北师大版《勾股定理》说课稿范文(精选6篇)
- 格式:docx
- 大小:34.57 KB
- 文档页数:19
勾股定理说课稿15篇勾股定理说课稿1一、说教材本课时是华师大版八年级(上)数学第14章第二节内容,是在掌握勾股定理的基础上对勾股定理的应用之一。
勾股定理是我国古数学的一项伟大成就。
勾股定理为我们提供了直角三角形的三边间的数量关系,它的逆定理为我们提供了判断三角形是否属于直角三角形的依据,也是判定两条直线是否互相垂直的一个重要方法,这些成果被广泛应用于数学和实际生活的各个方面。
教材在编写时注意培养学生的动手操作能力和分析问题的能力,通过实际分析,使学生获得较为直观的印象,通过联系和比较,了解勾股定理在实际生活中的广泛应用。
据此,制定教学目标如下:1、知识和方法目标:通过对一些典型题目的思考,练习,能正确熟练地进行勾股定理有关计算,深入对勾股定理的理解。
2、过程与方法目标:通过对一些题目的探讨,以达到掌握知识的目的。
3、情感与态度目标:感受数学在生活中的应用,感受数学定理的美。
教学重点:勾股定理的应用。
教学难点:勾股定理的正确使用。
教学关键:在现实情境中捕抓直角三角形,确定好直角三角形之后,再应用勾股定理。
二、说教法和学法1、以自学辅导为主,充分发挥教师的主导作用,运用各种手段激发学习欲望和兴趣,组织学生活动,让学生主动参与学习全过程。
2、切实体现学生的主体地位,让学生通过观察,分析,讨论,操作,归纳理解定理,提高学生动手操作能力,以及分析问题和解决问题的能力。
3、通过演示实物,引导学生观察,操作,分析,证明,使学生获得新知的成功感受,从而激发学生钻研新知的欲望。
三、教学程序本节内容的教学主要体现在学生的动手,动脑方面,根据学生的认知规律和学习心理,教学程序设置如下:一、回顾问:勾股定理的内容是什么?勾股定理揭示了直角三角形三边之间的关系,今天我们来学习这个定理在实际生活中的应用。
二、新授课例1、如图所示,有一个圆柱,它的高AB等于4厘米,底面周长等于20厘米,在圆柱下底面的A点有一只蚂蚁,它想吃到上底面与A点相对的C点处的食物,沿圆柱侧面爬行的最短路线是多少?(课本P57图14.2.1)①学生取出自制圆柱,,尝试从A点到C点沿圆柱侧面画出几条路线。
勾股定理说课稿8篇勾股定理说课稿篇1各位专家领导:上午好!今天我说课的课题是《勾股定理》。
一、教材分析:(一)本节内容在全书和章节的地位。
这节课是九年制义务教育课程标准实验教科书(华东版),八年级第十九章第二节“勾股定理”第一课时。
勾股定理是学生在已经掌握了直角三角形有关性质的基础上进行学习的,它是直角三角形的一条非常重要的性质,是几何中最重要的定理之一,它揭示了一个三角形三条边之间的数量关系,它可以解决直角三角形的主要依据之一,在实际生活中用途很大。
教材在编写时注意培养学生的动手操作能力和观察分析问题的能力;通过实际分析,拼图等活动,使学生获得较为直观的印象;通过联系比较,理解勾股定理,以便于正确的进行运用。
(二)三维教学目标:1、知识与能力目标。
(1)理解并掌握勾股定理的内容和证明,能够灵活运用勾股定理及其计算;(2)通过观察分析,大胆猜想,并探索勾股定理,培养学生动手操作、合作交流、逻辑推理的能力。
2、过程与方法目标。
在探索勾股定理的过程中,让学生经历“观察-猜想-归纳-验证”的数学思想,并体会数形结合和从特殊到一般的思想方法。
3、情感态度与价值观。
通过介绍中国古代勾股方面的成就,激发学生热爱祖国和热爱祖国悠久文化的思想感情,培养学生的民族自豪感和钻研精神。
(三)教学重点、难点:1、教学重点:勾股定理的证明与运用2、教学难点:用面积法等方法证明勾股定理3、难点成因:对于勾股定理的得出,首先需要学生通过动手操作,在观察的基础上,大胆猜想数学结论,而这需要学生具备一定的分析、归纳的思维方法和运用数学的思想意识,但学生在这一方面的可预见性和耐挫折能力并不是很成熟,从而形成困难。
4、突破措施:(1)创设情景,激发思维:创设生动、启发性的问题情景,激发学生的问题冲突,让学生在感到“有趣”、“有意思”的状态下进入学习过程;(2)自主探索,敢于猜想:充分让自己动手操作,大胆猜想数学问题的结论,老师是整个活动的组织者,更是一位参入者,学生之间相互交流、协作,从而形成生动的课堂环境;(3)张扬个性,展示风采:实行“小组合作制”,各小组中自己推荐一人担任“发言人”,一人担任“书记员”,在讨论结束后,由小组的“发言人”汇报本小组的讨论结果,并可上台利用“多媒体视频展示台”展示本组的优秀作品,其他小组给予评价。
勾股定理说课稿模板八篇勾股定理说课稿模板八篇作为一名为他人授业解惑的教育工作者,常常需要准备说课稿,借助说课稿可以有效提高教学效率。
快来参考说课稿是怎么写的吧!下面是小编精心整理的勾股定理说课稿8篇,希望对大家有所帮助。
勾股定理说课稿篇1一、教材分析:(一)教材的地位与作用从知识结构上看,勾股定理揭示了直角三角形三条边之间的数量关系,为后续学习解直角三角形提供重要的理论依据,在现实生活中有着广泛的应用。
从学生认知结构上看,它把形的特征转化成数量关系,架起了几何与代数之间的桥梁;勾股定理又是对学生进行爱国主义教育的良好素材,因此具有相当重要的地位和作用。
根据数学新课程标准以及八年级学生的认知水平我确定如下学习目标:知识技能、数学思考、问题解决、情感态度。
其中【情感态度】方面,以我国数学文化为主线,激发学生热爱祖国悠久文化的情感。
(二)重点与难点为变被动接受为主动探究,我确定本节课的重点为:勾股定理的探索过程。
限于八年级学生的思维水平,我将面积法(拼图法)发现勾股定理确定为本节课的难点,我将引导学生动手实验突出重点,合作交流突破难点。
二、教学与学法分析教学方法叶圣陶说过"教师之为教,不在全盘授予,而在相机诱导。
"因此教师利用几何直观提出问题,引导学生由浅入深的探索,设计实验让学生进行验证,感悟其中所蕴涵的思想方法。
学法指导为把学习的主动权还给学生,教师鼓励学生采用动手实践,自主探索、合作交流的学习方法,让学生亲自感知体验知识的形成过程。
三、教学过程我国数学文化源远流长、博大精深,为了使学生感受其传承的魅力,我将本节课设计为以下五个环节。
首先,情境导入,古韵今风给出《七巧八分图》中的一组图片,让学生利用两组七巧板进行合作拼图。
让学生观察并思考三个正方形面积之间的关系?它们围成了怎么样三角形,反映在三边上,又蕴含着怎么样数学奥秘呢?寓教于乐,激发学生好奇、探究的欲望。
第二步,追溯历史,解密真相勾股定理的探索过程是本节课的重点,依照数学知识的循序渐进、螺旋上升的原则,我设计如下三个活动。
初中数学《勾股定理》优秀说课稿(优秀3篇)初中数学《勾股定理》优秀说课稿篇一教学目标1、灵活应用勾股定理及逆定理解决实际问题。
2、进一步加深性质定理与判定定理之间关系的认识。
重难点1、重点:灵活应用勾股定理及逆定理解决实际问题。
2、难点:灵活应用勾股定理及逆定理解决实际问题。
一、自主学习1、若三角形的三边是⑴1、、2;⑴;⑴32,42,52⑴9,40,41;⑴(m+n)2-1,2(m+n),(m+n)2+1;则构成的是直角三角形的有()A、2个B、3个?C、4个?D、5个2、已知:在⑴ABC中,⑴A、⑴B、⑴C的对边分别是a、b、c,分别为下列长度,判断该三角形是否是直角三角形?并指出那一个角是直角?⑴a=9,b=41,c=40;⑴a=15,b=16,c=6;⑴a=2,b=,c=4;二、交流展示例1(P33例2)某港口P位于东西方向的`海岸线上。
“远航”号、“海天”号轮船同时离开港口,各自沿一固定方向航行,“远航”号每小时航行16海里,“海天”号每小时航行12海里,它们离开港口一个半小时后分别位于Q、R处,并相距30海里。
如果知道“远航”号沿东北方向航行,能知道“海天”号沿哪个方向航行吗?分析:⑴了解方位角,及方位名词;⑴依题意画出图形;⑴依题意可求PR,PQ,QR;⑴根据勾股定理的逆定理,求⑴QPR;⑴求⑴RPN。
小结:让学生养成“已知三边求角,利用勾股定理的逆定理”的意识。
例2、一根30米长的细绳折成3段,围成一个三角形,其中一条边的长度比较短边长7米,比较长边短1米,请你试判断这个三角形的形状。
分析:⑴若判断三角形的形状,先求三角形的三边长;⑴设未知数列方程,求出三角形的三边长;⑴根据勾股定理的逆定理,判断三角形是否为直角三角形。
三、合作探究例3、如图,小明的爸爸在鱼池边开了一块四边形土地种了一些蔬菜,爸爸让小明计算一下土地的面积,以便计算一下产量。
小明找了一卷米尺,测得AB=4米,BC=3米,CD=13米,DA=12米,又已知⑴B=90°。
勾股定理说课稿汇总5篇勾股定理说课稿篇1一、说教材勾股定理是学生在已经掌握了直角三角形的有关性质的基础上进行学习的,它是直角三角形的一条非常重要的性质,是几何中最重要的定理之一,它揭示了一个三角形三条边之间的数量关系,它可以解决直角三角形中的计算问题,是解直角三角形的主要根据之一,在实际生活中用途很大。
教材在编写时注意培养学生的动手操作能力和分析问题的能力,通过实际分析、拼图等活动,使学生获得较为直观的印象;通过联系和比较,理解勾股定理,以利于正确的进行运用。
据此,制定教学目标如下:1、理解并掌握勾股定理及其证明。
2、能够灵活地运用勾股定理及其计算。
3、培养学生观察、比较、分析、推理的能力。
4、通过介绍中国古代勾股方面的成就,激发学生热爱祖国与热爱祖国悠久文化的思想感情,培养他们的民族自豪感和钻研精神。
教学重点:勾股定理的证明和应用。
教学难点:勾股定理的证明。
二、说教法和学法教法和学法是体现在整个教学过程中的,本课的教法和学法体现如下特点:1、以自学辅导为主,充分发挥教师的主导作用,运用各种手段激发学生学习欲望和兴趣,组织学生活动,让同学们主动参与学习全过程。
2、切实体现学生的主体地位,让学生通过观察、分析、讨论、操作、归纳,理解定理,提高学生动手操作能力,以及分析问题和解决问题的能力。
3、通过演示实物,引导学生观察、操作、分析、证明,使学生得到获得新知的成功感受,从而激发学生钻研新知的欲望。
三、教学程序本节内容的教学主要体现在学生动手、动脑方面,根据学生的认知规律和学习心理,教学程序设计如下:(一)创设情境以古引新1、由故事引入,3000多年前有个叫商高的人对周公说,把一根直尺折成直角,两端连接得到一个直角三角形,如果勾是3,股是4,那么弦等于5。
这样引起学生学习兴趣,激发学生求知欲。
2、是不是所有的直角三角形都有这个性质呢?教师要善于激疑,使学生进入乐学状态。
3、板书课题,出示学习目标。
(二)初步感知理解教材教师指导学生自学教材,通过自学感悟理解新知,体现了学生的自主学习意识,锻炼学生主动探究知识,养成良好的自学习惯。
本文部分内容来自网络整理,本司不为其真实性负责,如有异议或侵权请及时联系,本司将立即删除!== 本文为word格式,下载后可方便编辑和修改! ==新北师大版勾股定理的应用说课稿一等奖篇一:《勾股定理的应用》说课稿《勾股定理的应用》说课稿各位评委老师,你们好!今天我说课的题目是《勾股定理的应用》,下面我将从教材的地位和作用、学情、教学目标、教学重、难点、教法和学法、教学过程六个方面对本课进行分析。
一、说教材的地位和作用本节选自华东师大版八年级数学上册第14章第2节,本节是在掌握勾股定理的基础上对勾股定理的应用之一。
教材在编写时注重培养学生的动手操作能力和分析问题的能力。
通过实际分析,使学生获得较为直观的印象。
通过联系和比较,了解勾股定理在实际生活中的广泛应用。
勾股定理作为数学学习的工具,掌握好本节内容对其他内容的学习奠定基础。
《勾股定理的应用》分为两个课时,本节课是第一课时。
二:说学情在本节内容之前,学生已经准确的理解了勾股定理的内容,并能运用它解决一些数学问题,同时也具备了一定的合作意识与能力,并对“做数学”有相当的兴趣和积极性,但探究问题的能力还是有限,对生活中的实际问题与勾股定理的联系还不明确,特别是构建数学模型还有困难,自主学习能力也有待于加强。
三、说教学目标课标要求:能运用勾股定理及逆定理解决简单的实际问题1.知识与技能目标:能运用勾股定理及逆定理解决简单的实际问题。
2.过程与方法目标:经历勾股定理的应用过程,熟练掌握其应用方法,明确应用的条件。
3.情感态度价值观目标:培养合情推理能力,体会数学源于生活又服务于生活,激发学习热情。
四、说教学重、难点重点:勾股定理及逆定理的应用。
难点:勾股定理的正确使用及体会数学建模思想。
关键:在现实情境中捕捉直角三角形,把实际问题化成勾股定理几何模型,然后针对性解决。
五、说教法和学法1、教法分析我主要采用了引导发现法问题教学法演示法合作探究法练习巩固法等2、学法分析我主要采用了:自主探究学习法实验法合作探究学习个人展示法练习巩固法等六、说教学程序【第一环节情境引入导入新课】本环节我设计了一个受台风影响树木断裂的问题,学生先独立思考,然后二人复述,再上黑板展示,最后教师引导学生发现解题思路,引出本节内容。
关于勾股定理说课稿四篇篇一:勾股定理的引入大家好!今天我要给大家讲解的是数学中的一个重要定理——勾股定理。
勾股定理是数学中的一条基本定理,也是我们学习几何的基础。
它的发现和应用可以追溯到古代中国和古希腊时期。
勾股定理的证明方法有很多,其中一种最常见的方法是利用几何图形进行证明。
下面我将为大家介绍勾股定理的定义、历史背景以及一个简单的证明方法。
首先,我们来看一下勾股定理的定义。
勾股定理是指在直角三角形中,直角边的平方等于另外两条边的平方和。
换句话说,设直角三角形的两条直角边分别为a和b,斜边为c,则有a² + b² = c²。
这就是勾股定理的数学表达式。
接下来,我们了解一下勾股定理的历史背景。
勾股定理最早可以追溯到古代中国的《周髀算经》和《九章算术》中。
在中国,勾股定理被称为“勾股数学”,并被广泛应用于农业、建筑和天文学等领域。
而在古希腊,勾股定理被归功于毕达哥拉斯学派的数学家毕达哥拉斯。
他将勾股定理应用于几何学,并给出了一个简单的证明方法。
最后,我们来看一下勾股定理的证明方法。
一个简单的证明方法是通过几何图形进行证明。
我们可以画一个直角三角形,并在每条边上标出相应的长度。
然后,根据勾股定理的定义,我们可以计算出每条边的平方和,验证它们是否相等。
如果相等,那么我们就证明了勾股定理的正确性。
总结一下,勾股定理是数学中的一条基本定理,它在几何学中有着广泛的应用。
它的定义是直角三角形的直角边的平方等于另外两条边的平方和。
勾股定理的历史可以追溯到古代中国和古希腊时期。
证明勾股定理的方法有很多,其中一种常见的方法是通过几何图形进行证明。
希望通过今天的讲解,大家对勾股定理有了更深入的了解。
篇二:勾股定理的应用大家好!今天我要给大家讲解的是勾股定理的应用。
勾股定理是数学中的一条基本定理,它不仅在几何学中有着广泛的应用,还可以用于解决实际问题。
下面我将为大家介绍勾股定理在几何学和实际问题中的应用。
勾股定理说课稿三篇勾股定理说课稿篇1(一)创设问题情境,引入新课:在这一环节中,我设计了这样一个情境,多媒体动画展示,米老鼠来到了数学王国里的三角形城堡,要求只利用一根绳子,构造一个直角三角形,方可入城,这可难坏了米老鼠,你能帮它想办法吗?预测大多数同学会无从下手,这样引出课题。
只有学习了勾股定理的逆定理后,大家都能帮助米老鼠进入城堡,我认为:“大疑而大进”这样做,充分调动学习内容,激发求知欲望,动漫演示,又有了很强的趣味性,做到课之初,趣已生,疑已质。
(二)实践猜想本环节要围绕以下几个活动展开:1、算一算:求以线段a,b为直角边的直角三角形的斜边c 长。
1a=3b=42a=5b=123a=2.5b=64a=6b=82、猜一猜,以下列线段长为三边的三角形形状13cm4cm5cm25cm12cm13cm32.5cm6cm6.5cm46cm8cm10cm3、摆一摆利用方便筷来操作问题2,利用量角器来度量,验证问题2的发现。
4、用恰当的语言叙述你的结论在算一算中学生复习了勾股定理,猜一猜和摆一摆中学生小组合作动手实践,在问题1的基础上做出合理的推测和猜想,这样分层递进找到了学生思维的最近发展区,面向不同层次的每一名学生,每一名学生都有参与数学活动的机会,最后运用恰当的语言表述,得到了勾股定理的逆定理。
在整个过程的活动中,教师给学生充分的时间和空间,教师以平等的身份参与小组活动中,倾听意见,帮助指导学生的实践活动。
学生的摆一摆的过程利用实物投影仪展示,在活动中教师关注;1)学生的参与意识与动手能力。
2)是否清楚三角形三边长度的平方关系是因,直角三角形是果。
既先有数,后有形。
3)数形结合的思想方法及归纳能力。
(三)推理证明八年级正是学生由实验几何向推理几何过渡的重要时期,多数学生难以由直观到抽象这一思维的飞跃,而勾股定理的逆定理的证明又不同于以往的几何图形的证明,需要构造直角三角形才能完成,而构造直角三角形就成为解决问题的关键,直接抛给学生证明,无疑会石沉大海,所以,我采用分层导进的方法,以求一石激起千层浪。
勾股定理说课稿勾股定理说课稿1一、教材分析:(一)、本节课在教材中的地位作用“勾股定理的逆定理”一节,是在上节“勾股定理”之后,继续学习的一个直角三角形的判断定理,它是前面知识的继续和深化,勾股定理的逆定理是初中几何学习中的重要内容之一,是今后判断某三角形是直角三角形的重要方法之一,在以后的解题中,将有十分广泛的应用,同时在应用中渗透了利用代数计算的方法证明几何问题的思想,为将来学习解析几何埋下了伏笔,所以本节也是本章的重要内容之一。
课标要求学生必须掌握。
(二)、教学目标:根据数学课标的要求和教材的具体内容,结合学生实际我确定了本节课的教学目标。
知识技能:1、理解勾股定理的逆定理的证明方法并能证明勾股定理的逆定理。
2、掌握勾股定理的逆定理,并能利用勾股定理的逆定理判定一个三角形是不是直角三角形。
过程与方法:1、通过对勾股定理的逆定理的探索,经历知识的发生、发展与形成的过程。
2、通过用三角形三边的数量关系来判断三角形的形状,体验数与形结合方法的应用。
3、通过勾股定理的逆定理的证明,体会数与形结合方法在问题解决中的作用,并能运用勾股定理的逆定理解决相关问题。
情感态度:1、通过用三角形三边的数量关系来判断三角形的形状,体验数与形的内在联系,感受定理与逆定理之间的和谐及辩证统一的关系。
2、在探究勾股定理的逆定理的活动中,通过一系列富有探究性的问题,渗透与他人交流、合作的意识和探究精神。
(三)、学情分析:尽管已到初二下学期学生知识增多,能力增强,但思维的局限性还很大,能力也有差距,而勾股定理的逆定理的证明方法学生第一次见到,它要求根据已知条件构造一个直角三角形,根据学生的智能状况,学生不容易想到,因此勾股定理的逆定理的证明又是本节的难点,这样如何添辅助线就是解决它的关键,这样就确定了本节课的重点、难点和关键。
重点:勾股定理逆定理的应用难点:勾股定理逆定理的证明关键:辅助线的添法探索二、教学过程:本节课的设计原则是:使学生在动手操作的基础上和合作交流的良好氛围中,通过巧妙而自然地在学生的认识结构与几何知识结构之间筑了一个信息流通渠道,进而达到完善学生的数学认识结构的目的。
《勾股定理》说课稿尊敬的各位评委老师:大家好!今天我说课的内容是《勾股定理》。
下面我将从教材分析、学情分析、教学目标、教学重难点、教法与学法、教学过程、板书设计这几个方面来展开我的说课。
一、教材分析《勾股定理》是初中数学中的一个重要定理,它揭示了直角三角形三边之间的数量关系。
这一定理不仅在数学中有着广泛的应用,而且在实际生活中也具有重要的意义。
本节课是在学生已经学习了直角三角形的相关性质的基础上进行的,通过对勾股定理的探究和证明,能够进一步培养学生的逻辑推理能力和数学思维能力。
二、学情分析学生在之前的学习中已经掌握了直角三角形的一些基本性质,如直角三角形的两个锐角互余等。
但是对于勾股定理这样较为抽象的数学定理,学生可能在理解和应用上会存在一定的困难。
此外,八年级的学生已经具备了一定的观察、分析和归纳能力,但在数学证明方面还需要进一步的引导和训练。
三、教学目标1、知识与技能目标(1)理解并掌握勾股定理的内容。
(2)能够运用勾股定理解决一些简单的数学问题和实际问题。
2、过程与方法目标(1)通过观察、猜想、验证等过程,培养学生的探究能力和逻辑推理能力。
(2)让学生经历从特殊到一般的数学思考过程,体会数学思维的严谨性。
3、情感态度与价值观目标(1)通过对勾股定理的探究,激发学生的学习兴趣和求知欲。
(2)培养学生勇于探索、敢于创新的精神。
四、教学重难点1、教学重点勾股定理的内容及证明。
2、教学难点勾股定理的证明以及运用勾股定理解决实际问题。
五、教法与学法1、教法(1)情境教学法:通过创设实际情境,引导学生观察、思考,激发学生的学习兴趣。
(2)启发式教学法:在教学过程中,通过提出问题,引导学生进行思考和探究,培养学生的思维能力。
(3)讲练结合法:在讲解完新知识后,及时进行练习,让学生巩固所学知识。
2、学法(1)自主探究法:让学生通过自主观察、猜想、验证等活动,探索勾股定理的内容。
(2)合作学习法:组织学生进行小组合作学习,共同探讨问题,培养学生的合作精神和交流能力。
《勾股定理》说课稿北师大版《勾股定理》说课稿范文(精选6篇)作为一名教师,时常需要编写说课稿,说课稿有助于顺利而有效地开展教学活动。
写说课稿需要注意哪些格式呢?下面是小编整理的北师大版《勾股定理》说课稿范文(精选6篇),仅供参考,希望能够帮助到大家。
《勾股定理》说课稿1一、教材分析:(一)教材的地位与作用从知识结构上看,勾股定理揭示了直角三角形三条边之间的数量关系,为后续学习解直角三角形提供重要的理论依据,在现实生活中有着广泛的应用。
从学生认知结构上看,它把形的特征转化成数量关系,架起了几何与代数之间的桥梁;勾股定理又是对学生进行爱国主义教育的良好素材,因此具有相当重要的地位和作用。
根据数学新课程标准以及八年级学生的认知水平我确定如下学习目标:知识技能、数学思考、问题解决、情感态度。
其中情感态度方面,以我国数学文化为主线,激发学生热爱祖国悠久文化的情感。
(二)重点与难点为变被动接受为主动探究,我确定本节课的重点为:勾股定理的探索过程。
限于八年级学生的思维水平,我将面积法(拼图法)发现勾股定理确定为本节课的难点,我将引导学生动手实验突出重点,合作交流突破难点。
二、教学与学法分析教学方法叶圣陶说过"教师之为教,不在全盘授予,而在相机诱导。
"因此教师利用几何直观提出问题,引导学生由浅入深的探索,设计实验让学生进行验证,感悟其中所蕴涵的思想方法。
学法指导为把学习的主动权还给学生,教师鼓励学生采用动手实践,自主探索、合作交流的学习方法,让学生亲自感知体验知识的形成过程。
三、教学过程我国数学文化源远流长、博大精深,为了使学生感受其传承的魅力,我将本节课设计为以下五个环节。
首先,情境导入古韵今风给出《七巧八分图》中的一组图片,让学生利用两组七巧板进行合作拼图。
让学生观察并思考三个正方形面积之间的关系?它们围成了怎么样三角形,反映在三边上,又蕴含着怎么样数学奥秘呢?寓教于乐,激发学生好奇、探究的欲望。
第二步追溯历史解密真相勾股定理的探索过程是本节课的重点,依照数学知识的循序渐进、螺旋上升的原则,我设计如下三个活动。
从上面低起点的问题入手,有利于学生参与探索。
学生很容易发现,在等腰三角形中存在如下关系。
巧妙的将面积之间的关系转化为边长之间的关系,体现了转化的思想。
观察发现虽然直观,但面积计算更具说服力。
将图形转化为边在格线上的图形,以便于计算图形面积,体现了数形结合的思想。
学生会想到用"数格子"的方法,这种方法虽然简单易行,但对于下一步探索一般直角三角形并不适用,具有局限性。
因此教师应引导学生利用"割"和"补"的方法求正方形C的面积,为下一步探索复杂图形的面积做铺垫。
突破等腰直角三角形的束缚,探索在一般情况下的直角三角形是否也存在这一结论呢?体现了"从特殊到一般"的认知规律。
教师给出边长单位长度分别为3、4、5的直角三角形,避免了学生因作图不准确而产生的错误,也为下面"勾三股四弦五"的提出埋下伏笔。
有了上一环节的铺垫,有效地分散了难点。
在求正方形C的面积时,学生将展示"割"的方法,"补"的方法,有的学生可能会发现平移的方法,旋转的方法,对于这两种新方法教师应给于表扬,肯定学生的研究成果,培养学生的类比、迁移以及探索问题的能力。
使用几何画板动态演示,使几何与代数之间的关系可视化。
当为直角三角形时,改变三边长度三边关系不变,当∠α为锐角或钝角时,三边关系就改变了,进而强调了命题成立的前提条件必须是直角三角形。
加深学生对勾股定理理解的同时也拓展了学生的视野。
以上三个环节层层深入步步引导,学生归纳得到命题1,从而培养学生的合情推理能力以及语言表达能力。
感性认识未必是正确的,推理验证证实我们的猜想。
第三步推陈出新借古鼎新教材中直接给出"赵爽弦图"的证法对学生的思维是一种禁锢,教师创新使用教材,利用拼图活动解放学生的大脑,让学生发挥自己的聪明才智证明勾股定理。
这是教学的难点也是重点,教师应给学生充分的自主探索的时间与空间,让学生的思维在相互讨论中碰撞、在相互学习中完善。
教师深入到学生中间,观察学生探究方法接受学生的质疑,对于不同的拼图方案给予肯定。
从而体现出"学生是学习的主体,教师是组织者、引导者与合作者"这一教学理念。
学生会发现两种证明方案。
方案1为赵爽弦图,学生讲解论证过程,再现古代数学家的探索方法。
方案2为学生自己探索的结果,论证之巧较方案1有异曲同工之妙。
整个探索过程,让学生经历由表面到本质,由合情推理到演绎推理的发掘过程,体会数学的严谨性。
对比"古"、"今"两种证法,让学生体会"吹尽黄沙始到金"的喜悦,感受到"青出于蓝而胜于蓝"的自豪感。
板书勾股定理,进而给出字母表示,培养学生的符号意识。
教师对"勾、股、弦"的含义以及古今中外对勾股定理的研究做一个介绍,使学生感受数学文化,培养民族自豪感和爱国主义精神。
利用勾股树动态演示,让学生欣赏数学的精巧、优美。
第四步取其精华古为今用我按照"理解—掌握—运用"的梯度设计了如下三组习题。
(1)对应难点,巩固所学。
(2)考查重点,深化新知。
(3)解决问题,感受应用。
第五步温故反思任务后延在课堂接近尾声时,我鼓励学生从"四基"的要求对本节课进行小结。
进而总结出一个定理、二个方案、三种思想、四种经验。
然后布置作业,分层作业体现了教育面向全体学生的理念。
《勾股定理》说课稿2一、教材分析:勾股定理是学生在已经掌握了直角三角形的有关性质的基础上进行学习的,它是直角三角形的一条非常重要的性质,是几何中最重要的定理之一,它揭示了一个三角形三条边之间的数量关系,它可以解决直角三角形中的计算问题,是解直角三角形的主要根据之一,在实际生活中用途很大。
教材在编写时注意培养学生的动手操作能力和分析问题的能力,通过实际分析、拼图等活动,使学生获得较为直观的印象;通过联系和比较,理解勾股定理,以利于正确的进行运用。
据此,制定教学目标如下:1、理解并掌握勾股定理及其证明。
2、能够灵活地运用勾股定理及其计算。
3、培养学生观察、比较、分析、推理的能力。
4、通过介绍中国古代勾股方面的成就,激发学生热爱祖国与热爱祖国悠久文化的思想感情,培养他们的民族自豪感和钻研精神。
二、教学重点:勾股定理的证明和应用。
三、教学难点:勾股定理的证明。
四、教法和学法:教法和学法是体现在整个教学过程中的,本课的教法和学法体现如下特点:以自学辅导为主,充分发挥教师的主导作用,运用各种手段激发学生学习欲望和兴趣,组织学生活动,让学生主动参与学习全过程。
切实体现学生的主体地位,让学生通过观察、分析、讨论、操作、归纳,理解定理,提高学生动手操作能力,以及分析问题和解决问题的能力。
通过演示实物,引导学生观察、操作、分析、证明,使学生得到获得新知的成功感受,从而激发学生钻研新知的欲望。
五、教学程序:本节内容的教学主要体现在学生动手、动脑方面,根据学生的认知规律和学习心理,教学程序设计如下:(一)创设情境,以古引新1、由故事引入,3000多年前有个叫商高的人对周公说,把一根直尺折成直角,两端连接得到一个直角三角形,如果勾是3,股是4,那么弦等于5。
这样引起学生学习兴趣,激发学生求知欲。
2、是不是所有的直角三角形都有这个性质呢?教师要善于激疑,使学生进入乐学状态。
3、板书课题,出示学习目标。
(二)初步感知,理解教材教师指导学生自学教材,通过自学感悟理解新知,体现了学生的自主学习意识,锻炼学生主动探究知识,养成良好的自学习惯。
(三)质疑解难、讨论归纳:1、教师设疑或学生提疑。
如:怎样证明勾股定理?学生通过自学,中等以上的学生基本掌握,这时能激发学生的表现欲。
2、教师引导学生按照要求进行拼图,观察并分析;(1)这两个图形有什么特点?(2)你能写出这两个图形的面积吗?(3)如何运用勾股定理?是否还有其他形式?这时教师组织学生分组讨论,调动全体学生的积极性,达到人人参与的效果,接着全班交流。
先有某一组代表发言,说明本组对问题的理解程度,其他各组作评价和补充。
教师及时进行富有启发性的点拨,最后,师生共同归纳,形成一致意见,最终解决疑难。
(四)巩固练习,强化提高1、出示练习,学生分组解答,并由学生总结解题规律。
课堂教学中动静结合,以免引起学生的疲劳。
2、出示例1学生试解,师生共同评价,以加深对例题的理解与运用。
针对例题再次出现巩固练习,进一步提高学生运用知识的能力,对练习中出现的情况可采取互评、互议的形式,在互评互议中出现的具有代表性的问题,教师可以采取全班讨论的形式予以解决,以此突出教学重点。
(五)归纳总结,练习反馈引导学生对知识要点进行总结,梳理学习思路。
分发自我反馈练习,学生独立完成。
本课意在创设愉悦和谐的乐学气氛,优化教学手段,借助多媒体提高课堂教学效率,建立平等、民主、和谐的师生关系。
加强师生间的合作,营造一种学生敢想、感说、感问的课堂气氛,让全体学生都能生动活泼、积极主动地教学活动,在学习中创新精神和实践能力得到培养。
《勾股定理》说课稿3一、教材分析(一)教材地位这节课是九年制义务教育初级中学教材北师大版八年级第一章第一节《探索勾股定理》第一课时,勾股定理是几何中几个重要定理之一,它揭示的是直角三角形中三边的数量关系。
它在数学的发展中起过重要的作用,在现时世界中也有着广泛的作用。
学生通过对勾股定理的学习,可以在原有的基础上对直角三角形有进一步的认识和理解。
(二)教学目标知识与能力:掌握勾股定理,并能运用勾股定理解决一些简单实际问题。
过程与方法:经历探索及验证勾股定理的过程,了解利用拼图验证勾股定理的方法,发展学生的合情推理意识、主动探究的习惯,感受数形结合和从特殊到一般的思想。
情感态度与价值观:激发学生爱国热情,让学生体验自己努力得到结论的成就感,体验数学充满探索和创造,体验数学的美感,从而了解数学,喜欢数学。
(三)教学重点:经历探索及验证勾股定理的过程,并能用它来解决一些简单的实际问题。
教学难点:用面积法(拼图法)发现勾股定理。
突出重点、突破难点的办法:发挥学生的主体作用,通过学生动手实验,让学生在实验中探索、在探索中领悟、在领悟中理解。
二、教法与学法分析:学情分析:八年级学生已经具备一定的观察、归纳、猜想和推理的能力、他们在小学已学习了一些几何图形的面积计算方法(包括割补、拼接),但运用面积法和割补思想来解决问题的意识和能力还不够。
另外,学生普遍学习积极性较高,课堂活动参与较主动,但合作交流的能力还有待加强、教法分析:结合八年级学生和本节教材的特点,在教学中采用“问题情境————建立模型————解释应用———拓展巩固”的模式,选择引导探索法。