当前位置:文档之家› 油浸倒立式电流互感器设计_魏朝晖

油浸倒立式电流互感器设计_魏朝晖

油浸倒立式电流互感器设计_魏朝晖
油浸倒立式电流互感器设计_魏朝晖

油浸倒立式电流互感器设计

魏朝晖

(沈阳沈变互感器制造有限公司,辽宁沈阳110135)

摘要:介绍了油浸倒立式电流互感器的结构特点和设计要点,指出了其设计中应注意的若干问题。

关键词:电流互感器;油浸式;倒立式;设计

中图分类号:TM452.02 文献标识码:B 文章编号:1001-8425(2000)09-0006-04

近年来电力部门对互感器产品的要求越来越高,并涌现出了许多先进的互感器产品。倒立式电流互感器就是其中最突出的一种,在国内外已被普遍采用。

1 倒立式电流互感器的结构特点

倒立式电流互感器有别于传统的正立式电流互感器产品结构之处,在于将二次绕组及一次绕组集中置于整个产品的上部储油柜内,且主绝缘包扎在二次绕组的外侧。这样,倒立式电流互感器就具有了以下特点:

(1)当一次电流较大时,可采用一次绕组直接穿过二次绕组中心的圆柱形(或管形)母线,使一次绕组的尺寸大大减小。从而一次绕组产生的温升大大降低,且其承受的电动力较小,具有较高的短路电流(动、热稳定电流)承受能力。

(2)当一次电流较小时,可用多匝软(铜)绞线均匀绕在二次绕组的外侧,通过提高安匝数和均匀分布其一次绕组线匝,来提高电流互感器的精度,使其误差精度满足标准的要求;同时,其短路电流(动、热稳定电流)承受能力也会得到一定的提高。

(3)倒立式电流互感器的一、二次绕组均置于产品上部的储油柜内,这样,就有效地避免了正立式电流互感器主绝缘位于产品底部易受潮的环节,减少了主绝缘因受潮而被击穿的可能性,从而提高了产品运行的可靠性。

(4)该互感器只要将二次引线从瓷件中引至产品底部的低电压区即可。这样,产品的瓷件尺寸就可大大缩小,瓷件的制造容易了很多,且其成本也会大大降低。

倒立式电流互感器外形如图1所示

图1 倒立式电流互感器外形图

(5)正立式电流互感器的一次绕组多为U字形或链形结构,其返回导体所产生的磁场对二次绕组

表2 K与谐波次数n的关系

n357911......49 (101)

K0.670.650.640.630.62……0.59……0.58

因此,在图7中可绘出K z-u(ξ1=3)曲线。该曲线系杂散损耗增量的一个偏低的估算。

当钢材具有较低的μ和较高的ρ时,如μ=100,ρ=0.3,则ξ1≈1.02,也即相当于b1≈10mm的铜导线,故b1=10mm的K e-u曲线可看作为另一根K z -u(ξ1=1.02)曲线。该曲线系杂散损耗增量的一个偏高的估算。

由于杂散损耗的复杂性,故K z系数仅能在某些特定情况下,影响脉波电流杂散损耗增量的估算。

(待续)

第37卷 第9期2000年9月 变压器

TRANSFORMER

Vol.37

September

No.9

2000

性能的影响是不可低估的,特别是在一次绕组电流较大(或安匝数较高)的情况下尤为突出。如不采取有效措施,往往会造成保护复合误差超出标准规定和设计值;如果要使其满足要求,则需在结构上采取一些特殊措施。例如,美国标准ANSIC 57.13—1978中的“C ”级,英国标准BS 3938中的“X ”级,及IEC 标准中的“TPS ”级,往往需要采取特殊的措施(如按磁场的变化情况分布二次绕组的匝数等),就会使产品结构复杂化。而倒立式电流互感器则可有效地避免这一问题的产生,其一次绕组采取中心穿越式或多匝均匀分布式,其一次绕组返回导体产生的磁场不均匀现象得以消除,对产品性能的影响可以避免或忽略。

2 倒立式电流互感器的设计要点

电流互感器(CT )是一种专门用作变换电流的特种变压器,其主要功能就是供电力系统作电流、电能测量及继电保护用。其工作原理见图2

图2 电流互感器工作原理图

2.1 额定安匝的确定

电流互感器是将一次电流变换成标准的二次电

流。由于励磁电流的存在,变换的二次电流与理想值总有一定的误差,而控制其误差值在标准允许的范围内正是电流互感器设计的关键。误差计算的公式如下:

比差:

f (%)=-I 2(Z 2+Z b )L ×104

4.44fN 2S μ(I 1N 1)sin (α+β)×100

角差:δ(′)=I 2(Z 2+Z b )L ×104

4.44fN 2S μ(I 1N 1)

c os (α+β)×3440

式中 I 2二次电流,A

Z 2二次绕组阻抗,ΨZ b 二次负荷阻抗,ΨL

平均磁路长,cm f 电源频率,H z N 2

二次绕组匝数

S 铁心截面积,cm 2

μ铁心材料磁导率,H /c m I 1N 1一次绕组安匝α

二次阻抗角

β铁心损耗角

从式中可以看出,电流互感器的误差与一次安匝(I 1N 1)成反比。当其他条件基本确定以后,一次绕组的安匝数则是影响误差大小的一个关键性参数。一次安匝(I 1N 1)越大,误差也就越小。在实际的倒立式电流互感器设计过程中选取合适的一次安匝(I 1N 1)非常关键:如果一次安匝(I 1N 1)选得太高,铁心截面可以很小,但一次绕组及二次绕组匝数则相应增加,不利于线圈的绕制;如果一次安匝(I 1N 1)选得过低,虽一次绕组及二次绕组匝数很少,铁心截面则要放大很多,造成二次绕组组合尺寸很大,不利于主绝缘的包扎,同时可能使产品头部重量增大,使产品的稳定性和抗震性受到不利影响。

所以,选择合适的一次安匝(I 1N 1),优化设计很关键。根据我们在实际设计中得到的经验,一般情况下一次安匝(I 1N 1)选定在1200~3000安匝之间比较合适。

如果产品本身的额定电流比很小,而要求其承受的短路电流较大时,需增加一次绕组导线的截面(一般提高一次绕组导线的并绕根数)。

如果产品本身的额定电流比很大,虽其一次绕组只需一匝导线即可,但一次绕组的安匝(I 1N 1)数

也会很高,而且不能人为降低。2.2 二次绕组及二次绕组组合结构的设计

当一次安匝确定以后,就可以进行二次绕组的设计计算了。二次绕组的设计原理与传统的正立式产品相同,但一次绕组返回导体所产生的磁场对二次绕组性能的影响可不作考虑,这里就不再介绍了。只提醒一下,在确定二次绕组尺寸时,同时要考虑其组合(装)方便,并尽可能减小其组合尺寸。如果当测量级二次绕组有仪表保安系数(FS )要求,须并联辅助互感器线圈时,则只能在产品底部的底座上或二次绕组支撑架上安排位置。

二次绕组的组合首先要考虑是否有利于进行主绝缘的包扎,即尽量压缩组合的无效空间,使二次绕组相互间的尺寸配合尽量合理。

对于较低电压(110kV 及以下)的倒立式电流互感器,二次组合后的断面形状一般采用方芯即可,其特点是结构比较简单,制造过程简便(见图3a )。对于较高电压(220kV 及以上)的倒立式电流互感器,为了改善其电场分布,往往将二次绕组组合后放在

7

 第9期 魏朝晖:油浸倒立式电流互感器设计

图3 二次绕组组合(断面结构)示意图

一个由金属制成的外部圆滑的屏蔽罩内,或将二次绕组组合后加垫成比较圆滑的外形(见图3b )。组合好的二次绕组由托架支撑,二次引线由托

架的圆管内引至底座的出线盒中。2.3 主绝缘的设计的关键

倒立式电流互感器的主绝缘采用包扎在二次绕组外侧,形成吊环形电容型油—纸绝缘。通常为简化计算,电容型结构环部绝缘的场强计算,仍按同心圆柱电场(或等效圆柱)计算。对于已知内屏半径为R 1,外屏半径为R 2的圆柱电容器绝缘介质中半径为r 处的径向电场强度E 与两屏间的电压U 之间的关系可用下式表示:

E =

U

r ln (R 2/R 1)

由此可见,内电屏表面的电场较大,外电屏表面的电场较小。R 2与R 1的差别越大,场强的差别也就越大。如果在内、外屏间插入许多中间屏,则各电屏表面的电场强度就会趋近相同。但是,我们在实际制造中只能插入有限个中间电屏,这样,电容屏的端部电场是极不均匀的。我们可以在每两个主电容屏中间增设一些较短的端屏(亦称副屏)来均衡电场,以减小端部绝缘的厚度(见图4)

图4 倒立式电流互感器电容型绝缘

在主绝缘设计时,我们可选用半导体纸作为电

容屏的材料,它有利于绝缘的干燥浸渍处理。同时我们要注意以下几个技术关键问题。

图5 加垫绝缘方式

首先,环部的内、外侧绝缘厚度的增长要基本保持同步。由于采用绝缘纸带逐

层包扎方法时,内圆侧绝缘厚度增长速

度远远大于外圆侧绝缘厚度增长速度,内、外径差别

越大,绝缘厚度相差也就越大。它不仅造成了环部电场的不均匀,而且会使整个产品的头部尺寸加大,严重地影响产品的技术经济指标,解决这问题的最有效方法是:在连续包扎绝缘纸的同时,再在外圆侧加垫附加绝缘层,以保证外圆侧达到必须的绝缘厚度时,内圆侧绝缘厚度增加不会太多(见图5)。其次,在环部绝缘与直线部分绝缘过渡区域的三角地带(或称T 形地带)处的的绝缘是比较薄弱的区域,我们同样可以采用加垫绝缘的方法,使绝缘基本上保持连续,同时可保证该区域的绝缘强度与其他区域的绝缘强度相比没有明显减弱。2.4 一次绕组(一次导线)结构形式的选择

一次绕组(一次导线)的选择,首先要考虑的是额定电流密度及短时电流密度和承受短时电动力的强度。

当一次电流较大时(2000A 及以上),一般一次绕组(一次导线)可采用单匝贯穿式,导线可采用铜管或铜杆。由于其一次电流较大,计算电流密度时还应考虑电流的集肤效应,避免一次绕组过热现象的发生;当电网线路产生短时电流时,其一次导线几乎不受外来电场的影响,所以没有电动力的产生。当一次电流在600~2000A 时,一次绕组(一次导线)一般可采用双匝贯穿式,导线可采用内铜杆外铜管或双铜杆并行的形式,并可利用储油柜作为双匝之间串联时的导电连接。当电网线路产生短路电流时,采用内铜杆外铜管结构的一次导线几乎不受外来电场的影响,所以没有电动力的产生;而采用双铜杆并行结构的一次导线,其两匝导线间的电场相互影响较大。当电网线路发生短路时,两匝导线间将产生互吸的电动力,在设计时应予充分考虑。

当一次电流较小时(600A 及以下),由于所需的导电截面较小,一般一次绕组(一次导线)可采用软绞线多匝均匀绕制式。当短时动、热电流较大时,在设计中要特别注意其短时热电流密度,尤其是二次

绕组中的短时热电流密度。

以上三种结构形式均在不同程度上避免或减弱

了返回导体产生的磁场对铁心的影响。如第一种一次绕组为单匝贯穿式结构,根本无返回导体;第二种

8 变压器 第37卷

和第三种结构形式,其一次返回导体中的电流基本可以认为是在铁心外围均匀分布。因此,其一次返回导体产生的磁场分布也可以认为是均匀的,对铁心性能的影响可以忽略。2.5 储油柜及器身固定结构的确定

储油柜的结构形式一般可根据一次绕组结构形式(或一次电流的大小)来确定。

当一次电流较大或适中时,一次绕组往往采用单匝贯穿式或采用双匝贯穿式,这样,储油柜就可以设计成仿器身形状(或半仿器身形状见图6),器身可用绝缘件挤紧。这种结构形式的优点是可以减少产品的体积,降低变压器油的用量,但在设计时要注意保留变压器油的流动空间,以保证其绝缘具有良好的电气性能

图6 倒立式电流互感器储油柜

(a )仿器身形储油柜 (b )半仿器身形储油柜

当一次电流较小时,一般一次绕组多采用软绞线多匝均匀绕制式,这样,储油柜可设计成圆筒状,

器身可用绝缘夹板固定,这种结构的特点是在圆筒状储油柜与器身间保留着一定的内部空间。它既有利于变压器油的流动,又给一次绕组配线流下了必要的空间。2.6 瓷件的确定和二次引线管的固定方式

由于倒立式电流互感器的器身(一、二次绕组)置于上部储油柜中,而二次绕组的引出线由引线管通过瓷件引至下部,径向尺寸较小,这样倒立式电

流互感器的瓷套径向尺寸也较小,通常设计为直圆筒形。这种瓷套易于烧成,合格率较高,有利于降低产品的成本。但是由于倒立式电流互感器重心较高,为适应运输或满足一定的抗地震强度要求,瓷件的抗弯强度要求高,这就需要改进制瓷工艺或使用高强度电瓷材料制造。

二次绕组引线管的固定方式可根据电压等级来确定。一般情况下,对于较低电压(110kV 及以下)的倒立式电流互感器,产品重心稍低,且不须平放运输,其二次引线管下部只需用简单的支架限制它任意摆动即可;而对于较高电压(220kV 及以上)的倒立式电流互感器,不仅产品重心较高,而且一般都须平放运输。为了保证其机械强度,则二次绕组引线管下部就必须牢固固定在底座上,这样,二次绕组引线管不仅不能摆动、扭转,对器身还起到了一定的支撑作用。

3 其他在设计中应注意的问题

对于倒立式电流互感器,应根据电力部门的实际需要确定合理的技术参数。如二次绕组数太多,特

别是具有暂态误差性能的二次绕组数多,会增加制造难度,也很不经济。应尽量减少二次绕组数及选择较合理的准确级参数,才能得到较合适的的经济技术指标。

虽然倒立式电流互感器目前在我国尚处于发展的初级阶段,但由于它的独特优点而得到了电力部门及广大用户的认可。今后,必将在电力系统中得到更广泛的应用。

参考文献

[1] 肖耀荣,伍东风,李长库,等.互感器制造技术[M ].北

京:机械工业出版社,1998.

Design of Oil Immersed Inverted Current Transformer

WEI Zhao -hui

(Shenyang Shenbian Instrument Transfor mer Manufacture Co .,Ltd .,Shenyang 110135,China )Abstract :T he structure and design key points of oil immersed inverted current transformer are introduced .Some problems that must be paid attention to in its design are pointed .Key words :Current transforme r ;Oil immersed type ;Inversed type ;Design

收稿日期:2000-06-19

作者简介:魏朝晖(1961-),男,湖南衡阳人,沈阳沈变互感器制造有限公司工程师,从事互感器设计工作。

9

 第9期 魏朝晖:油浸倒立式电流互感器设计

电流互感器的工作原理,民熔

电流互感器 是依据电磁感应原理将一次侧大电流转换成二次侧小电流来测量的仪器。电流互感器是由闭合的铁心和绕组组成。它的一次侧绕组匝数很少,串在需要测量的电流的线路中。 因此它经常有线路的全部电流流过,二次侧绕组匝数比较多,串接在测量仪表和保护回路中,电流互感器在工作时,它的二次侧回路始终是闭合的,因此测量仪表和保护回路串联线圈的阻抗很小,电流互感器的工作状态接近短路。电流互感器是把一次侧大电流转换成二次侧小电流来测量,二次侧不可开路 工作原理 在发电、变电、输电、配电和用电的线路中电流大小悬殊,从几安到几万安都有。 为便于测量、保护和控制需要转换为比较统一的电流,另外线路上的电压一般都比较高如直接测量是非常危险的。电流互感器就起到电流变换和电气隔离作用

对于指针式的电流表,电流互感器的二次电流大多数是安培级的(如5A等)。对于数字化仪表,采样的信号一般为毫安级(0-5V、4-20mA等)。微型电流互感器二次电流为毫安级,主要起大互感器与采样之间的桥梁作用。 微型电流互感器也有人称之为“仪用电流互感器”。(“仪用电流互感器”有一层含义是在实验室使用的多电流比精密电流互感器,一般用于扩大仪表量程。 电流互感器与变压器类似也是根据电磁感应原理 工作,变压器变换的是电压而电流互感器变换的是电流罢了。电流互感器接被测电流的绕组(匝数为N1),称为一次绕组(或原边绕组、初级绕组);接测量仪表的绕组(匝数为N2)称为二次绕组(或副边绕组、次级绕组)。

电流互感器一次绕组电流I1与二次绕组I2的电流比,叫实际电流比K。电流互感器在额定电流下工作时的电流比叫电流互感器额定电流比,用Kn表示。 Kn=I1n/I2n 电流互感器(Current transformer 简称CT)的作用是可以把数值较大的一次电流通过一定的变比转换为数值较小的二次电流,用来进行保护、测量等用途。如变比为400/5的电流互感器,可以把实际为400A 的电流转变为5A的电流。

油浸倒立式电流互感器专用技术规范

油浸倒立式电流互感器专用技术规范 1

文档仅供参考 ( ) 国家电网公司物资采购标准 (交流电流互感器卷电磁式电流互感器册) 110kV油浸倒立式电流互感器 专用技术规范 (编号:1003001-0110-02) 国家电网公司 二〇〇九年十二月 2

目录 1 标准技术参数表................................................................... 错误!未定义书签。 2 项目单位需求部分............................................................... 错误!未定义书签。 2.1 货物需求及供货范围一览表...................................... 错误!未定义书签。 2.2 必备的备品备件、专用工具和仪器仪表供货表 ..... 错误!未定义书签。 2.3 图纸资料提交单位...................................................... 错误!未定义书签。 2.4 工程概况...................................................................... 错误!未定义书签。 2.5 使用条件...................................................................... 错误!未定义书签。 2.6 项目单位可选技术参数表.......................................... 错误!未定义书签。 2.7 项目单位技术参数差异表.......................................... 错误!未定义书签。 2.8 一次、二次及土建接口要求(适用扩建工程) ........... 错误!未定义书签。 3 投标人响应部分................................................................... 错误!未定义书签。 3.1 投标人技术响应及技术偏差表.................................. 错误!未定义书签。 3.2 110kV 倒立油浸式电流互感器销售运行业绩表...... 错误!未定义书签。 3.3 主要部件材料表.......................................................... 错误!未定义书签。 3.4 推荐的备品备件、专用工具和仪器仪表供货表 ..... 错误!未定义书签。

220kV油浸倒立式电流互感器故障分析

220kV油浸倒立式电流互感器故障分析 发表时间:2019-11-29T13:54:05.473Z 来源:《云南电业》2019年6期作者:王国栋[导读] 近年来,在使用倒立式电流互感器的时候出现不同故障情况,所以有必要对故障原因等进行分析。 王国栋 (国网江苏省电力有限公司苏州供电分公司江苏苏州 215000)摘要:近年来,在使用倒立式电流互感器的时候出现不同故障情况,所以有必要对故障原因等进行分析。 关键词:220kV;油浸倒立式;电流互感器;故障 1三台故障设备案例分析 1.1第一台倒立式电流互感器故障案例 某220kV变电站#2主变一次B相电流互感器上部有火光和黑烟。经查看,该电流互感器膨胀器已完全胀开,外壳落在互感器的构架上,膨胀器上盖落在距该互感器10m远处。储油柜沿焊接面完全开裂,上半部倾斜,可见内部二次线包被火大面积烧黑迹象,二次包绝缘纸、电容屏、等电位连线多处烧断。拔出一次导管,发现导管已经弯曲变形,弯曲度约有12mm。在靠近母线侧的导管上有6处直径约8mm 的电蚀麻点,一次导电杆外护套已经完全烧黑碳化。解体打开二次屏蔽罩,没有发现二次绕组有放电痕迹,屏蔽罩内表面可见两处烧损孔洞,其中一个较大的直径大约6mm。 1.2第二台倒立式电流互感器故障案例 这台倒立式互感器是投运两天后爆炸,上油箱和瓷套均被炸开,主绝缘全部烧光。在油箱顶部内侧与二次罩顶部油孔上发现放电痕迹,二者位置对应。值得思考的是该故障互感器出厂试验介损值为0.219%,现场交接试验值为0.383%,虽然在合格范围内,但是有较大偏差。分析故障原因为油箱内主绝缘干燥不彻底导致发生局部放电,进而发展成贯穿性放电。 1.3第三台倒立式电流互感器故障案例 该互感器型号为LVB-220W2。某年秋检时,发现该倒立式电流互感器乙炔含量达到153μL/L(注意值为1μL/L)。其例行试验数据见表1。 表1 例行试验数据 例行试验中,介质损耗因数:10kV下小于0.3%,正常,但加压到30kV时,数据非常大,无法读数。局部放电:加压到153kV时,放电量达到10000pC以上(标准:252kV下≤10pC)。解体检查情况如下。一次导电杆及二次绕组主绝缘层没有发现异常。扒开二次引线管绝缘,发现第一个电容屏在距离底部1600mm处铝箔有裂纹,但没有完全断开。继续向下检查,发现第二层在相同位置,电容屏整个圆周完全断裂约10mm,且在电容屏断裂处有放电痕迹。在相同位置,第三层、第四层及第五层均有同样断裂和放电。从第六层开始,1600mm 处无电容屏,但同样位置的绝缘纸也有明显的被拉开的迹象,用手指按下,明显感觉比其他地方松软。其他位置电容屏没有发现异常。 由于二次引线管外包电容屏及绝缘纸在同一个位置都有10mm宽的裂缝,说明此部位受到的作用力方向相反且拉力较大,经讨论分析,这种现象的原因:第一,由于引线管、电容屏和绝缘纸的膨胀系数不同,在加热干燥过程中产生的热应力造成此处开裂。第二,在互感器芯柱干燥和安装过程中,由于倒立干燥和吊装,吊车在升高和降落过程中,进行反复的急停和加速,电容屏受到轴向冲击力的作用,导致电容屏和绝缘层被拉开,产生断裂。 2倒立式电流互感器的介损测试方法讨论通常,对有末屏引出线的倒立式电流互感器的介损试验方法有如下三种,两种正接线方法和一种反接线方法(如图1、2和3所示)。图1的正接线方法介损试验(以下简称第一种方法),顶部主绝缘和电容屏的电容全部进入电桥,该方法原理上可以检测到全部主绝缘的介损;图3的反接线法也可以检测到全部主绝缘的介损(以下简称第三种方法)。图2中的正接线介损测量方法中,一次对二次之间的电容,即油箱内的主绝缘是直接接地的,因此该方法只能检测瓷套中的绝缘介损,而不能检测油箱内的主绝缘。一般厂家例行试验采用第一种方法(有的也采用第一种和第二种),即二次导杆对地绝缘的正接线法,该种方法虽然可以正确地测出主绝缘各部分的介损,但互感器安装到现场之后的交接试验中,二次导杆已经接地,试验人员在交接试验时无法把二次导杆对地绝缘,因此只能采取后两种方法。第二种方法所测结果忽略了油箱内主绝缘的检测。第三种方法虽然可以对所有绝缘进行检测,但没有例行试验值进行比较,且现场进行反接线法受到干扰较大。

电流互感器简单易懂的原理讲解

一、电流互感器结构原理 1 普通电流互感器结构原理 电流互感器的结构较为简单,由相互绝缘的一次绕组、二次绕组、铁心以及构架、壳体、接线端子等组成。其工作原理与变压器基本相同,一次绕组的匝数(N1)较少,直 接串联于电源线路中,一次负荷电流()通过一次绕组时,产生的交变磁通感应产生按 比例减小的二次电流();二次绕组的匝数(N 2 )较多,与仪表、继电器、变送器等电流线圈的二次负荷(Z)串联形成闭合回路,见图1。 图1 普通电流互感器结构原理图 由于一次绕组与二次绕组有相等的安培匝数,I 1N 1 =I 2 N 2 ,电流互感器额定电流比: 。电流互感器实际运行中负荷阻抗很小,二次绕组接近于短路状态,相当于一个短路运行的变压器。 2 穿心式电流互感器结构原理 穿心式电流互感器其本身结构不设一次绕组,载流(负荷电流)导线由L1至L2穿过由硅钢片擀卷制成的圆形(或其他形状)铁心起一次绕组作用。二次绕组直接均匀地缠绕在圆形铁心上,与仪表、继电器、变送器等电流线圈的二次负荷串联形成闭合回路,见图2。

图2 穿心式电流互感器结构原理图 由于穿心式电流互感器不设一次绕组,其变比根据一次绕组穿过互感器铁心中的匝数确定,穿心匝数越多,变比越小;反之,穿心匝数越少,变比越大,额定电流比:。 式中I1——穿心一匝时一次额定电流; n——穿心匝数。 3特殊型号电流互感器 3.1 多抽头电流互感器。这种型号的电流互感器,一次绕组不变, 在绕制二次绕组时,增加几个抽头,以获得多个不同变比。它具有一

个铁心和一个匝数固定的一次绕组,其二次绕组用绝缘铜线绕在套装于铁心上的绝缘筒上,将不同变比的二次绕组抽头引出,接在接线端子座上,每个抽头设置各自的接线端子,这样就形成了多个变比,见图3。 图3 多抽头电流互感器原理图 例如二次绕组增加两个抽头,K1、K2为100/5,K1、K3为75/5,K1、K4为50/5等。此种电流互感器的优点是可以根据负荷电流变比,调换二次接线端子的接线来改变变比,而不需要更换电流互感器,给使用提供了方便。 3.2 不同变比电流互感器。这种型号的电流互感器具有同一个铁心和一次绕组,而二次绕组则分为两个匝数不同、各自独立的绕组,以满足同一负荷电流情况下不同变比、不同准确度等级的需要,见图4。 图4 不同变比电流互感器原理图 例如在同一负荷情况下,为了保证电能计量准确,要求变比较小一些(以满足负荷电流在一次额定值的2/3左右),准确度等级高一些

常用的电流互感器二次接线

电力变压器差动保护误动的原因及处理方法 变压器的差动保护,主要用来保护变压器内部以及引出线和绝缘套管的相间短路,并且也可用来保护变压器的匝间短路,保护区在变压器两侧所装电流互感器之间。 但是,在现场多次出现在变压器差动保护范围以外发生短路时,差动保护误动作,导致事故范围扩大,影响正常供电。 变压器差动保护误动作的原因及处理方法如下: 一、差动保护电流互感器二次接线错误 (一)常用的电流互感器二次接线 图1-101 常用的电流互感器二次接线 图1-101是工程上常用的一种接线方式。图中I A、I B、I c及I a、I b、I c分别为变压器高压测及低压侧电流互感器三次绕组三相电流。 对图l-101进行相量分析如下: 现假定变压器高、低压侧电流均从其两侧电流互感器的极性端子兀流入,T1流入。T2流出。 在正常运行情况下,先画出I A、I B、I c相量如图1-102(a)所示.根据图1-101可得: I A1=I A-I B;I`B=I B-I C;I`C=I C-I A.再作出I`A、I`B、I`C相量,如图l-102(b)所示。由图1-102(a)和图1-102(b)可以看出I`A、I`B、I`C分别当变压器组别为YN,dll时,变压器低压侧电流相图1-101常用的电流互感器二次接线位将超前高压侧电流相位30°,可作出c相量如图l-102(C)所示。 由图1-101可知,I a= I a`、I b= I b`、I c= I C `,故图 l-102(C)同样也适用于 I a`、I b`和I C `。 在上面的分析中,是假定一次电流均从变压器两侧电流互感器的T1流人、T2流出。如果变压器高压侧电流互感器的一次电流是从T1流入、T2流出,而低压侧电流互感器一次电流从T2流入、T1流出。那么图1-101中的I a(I a`)、I b(I`b)、I c(I `c)将与图l-

油浸式电流互感器运行事故分析及其对策正式版

Through the reasonable organization of the production process, effective use of production resources to carry out production activities, to achieve the desired goal. 油浸式电流互感器运行事故分析及其对策正式版

油浸式电流互感器运行事故分析及其 对策正式版 下载提示:此安全管理资料适用于生产计划、生产组织以及生产控制环境中,通过合理组织生产过程,有效利用生产资源,经济合理地进行生产活动,以达到预期的生产目标和实现管理工作结果的把控。文档可以直接使用,也可根据实际需要修订后使用。 1引言 1996年10月1日中午,宁波电业局220kV跃龙变电所#1主变220kV独立CTA 相发生事故,设备投运不足24小时,虽投产试验均合格,这次爆炸事件纯属厂家制造工艺的质量问题,这正说明试验合格不能说产品质量问题是绝对可靠。 油浸式电流互感器在变电所是重要设备之一,有关保护和测量及控制都靠它,虽是小功率设备,不象断路器那样有电弧问题,也不象变压器那样传递强大的功

率,因此,它不被人们所重视,特别是值班人员在设备巡视中非常容易忽视,但是由于互感器的使用量大,由于这类产品的设计、结构等原因造成的事故不断出现,危及电网的安全供电,互感器的爆炸事故不但损坏相邻的设备,甚至造成人身伤亡,因此应当引起人们的高度重视。 2电流互感器的事故原因 2.1电流互感器事故的分类 电流互感器的事故按事故的性质可以分成两大类,即使运行突然中断的事故,例如爆炸或即将爆炸而被迫立即停止运行

电压和电流互感器原理及结构

电压互感器: 工作原理: 其工作原理与变压器相同,基本结构也是铁心和原、副绕组。特点是容量很小且比较恒定,正常运行时接近于空载状态。 电压互感器本身的阻抗很小,一旦副边发生短路,电流将急剧增长而烧毁线圈。为此,电压互感器的原边接有熔断器,副边可靠接地,以免原、副边绝缘损毁时,副边出现对地高电位而造成人身和设备事故。 测量用电压互感器一般都做成单相双线圈结构,其原边电压为被测电压(如电力系统的线电压),可以单相使用,也可以用两台接成V-V形作三相使用。实验室用的电压互感器往往是原边多抽头的,以适应测量不同电压的需要。供保护接地用电压互感器还带有一个第三线圈,称三线圈电压互感器。三相的第三线圈接成开口三角形,开口三角形的两引出端与接地保护继电器的电压线圈联接。 正常运行时,电力系统的三相电压对称,第三线圈上的三相感应电动势之和为零。一旦发生单相接地时,中性点出现位移,开口三角的端子间就会出现零序电压使继电器动作,从而对电力系统起保护作用。

上图中两个尖尖一个接电压,一个接地,就形成了一次绕组,类似变压器,再有二次绕组接出来即可以。对于三个单相的电压互感器来说,每一相一端都接地,就形成了三相星型连接方式,这个接地就是PT的一次接地,即工作接地,主要作用是将中性点电位统一拉到地电位。使对地相对电压能准确统一的测量。 二次绕组必须接地,是安全接地,即:为防止高低电压绕组间绝缘击穿造成设备和人身事故,二次侧必须接地。 电磁式电压互感器

电容式电压互感器 为了获得理想的电压源,在网络中串入非线性补偿电感线圈L;为抗干扰,减少互感器开口三角形绕组的不平衡电压,提高零序保护装置的灵敏度,增设一个高频阻断线圈L’,为了抑制谐振的产生,常在互感器二次侧接入D阻尼器。

电流互感器接线图

电流互感器接线图 我们从使用功能上将电流互感器分为测量用电流互感器和保护用电流互感器两类,各种电流互感器的原理类似,本文总结各种电流互感器接线图,供参考使用。 一测量用电流互感器接线方法 测量用电流互感器的作用是指在正常电压范围内,向测量、计量装置提供电网电流信息。 1普通电流互感器接线图 电流互感器的一次侧电流是从P1端子进入,从P2端子出来;即P1端子连接电源侧,P2端子连接负载侧。 电流互感器的二次侧电流从S1流出,进入电流表的正接线柱,电流表负接线柱出来后流入电流互感器二次端子S2,原则上要求S2端子接地。

注:某些电流互感器一次标称,L1、L2,二次侧标称K1、K2。 2穿心式电流互感器接线图 穿心式电流互感器接线与普通电流互感器类似,一次侧从互感器的P1面穿过,P2面出来,二次侧接线与普通互感器相同。 二电流互感器接线图 电流互感器接线总体分为四个接线方式: 1.单台电流互感器接线图 只能反映单相电流的情况,适用于需要测量一相电流的情况。 单台电流互感器接线图 2.三相完全星形接线和三角形接线形式电流互感器接线图 三相电流互感器能够及时准确了解三相负荷的变化情况。(三相完全星形电流互感器接线图)

3.两相不完全星形接线形式电流互感器接线图 在实际工作中用得最多,但仅限于三相三线制系统。它节省了一台电流互感器,根据三相矢量和为零的原理,用A、C相的电流算出B相电流。 两相不完全星形接线形式电流互感器接线图 4.两相差电流接线形式电流互感器接线图 也仅用于三相三线制电路中,这种接线的优点是不但节省一块电流互感器,而且也可以用一块继电器反映三相电路中的各种相间短路故障,亦即用最少的继电器完成三相过电流保护,节省投资。 两相差电流接线形式电流互感器接线图 5.其它接线方式 5.1 原边串联、副边串联 电流互感器原边串联、副边串联接线图如下所示,串联后效果:互感器变比不变,二次额定负荷增大一倍。 电流互感器原边串联、副边串联接线图

66kV油浸正立式电流互感器

同江长恒热电厂升压站新建工程66kV油浸正立式电流互感器 (技术规范专用部分) 制造单位:浙江特锐德高压电器有限公司设计单位:佳木斯华为电力(集团)有限公司 2019年 09月

目录 1 标准技术参数表 (2) 2 项目单位需求部分 (4) 2.1 货物需求及供货范围一览表 (4) 2.2 必备的备品备件、专用工具和仪器仪表供货表 (5) 2.3 图纸资料提交 (5) 2.4 工程概况 (5) 2.5 使用条件 (6) 2.6 项目单位可选技术参数表 (6) 2.7 项目单位技术参数差异表 (7) 2.8 一次、二次及土建接口要求(适用扩建工程) (7) 3 投标人响应部分 (8) 3.1 投标人技术响应及技术偏差表 (8) 3.2 110kV 倒立油浸式电流互感器销售运行业绩表 (8) 3.3 主要部件材料表 (9) 3.4 推荐的备品备件、专用工具和仪器仪表供货表 (9)

1标准技术参数表 标准技术参数表(表1)中“标准参数值”栏是标准化参数,不允许项目单位和投标人改动标准参数值。如有差异,项目单位请填写项目单位技术差异表(表6)。投标人应认真逐项填写技术参数响应表中投标人保证值,不能空格,也不能以“响应”两字代替。如有差异,请投标人填写投标人技术偏差表(表10)。 表1标准技术参数表

表1(续)

表1(续) 2项目需求部分 2.1货物需求及供货范围一览表 表2货物需求及供货范围一览表

2.2必备的备品备件、专用工具和仪器仪表供货表 表3必备的备品备件、专用工具和仪器仪表供货表 2.3图纸资料提交 经确认的图纸资料应由卖方提交表4所列单位。卖方向买方最终提供的资料、图纸及试验报告接收单位见表5。 表4卖方提交的须经确认的图纸资料及其接收单位

油浸式电流互感器渗油缺陷的原因分析及处理

油浸式电流互感器渗油缺陷的原因分析及处理 摘要:目前,变电站内油浸式电流互感器渗油缺陷比较常见,直接影响电网安全运行。本文主要介绍了某供电公司220kV变电站内油浸式电流互感器渗油缺陷的原因分析,根据分析结果,对油浸式电流互感器的周期检修提出了具体的检修方案。 关键词:油浸式电流互感器渗油处理 Abstract: At present, permeability defects of oil-immersed current transformers in the substation are common, directly affecting the safe operation of power grids. This paper analyzes the causes ofpermeability defects of oil-immersed current transformers in the 220kV substation of a power supply company, and puts forward the specific repair program for its periodic maintenance based on the analysis results. Key words: oil-immersed current transformer; permeability; processing 1.缺陷简述 2011年12月,在220kV变电站巡视中,检修人员发现型号为LWCB-220W 的一只C相电流互感器的二次出线端接线盒处渗油,连续5个月监视膨胀器油位变化和记录渗油速度(见图1、图2)。 图1膨胀器油位变化图2渗油速度变化 随着温度的升高,密封垫和油介质热胀冷缩,膨胀器油位下降速度趋于平缓,并未达到警戒线以下,从而保证电流互感器的绝缘不被击穿,为计划停电检修提供了宝贵的时间。 2.原因分析 2.1设备概况 某供电公司220kV变电站内的LWCB-220W型油浸式电流互感器为湖南醴陵电瓷厂生产,1998年12月投运,设备已运行14年。站内同批次、同型号的12组油浸式电流互感器, 根据检修周期,每4-5年执行一次大修。在前两次检修周期中,经常渗漏油的部位渗漏情况如表1所示。

电流互感器

一、电流互感器的作用 把大电流变成小电流,将连接在继电器及测量仪表的二次回路与一次回路安全隔离,防止二次设备的故障影响一次回路的正常运行,并将一次电流变换成5A或1A两种标准的二次电流值,提高整个一二次回路的安全性。 油浸式电流互感器都是户外式产品。OM5180-4按主绝缘结构不同,它可分为纯油纸绝缘的链型结构和电容型油纸绝缘结构。我国生产的66kV及以下电流互感器多采用链型绝缘结构,而ll0kV及以上电流互感器则主要采用电容型绝缘结构;其中,正立式互感器采用U形(一次)电容结构,倒立式互感器则采用吊环形(二次)电容结构。 高压电流互感器一次绕组大都由能够并联或串联的两个线段组成,可得到两个电流比。一般有2~6个二次绕组,其中1~2个作力计量和测量用,其余的作为保护用(P级);有些二次绕组也设有抽

头,以便从二次侧改变电流比。 油浸式电流互感器外形结构,如图3 -16所示。 1.电容型绝缘结构电流互感器 正立式电容型绝缘结构的主绝缘全部都包扎在一次绕组上,若为倒立式结构,则主绝缘全部包扎在二次绕组上。正立式结构一次绕组常采用U形,倒立式结构二次绕组常采用吊环形。布,应使每对电屏间电容量基本相同,通常按等厚绝缘原则来设计,即各相邻电屏之间绝缘厚度彼此相等。在相同电压下,电容型绝缘的总厚度比链型绝缘要薄,可以节约材料,因而在ll0kV及以上电流互感器中得到广泛

应用。这些电屏又称为主屏,最内层的电屏与一次绕组高压作电气连接,称为零屏,最外层的电屏接地,称为末屏或地屏。倒立式结构则相反,最外层电屏接高电压,最内层电屏接地。电容型绝缘电屏端部是极不均匀电场,为了改善电场分布,在两个主屏端部设置几个较短的端屏(也称副屏),将端部绝缘屏间厚度减小。 绝缘包扎所用材料有高压电缆纸、皱纹纸、电容器纸、半导体纸、铝箔、绝缘收缩带等。常用铝箔厚度为0.007~0.Olmm,为了便于真空干燥和浸渍处理,主屏铝箔要打孔,孔径为1.2~2mm,孔中心距和行距为8mm,但各主屏端部约300mm范围内和所有端屏均不打孔。半导体纸是近年来广泛使用的新型电屏材料,这种材料的基体是纸,因此柔韧性好,不易开裂,同时透气性好,易于干燥和浸油处理。 国内传统的电容型绝缘,主屏间绝缘厚度为4mm,主屏总数随T 作电压而增加,如ll0kV级取6个主屏,220kV级取10个主屏,主屏端部都采用4令端屏。近年来,有不少厂家对此结构进行了改进,采用少主屏多端屏结构,如只设3~4个主屏,端屏量随丁作电压而增加,便于制造和提高产品质量。常见如500kV电流互感器,设4个主屏,30个端屏,采用半导体纸。 绝缘包扎在包纸机上进行,包扎纸带采用1/2叠包扎方式,纸带绕行方向应交叉进行,每段绝缘至少应改变绕行方向一次。U形底部随着包扎厚度增加,也会出现内弧纸带超过1/2叠而外弧少于1/2叠的情况;为避免外弧绝缘减弱,可用数层电容器纸或严格半叠的两

第二章电流互感器基础学习知识原理

第二章 电流互感器原理 电流互感器是一种专门用作变换电流的特种变压器。在正常工作条件下,其二次电流实质上与一次电流成正比,而且在连接方向正确时,二次电流对一次电流的相位差接近于零。 电流互感器的工作原理示于图2-1。互感器的一次绕组串连在电力线路中,线路电流就是互感器的一次电流。互感器的二次绕组外部回路接有测量仪器、仪表或继电保护、自动控制装置。在图2-1中将这些串联的低电压装置的电流线圈阻抗以及连接线路的阻抗用一个集中的阻抗Z b 表示。当线路电流,也就是互感器的一次电流变化时,互感器的二次电流也相应变化,把线路电流变化的信息传递给测量仪器、仪表和继电保护、自动控制装置。 根据电力线路电压等级的不同,电流互感器的一、二次绕组之间设置有足够的绝缘,以保证所有低压设备与高电压相隔离。 电力线路中的电流各不相同,通过电流互感器一、二次绕组匝数比的配置,可以将不同的线路电 流变换成较小的标准电流值,一般是5A 或1A ,这样可以减小仪表和继电器的尺寸,简化其规格。所以说电流互感器的主要作用是:①给测量仪器、仪表或继电保护、控制装置传递信息;② 使测量、保护和控制装置与高电压相隔离;③ 有利于测量仪器、仪表和继电保护、控制装置小型化、标准化。 第一节 基本工作原理 1. 磁动势和电动势平衡方程式 从图2-1看出,当一次绕组流过电流1I &时,由于电磁感应,在二次绕组中感应出电 动势,在二次绕组外部回路接通的情况下,就有二次电流2I &流通。此时的一次磁动势为一次电流1I &与一次绕组匝数N 1的乘积11N I &,二次磁动势为二次电流2I &与二次绕组匝数 N 2的乘积22N I &。根据磁动势平衡原则,一次磁动势除平衡二次磁动势外,还有极小的一 部分用于铁心励磁,产生主磁通m Φ&。因此可写出磁动势平衡方程式 102211N I N I N I &&&=+,A (2-1) 式中 1I &? 一次电流,A ; 2I &? 二次电流,A ; 0I &? 励磁电流,A ; N 1 ? 一次绕组匝数; 图2-1 电流互感器工作原理图 1?一次绕组 2?铁心 3?二次绕组 4?负荷 2

电流互感器工作原理

电流互感器 1、原理 一次电流I 1流过一次绕组,建立一次磁动势 (N 1I 1),亦被称为一次安匝,其中N 1为一次绕组的匝数;一次磁动势分为两部分,其中小一部分用于励磁,在铁心中产生磁通,另一部分用来平衡二次磁动势(N 2I 2),亦被称为二次安匝,其中N 2为二次绕组的匝数。励磁电流设为I 0,励磁磁动势(N 1I 0),亦被称为励磁安匝。平衡二次磁动势的这部分一次磁动势,其大小与二次磁动势相等,但方向相反。磁势平衡方程式如下: 120121I N I N I N ? ? ? += 在理想情况下,励磁电流为零,即互感器不消耗能量,则有 12120I N I N ? ? += 若用额定值表示,则 1212 N N I N I N ? ? =- 其中1N I ? ,2N I ? 为一次、二次绕组额定电流。

额定一次、二次电流之比为电流互感器额定电流比,12N N N I K I = P 1 1I ? P 2 2 I ? Z B 电流互感器工作原理 E 2 11I N ? 22I N ? 22I N ? - 01I N ?

电流互感器的等值电路如下图所示: Z 1 Z 2 1 I ? 2I ? ? Z M 2U ? Z B ' 1 E ? 2E ? 根据电工原理,励磁电流在铁心中建立主磁通,它穿过一次、二次绕组的全部线匝。由于互感器铁心有磁滞和涡流损耗,励磁电流的一部分供给这些损耗,称为有功部分,另一部分用于励磁,称为无功部分。所以励磁电流与主磁通相差角,这个角称为铁损角。主磁通在二次绕组中感应出电动势2E ? ,相位相差90(滞后);则: 222()B E I Z Z ? ? =+ 式中 Z 2---二次绕组的内阻抗, Z 2= R 2 +jX2

电压互感器与电流互感器的作用、原理及两者区别

电流互感器作用及工作原理_电压互感器的作用及工作原理_电压互感器和电流互感器的区别 电力系统为了传输电能,往往采用交流电压、大电流回路把电力送往用户,无法用仪表进行直接测量。互感器的作用,就是将交流电压和大电流按比例降到可以用仪表直接测量的数值,便于仪表直接测量,同时为继电保护和自动装置提供电源,所以说电压互感器与电流互感器在电力系统中起到了非常的大的作用,而本文要介绍的就是电压互感器与电流互感器的区别以及如何使用电压互感器测量交流电路线电压。 电流互感器作用及工作原理 电流互感器的主要所用是用来将交流电路中的大电流转换为一定比例的小电流(我国标准为5安倍),以供测量和继电保护只之用。大家应该知道在发电、变电、输电、配电过程中由于用电设备的不同,电流往往从几十安到几万安都有,而且这些电路还可能伴随高压。那么为了能够对这些线路的电路进行监控、测量,同时又要解决高压、高电流带来的危险,这时就需要用到电流互感器了。有些人可能见过电工用的钳形表,这是一种用来测量交流电流的设备,它那个“钳”便是穿心式电流互感器。

电流互感器的结构如下图所示,可用它扩大交流电流表的量程。在使用时,它的原线圈应与待测电流的负载线路相串联,副边线圈则与电流表串接成闭合回路,如图中右边的电路图所示。 电流互感器的原线圈是用粗导线绕成,其匝数只有一匝或几匝,因而它的阻抗极小。原线圈串接在待测电路中时,它两端的电压降极小。副线圈的匝数虽多,但在正常情况下,它的电动势E2并不高,大约只有几伏。 由于I1/I2=K i(Ki称为变流比)所以I1=K i*I2

由此可见,通过负载的电流就等于副边线圈所测得的电流与变流比K i之乘积。如果电流表同一只专用的电流互感器配套使用,则这安培表的刻度就可按大电流电路中的电流值标出。电流互感器次级电流最大值,通常设计为标准值5A。不同的电流的电路所配用的电流互感器是不同的,其变流比有10/5、20/5、30/5、50/5、75/5、100/5等等。 为了安全起见,电流互感器副线圈的一端和铁壳必须接地。 电流互感器规格型号识别方法 电流互感器的型号是由2~4位拼音字母及数字组成。通常能表示出电流互感器的线圈型式、绝缘种类、导体的材料及使用场所等。横线后面的数字表示绝缘结构的电压等级(4级)。电流互感器型号中字母的含义如下: L:在第一位,表示电流互感器;

专家详解 电流互感器(结构篇)

专家详解:电流互感器(结构篇) 为电力系统中二次设备采集电流的唯一媒介,电流互感器的重要性不言而喻。从工作原理的角度分析,电流互感器实质上属于变压器的一种:通过电磁感应原理传递电气量;并依据原副边的变比值,将电力系统中一次侧大电流转换为二次设备使用的小电流。 为确保电流互感器运行的稳定、高效,行业内从设备的生产、运输、装配、运维等各个方面设有多项规章制度。本章节将节选部分规程,将理论与实际生产相结合,讨论规程的内在逻辑与实际意义。 为便于大家理解,本文先来讨论电流互感器的一次结构 一、电流互感器的绝缘结构: 在高压电力系统中,一次电力设备内绝缘通常采用电容型绝缘结构。所谓电容型绝缘结构是指:利用绝缘材料(油浸电缆纸)与电容屏(铝箔)将设备主绝缘层层包裹,通过调整电容屏间的径向厚度,以达到内绝缘场强均匀分布的目的。 电容型绝缘结构的机理如下图所示:

其中,内圆柱代表内侧电容屏,外圆柱代表外侧电容屏,内外电容屏间由绝缘材料填充;内屏半径OA1==R1,外屏半径OA2==R2; 针对圆柱型电容结构,绝缘介质中任意一点的径向场强Er(假设方向由轴心指向边缘)有如下公式: Er = U / r * ln(R2/R1) U表示电容屏间施加的电压。 分析公式可知,可得到以下两个结论: 1)当r == R2 时,径向场强Er达到最小值,即外电容屏场强最小;r == R1 时,径向场强达到最大值,即内电容屏场强最大; 2)若电容屏间的半径比值R2/R1数值越大,内外电容屏的场强差也越大; 而高压电力设备(110kV及以上),绝缘的厚度较大,其内外场强相差较大,严重时会超过绝缘材料本身的击穿场强;因此,为解决场强差的问题,并提高绝缘材料的利用效率,会在较厚的绝缘层中设置多个电容屏,通过调整电容屏间的径向距离,令径向场强均匀分布。 通常情况下,与一次高压绕组连接的电容屏称为零屏(高压电屏),靠近二次绕组的电容屏称为末屏(地电屏)。末屏可靠接地后,就在高压绕组与大地之间形成串联电容器组。若电容屏无限多,那么各屏表面场强可近乎于相等;但在实际情况下,电容屏数量有限,但各屏表面的场强差有着严格的限制。

电流互感器的工作原理

电流互感器的工作原理 在供电用电的线路中电流大大小小相差悬殊从几安到几万安都有。为便于二次仪表测量需要转换为比较统一的电流,另外线路上的电压都比较高如直接测量是非常危险的。电流互感器就起到变流和电气隔离作用。 目前显示仪表大部分是指针式的电流表,所以电流互感器的二次电流大多数是安培级的(如5A等)。现在的电量测量大多数字化,而计算机的采样的信号一般为毫安级(0-5V、4-20mA等)。微型电流互感器二次电流为毫安级,主要起大互感器与采样之间的桥梁作用。 电流互感器由一次线圈、二次线圈、铁心、绝缘支持及出线端子等组成,如图1所示。 电流互感器的铁心由硅钢片叠制而成,其一次线圈与主电路串联,且通过被测电流I1,它在铁心内产生变磁通,使二次线圈感应出相应的二次电流I2(其额定电流为5A)。如将励磁损耗忽略不计,则I1n1=I2n2,其中n1和n2分别为一、二次线圈的匝数,电流互感器的变流比K=I1/I2=n2/n1。由于电流互感器的一次线圈连接在主电路中,所以一次线圈对地必须采取与一次线路电压相相适应的绝缘材料,以确保二次回路与人身的安全。二次回路由电流互感器的二次线圈、仪表以及继电器的电流线圈串联组成。 电流互感器大致可分为两类,测量用电流互感器和保护用电流互感器。 一、测量用电流互感器 测量用电流互感器主要与测量仪表配合,在线路正常工作状态下,用来测量电流、电压、功率等。测量用电流互感器主要要求: 1、绝缘可靠, 2、足够高的测量精度, 3、当被测线路发生故障出现的大电流时互感器应在适当的量程内饱和(如500%的额定电流)以保护测量仪表。 二、保护用电流互感器 保护用电流互感器主要与继电装置配合,在线路发生短路过载等故障时,向继电装置提供信号切断故障电路,以保护供电系统的安全。保护用电流互感器的工作条件与测量用互感器完全不同,保护用互感器只是在比正常电流大几倍几十倍的电流时才开始有效的工作。保护用互感器主要要求: 1、绝缘可靠, 2、足够大的准确限值系数, 3、足够的热稳定性和动稳定性。 保护用互感器在额定负荷下能够满足准确级的要求最大一次电流叫额定准确限值一次电流。准确限值系数就是额定准确限值一次电流与额定一次电流比。当一次电流足够大时铁芯就会饱和起不到反映一次电流的作用,准确限值系数就是表示这种特性。保护用互感器准确等级5P、10P,表示在额定准确限值一次电流时的允许误差5%、10% 线路发生故障时的冲击电流产生热和电磁力,保护用电流互感器必须承受。二次绕组短路情况下,电流互感器在一秒内能承受而无损伤的一次电流有效值,称额定短时热电流。二次绕组短路情况下,电流互感器能承受而无损伤的一次电流峰值,称额定动稳定电流。 保护用电流互感器分为: 1、过负荷保护电流互感器, 2、差动保护电流互感器, 3、接地保护电流互感器(零序电流互感器)。 diandao999

110kV油浸正立式电流互感器

国家电网公司集中规模招标采购 (项目单位名称) (工程名称)变电站工程 110kV油浸正立式电流互感器 招标文件 (技术规范专用部分) 设计单位: 年月

目录 1 标准技术参数表 (2) 2 项目单位需求部分 (4) 2.1 货物需求及供货范围一览表 (4) 2.2 必备的备品备件、专用工具和仪器仪表供货表 (5) 2.3 图纸资料提交 (5) 2.4 工程概况 (5) 2.5 使用条件 (6) 2.6 项目单位可选技术参数表 (6) 2.7 项目单位技术参数差异表 (7) 2.8 一次、二次及土建接口要求(适用扩建工程) (7) 3 投标人响应部分 (8) 3.1 投标人技术响应及技术偏差表 (8) 3.2 110kV 倒立油浸式电流互感器销售运行业绩表 (8) 3.3 主要部件材料表 (9) 3.4 推荐的备品备件、专用工具和仪器仪表供货表 (9)

1标准技术参数表 标准技术参数表(表1)中“标准参数值”栏是正常使用条件下标准化参数,不允许项目单位和投标人改动标准参数值。如有差异,项目单位请填写项目单位技术差异表(表8)。投标人应认真逐项填写技术参数响应表中投标人保证值,不能空格,也不能以“响应”两字代替。如有差异,请投标人填写投标人技术偏差表(表10)。 表1标准技术参数表

表1(续)

表1(续) 2项目单位需求部分 2.1货物需求及供货范围一览表 表2货物需求及供货范围一览表

2.2必备的备品备件、专用工具和仪器仪表供货表 表3必备的备品备件、专用工具和仪器仪表供货表 2.3图纸资料提交 经确认的图纸资料应由卖方提交表4所列单位。卖方向买方最终提供的资料、图纸及试验报告接收单位见表5。 表4卖方提交的须经确认的图纸资料及其接收单位 表5卖方向买方最终提供的资料、图纸及试验报告接收单位 2.4工程概况 1)工程项目名称: 2)项目单位名称: 3)工程规模: 4)工程地址: 5)交通、运输:

电流互感器的原理与作用

讲师:靳红波 徒弟:马富敏胡振敏 内容:电流互感器的原理与作用 1、电流互感器的工作原理 电流互感器是电力系统中很重要的电力元件,作用是将一次高压侧的大电流通过交变磁通转变为二次电流供给保护,测量,虑波,计度等使用,本局所用电流互感器二次侧额定电流均为5A,也就是铭牌上标注为100/5、200/5等,表示一次侧如果100A或者200A电流,转换到二次侧电流就是5A。 电流互感器在二次侧必须有一点接地,目的是防止俩侧绕组的绝缘击穿后一次高压引入二次回路造成设备与人身伤害。同时电流互感器也只能有一点接地,如果有俩点接地,电网之间可能存在的潜电流会引起保护等设备的不正确动作。 在一般的电流回路中都是选择在该电流回路所在的端子箱接各个比较电流都在各自的端子箱接地,有可能由于地网的分流从而影响工作。所以对于差动保护规定所有电流回路都在差动保护屏一点接地。电力系统中广泛采用的是电磁式电流互感器(简称电流互感器)它的工作原理和和变压器相似。电流互感器的原理接线电流互感器的特点:(1)一次线圈串联在电路中,并且匝数很少,因此一次线圈中的电流而与二次电流无关等。 1、电流互感器不满足10%误差时,可采取哪些措施? (1)增大二次电缆截面 (2)将同名相两组电流互感器二次绕组串联 (3)改用饱和倍数较高的电流互感器 2、为什么不允许电流互感器长时间过负荷运行? 答:电流互感器长时间过负荷运行,会使误差增大,表计指示不正确。另外,由于一、二次电流增大,会使铁芯和绕组过热,绝缘老化快,甚至损坏电流互感器。 3、什么电压互感器和电流互感器的二次侧必须接地? 答:电压互感器和电流互感器的二次侧接地属于保护接地。因为一、二次侧绝缘如果损坏,一次侧高压串到二次侧,就会威胁人身和设备的安全,所以二次则必须接地。 在平时的实践中注意认真学习,才能真正的掌握这些理论知识,以及亲自动手实践。通过这短时间的培训、增加了徒弟们的团队合作精神、提高了徒弟们的动手能力。

电流互感器的型号参数各代表什么

电流互感器的型号参数各代表什么 悬赏分:10 - 离问题结束还有14 天23 小时 LZZBJ9-10A2 600/5 0.2S/0.5/10P20 15/15/15VA 请问以下参数各代表什么 一LZZBJ9-10A2 L电流互感器Currenttransformer Z支柱式Posttype Z浇注式Castingtype B带保护级Wityprotectiveclass J加强型Reinforcedtype 9设计序号DesignNumber 10额定电压(kV)Highestvoltageforequipment(kV) A2结构代号Structurecode 二600/5 电流倍数比率 三0.2S/0.5/10P20 精度是0.2级 10P20,后面的20就是准确限值系数。 10P20表示当一次电流是额定一次电流的20倍时,该绕组的复合误差≤±10%。 准确限值系数的意义就是在保证误差在±10%范围内时,一次电流不能超过额定电流的倍数. 电压互感器中的根号3参数代表什么线电压是相电压的根号3倍 5.1 额定一次电流标准值 5.1.1 单电流比互感器 额定一次电流的标准值为:10A,12.5A,15A,20A,25A,30A,40A,50A,60A,75A以及它们十进位倍数或小数,有下标线的是优先值(10A、15A、20A、30A、50A、75A)。 5.1.2 多电流比互感器 额定一电流的最小值,采用5.1.1项所列的标准值。 5.2 额定二次电流标准值 额定二次电流的标准值为1和5A。 注:对于角接的电流互感器来说,这些额定值除以√3亦是标准值。 选自《电流互感器》(GB1208-2006) 要根据一次电流的大小选择电流互感器,一般要有30%的余量。 电流互感器选型首先电压等级与之一致。第二,与负荷相对应,一般一次侧为额定负荷电流

相关主题
文本预览
相关文档 最新文档