软磁铁氧体介绍
- 格式:ppt
- 大小:296.00 KB
- 文档页数:10
软磁铁氧体磁心主要品种规格及其应用(一)适于高频电子变压器和电感器应用的软磁铁氧体磁心,品种规格很多主要有E 型、U 型、罐型及特殊磁心等,下面作一些重点介绍。
(1) E 型磁心具有矩形截面的E型磁心,由于结构和制造简单,已成为最广泛应用的高频变压器磁心,可以在低磁通密度或高磁通密度下使用。
这类磁心通常成对使用,组成闭合磁路。
常用规格可细分为 EE 型、EI 型、ETD(EC) 型;新开发的有 EPC、EFD 型等,在平面变压器中使用。
① EE 型磁心常用规格有 EE13、EE16、EE19、EE20、EE22、EE25、EE28、EE30、EE40、EE55等。
分别表示磁心的外形尺寸。
有的适用于开关电源变压器,有的可制作驱动变压器,脉冲变压器等。
平面变压器采用更小尺寸的规格,如 EE5、EE10 等。
② EI 型磁心用一个 E 型和一个条型磁心配对作用,常用规格有 EI22、EI25、EI28、EI30、EI35、EI40、EI50等,这类磁心可以制作开关电源的变压器,也在彩电中制作枕校变压器,近年来,在平面变压器中采用更小规格除菌过滤器磁心,如 EI14、EI18 等。
③ ETD(EC) 型磁心国际电工委员会早在 1992 年就推荐了 ETD 磁心尺寸系列,以后又陆续将尺寸系列作了一些扩展,这类磁心中心柱为圆形截面(见图1-1.3),与相同面积的方形截面相比,绕线长度短,因而微孔滤膜铜耗小,漏感也低。
这类磁心国内习惯于称为 EC 型磁心,国外也有称为 ER 型磁心。
国际标准推荐的尺寸规格有 ETD19、ETD29、ETD34、ETD39、ETD44、ETD49、ETD54、ETD59。
这类磁心主要用于制作功率变压器和扼流图,更适合高频使用。
在平面变压器推荐使用低矮形的 ER 型磁心,尺寸规格有 ER95、ER11、ER14.5。
铁氧体英文缩写
铁氧体英文缩写为Ferrite,可分为以下四种类型:
1. 硬磁铁氧体(Hard Ferrite):
硬磁铁氧体是指具有高磁各向异性和优良磁性能的铁氧体材料。
其具有高矫顽力、高磁能积、高饱和磁感应强度等特点,是一种重要的磁性材料。
2. 软磁铁氧体(Soft Ferrite):
软磁铁氧体是指具有优良软磁性能的铁氧体材料。
其具有低矫顽力、低铁磁导率、低饱和磁感应强度等特点,广泛应用于电信、电力等领域。
3. 医用铁氧体(Medical Ferrite):
医用铁氧体是指应用于医学领域的铁氧体材料。
其具有生物相容性、低磁滞损耗等特点,可用于磁共振成像、磁治疗等方面。
4. 纳米铁氧体(Nano Ferrite):
纳米铁氧体是指颗粒大小在10-100纳米之间的铁氧体材料。
其具有优良的磁学性能和特殊的表面效应,被广泛应用于磁记录、生物医学等领域。
软磁铁氧体材料基本知识特性参数和定义低频软磁铁氧体材料常用的基本知识和特性参数有:1.饱和磁感应强度(Bs):指在外加磁场作用下,材料达到饱和状态时的磁感应强度。
低频软磁铁氧体材料的饱和磁感应强度一般在0.3-0.4T之间。
2.矫顽力(Hc):指在反向外加磁场作用下,材料磁化过程中需要克服的磁场强度。
低频软磁铁氧体材料的矫顽力一般在1-2kA/m之间。
3.相对磁导率(μr):指在一定的频率和磁场强度下,材料对磁场的相对响应能力。
低频软磁铁氧体材料的相对磁导率一般在1000-5000之间。
4.居里温度(Tc):指低频软磁铁氧体材料的磁性转变温度,低于居里温度,材料呈现磁性;高于居里温度,材料呈现顺磁性。
低频软磁铁氧体材料的居里温度一般在300-600℃之间。
高频软磁铁氧体材料常用的基本知识和特性参数有:1.饱和磁感应强度(Bs):指在外加磁场作用下,材料达到饱和状态时的磁感应强度。
高频软磁铁氧体材料的饱和磁感应强度一般在0.5-1.0T之间。
2.矫顽力(Hc):指在反向外加磁场作用下,材料磁化过程中需要克服的磁场强度。
高频软磁铁氧体材料的矫顽力一般在4-10A/m之间。
3.相对磁导率(μr):指在一定的频率和磁场强度下,材料对磁场的相对响应能力。
高频软磁铁氧体材料的相对磁导率一般在10-500之间。
4.居里温度(Tc):指高频软磁铁氧体材料的磁性转变温度。
高频软磁铁氧体材料的居里温度一般在200-300℃之间。
软磁铁氧体材料的定义是指一类具有低磁滞、高磁导率和低损耗的磁性材料,广泛应用于电磁设备中的磁心、磁头、电感器等部件。
其磁性能取决于成分配比、制备工艺以及烧结条件等因素。
软磁铁氧体材料的特性参数非常重要,可直接影响材料的磁性和电磁性能,因此对于材料的选择和应用具有重要意义。
总之,软磁铁氧体材料是一类重要的磁性材料,具有低磁滞、高磁导率和优良的电磁性能。
通过对软磁铁氧体材料的基本知识、特性参数和定义的了解,可以更好地选择合适的材料,满足具体的应用需求。
软磁铁氧体材料和磁心概述软磁铁氧体材料和磁心概述软磁铁氧体材料分类铁氧体又称氧化物磁性材料,它是由铁和其它金属元素组成的复合氧化物。
铁氧体采用陶瓷工艺,经高温烧结而制成各种形状的零件。
实际上,所有在金属磁性材料中出现的磁现象,在铁氧体中也能观察到,但是有两个基本不同点:一是铁氧体的饱和磁化强度远远低于金属磁性材料,通常为金属材料的一半到五分之一;二是铁氧体的电阻率比金属磁高一百万倍以上。
由于这种区别,对于低频(1000 赫兹以下)高功率的磁心一般采用金属磁性材料,用于较高频率(1000 赫兹以上)磁心采用铁氧体材料。
按照铁氧体的特性和用途,可把铁氧体分为永磁、软磁、矩磁、旋磁和压磁等五类;如果按照铁氧体的晶格类型来分,最重要的有尖晶石型、石榴石型和磁铅石型等三大类。
高频变压器和电器中主要使用软磁铁氧体材料,因此下面主要叙述软磁铁氧体材料的分类及特性。
大多数软磁铁氧体属尖晶石结构,一般化学表示式为MeFe 2O 4,这里 Me 表示二价金属元素,如:Mn、Ni、Mg、Cu、Zn等。
软磁铁氧体材料是各种铁氧体材料中产量最多,用途最广泛的一种。
这类材料的主要特点是起始磁导率高和矫顽力低,即容易磁化也极易退磁,其磁滞回线呈细而长形状。
软磁铁氧体材料可按化学成分、磁性能、应用来进行分类。
若按化学成分来分类,则主要可分为 MnZn 系、NiZn系和 MgZn 系三大类。
MnZn 系铁氧体具有高的起始磁导率,较高的饱和磁感应强度,在无线电中频或低频范围有低的损耗,它是,1兆赫兹以下频段范围磁性能最优良的铁氧体材料。
常用的MnZn 系铁氧体,其起始磁导率μi=400~20000,饱和磁感应强度 BS=400~530mT。
MnZn 系铁氧体广泛制作开关电源变压器、回扫变压器、宽带变压器、脉冲变压器、抗电磁波干扰滤波电感器及扼流圈等,是软磁铁氧体中产量最大的一种材料(按重量计约占 60%)。
NiZn 系铁氧体使用频率 100kHz~100MHz,最高可使用到300MHz。
铁氧体磁性材料可用化学分子式 MFe2O4表示。
式中M代表锰、镍、锌、铜等二价金属离子。
铁氧体是由这些金属化合物的混合物烧结而成。
铁氧体的主要特点是电阻率远大于金属磁性材料,这抑制了涡流的产生,使铁氧体能应用于高频领域。
在NCD,铁氧体是通过下列过程生产出来的首先,按照预定的配方称重,把高纯度,粉状的氧化物 (如 Fe2O3、Mn3O4、ZnO、NiO等 ) 混合均匀,再经过煅烧、粉碎、造粒和模压成型,在高温 (1100℃—1400℃)下烧结。
烧结出的铁氧体制品通过磨削加工获得成品尺寸。
上述各道工序均受严格的控制,以使产品的所有特性符合规定的指标各种不同的用途要选择不同的铁氧体材料。
NCD主要生产锰锌软磁铁氧体,包括以低磁芯损耗、高磁通密度为特征的LP系列功率材料和以高磁导率为特征的HP 系列高μ材料。
NCD的LP系列材料制成的磁芯主要适用于功率转换领域,如开关电源主变压器和输出平滑扼流圈、DC-DC变换器、照明用电子镇流器等。
按适用频率范围分为LP2、LP3和LP4等三种材料牌号。
LP2材料适用于20kHz —150kHz中低频率。
LP3材料是目前应用最广泛的中高频段(100kHz — 500kHz) 优秀材料。
LP4材料则是为适应开关电源高频化发展趋势而开发的超高频功率材料,它主要适用于500kHz — 1000kHz谐振式开关电源。
LP系列的各个材料在各自适用频段内均具有很低的磁芯损耗,且从室温至实际工作温度( 80℃— 100℃ ),损耗呈负温度系数,因而可有效抑制变压器等器件的温升。
NCD的HP系列材料制成的磁芯主要用于通讯和电磁兼容( EMC )领域,如宽带变压器、脉冲变压器及电源滤波器等。
根据磁导率和损耗水平的不同备有HP1、HP2和HP3等三种材料牌号。
使用中如对电感量和器件体积有较高要求,可优先选用HP3材料;如对损耗和高频特性有较高要求,则可选用HP1或HP2材料。
NCD始终致力于开发和生产高技术含量、性能与国际主流产品同步的各种铁氧体材料和磁芯,以适应迅速发展的电子信息产业对基础磁性元器件的需求。
镍锌铁氧体磁芯
镍锌铁氧体磁芯是一种高频软磁铁氧体材料,具有尖晶石结构,相对初始磁导率μ在15~70之间,矫顽力为238.8~557.2A/m,居里点为350~450℃。
它的主要原料包括铁、镍、锌的氧化物或盐类。
镍锌铁氧体磁芯由于具有高频、宽频、高阻抗、低损耗的特点,在近几年越来越受到重视,成为在高频范围(1-100MHz)内应用最广、性能优异的软磁铁氧体材料。
镍锌铁氧体磁芯的磁导率从15-2000不等均有应用,常用的材料磁导率在100-1000之间。
此外,它还具有极高的阻抗率,不到几百的低磁导率等特性。
在电子设备中,镍锌铁氧体磁芯广泛应用于线圈和变压器中,因为它具有高的饱和磁感应强度,机械应力影响小,价格便宜等优点。
请注意,对于任何关于电子设备或材料的详细技术问题,最好咨询相关的专业人员或查阅专门的技术资料,以确保安全和准确性。
锰锌软磁铁氧体磁芯术语及定义(精)锰锌软磁铁氧体磁芯是一种重要的电气材料,在电子电气领域得到广泛应用。
为了更好地理解和实践锰锌软磁铁氧体磁芯,我们需要掌握一些相关的术语和定义。
在这篇文章中,我们将详细介绍锰锌软磁铁氧体磁芯的术语及定义。
1. 磁通密度(B)磁通密度(B)是指磁芯中磁通量与磁芯截面积之比,单位是特斯拉(T)。
在设计锰锌软磁铁氧体磁芯时,需要根据具体的电气要求来确定所需的磁通密度。
2. 饱和磁通密度(Bs)饱和磁通密度(Bs)是指在磁场强度为一定值时,所能达到的最大磁通密度。
这里所说的磁场强度是指磁场的磁能密度,单位是特斯拉(T)。
锰锌软磁铁氧体磁芯的饱和磁通密度是其重要的参数之一,也是衡量磁芯性能的重要指标。
3. 沿磁通方向磁导率(μ)沿磁通方向磁导率(μ)是指在磁芯中,沿着磁通方向的磁场强度与磁通密度之比。
通常是通过电磁模拟或实验测量得到。
锰锌软磁铁氧体磁芯的沿磁通方向磁导率会受到各种因素的影响,如磁芯材料、形状、工艺等等。
4. 交流磁导率(μa)交流磁导率(μa)是指在交流磁场下,磁通密度与磁场强度之比,通常也是通过电磁模拟或实验测量得到的。
在实际应用中,锰锌软磁铁氧体磁芯的交流磁导率也是十分重要的参数,尤其在高频应用中。
5. 磁芯损耗(P)磁芯损耗(P)是指在交变磁场下,磁芯中的磁能转化为热能的速率。
它是描述磁芯在实际使用中能量损失大小的重要参数。
锰锌软磁铁氧体磁芯的损耗主要有剩磁损耗(Pv)和涡流损耗(Pc)。
6. 剩磁损耗(Pv)剩磁损耗(Pv)是指在交变磁场下,磁芯中由于磁芯材料本身的磁滞特性而产生的损耗。
剩磁损耗是影响锰锌软磁铁氧体磁芯性能的重要参数之一,在设计和使用磁芯时,需要尽可能减小其剩磁损耗。
7. 涡流损耗(Pc)涡流损耗(Pc)是指在交变磁场下,磁芯中由于涡流的存在而产生的损耗。
涡流损耗也是锰锌软磁铁氧体磁芯的重要参数之一,需要在设计和使用磁芯时加以考虑。
以上就是锰锌软磁铁氧体磁芯的一些重要术语和定义,它们是掌握锰锌软磁铁氧体磁芯理论和实践的基础。
软磁铁氧体材料标准软磁铁氧体材料是一种应用广泛的磁性材料,具有优良的磁性能和电磁性能,被广泛应用于电子、通信、汽车、医疗等领域。
为了保证软磁铁氧体材料的质量和性能,制定了一系列的标准,以便对其进行规范和检测。
首先,软磁铁氧体材料的标准主要包括以下几个方面,化学成分、物理性能、磁性能、热稳定性、机械性能等。
其中,化学成分是影响软磁铁氧体材料性能的重要因素之一,其主要包括氧化铁、氧化锌、氧化镍、氧化镁等元素的含量。
在制定标准时,需要对这些元素的含量进行严格的控制,以确保材料的化学成分符合要求。
其次,软磁铁氧体材料的物理性能也是制定标准的重点之一。
物理性能包括材料的密度、晶粒大小、晶粒分布、晶界相互作用等指标。
这些指标直接影响着材料的磁性能和热稳定性,因此在制定标准时需要对这些指标进行详细的规定和测试方法的制定。
另外,软磁铁氧体材料的磁性能也是制定标准的重要内容之一。
磁性能包括材料的磁化曲线、饱和磁感应强度、矫顽力、磁导率等指标。
这些指标是衡量软磁铁氧体材料性能优劣的重要标准,因此在制定标准时需要对这些指标进行详细的规定和测试方法的制定。
此外,软磁铁氧体材料的热稳定性和机械性能也是制定标准的重要内容之一。
热稳定性包括材料在高温下的磁性能衰减情况,机械性能包括材料的硬度、弯曲强度、抗拉强度等指标。
这些指标是衡量软磁铁氧体材料在实际应用中能否稳定工作的重要标准,因此在制定标准时需要对这些指标进行详细的规定和测试方法的制定。
综上所述,软磁铁氧体材料的标准涉及到化学成分、物理性能、磁性能、热稳定性、机械性能等多个方面,对材料的质量和性能进行了全面的规范和检测。
只有严格按照这些标准进行生产和检测,才能保证软磁铁氧体材料的质量和性能符合要求,从而更好地满足各个领域的应用需求。
锰锌铁氧体介绍锰锌铁氧体是一种由Mn Zn Fe O元素构成的软磁材料。
它是一种重要的磁性材料,广泛被应用于电子、信息、通信等领域。
锰锌铁氧体具有高饱和磁感应强度、低磁滞损耗、磁谐振频率高、热稳定性好、稳定的电性能等特性,因此在电子元器件中具有广泛应用价值。
一、锰锌铁氧体的组成和制备锰锌铁氧体由四种元素组成,分别为锰(Mn)、锌(Zn)、铁(Fe)和氧(O),化学式为MnZnFe2O4。
Mn、Zn、Fe三种金属离子以及氧离子形成的四方晶体结构,其晶体结构采用的是尖晶石结构。
锰锌铁氧体的制备方法有烧结法、化学共沉淀法、水热合成法等多种。
烧结法是最常用的制备方法之一。
在烧结法中,需要先将所需的金属氧化物粉末按照一定的比例混合均匀,然后在高温下进行烧结,得到锰锌铁氧体的制品。
二、锰锌铁氧体的物理和磁性能锰锌铁氧体的物理和磁性能与其晶体结构、物理尺寸和烧结条件等因素密切相关。
下面介绍一下锰锌铁氧体的一些基本物理和磁性能参数:1. 饱和磁化强度:锰锌铁氧体的饱和磁感应强度一般在0.5-1.2T之间,与其化学成分和制备工艺等因素有关。
2. 矫顽力和磁滞损耗:锰锌铁氧体的磁滞损耗一般较低,其矫顽力和磁滞损耗与其尺寸、磁场频率和温度等因素有关。
3. 磁导率和磁谐振频率:锰锌铁氧体的磁导率和磁谐振频率与其晶体结构、磁场频率和温度等因素有关,一般在几百 kHz至几 GHz之间。
4. 热稳定性:锰锌铁氧体具有较好的热稳定性,其磁性能在高温下变化较小,一般可在200°C左右使用。
5. 电学性能:锰锌铁氧体具有较好的电学性能,其电阻率高、介电常数低和压电常数小等特点,具有广泛的应用前景。
三、锰锌铁氧体的应用领域锰锌铁氧体具有较好的电磁性能,广泛应用于电子元器件、电动机、变压器、磁性记录材料、高频电感器、微波元件、天线等领域。
具体应用如下:1. 电子元器件:锰锌铁氧体可用于磁盘马达、电源滤波器、线圈等电子元器件中,其高频特性和高温特性表现良好。
e型软磁铁氧体磁芯什么是e型软磁铁氧体磁芯e型软磁铁氧体磁芯是一种常用于电子设备和电磁设备中的磁芯材料。
它具有高磁导率、高饱和磁通密度和低磁滞等特点,被广泛应用于变压器、电感器、滤波器、传感器等电磁元件中。
e型软磁铁氧体磁芯的结构e型软磁铁氧体磁芯一般由铁、氧和一些其他的合金元素组成。
它通常是以粉末冶金的方法制备而成。
经过成型、烧结等工艺,最终得到具有特定形状和尺寸的磁芯。
e型软磁铁氧体磁芯的特性1. 高磁导率e型软磁铁氧体磁芯具有较高的磁导率,能够有效地传导磁场。
这使得它在电感器中能够实现高效的能量转换和传递。
2. 高饱和磁通密度e型软磁铁氧体磁芯的饱和磁通密度较高,意味着在给定体积内能够容纳更多的磁场能量。
这对于电磁元件的设计和性能提升非常关键。
3. 低磁滞e型软磁铁氧体磁芯的磁滞损耗较低,表现为磁芯在磁场变化时能够更快地实现磁化和去磁化。
这有助于减少能量损耗和磁场波动。
4. 优异的温度稳定性e型软磁铁氧体磁芯具有良好的温度稳定性,能够在较高温度下保持较稳定的磁性能。
这使得它在高温环境下的应用更具优势。
e型软磁铁氧体磁芯的应用1. 变压器e型软磁铁氧体磁芯常用于变压器中,用于传导和转换电能。
它能够有效地控制磁场,并减少能量损耗,提高变压器的效率。
2. 电感器e型软磁铁氧体磁芯广泛应用于电感器中,用于储存和释放磁场能量。
它能够快速响应电流变化,并具有较低的能量损耗。
3. 滤波器e型软磁铁氧体磁芯在滤波器中起着重要的作用。
它能够去除电磁干扰和噪声,保证信号的纯净性和稳定性。
4. 传感器e型软磁铁氧体磁芯在传感器中被用于检测磁场和变化。
它能够快速、精确地转换磁场信号为电信号,实现信号的传感和测量。
e型软磁铁氧体磁芯的发展趋势e型软磁铁氧体磁芯在电子设备和电磁设备领域的需求不断增加。
未来,随着电子技术的发展和应用场景的扩大,e型软磁铁氧体磁芯的发展趋势将会有以下几个方面:1. 提高材料性能研发人员将致力于提高e型软磁铁氧体磁芯的磁导率、饱和磁通密度和温度稳定性等性能指标,以满足更高要求的应用场景。
软磁铁氧体材料吕迪格尔·德赖尔(Rudiger Dreyer) <卡施克(Kaschke)合资有限公司,格廷根,德国> 本文对软磁铁氧体的结构—特性关系进行研究.介绍高磁导率的锰锌铁氧体,功率传导直至2MHz的锰锌铁氧体和电磁兼容应用的镍锌铁氧体.讨论工艺的影响,特别是对锰锌铁氧体在还原气氛下的烧结控制以及最佳的还原气氛状态的调节.此外,重点介绍铁氧体在功率传导,照明技术,抗干扰和通信技术领域中的应用. 1. 物理的基本原理 一般惯用的说法是对一种显示铁磁性特性的材料称之为”磁性材料”.在这种情况下,电子自旋的所有的磁距通过交换作用在同一个方向上进行排列(图1a),并被保持到不超过该材料特定的极限温度(居里温度Фc).其可达到的磁性参数,如磁导率,磁通密度等是最大.在一定的条件下,邻近的自旋可以处于反平行的,人们称之为反铁磁性(图1b).最好直观的是,当我们将晶体晶格划分成两个亚晶格时,在此际,每个亚晶格又重新是铁磁性的,但是显示出相反的排列.如果每个亚晶格经不同强度的磁化时,那么通过外界作用的磁化保留是不完全的,存在着一种磁性起作用的材料.人们对这种状态称之为亚铁磁性.(图1c).a) 铁磁性 b) 反铁磁性 c)亚铁磁性图1 磁性的状态带有奇数原子的电子具有不平衡的自旋,以致产生一个外部的磁距.在过渡金属(3d-原子)中,这个数还要大些,因为3d-轨道首先将占据单个的(Hund’sche 规则).表1: 3d-金属或挑选的3d-离子的磁距μBS cTiV CrMnFeCoNiCuZnμB1 2 3 4 5 4 3 2 1 0S c3+Ti4+V5+Cr3+Mn2+Fe2+Co2+Ni2+Cu2+Zn2+μB0 0 0 3 5 4 3 2 1 0(还有其他的价态,在这里没有列举的,但是在铁氧体中具有重要作用的有:例如Fe3+ 的磁距为5个玻尔磁子和Mn3+ 为4个玻尔磁子)所有亚铁磁性的物质(材料)都概括在”铁氧体”之中.最简单的铁氧体的成分是用化学式MeOFe2O3 (或MeFe2O4)来表示.这里Me是一个两价的金属离子,如Mn,Fe2+,Co,Ni,Zn或Mg,或者是这些金属的混合物.一般来说,铁氧体就有一个尖晶石结构(称之为矿物尖晶石的晶格:MgAl2O4).在一个单位晶胞中,可能有64个四面体座和32个八面体座,其中仅有8个四面体座和16个八面体座被占据.在软磁铁氧体种类中,特别是具有应用技术意义的有两组:Ni-Zn铁氧体和Mn-Zn 铁氧体.为此,将说明除了Fe2O3和ZnO外,或者是NiO,或MnO所组成的结晶晶格的结构.为了改善对此获得的性能,可以添加各种不同的掺杂,如CoO,TiO2,V2O5,SnO2,CaO或SiO2.技术上可使用的铁氧体的成分局限于一个相对小的范围内,在这方面,FeO3是位于化学计量的范围或有点超化学计量范围(见图3).图2 尖晶石晶格 图3 Mn-Zn 铁氧体混合物在这个范围内,我们可以用各种不同的成分来确定其需要的性能,例如磁导率,饱和磁通密度或居里温度.铁氧体与一种铁磁性磁体(例如与纯铁)来作比较,那么其区别主要是下列的参数: 纯铁的初始磁导率为100000~200000,约高于最高磁导的铁氧体(μI ≈25000)8倍纯铁的饱和磁感应强度为2.3T,约高于铁氧体(约550mT)值的4倍.铁氧体由于它的氧化物基,具有与半导体(Mn-Zn 铁氧体)或电介质(Ni-Zn 铁氧体)可比较的电导率,对此比金属低约106~1012.由此其后果是诱发的涡流在显著较高的频率时才起作用,所以薄片叠成的纯铁在最大频率到10KHz 时使用,而铁氧体直到GHz-范围还能保持磁性有效的.为了能够说明一种磁性材料的性能,材料特定的磁滞曲线的确定提供一个重要的帮助. 由此可以推导出如初始磁导率和增量磁导率,饱和磁通密度,剩余磁通密度和矫顽磁场强度等参数.虽然目前已经能购买到可以很容易用来确定频率直至10MHz 时的磁滞曲线的仪器(价格约250000DM),在一般情况分别对单个参数进行测量或计算.1.1初始磁导率μi作为表示一种软磁材料的基本特性,在一般情况下是考虑材料的磁导率.一般的定义是:HBu u ∆∆=01---------------------(1)由于磁滞曲线的非线性,我们立即看到,不可能给出唯一的磁导率.那么确定各种不同的有区别的磁导率要根据当时应用的需要.人们对铁氧体应用初始磁导率μi 作为材料参数,其是用很小的最大磁化磁场(B ≤0.25mT)来定义的:HB u u H i ∆∆=→00lim 1-------------------(2) 试图对μi 进行计算,考虑到材料的内在参数,其相互关系将通过下列公式给出1) :...2+•+=σλK Si E M u --------------------------(3)式中:Ms—饱和磁化强度 Ek—各向异性能 λ—磁致伸缩常数 σ--势能然而,对一个实体的铁氧体的初始磁导率要进行精确分析的计算是不可能的.但是这些公式指出,高磁导率的和最高磁导率的铁氧体的初始磁导率是以高的饱和磁化强度,微小的各向异性和一个理想的晶体结构为先决条件的.然而,当这些先决条件也被满足时,μi 值还很大程度上取决于外界的压力;即材料处于压力下(例如在涂复时或在一个紧绕的绕组中),其磁导率可能下降直至60%.唯一能够精确测定μi 的磁芯形状是环形磁芯.由于他的形状和绕缠线圈的方式,实际上磁力线的走向完全在磁芯内部,磁导率不会由于气隙产生露磁而降低.对于通过绕组产生的磁场H 适用于下面的近似方式:el I N H •=--------------------------------------(4)式中:N—绕组匝数I--测试电流和 L e —平均磁路长度.因此,我们通过少的绕组匝数,小的测试电流和长的磁路长度来获得一个小的磁场.用于测定材料特性数据大多数选择一个外径约为30mm 的环形磁芯,在上面绕上10匝或20匝的线圈.测试电流是通过(仪器侧预先确定)测试电压和仪器的内阻来确定的.如果仪器有较多个测试电压时,那么原则上是选择最低的.按照IEC 规定,作为测试频率值应该选择远低于旋磁性的谐振,所以对所有的材料统一的规定,F ≤10KHz;与此同时,测试温度与室温,即约25℃. 1.2增量磁导率μa 如果我们将磁场从接近零开始加上较大的值时,那么将改变磁滞曲线的斜率.如果我们将这个斜率作为磁通密度B的函数时,那么曲线在B=0开始与初始磁导率一起增大,为了超过一个最大值接近1. HBu u a 01= ---------------(5) 人们对这样获得的磁导率称为增量磁导率μa,其在功率感抗的设计参数中是一个比μi更重要的参数,在较弱的磁场下μa能够明显的区别与μi.超过最大值后,L值降低并在末端效应中接近1(=达到饱和磁通密度).曲线的走向是与温度有依赖关系,图4是表示对25℃和100℃的相关性. 图4 增量磁导率μa作为温度T的函数 1.3饱和磁通密度Bs,剩余磁通密度Br,矫顽磁场强度Hc 由于磁场的增强,首先是外斯畴壁的布咯赫壁位移,在一个非弹性的反转过程之前,同磁化强度的转动导向H 的方向.当所有的磁距被排列时,达到最大的磁通密度(=饱和磁通密度Bs)当磁场H 减小时,由于不可逆的巴克好生一阶跃,曲线不再按磁场增强时的走向.在H=0时,滞留一部分(在外部起作用的)磁感应强度,剩余磁通密度Bs.这与工艺过程,磁芯形状和其他可影响的参数有相互依赖关系.为了使这个剩余的磁通密度为零,必须要接上一个相反极性的外界磁场.这个磁场的强度是一个材料特定的参数,矫顽力Hc.1.4损耗一种磁性介质的每次交流磁化都带有损耗,在很弱的磁化磁场下首先是涡流损耗和后效损耗,在稍强些的磁化磁场( B ≈10mT)下还附带有磁滞损耗,在这些范围上,在磁芯中发生的损耗功率直接用W/g或W/cm3来说明. 1.4.1 相关损耗因数 tanδ/μi 在一个交变场磁化时,在磁芯中产生的磁通密度B 不是在与施加的磁场的相位中(模拟交变电流和交流电压).在产生的磁化强度与磁通密度之间的角δ被称作为损耗角.损耗角越小,材料的Q 值越高.由于这些原因,品质因数Q 被如下来定义:'''tan 1uu u a ==δ --------------(6)对Q 的精确测量一般的使用一种Q 表,其是按照可调谐的振荡回路的原理来工作的.为了将振荡回路调准到谐振上,对此,测试频率调整到固定置位和电容量无极可变的.因为品质因数的测量只有在绕缠的组件上才有可能,真正的材料品质只能够通过对微小的欧姆分量的外推法来确定.然而由于小的相位角,那么我们获得的Q 值非常的离散,因此要更好的证明是可靠的,质量因数是在规定的绕组的情况下来说明并放弃外推法.可是直至今天还没有标准化的测试方法,因此对不同的生产厂的不同材料依据产品目录值来进行对比是不适宜的.1.4.2 磁滞损耗,涡流损耗和后效损耗一种软磁材料的损耗是有较多的部分形成的,按照JORDAN 2) 可以将其分别成3个单独的相加的参数.即磁滞损耗,涡流损耗喝后效损耗:L f n L f e L H f h R R R R eff n e h v ••+••+•••=++=2 -------------------(7)式中: Rh—磁滞损耗电阻 Re—涡流损耗电阻 Rn--后效损耗电阻h,e,n—相对应的损耗系数为了能够将损耗进行分离,将商 R v /f*L 作为在不同Heff 值时频率f 的函数并且图解的对磁场强度与频率零进行外推. 磁滞损耗时由于材料的反复磁化而产生的.因为磁距进行排列不是完全”无摩擦的”和可逆的,所施加的磁场能的一部分转变为热量.在这种情况下,磁滞曲线的面积是所产生的损耗的量值. 涡流是发生在电导的介质中,当经过时间上的变化时,磁通密度产生诱导的环电压.由此出现的涡流在这方面产生的一个磁感应强度,其方向始终是与外界磁场相反的(楞次定律).由此为了保持由此产生的损耗尽可能的小,人们需要具有高电阻率的或宽磁滞曲线的材料(参见第1.5节). 后效损耗由于驰豫过程而形成的.例如当布咯赫壁由于各向异性的晶体场能使电位阱”深化”,不仅因为阳离子扩散,而且因为支撑内部由热能来源的起伏场.然而如果布咯赫壁在一般情况下承受强大的结合力或完全缺乏时,那么将附加低的后效损耗,磁滞损耗也小(叵明伐型—铁氧体). 1.4.3 功率损耗Pv 在较强的磁化磁场中,将直接测量重量单位的或体积单位的磁芯损耗.按照定义,涡流损耗不应该计算在功率损耗,可是测量技术不可能轻而易举的将其分开.对此,人们认识到其影响,在一个双对数的描绘中,损耗作为频率的函数时,开始的线性上升自一个较低的频率开始,超正比的升高.在这些频率下适用:q P v B f r P ••= -------------------------(8)式中:r,p 和q 是材料常数,通常是烧绕过程能对其有影响,所以必须根据实践经验来确定.(参见图5)图5功率损耗作为频率的函数标准测量位置建立在直至1MHz 的基础上,以一个电压信号与一个电流等值的信号的倍增为底数:φcos ••=I U P -------------------------(9)在这时,电流与电压之间的相位差关系到在磁芯中消耗的能量.为了对测量对象记忆正弦形的电压,功率放大器必须提供高的视在功率和低的内阻.电流将通过一个纯粹的直流电阻来进行测定,由此进行电压测量.紧接着进行电流和电压的倍增. 通常,损耗在室温和100℃下,在磁化磁场为 50mT ,100mT 和200mT时进行测量.频率范围是从16KHz(在黑白电视机中行扫描变压器的频率)在这同时扩展到超过1MHz,在此之际对于高频只把低的磁化磁场(≤50mT)考虑在内. 由于经过引线和触点的能量反射,在≥1MHz范围中进行测量是非常昂贵的和不精确的.所以对于计量目的和试验目的,为了尽可能进行精确的测量,人们应用一种量热的方法. 在这个场合,首先是将样品放到所希望的测试频率中施加规定的磁化磁场,并测量其放出的热量.然后在一个纯粹的直流电阻下用直流电流和直流电压来调整相同的温升,由此可以通过简单的倍增来计算功率损耗. 1.5 电阻率ρ 如在第1.4.3节中提及的,电阻率确定涡流损耗的效应.如果我们对曲线走向用电阻率ρ作为频率的函数时,那么首先时保持恒定并且在较高的频率时才渐近地下降到一个恒定的,较低的值.对此的原因是微晶不同的电导率和其围绕的(绝缘的)晶界.如果取决于价电子和传导带的状态时,按频率情况而定,两个部分的一个占主要部分.结果是在用于高频(f=0.5-1MHz)的功率铁氧体中要求小的晶粒尺寸. 对于功率铁氧体来说,电阻率的一个其他的不判影响是它的温度相关性,并通过玻兹曼—函数给出: ()TK E A eT •−•=0ρρ ---------------(10) 在一个激活能EA为0.1-0.5eV3) 时可以通过对磁芯进行加热从20℃到100℃时,电阻率出现二等分,这将导致在较低的频率时涡流损耗已经开始插入.在测量电阻率ρ时的困难是由于接上了测量导线.由于他的类似半导体的特性,容易有累接阻抗通过绝缘层,使精确的测量失真. 一种常用的可能性是接触铆焊,用银-钯糊剂经丝网印刷.紧接着用可焊的材料进行电镀的覆层. 1.6 频率特性 如果我们对曲线的走向用初始磁导率μi作为频率的函数时,那么,曲线首先有一段恒定,然后当超过最大值(谐振回路的放大系数)后,陡度较大或较小的下降.初始磁导率越高,这个最大值向较低的频率移动越多.作为经验公式适用于铁氧体的使用频率与1/μi成正比.通过适合的粉末制备(特别是研磨细度)和最佳的烧结可以对”频率稳定性”明显地改 善.在频率范围在最大值以上时,这个材料不能再用作规定L-值的电感,因为制造工艺的最佳化仅被限制在旋磁性的谐振以下的范围上,并且在不同的制造批中磁导率下降可能是不相同的. 图6 复数磁导率的实数部分μ’和虚数部分μ”作为频率f的函数 1.7 温度特性,居里温度Qc 一种铁氧体材料的温度曲线很强烈的取决于他的成分(特别是掺杂)和烧结过程.如在任何一种磁性材料中有一规定的温度,在这个温度(居里温度Qc)上磁性消失.按初始磁导率前是陡度升高(最初的最大值),然后陡度下降. 和制造的‘精确”,初始磁导率的接近Qc远低于居里温度之下时,一般情况下还出现一个另外的最大值(SPM=感应的磁导率最大值).对于特殊用途(例如在滤波器铁氧体中)可以对μi(T)—曲线通过掺杂(特别是通过C o O;由于他影响磁晶各向异性常数K1的曲线走向)起作用,使其超过所期望的温度范围时单调地升高.2. 制造方法通常是应用粉末状的金属氧化物或金属碳酸盐来作为原材料,其不仅是可以合成制造而且可以用例如钢回收利用设施产生的”副产品”.在最佳成分的称量后,将原始材料在(用少许的水和有机的粘合剂)湿润之前在一个混料机中进行均匀化。
铁氧体(铁氧体磁环-铁氧体磁珠)在抑制电磁干扰(EMI)中的应用用铁氧体磁性材料抑制电磁干扰(EMI)是经济简便而有效的方法,已广泛应用于计算机等各种军用或民用电子设备。
那么什么是铁氧体呢?如何选择,怎样使用铁氧体元件呢?这篇文章将对这些问题作一简要介绍。
一、什么是铁氧体抑制元件铁氧体是一种立方晶格结构的亚铁磁性材料,它的制造工艺和机械性能与陶瓷相似。
但颜色为黑灰色,故又称黑磁或磁性瓷。
铁氧体的分子结构为MO·Fe2O3,其中MO为金属氧化物,通常是MnO或ZnO。
衡量铁氧体磁性材料磁性能的参数有磁导率μ,饱和磁通密度Bs,剩磁Br和矫顽力Hc等。
对于抑制用铁氧体材料,磁导率μ和饱和磁通密度Bs是最重要的磁性参数。
磁导率定义为磁通密度随磁场强度的变化率。
μ=△B/△H对于一种磁性材料来说,磁导率不是一个常数,它与磁场的大小、频率的高低有关。
当铁氧体受到一个外磁场H作用时,例如当电流流经绕在铁氧体磁环上的线圈时,铁氧体磁环被磁化。
随着磁场H的增加,磁通密度B增加。
当磁场H场加到一定值时,B值趋于平稳。
这时称作饱和。
对于软磁材料,饱和磁场H只有十分之几到几个奥斯特。
随着饱和的接近,铁氧体的磁导率迅速下降并接近于空气图1 铁氧体的B-H曲线的导磁率(相对磁导率为1)如图1所示。
导率,它构成磁性材料的电感。
虚数部分μ"代表损耗,如图2所示。
μ=μ'-jμ"图2 铁氧体的复数磁导率磁导率与频率的关系如图3所示。
在一定的频率范围内μ'值(在某一磁场下的磁导率)保持不变,然后随频率的升高磁导率μ'有一最大值。
频率再增加时,μ'迅速下降。
代表材料损耗的虚数磁导率μ"在低频时数值较小,随着频率增加,材料的损耗增加,μ"增加。
如图3所示,图中tanδ=μ"/μ'图3 铁氧体磁导率与频率的关系图4 铁氧体抑制元件的等效电路(a)和阻抗矢量图(b)二、铁氧体抑制元件的阻抗和插入损耗当铁氧体元件用在交流电路时,铁氧体元件是一个有损耗的电感器,它的等效电路可视为由电感L和损耗电阻R组成的串联电路,如图4所示。
铁氧体简介铁氧体(ferrites)铁氧体是一种非金属磁性材料,又叫铁淦氧。
它是由三氧化二铁和一种或几种其他金属氧化物(例如:氧化镍、氧化锌、氧化锰、氧化镁、氧化钡、氧化锶等)配制烧结而成。
它的相对磁导率可高达几千,电阻率是金属的1011倍,涡流损耗小,适合于制作高频电磁器件。
铁氧体有硬磁、软磁、矩磁、旋磁和压磁五类。
旧称铁淦氧磁物或铁淦氧,其生产过程和外观类似陶瓷,因而也称为磁性瓷。
铁氧体是铁和其他一种或多种适当的金属元素的复合氧化物。
性质属于半导体,通常作为磁性介质应用,铁氧体磁性材料与金属或合金磁性材料之间最重要的区别在于导电性。
通常前者的电阻率为102~108Ω·cm,而后者只有10-6~10-4Ω·cm。
铁氧体历史沿革中国最早接触到的铁氧体是公元前4世纪发现的天然铁氧体,即磁铁矿(Fe3O4),中国所发明的指南针就是利用这种天然磁铁矿制成的。
到20世纪30年代无线电技术的发展,迫切地要求高频损耗小的铁磁性材料。
而四氧化三铁的电阻率很低,不能满足这一要求。
1933年日本东京工业大学首先创制出含钴铁氧体的永磁材料,当时被称为OP磁石。
30~40年代,法国、日本、德国、荷兰等国相继开展了铁氧体的研究工作,其中荷兰菲利浦实验室物理学家J.L.斯诺克于1935年研究出各种具有优良性能尖晶石结构的含锌软磁铁氧体,于1946年实现工业化生产。
1952年,该室J.J.文特等人曾经研制成了以BaFe12O19为主要成分的永磁性铁氧体。
这种铁氧体与1956年该室的G.H.永克尔等人所研究的四种甚高频磁性铁氧体具有类似的六角结构。
1956年E.F.贝尔托和F.福拉又报道了亚铁磁性的Y3Fe5O12的研究结果。
其中代换离子Y有Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb和Lu等稀土离子。
由于这类磁性化合物的晶体结构与天然矿物石榴石相同,故将其称之为石榴石结构铁氧体。
迄今为止,除了1981年日本杉本光男采用超急冷法制得的非晶结构的铁氧体材料以外,从结晶化学的观点看,均未超出上述三种类型的晶体构造。
锰锌软磁铁氧体磁性材料特点以及在电源中的应用锰锌(MnZn)系软磁铁氧体概述锰锌系软磁铁氧体主要是具有尖晶石结构的mMnFe2O4·nZnFe2O4 与少量 Fe3O4 组成的单相固溶体,用锰锌系铁氧体磁性材料做成的电感磁芯及其它磁性元器件,应用频率从数百赫兹到几千兆赫兹,是最重要的软磁铁氧体材料,其产量占了软磁铁氧体磁性材料总产量的60%以上,因此,锰锌铁氧体的发展更为引人注意。
锰锌铁氧体材料主要分为高频低功耗铁氧体(又称功率铁氧体,初始磁导率通常小于5000,多数在2000左右)和高磁导率即高μi(初始磁导率)铁氧体两类。
初始磁导率ui是磁性材料的磁导率(B/H)在磁化曲线初始区的极限值,即μ0为真空磁导率 permeability in vacuum (4π×10-7H/m),单位亨/米H为磁场强度 magnetic field strength (A/m)B为磁通密度 magnetic flux density (T)(1)锰锌功率铁氧体概述功率铁氧体的主要特征是在高频(几百千赫)高磁感应(几千高斯,1T=10000Gs)的条件下,仍旧保持很低的功耗,而且其在一定的温度范围内功耗随磁芯的温升而下降,在80℃左右达到最低点,从而可以形成良性循环。
功率铁氧体的主要用途是以各种开关电源变压器和彩电回扫变压器为代表的功率型电感器件,用途十分广泛,是目前产量最大的软磁铁氧体。
如下是天通'TDG'的TP4系列的温度和磁芯损耗关系。
我国新发布的'软磁铁氧体材料分类'行业标准,把功率铁氧体材料分为PW1~PW5 五类,其适用工作频率也逐步提高。
如适用频率为15~100kHz 的 PW1 材料;适用频率为 25~200kHz 的 PW2 材料;适用频率为100~300kHz 的PW3 材料;适用频率为300~1MkHz 的 PW4 材料;适用频率为 1~3MHz 的 PW5 材料。