磁性材料的基本特性及分类参数
- 格式:docx
- 大小:31.33 KB
- 文档页数:14
一.磁性材料的基本特性1.磁性材料的磁化曲线磁性材料是由铁磁性物质或亚铁磁性物质组成的,在外加磁场H作用下,必有相应的磁化强度M或磁感应强度B,它们随磁场强度H的变化曲线称为磁化曲线(M~H或B~H曲线)。
磁化曲线一般来说是非线性的,具有2个特点:磁饱和现象及磁滞现象。
即当磁场强度H足够大时,磁化强度M达到一个确定的饱和值Ms,继续增大H,Ms保持不变;以及当材料的M值达到饱和后,外磁场H降低为零时,M并不恢复为零,而是沿MsMr曲线变化。
材料的工作状态相当于M~H曲线或B~H曲线上的某一点,该点常称为工作点。
2.软磁材料的常用磁性能参数∙饱和磁感应强度Bs: 其大小取决于材料的成分,它所对应的物理状态是材料内部的磁化矢量整齐排列;∙剩余磁感应强度Br: 是磁滞回线上的特征参数,H回到0时的B值. 矩形比: Br/Bs;∙矫顽力Hc: 是表示材料磁化难易程度的量,取决于材料的成分及缺陷(杂质、应力等);∙磁导率m:是磁滞回线上任何点所对应的B与H的比值,与器件工作状态密切相关;∙初始磁导率mi、最大磁导率mm、微分磁导率md、振幅磁导率ma、有效磁导率me、脉冲磁导率mp;∙居里温度Tc: 铁磁物质的磁化强度随温度升高而下降,达到某一温度时,自发磁化消失,转变为顺磁性, 该临界温度为居里温度. 它确定了磁性器件工作的上限温度;∙损耗P: 磁滞损耗Ph及涡流损耗Pe P=Ph+Pe=af+bf2+cPeμf2t2/,r 降低磁滞损耗Ph的方法是降低矫顽力Hc;降低涡流损耗Pe的方法是减薄磁性材料的厚度t及提高材料的电阻率r;∙在自由静止空气中磁芯的损耗与磁芯的温升关系为:总功率耗散(亳瓦特)/表面积(平方厘米)3.软磁材料的磁性参数与器件的电气参数之间的转换∙设计软磁器件通常包括三个步骤:正确选用磁性材料;∙合理确定磁芯的几何形状及尺寸;∙根据磁性参数要求,模拟磁芯的工作状态得到相应的电气参数。
材料:B H,m 磁芯(S,l):f~F 器件(N):U~I,LI ~H: H = IN/l 磁势F =ò Hdl=Hl Nf = ò UdtL~m:L=AL N2 =4N2m SK /D′10-9 U ~B:U = Ndf/dt = kfNBS ′10-6二、常用软磁磁芯的特点及应用(一).粉芯类1.磁粉芯磁粉芯是由铁磁性粉粒与绝缘介质混合压制而成的一种软磁材料。
磁性材料一.磁性材料的基本特性1. 磁性材料的磁化曲线磁性材料是由铁磁性物质或亚铁磁性物质组成的,在外加磁场H 作用下,必有相应的磁化强度M 或磁感应强度B,它们随磁场强度H 的变化曲线称为磁化曲线(M~H或B~H 曲线)。
磁化曲线一般来说是非线性的,具有2个特点:磁饱和现象及磁滞现象。
即当磁场强度H足够大时,磁化强度M达到一个确定的饱和值Ms,继续增大H,Ms保持不变;以及当材料的M值达到饱和后,外磁场H降低为零时,M并不恢复为零,而是沿MsMr曲线变化。
材料的工作状态相当于M~H曲线或B~H曲线上的某一点,该点常称为工作点。
2. 软磁材料的常用磁性能参数饱和磁感应强度Bs:其大小取决于材料的成分,它所对应的物理状态是材料内部的磁化矢量整齐排列。
剩余磁感应强度Br:是磁滞回线上的特征参数,H回到0时的B值。
矩形比:Br∕Bs矫顽力Hc:是表示材料磁化难易程度的量,取决于材料的成分及缺陷(杂质、应力等)。
磁导率μ:是磁滞回线上任何点所对应的B与H的比值,与器件工作状态密切相关。
初始磁导率μi、最大磁导率µm、微分磁导率µd、振幅磁导率µa、有效磁导率µe、脉冲磁导率µp。
居里温度T c:铁磁物质的磁化强度随温度升高而下降,达到某一温度时,自发磁化消失,转变为顺磁性,该临界温度为居里温度。
它确定了磁性器件工作的上限温度。
损耗P:磁滞损耗P h及涡流损耗Pe P = Ph + Pe = af + bf2+ c Pe f2 t2 /∝,ρ降低,磁滞损耗Ph的方法是降低矫顽力Hc;降低涡流损耗Pe 的方法是减薄磁性材料的厚度t 及提高材料的电阻率ρ。
在自由静止空气中磁芯的损耗与磁芯的温升关系为:总功率耗散(mW)/表面积(cm2)3. 软磁材料的磁性参数与器件的电气参数之间的转换在设计软磁器件时,首先要根据电路的要求确定器件的电压~电流特性。
器件的电压~电流特性与磁芯的几何形状及磁化状态密切相关。
磁性材料的分类以及特点一、带绕铁芯硅钢片是一种合金,在纯铁中加入少量的硅(一般在4.5%以下)形成的铁硅系合金称为硅钢该类铁芯具有最高的饱和磁感应强度值为12000高斯; 由于它们具有较好的磁电性能,又易于大批生产,价格便宜,机械应力影响小等优点,在电力电子行业中获得极为广泛的应用,如电力变压器、配电变压器、电流互感器等铁芯。
是软磁材料中产量和使用量最大的材料。
也是电源变压器用磁性材料中用量最大的材料。
特别是在低频、大功率下最为适用。
常用的有冷轧硅钢薄板DG3、冷轧无取向电工钢带DW、冷轧取向电工钢带DQ,适用于各类电子系统、家用电器中的中、小功率低频变压器和扼流圈、电抗器、电感器铁芯,这类合金韧性好,可以冲片、切割等加工,铁芯有叠片式及卷绕式。
但高频下损耗急剧增加,一般使用频率不超过400Hz。
从应用角度看,对硅钢的选择要考虑两方面的因素:磁性和成本。
对小型电机、电抗器和继电器,可选纯铁或低硅钢片;对于大型电机,可选高硅热轧硅钢片、单取向或无取向冷轧硅钢片;对变压器常选用单取向冷轧硅钢片。
在工频下使用时,常用带材的厚度为0.2~0.35 毫米;在400Hz 下使用时,常选0.1 毫米厚度为宜。
厚度越薄,价格越高。
2、坡莫合金坡莫合金常指铁镍系合金,镍含量在30~90%范围内。
是应用非常广泛的软磁合金。
通过适当的工艺,可以有效地控制磁性能,比如超过十万的初始磁导率、超过一百万的最大磁导率、低到千分之二奥斯特的矫顽力、接近1 或接近零的矩形系数,具有面心立方晶体结构的坡莫合金具有很好的塑性,可以加工成1 微米的超薄带及各种使用形态。
常用的合金有1J50、1J79、1J85等。
1J50 的饱和磁感应强度比硅钢稍低一些,但磁导率比硅钢高几十倍,铁损也比硅钢低2~3倍。
做成较高频率(400~8000Hz)的变压器,空载电流小,适合制作100 瓦以下小型较高频率变压器。
1J79 具有好的综合性能,适用于高频低电压变压器,漏电保护开关铁芯、共模电感铁芯及电流互感器铁芯。
磁性材料的基本特性1. 磁性材料的磁化曲线磁性材料是由铁磁性物质或亚铁磁性物质组成的,在外加磁场H 作用下,必有相应的磁化强度M 或磁感应强度B,它们随磁场强度H 的变化曲线称为磁化曲线(M~H或B~H曲线)。
磁化曲线一般来说是非线性的,具有2个特点:磁饱和现象及磁滞现象。
即当磁场强度H 足够大时,磁化强度M达到一个确定的饱和值Ms,继续增大H,Ms保持不变;以及当材料的M值达到饱和后,外磁场H降低为零时,M并不恢复为零,而是沿MsMr曲线变化。
材料的工作状态相当于M~H曲线或B~H曲线上的某一点,该点常称为工作点。
2. 软磁材料的常用磁性能参数饱和磁感应强度Bs:其大小取决于材料的成分,它所对应的物理状态是材料内部的磁化矢量整齐排列。
剩余磁感应强度Br:是磁滞回线上的特征参数,H回到0时的B值。
矩形比:Br∕Bs矫顽力Hc:是表示材料磁化难易程度的量,取决于材料的成分及缺陷(杂质、应力等)。
磁导率μ:是磁滞回线上任何点所对应的B与H的比值,与器件工作状态密切相关。
初始磁导率μi、最大磁导率μm、微分磁导率μd、振幅磁导率μa、有效磁导率μe、脉冲磁导率μp。
居里温度Tc:铁磁物质的磁化强度随温度升高而下降,达到某一温度时,自发磁化消失,转变为顺磁性,该临界温度为居里温度。
它确定了磁性器件工作的上限温度。
损耗P:磁滞损耗Ph及涡流损耗Pe P = Ph + Pe = af + bf2+ c Pe ∝ f2 t2 / ,ρ降低,磁滞损耗Ph的方法是降低矫顽力Hc;降低涡流损耗Pe 的方法是减薄磁性材料的厚度t 及提高材料的电阻率ρ。
在自由静止空气中磁芯的损耗与磁芯的温升关系为:总功率耗散(mW)/表面积(cm2)3. 软磁材料的磁性参数与器件的电气参数之间的转换在设计软磁器件时,首先要根据电路的要求确定器件的电压~电流特性。
器件的电压~电流特性与磁芯的几何形状及磁化状态密切相关。
设计者必须熟悉材料的磁化过程并拿握材料的磁性参数与器件电气参数的转换关系。
磁性材料参数汇总表引言磁性材料是一类重要的材料,在许多领域中都有广泛的应用,例如电子设备、电力传输、通信等。
了解磁性材料的参数对于正确选择和设计合适的磁性材料至关重要。
本文档旨在提供一个汇总表,列出常见磁性材料的重要参数和特性,以帮助工程师和研究人员进行选择和评估。
1. 常见磁性材料1.1 铁氧体材料铁氧体材料是一类具有高饱和磁感应强度和低磁导率的磁性材料。
下表列出了一些常见的铁氧体材料及其参数。
材料名称饱和磁感应强度 (T) 磁导率 (H/m) 矫顽力 (A/m)镍锌铁氧体0.4 50 800锰锌铁氧体0.3 100 500镍铜铁氧体0.6 20 10001.2 钕铁硼磁体钕铁硼磁体是一类具有极高磁能积和高矫顽力的磁性材料。
下表列出了一些常见的钕铁硼磁体及其参数。
材料名称饱和磁感应强度 (T) 磁能积 (J/m3) 矫顽力 (A/m)N35 1.17 263e6 955N45 1.33 326e6 955N52 1.45 398e6 9551.3 钢磁材料钢磁材料是一类在低频磁场中具有高导磁率和低矫顽力的磁性材料。
下表列出了一些常见的钢磁材料及其参数。
材料名称饱和磁感应强度 (T) 导磁率 (H/m) 矫顽力 (A/m)低碳钢 2 1000 4硅钢 2 5000 6非晶合金钢 2.1 10000 22. 参数解释2.1 饱和磁感应强度饱和磁感应强度是材料在外加磁场作用下能够达到的最大磁感应强度。
单位为特斯拉(T)。
2.2 磁导率磁导率描述了材料对磁场的响应程度,即磁场强度与磁感应强度之间的比值。
单位为亨利/米(H/m)。
2.3 矫顽力矫顽力是材料从饱和磁化状态中恢复到磁场消失状态所需施加的逆磁场强度。
单位为安培/米(A/m)。
2.4 磁能积磁能积是材料单位体积的储磁能力,表示材料在磁场中存储的能量密度。
单位为焦耳/立方米(J/m3)。
3. 典型应用3.1 铁氧体材料•镍锌铁氧体:常用于磁芯和磁带记录头。
磁性材料入门知识磁性材料入门知识磁性材料是指在磁场中可以产生磁性的材料,包括铁、钢、铁合金、磁性玻璃、氧化物等等。
它们具有多种应用,如电机、电磁铁、电子、通讯、医疗、军事等领域。
本文将为你介绍磁性材料的基本知识。
1. 磁化强度磁化强度是衡量磁性材料磁化程度的物理量,通常用磁化强度或磁化矢量表示。
磁化强度的单位是安培每米(A/m)或高斯(Gs)。
磁力线越接近选定的物体,磁化强度就越强。
2. 磁场强度磁场强度是衡量磁场强弱的物理量,它和磁性材料的磁化程度有关。
磁场强度的单位是特斯拉(T)或高斯(Gs)。
3. 磁性导数磁性材料的磁性导数是指材料对磁场的响应,通常用来表示磁性材料的磁化程度。
高磁性导数的材料对磁场的响应非常灵敏,可以用来制造磁传感器。
4. 磁饱和当磁性材料的磁化强度达到一定值时,它将不再对外加磁场产生响应,这个过程称为磁饱和。
磁饱和是磁性材料失去磁性的一个重要特征。
5. 磁畴磁性材料分为多个微小的磁畴,每个磁畴具有自己的磁矩方向,这个方向通过相邻的原子强引力互相保持。
每个磁畴磁矩方向相同,但与相邻磁畴的磁矩方向不同。
6. 磁滞回线当一个交变电流通过一个螺线管时,磁针的磁化方向会随着电流变化,因此在磁针上会形成一个磁滞回线。
磁滞回线经常用来描述磁性材料的饱和磁化、滞磁和磁导率等性质。
7. 磁性材料分类根据磁性材料的磁导率和饱和磁化强度,可以将磁性材料分为软磁性材料和硬磁性材料。
软磁性材料是指具有高磁导率和低磁饱和的材料,通常用作电子元器件、电机和变压器等领域。
硬磁性材料是指具有高饱和磁化和低磁导率的材料,通常用于制造永磁体、磁存储、磁头等领域。
8. 磁性材料应用磁性材料广泛应用于各个领域。
在电子行业,磁性材料用于制造电感和磁芯等元器件。
在电机和发电机中,磁性材料用于制造转子和定子,改进机器效率并降低成本。
磁性材料还用于通讯、医疗、军事和安全等领域。
总之,磁性材料具有重要的应用和理论价值。
通过深入了解磁性材料的基本知识,可以更好地理解其在科技领域中的应用和发展前景。
磁性材料基本参数详解磁性是物质的基本属性之一,磁性现象与各种形式的电荷的运动相关联,物质内部电子的运动和自旋会产生一定大小的磁矩,因而产生磁性。
自然界物质按其磁性的不同可分为:顺磁性物质、抗磁性物质、铁磁性物、反铁磁性物质以及亚铁磁性物质,其中铁磁性物质和亚铁磁性物质属于强磁性物质,通常将这两类物质统称为“ 磁性材料” 。
铁氧体颗粒料: 是已经过配料、混合、预烧、粉碎和造粒等工序,可以直接用于成形加工的铁氧体料粒。
顾客使用该料可直接压制成毛坯,经烧结、磨削后即可制成所需磁芯。
本公司生产并销售高品质的铁氧体颗粒料,品种包括功率铁氧体JK 系列和高磁导率铁氧体JL 系列。
锰锌铁氧体: 主要分为高稳定性、高功率、高导铁氧体材料。
它是以氧化铁、氧化锌为主要成分的复合氧化物。
其工作频率在1kHz 至10MHz 之间。
主要用着开关电源的主变压器用磁芯. 。
随着射频通讯的迅猛发展,高电阻率、高居里温度、低温度系数、低损耗、高频特性好(高电阻率ρ、低损耗角正切tg δ)的镍锌铁氧体得到重用,我司生产的Ni-Zn 系列磁芯,其初始磁导率可由10 到2500 ,使用频率由1KHz 到100MHz 。
但主要应用于1MHz 以上的频段、磁导率范围在7-1300 之间的EMC 领域、谐振电路以及超高频功率电路中。
磁粉芯: 磁环按材料分为五大类:即铁粉芯、铁镍钼、铁镍50 、铁硅铝、羰基铁。
使用频率可达100KHZ ,甚至更高。
但最适合于10KHZ 以下使用。
磁场强度H :磁场“ 是传递运动电荷或者电流之间相互作用的物理物” 。
它可以由运动电荷或者电流产生,同时场中其它运动或者电流发生力的作用。
均匀磁场中,作用在单位长磁路的磁势叫磁场强度,用H 表示;使一个物体产生磁力线的原动力叫磁势,用F 表示:H=NI/L, F = N IH 单位为安培/ 米(A/m ),即: 奥斯特Oe ;N 为匝数;I 为电流,单位安培(A ),磁路长度L 单位为米(m )。
磁性材料的分类1、铁氧体磁性材料:一般是指氧化铁和其他金属氧化物的符合氧化物。
他们大多具有亚铁磁性。
特点:电阻率远比金属高,约为1-10(12次方)欧/厘米,因此涡损和趋肤效应小,适于高频使用。
饱和磁化强度低,不适合高磁密度场合使用。
居里温度比较低。
2 、铁磁性材料:指具有铁磁性的材料。
例如铁镍钴及其合金,某些稀土元素的合金。
在居里温度以下,加外磁时材料具有较大的磁化强度。
3 、亚铁磁性材料:指具有亚铁磁性的材料,例如各种铁氧体,在奈尔温度以下,加外磁时材料具有较大的磁化强度。
4 、永磁材料:磁体被磁化后去除外磁场仍具有较强的磁性,特点是矫顽力高和磁能积大。
可分为三类,金属永磁,例:铝镍钴,稀土钴,铷铁硼等;铁氧体永磁,例:钡铁氧体,锶铁氧体;其他永磁,如塑料等。
5、软磁材料:容易磁化和退磁的材料。
锰锌铁氧体软磁材料,其工作频率在1K-10M之间。
镍锌铁氧体软磁材料,工作频率一般在1-300MHZ6、金属软磁材料:同铁氧体相比具有高饱和磁感应强度和低的矫顽力,例如工程纯铁,铁铝合金,铁钴合金,铁镍合金等,常用于变压器等。
7 、损耗角正切:他是串联复数磁导率的虚数部分与实数部分的比值,其物理意义为磁性材料在交变磁场的每周期中,损耗能量与储存能量的2派之比。
8、比损耗角正切:这是材料的损耗角正切与起始导磁率的比值。
9 、温度系数:在两个给定温度之间,被测的变化量除以温度变化量。
10、磁导率的比温度系数:磁导率的温度系数与磁导率的比值。
11 、居里温度:在此温度上,自发磁化强度为零,即铁磁性材料(或亚磁性材料)由铁磁状态(或亚铁磁状态)转变为顺磁状态的临界温度。
专业术语:1 、饱和磁感应强度:(饱和磁通密度)磁性体被磁化到饱和状态时的磁感应强度。
在实际应用中,饱和磁感应强度往往是指某一指定磁场(基本上达到磁饱和时的磁场)下的磁感应强度。
2、剩磁感应强度:从磁性体的饱和状态,把磁场(包括自退磁场)单调的减小到0的磁感应强度。
磁性材料的特点和分类磁性材料主要分为永磁材料与软磁材料。
永磁材料又称硬磁材料,磁体经过外加磁场以后能长期保留其强磁性,特点是矫顽力(Hc)高。
一般其矫顽力Hc≥10A4/m。
磁能积(BH)max大。
软材料是加磁场后即容易磁化,也容易退磁的磁性材料,特点是矫顽力小,一般其矫顽力Hc≤10A3/m。
永磁材料四种主要磁特性(1)高的最大的磁能积最大磁能积(BH)max是永磁材料单位体积存储和可利用的最大磁能量密度的量度。
(2)高的矫顽力矫顽力(Hc)是永磁材料磁和非磁的干扰而保持其永磁性的量度。
(3)高的剩余磁通密度(Br)和高的剩余磁化强度(Mr)它们是具有空气隙中磁场强度的量度。
(4)高的稳定性即对外加干扰磁场和温度、振动等环境因素的变化的高稳定性。
永磁材料的主要分类(1)金属永磁材料:这是一种发展和应用都比较早的以铁和铁元素(如镍、钴等)为重要元素组成的合金永磁材料,主要有稀土永磁(如钕铁硼稀土合金永磁),铝镍钴(AINiCo)系和铁铬钴(FeCrCo)系三大永磁合金。
(2)铁氧体永磁材料:这是以Fe2O3为主要元素组成的复合氧化物的强磁材料,其特点是电阻率高,特别有利于在搞频和微波使用。
如钡铁氧体永磁材料,锶铁氧体永磁材料等。
(3)其它永磁材料:如微粉永磁材料,纳米永磁材料,胶塑永磁材料等。
软磁材料的主要特点(1)低的矫顽力Hc:显示磁性材料即容易外加磁场磁化,又容易受到加磁场或其他因素退磁,而且磁损耗也低。
(2)高的饱和磁通密度Bs和高的饱和磁化强度Ms:这样荣故意得到高的磁导率µ和低的矫顽力Hc,也可以提高磁通密度。
(3)低的磁损耗和电损耗:这就要求低的矫顽力Hc和高的电阻率。
(4)高的稳定性:对温度、震动等环境因素的变化具有高的稳定性。
软磁材料的主要分类(1)铁氧体软磁材料:是一系列含有氧化铁的复合氧化物材料(或称为陶瓷材料),特点是饱和磁感应强度低(0.5T以下)但是磁导率比较高。
磁性材料的分类引言磁性材料是指在外加磁场下表现出磁性行为的材料,广泛应用于电子、电力、通信等领域。
根据材料的磁性特性和组织结构,磁性材料可以被分为多个不同的类别。
本文将介绍常见的磁性材料分类及其特点。
1. 铁磁材料铁磁材料是指在外磁场存在时呈现出强磁性的材料。
铁磁材料在磁场作用下会自发地形成磁畴结构,并具有磁滞回线特性。
常见的铁磁材料包括铁、钴、镍及其合金。
铁磁材料可以分为软磁材料和硬磁材料两类。
软磁材料的磁滞损耗小,能迅速反转磁化方向,常用于变压器、电感器、电动机等磁性元件中。
硬磁材料的磁滞损耗大,难以磁化和消磁,常用于制作永磁体、磁头、磁场传感器等。
2. 铁氧体材料铁氧体材料是一类重要的功能性陶瓷材料,具有良好的磁性和电性能。
铁氧体材料主要由Fe2O3(氧化铁)和一些过渡金属氧化物组成。
根据结构和性能的不同,铁氧体材料可分为软磁铁氧体和硬磁铁氧体两类。
软磁铁氧体具有低磁滞损耗和高导磁率的特点,常用于制作变压器、电感器和高频电磁元件。
硬磁铁氧体具有高矫顽力和高剩磁感应强度,可用于制作永磁马达、声音器件等。
软磁导体材料是一类具有高导磁率和低电阻率的材料。
软磁导体材料在低频磁场下具有良好的磁导特性,并且具有较低的涡流损耗。
软磁导体材料主要包括铁氟龙、钴铁合金等。
软磁导体材料广泛应用于电力领域,如制造电力变压器、电抗器等电磁元器件。
由于具有低损耗和高导磁性能,软磁导体材料在节能减排、提高变压器效率等方面起着重要作用。
4. 自旋电子材料自旋电子材料是指通过自旋-轨道耦合作用,实现在外加磁场下表现出强磁性的材料。
自旋电子材料的磁性不仅仅由电子的自由度决定,还受到晶格结构和化学成分的影响。
自旋电子材料在信息存储、能源转换和传感器等领域具有重要应用。
其中,铁磁半导体材料由于具有同时存在铁磁性和半导体性质的特点,成为发展磁性电子学和自旋电子学的重要基础材料。
5. 超导磁体材料超导磁体材料是指在低温下具有无电阻和完全抗磁性的材料。
一.磁性材料的基本特性1.磁性材料的磁化曲线磁性材料是由铁磁性物质或亚铁磁性物质组成的,在外加磁场H作用下,必有相应的磁化强度M或磁感应强度B,它们随磁场强度H的变化曲线称为磁化曲线(M~H或B~H曲线)。
磁化曲线一般来说是非线性的,具有2个特点:磁饱和现象及磁滞现象。
即当磁场强度H足够大时,磁化强度M达到一个确定的饱和值Ms,继续增大H,Ms保持不变;以及当材料的M值达到饱和后,外磁场H降低为零时,M并不恢复为零,而是沿MsMr曲线变化。
材料的工作状态相当于M~H曲线或B~H曲线上的某一点,该点常称为工作点。
2.软磁材料的常用磁性能参数饱和磁感应强度Bs:其大小取决于材料的成分,它所对应的物理状态是材料内部的磁化矢量整齐排列。
剩余磁感应强度Br:是磁滞回线上的特征参数,H回到0时的B值。
矩形比:Br∕Bs矫顽力Hc:是表示材料磁化难易程度的量,取决于材料的成分及缺陷(杂质、应力等)。
磁导率μ:是磁滞回线上任何点所对应的B与H的比值,与器件工作状态密切相关。
初始磁导率μi、最大磁导率μm、微分磁导率μd、振幅磁导率μa、有效磁导率μe、脉冲磁导率μp。
居里温度Tc:铁磁物质的磁化强度随温度升高而下降,达到某一温度时,自发磁化消失,转变为顺磁性,该临界温度为居里温度。
它确定了磁性器件工作的上限温度。
损耗P:磁滞损耗Ph及涡流损耗Pe P = Ph + Pe = af + bf2+ c Pe ∝ f2 t2 / ,ρ降低,磁滞损耗Ph的方法是降低矫顽力Hc;降低涡流损耗Pe的方法是减薄磁性材料的厚度t及提高材料的电阻率ρ。
在自由静止空气中磁芯的损耗与磁芯的温升关系为:总功率耗散(mW)/表面积(cm2)3.软磁材料的磁性参数与器件的电气参数之间的转换在设计软磁器件时,首先要根据电路的要求确定器件的电压~电流特性。
器件的电压~电流特性与磁芯的几何形状及磁化状态密切相关。
设计者必须熟悉材料的磁化过程并拿握材料的磁性参数与器件电气参数的转换关系。
常用磁性材料分类及特点
一、软磁性材料
1、主要特点:软磁性材料经外加磁场后容易磁化,也容易退磁的磁性材料,其主要特点是:矫顽力小、容易磁化、容易退磁。
2、常用材料:铁氧体、工业纯铁、硅钢片等
二、硬磁性材料
1、主要特点:硬磁性材料又称为永磁材料,磁体经外加磁场后可长期保留强磁性。
主要特点是矫顽力高、磁能积大,磁性基本稳定。
2、常用材料:铁氧体永磁材料、金属永磁材料(如钕铁硼、钐钴、铝镍钴等)。
力矩电机特点
力矩电动机是一种具有软机械特性和宽调速范围的特种电机,具有低转速、大扭矩、过载能力强、响应快、特性线性度好、力矩波动小等特点。
力矩电动机能在一般较宽的转速范围内使转矩基本恒定。
力矩电机包括:直流力矩电机、交流力矩电机,广泛应用于机械制造、纺织、造纸、橡胶、塑料、金属线材和电线电缆等工业中,以及阻力矩大的拖动系统和频繁正、反转的装置或其他类似动作的各种机械上。
1、直流力矩电机:是一种特殊形式的直流伺服电动机,大多采用永磁励磁,其基本要求与直流伺服电动机相似。
为了获得大的输出转矩和低的转速,直流力矩电机采用大内孔扁平结构,有利于电机直接套在负载轴上,提高系统的耦合刚度,使系统反应迅速,频带展宽,稳定工作,满足动态性能要求。
2、交流力矩电机:其基本要求和交流伺服电动机相同。
其在结构上是采用电阻率较高的材料(例如黄铜、康铜等)作转子的导条及端环,通过增加转子电阻获得宽广的调速范围和较软的机械特性。
原理与一般鼠笼式异步电动机完全相同,但与一般同机座号异步电动机相比,交流力矩电动机输出功率要小好几倍,堵转转矩大,堵转电流小得多。
常用磁性材料分类及特点
一、软磁性材料
1、主要特点:软磁性材料经外加磁场后容易磁化,也容易退磁的磁性材料,其主要特点是:矫顽力小、容易磁化、容易退磁。
2、常用材料:铁氧体、工业纯铁、硅钢片等
二、硬磁性材料
1、主要特点:硬磁性材料又称为永磁材料,磁体经外加磁场后可长期保留强磁性。
主要特点是矫顽力高、磁能积大,磁性基本稳定。
2、常用材料:铁氧体永磁材料、金属永磁材料(如钕铁硼、钐钴、铝镍钴等)。
力矩电机特点
力矩电动机是一种具有软机械特性和宽调速范围的特种电机,具有低转速、大扭矩、过载能力强、响应快、特性线性度好、力矩波动小等特点。
力矩电动机能在一般较宽的转速范围内使转矩基本恒定。
力矩电机包括:直流力矩电机、交流力矩电机,广泛应用于机械制造、纺织、造纸、橡胶、塑料、金属线材和电线电缆等工业中,以及阻力矩大的拖动系统和频繁正、反转的装置或其他类似动作的各种机械上。
1、直流力矩电机:是一种特殊形式的直流伺服电动机,大多采用永磁励磁,其基本要求与直流伺服电动机相似。
为了获得大的输出转矩和低的转速,直流力矩电机采用大内孔扁平结构,有利于电机直接套在负载轴上,提高系统的耦合刚度,使系统反应迅速,频带展宽,稳定工作,满足动态性能要求。
2、交流力矩电机:其基本要求和交流伺服电动机相同。
其在结构上是采用电阻率较高的材料(例如黄铜、康铜等)作转子的导条及端环,通过增加转子电阻获得宽广的调速范围和较软的机械特性。
原理与一般鼠笼式异步电动机完全相同,但与一般同机座号异步电动机相比,交流力矩电动机输出功率要小好几倍,堵转转矩大,堵转电流小得多。
精品文档一 •磁性材料的基本特性1. 磁性材料的磁化曲线磁性材料是由铁磁性物质或亚铁磁性物质组成的,在外加磁场 H 作用下,必有相应的磁化 强度M 或磁感应强度B ,它们随磁场强度H 的变化曲线称为磁化曲线(M 〜H 或B 〜H 曲线)。
磁化曲线一般来说是非线性的,具有 2个特点:磁饱和现象及磁滞现象。
即当磁场强度 H 足够 大时,磁化强度M 达到一个确定的饱和值 Ms ,继续增大H , Ms 保持不变;以及当材料的M 值 达到饱和后,外磁场H 降低为零时,M 并不恢复为零,而是沿 MsMr 曲线变化。
材料的工作状态相当于 M 〜H 曲线或B 〜H 曲线上的某一点,该点常称为工作点。
2. 软磁材料的常用磁性能参数 饱和磁感应强度Bs:其大小取决于材料的成分,它所对应的物理状态是材料内部的磁化 矢量整齐排列;*剩余磁感应强度Br:是磁滞回线上的特征参数,H 回到0时的B 值.矩形比:Br/Bs ;*矫顽力He:是表示材料磁化难易程度的量,取决于材料的成分及缺陷(杂质、应力等);*磁导率m:是磁滞回线上任何点所对应的 B 与H 的比值,与器件工作状态密切相关;*初始磁导率mi 、最大磁导率mm 、微分磁导率md 、振幅磁导率ma 、有效磁导率me 、脉 冲磁导率mp ; 居里温度Te:铁磁物质的磁化强度随温度升高而下降,达到某一温度时,自发磁化消失,转 变为顺磁性,该临界温度为居里温度.它确定了磁性器件工作的上限温度;*损耗P:磁滞损耗Ph 及涡流损耗Pe P=Ph+Pe=af+bf2+cPe 卩f2t2降低磁滞损耗Ph 的方法 是降低矫顽力He ;降低涡流损耗Pe 的方法是减薄磁性材料的厚度t 及提高材料的电阻 率r ;*在自由静止空气中磁芯的损耗与磁芯的温升关系为:总功率耗散(亳瓦特)/表面积(平方 厘米)3. 软磁材料的磁性参数与器件的电气参数之间的转换 rz m [r 厶 r _®柜形回线磁滞回线及磁导率随磁场强度的变化曲线 (㉚普通回线・设计软磁器件通常包括三个步骤:正确选用磁性材料;・合理确定磁芯的几何形状及尺寸;・根据磁性参数要求,模拟磁芯的工作状态得到相应的电气参数二、常用软磁磁芯的特点及应用(一)■粉芯类1. 磁粉芯 磁粉芯是由铁磁性粉粒与绝缘介质混合压制而成的一种软磁材料。
一. 磁性材料的基本特性1. 磁性材料的磁化曲线磁性材料是由铁磁性物质或亚铁磁性物质组成的,在外加磁场H 作用下,必有相应的磁化强度M 或磁感应强度B,它们随磁场强度H 的变化曲线称为磁化曲线(M~H或B~H曲线)。
磁化曲线一般来说是非线性的,具有2个特点:磁饱和现象及磁滞现象。
即当磁场强度H足够大时,磁化强度M达到一个确定的饱和值Ms,继续增大H,Ms保持不变;以及当材料的M值达到饱和后,外磁场H降低为零时,M并不恢复为零,而是沿MsMr曲线变化。
材料的工作状态相当于M~H曲线或B~H曲线上的某一点,该点常称为工作点。
2. 软磁材料的常用磁性能参数饱和磁感应强度Bs:其大小取决于材料的成分,它所对应的物理状态是材料内部的磁化矢量整齐排列。
剩余磁感应强度Br:是磁滞回线上的特征参数,H回到0时的B值。
矩形比:Br∕Bs矫顽力Hc:是表示材料磁化难易程度的量,取决于材料的成分及缺陷(杂质、应力等)。
磁导率μ:是磁滞回线上任何点所对应的B与H的比值,与器件工作状态密切相关。
初始磁导率μi、最大磁导率μm、微分磁导率μd、振幅磁导率μa、有效磁导率μe、脉冲磁导率μp。
居里温度Tc:铁磁物质的磁化强度随温度升高而下降,达到某一温度时,自发磁化消失,转变为顺磁性,该临界温度为居里温度。
它确定了磁性器件工作的上限温度。
损耗P:磁滞损耗Ph及涡流损耗Pe P = Ph + Pe = af + bf2+ c Pe ∝ f2 t2 / ,ρ降低,磁滞损耗Ph的方法是降低矫顽力Hc;降低涡流损耗Pe 的方法是减薄磁性材料的厚度t 及提高材料的电阻率ρ。
在自由静止空气中磁芯的损耗与磁芯的温升关系为:总功率耗散(mW)/表面积(cm2)3. 软磁材料的磁性参数与器件的电气参数之间的转换在设计软磁器件时,首先要根据电路的要求确定器件的电压~电流特性。
器件的电压~电流特性与磁芯的几何形状及磁化状态密切相关。
设计者必须熟悉材料的磁化过程并拿握材料的磁性参数与器件电气参数的转换关系。