识点,其中幂级数的展开与收敛半径更是理解和解决相关问题的关键。
让我们一起来深入探讨这个知识点,帮助同学们在高考中轻松应对相关题型。
首先,我们来了解一下什么是幂级数。
简单来说,幂级数就是形如∑(n=0 到∞) aₙ xⁿ = a₀+ a₁ x + a₂ x²+ a₃ x³+的无穷级数。
其中,aₙ 被称为幂级数的系数,x 是变量。
那么,为什么要研究幂级数的展开呢?这是因为通过将一些复杂的函数展开成幂级数的形式,我们能够更方便地对其进行分析、计算和研究。
接下来,我们看看幂级数的展开方法。
常见的有直接展开法和间接展开法。
直接展开法是根据幂级数的定义,利用泰勒公式将函数在某一点展开成幂级数。
泰勒公式为:f(x) = f(x₀) + f'(x₀)(x x₀) + f''(x₀)(x x₀)²/ 2! + f'''(x₀)(x x₀)³/ 3! +。
例如,对于函数 f(x) =eˣ,我们想在 x = 0 处将其展开成幂级数。
首先求导可得 f'(x) =eˣ,f''(x) =eˣ,f'''(x) =eˣ,,所以f(0) = 1,f'(0) = 1,f''(0) = 1,,则eˣ = 1 + x + x²/ 2! + x³/ 3! +。
间接展开法则是利用已知的幂级数展开式,通过一些运算(如四则运算、变量代换等)得到新的幂级数展开式。
比如,已知 1 /(1 x) = 1 + x + x²+ x³+(|x| < 1),那么通过将 x 替换为 x²,可以得到 1 /(1 + x²) = 1 x²+ x⁴ x⁶+(|x| < 1)。
讲完了幂级数的展开,我们再来重点探讨一下收敛半径。
两类幂函数的三角级数展开公式幂函数是一类常见的数学函数,涉及到幂指数的运算。
幂函数的三角级数展开是一种通过三角函数的级数来近似表示幂函数的方法。
一、幂函数的三角级数展开公式:对于任意幂函数,我们可以将其展开为三角级数的形式,具体可以分为两类:正弦级数和余弦级数。
1.正弦级数展开:对于具有周期为2π的函数f(x),若f(x)在周期内可表示为如下形式:f(x) = a₀ + a₁sin(x) + a₂sin(2x) + a₃sin(3x) + ...其中a₀,a₁,a₂,a₃等为待求系数。
这是正弦级数展开的一般形式。
对于幂函数x^n(n为正整数),其在区间[-π,π]上的正弦级数展开形式为:x^n = 2/π * (sin(x) + 1/2^2 * sin(2x) + 1/3^2 * sin(3x)+ ... + 1/n^2 * sin(nx) + ...)2.余弦级数展开:类似地,我们也可以将幂函数展开为余弦级数的形式。
同样地,对于具有周期为2π的函数f(x),我们可以表示为:f(x) = a₀ + a₁cos(x) + a₂cos(2x) + a₃cos(3x) + ...幂函数x^n的余弦级数展开形式为:x^n = 1 + 2/π * (cos(x) + 1/2^2 * cos(2x) + 1/3^2 * cos(3x) + ... + 1/n^2 * cos(nx) + ...)在这两类级数展开中,我们可以通过不断迭代计算级数的部分和来近似表示幂函数。
当级数的项数越多时,近似效果越好。
二、幂函数三角级数展开的应用:幂函数的三角级数展开在数学和工程领域有广泛的应用。
1.函数逼近:幂函数的三角级数展开可以将任意函数近似为级数形式,通过保留足够多的项数来实现对函数的逼近。
这对于一些复杂函数的计算和分析提供了方便。
2.信号处理:三角级数展开可用于处理周期信号。
通过将信号展开为三角级数形式,可以方便地对信号进行分析和处理,如去除噪声、提取频率成分等。
一、函数的幂级数展开1、若f(x)能展开成幂级数,则展开的形式只能是:nn n x x n x f)(!)(000)(-∑∞=2、f(x)展开成幂级数要求f(x)在x0点附近任意阶可导3、f(x)在x0处任意阶可导,所得到的幂级数未必就是f(x),如:⎪⎩⎪⎨⎧=≠=-0,00,)(2/1x x e x f x4、若f(x)在x0附近具有n+1阶导数,则有n 阶Tailor 公式:10)1(000)()()!1()( ,)(!)()(++=-+=+-=∑n n n n nni i x x n fR R x x n x fx f ξ注:(1)推导上述公式(2)上述公式当n=0时,就是拉格朗日中值定理(3)公式表明:可导的函数f(x)可以用一个多项式来近似表示,其误差为|Rn| (4)若f(x)任意阶可导,Tailor 公式还可以一直写下去,得到的级数称为泰劳级数(总有Rn )5、泰劳定理:任意阶可导的函数nn n x x n x fx f )(!)()(000)(-=∑∞=的充要条件是0→n R证明:(充分性)由泰劳定理,有n n R x S x f +=)()(令n →∞,有0)(!)(lim )(lim )(000)(+-=+=∑∞=∞→∞→nn n n n n n x x n x fR x S x f(必要性) 由n n R x S x f +=)()(,即)()(x S x f R n n -=若)(lim )(!)()(000)(x S x x n x fx f n n nn n ∞→∞==-=∑,则nn n n n n n x x n x fx S x f R )(!)()(lim )(lim 000)(-=-=∑∞=∞→∞→注:(1)本定理表明给出了f(x)能展成幂级数的充要条件有两个: (i)可导 (ii)余项无穷小(2)当x0=0时,所得的级数称为马克劳林级数(更常用) (3)本定理也给出了将f(x)展开幂级数的方法: (i) 求f (n)(x) (若某个不存在,则终止) (ii) 写出幂级数(iii) 求出幂级数的收敛区间 (iv) 在收敛区间内,验证Rn →0(v) 写出完整的等式(在收敛区间内成立!!) 举例: (1)e x (P219图)(2)sin x(3)(1+x )a (余项为0不好验证!!)另一验证方法:(i) 求出绝对收敛域f(x)=“二项式级数” (-1,1)(ii) 求f ’(x)(iii) 两端同乘(1+x),并整理次序(因绝对收敛),其中,利用!)1()1(!)()1()!1()1()1(n n m m m n n m m n n m m +--=--+-+--(iv) 令g(x)=f(x)/(1+x)m ,验证g(0)=1,g ’(x)=0 (v) 进而证明f(x)=(1+x)m展成幂级数的间接展开法:举例:1、变量代换法2、恒等式(函数关系法)3、导数、积分关系法展成一般幂级数的方法:举例:1、将sinx 展成(x-π/4)的幂级数 2、将1/x 展成(x-1)的幂级数二、幂级数展开的应用1、近似计算: P224例1~52、Euler 公式:(1)nn zzn e∑∞==!1(2)yi y y n i y n iy n en n n n n n nn iysin cos )!12()1()!2()1()(!1120200+=⎪⎪⎭⎫ ⎝⎛+-+⎪⎪⎭⎫ ⎝⎛-==+∞=∞=∞=∑∑∑(3)2sin ,2cosixixixixe ex e e x ---=+=(4))sin (cos y i x e e e e x iy x iy x +==+4、将e xcos x 展成x 的幂级数: 解:因为nnn xi xi xx i n e ex e⎪⎭⎫⎝⎛+===∑∞=++)4sin4(cos2!1ReRe Re cos 0)4sin4(cos2)1(ππππ()!4c o s24s i n 4c o s 2!Re!)1(Re2/0n xn n i n n xxn i nn n nnn n πππππ∑∑∑∞=∞=∞==⎪⎭⎫ ⎝⎛+=+=三、函数的一致收敛性例1 级数⎩⎨⎧=∈=+-++-+-+=-1,1)1,0[,0)()()()(1232x x xxx xx xx x f n n。
函数展成幂级数的公式首先,我们来了解一下函数展成幂级数的定义。
给定一个函数 f(x),我们希望能够找到一系列常数 a0、a1、a2...an 和幂级数∑(n=0 to∞)an(x-c)^n,使得对于给定的 x 的一些范围内,f(x)可以用幂级数进行近似表示。
这个幂级数的展开点 c 表示了幂级数的发散点或收敛点。
接下来,我们介绍一些常见的函数展成幂级数的公式。
1.泰勒级数:泰勒级数是展开函数的一种特殊情况,它是函数f(x)在一些点c处的幂级数表示。
泰勒级数的公式为:f(x)=f(c)+f'(c)(x-c)+f''(c)(x-c)^2/2!+f'''(c)(x-c)^3/3!+... 2.麦克劳林级数:麦克劳林级数是中心点c为0的泰勒级数,它是函数在原点附近的幂级数表示。
麦克劳林级数的公式为:f(x)=f(0)+f'(0)x+f''(0)x^2/2!+f'''(0)x^3/3!+...3.求和公式:对于一些特定的函数,我们可以使用求和公式来展开函数为幂级数表示。
例如:sin(x) = x - x^3/3! + x^5/5! - x^7/7! + ...cos(x) = 1 - x^2/2! + x^4/4! - x^6/6! + ...exp(x) = 1 + x + x^2/2! + x^3/3! + ...ln(1+x) = x - x^2/2 + x^3/3 - x^4/4 + ...这些公式是函数展成幂级数的基础,可以通过逐阶求导和求和运算得到。
其中,泰勒级数和麦克劳林级数是最常见的展开形式,适用于大多数函数的近似表示。
求和公式则适用于一些特定的函数,如三角函数、指数函数和对数函数等。
此外,函数展成幂级数还有一些重要的性质和定理,如幂级数的收敛域、幂级数的计算方法(如微积分运算)、幂级数的和函数和导数等。