三角恒等变换两角和差二倍角三角函数早练专题练习(四)附答案人教版高中数学高考真题汇编
- 格式:doc
- 大小:302.00 KB
- 文档页数:7
高中数学练习题附带解析三角函数的和差化积与倍角公式高中数学练习题附带解析:三角函数的和差化积与倍角公式【问题一】已知sinα = 1/2,0°< α < 90°,cosβ = 1/4,90°< β < 180°,求sin(α + β)的值。
【解析一】根据三角函数的和差化积公式:sin(α + β) = sinα * cosβ + cosα * sinβ代入已知条件,得到:sin(α + β) = (1/2) * (1/4) + cosα * sinβ【问题二】已知cosθ = -3/5,180°< θ < 270°,tanφ = 4/3,0°< φ < 90°,求tan(θ + φ)的值。
【解析二】根据三角函数的和差化积公式:tan(θ + φ) = (tanθ + tanφ) / (1 - tanθ * tanφ)代入已知条件,得到:tan(θ + φ) = (-3/5 + 4/3) / (1 + (-3/5) * (4/3))【问题三】已知sinα = 3/5,0°< α < 90°,cosβ = -4/5,270°< β < 360°,求cos(α - β)的值。
【解析三】根据三角函数的和差化积公式:cos(α - β) = cosα * cosβ + sinα * sinβ代入已知条件,得到:cos(α - β) = (3/5) * (-4/5) + sinα * sinβ【问题四】已知sinx = 2/3,0°< x < 90°,cosy = -5/13,90°< y < 180°,求sin(2x + y)的值。
【解析四】根据三角函数的倍角公式:sin(2x + y) = sin2x * cosy + cos2x * siny 代入已知条件,得到:sin(2x + y) = (2 * (2/3) * (4/9)) * (-5/13) + ((4/9) - (1 - (2/3)^2)) * siny【问题五】已知tanα = 3/4,0°< α < 90°,sincy = 12/13,270°< y < 360°,求cos(2α - y)的值。
高二数学三角函数三角恒等变换解三角形试题答案及解析1..【答案】【解析】故答案为:.【考点】两角和与差的三角公式.2.若函数在区间上单调递增,则的最小值是()A.B.C.D.【答案】D【解析】依题意,,令,在区间上,,单调递增,,所以;【考点】1.导数与单调性;2.化归的思想;3.函数在内是()A.增函数B.减函数C.有增有减D.不能确定【答案】A【解析】函数,可得,所以函数在内是增函数.故选:A.【考点】利用导数研究函数的单调性.4.(12分).已知在△ABC中,内角A,B,C所对的边长分别为a,b,c,且tan A+tan B=.(1)求角B的大小;(2)若,求sinA·sinC的值.【答案】(1);(2)【解析】(Ⅰ)已知等式左边利用同角三角函数间的基本关系化简,整理后根据sinC不为0求出cosB的值,即可确定出B的度数;(Ⅱ)已知等式去分母整理后得到关系式,利用余弦定理列出关系式,把得出关系式及cosB的值代入,并利用正弦定理化简,即可求出sinAsinC的值试题解析:(Ⅰ)已知等式变形得:sinAcosA+sinBcosB=2sinCcosA,去分母得:sinAcosB+sinBcosA=2sinCcosB,即sin(A+B)=2sinCcosB=sinC,∵sinC≠0,∴cosB=12,则B=60°;(Ⅱ)由,整理得:,∵cosB=12,∴,由正弦定理得:sin2B=2sinA·sinC=,则sinA·sinC=【考点】1.同角间三角函数关系;2.正弦定理5.将函数的图象上所有点的横坐标伸长到原来的倍(纵坐标不变),再将所得图象向左平移个单位,则所得函数图象对应的解析式为()A.B.C.D.【答案】D【解析】将函数的图象上所有点的横坐标伸长到原来的倍(纵坐标不变),得到函数的图像,再将所得图象向左平移个单位,则所得函数图象对应的解析式为.故选D.【考点】三角函数图像变换:周期变换、左右平移.6.已知在△ABC中,三个内角A,B,C的对边分别为a,b,c,若△ABC的面积为S,且,则tanC等于()A.B.C.D.【答案】C【解析】【考点】1.余弦定理解三角形;2.同角间三角函数关系7.已知在△ABC中,内角A,B,C所对的边长分别为a,b,c,且tan A+tan B=.(1)求角B的大小;(2)若+=3,求sin Asin C的值.【答案】(1);(2)【解析】(1)由题意切化弦,同分可得,整理可得,即可求得;(2)根据已知式子同分可得,由余弦定理得到,再结合正弦定理即可得到试题解析:(1)由题意可得:因为,所以,又因为,所以(2)有题意可得:即由余弦定理可得:,得到有正弦定理:【考点】1.正余弦定理;2.化简求值8.(本题满分11分)若的内角所对的边分别为,且满足(1)求;(2)当时,求的面积.【答案】(1);(2).【解析】(1)因为正弦定理,所以化为,因为三角形内角有,所以即,所以;(2)由余弦定理,得,而,,得,即,因为三角形的边,所以,则.试题解析:(1)因为由正弦定理,得,又,从而,由于所以(2)解法一:由余弦定理,得,而,,得,即因为,所以,故面积为.解法二:由正弦定理,得从而又由知,所以故,所以面积为.【考点】1.正弦定理与余弦定理;2.三角形的面积公式.9.在中,已知,,则的长为____________________.【答案】【解析】由正弦定理可得【考点】正弦定理解三角形10.(本小题满分10分)在△ABC中,是方程的一个根,(1)求;(2)当时,求△ABC周长的最小值.【答案】(1)(2)【解析】(1)解一元二次方程得到方程的根,结合三角函数有界性得到的值,从而求得大小;(2)由三角形余弦定理结合,可将转化为的表达式,从而求得其最小值,得到周长的最小值试题解析:(1)又是方程的一个根(2)由余弦定理可得:则:当时,c最小且,此时△ABC周长的最小值为.【考点】1.余弦定理解三角形;2.一元二次方程的根11.在△ABC中,角A,B,C所对的边分别为a,b,c,若(b-c)cosA=acosC,则cosA=_____【答案】【解析】由正弦定理可将已知条件转化为【考点】正弦定理与三角函数基本公式12.在△ABC中,cosA=,sinB=,则cosC的值为.【答案】【解析】由cosA=,sinB=得【考点】三角函数基本公式13.在△ABC中,如果,且为锐角,试判断此三角形的形状.【答案】等腰直角三角形.【解析】判定三角形的形状由三角形的三边长或三个角来确定.由可确定.根据正弦定理,可确定角,从而确定三角形的形状.试题解析:因为,所以,又为锐角,所以.,.由正弦定理得:,即展开得:,即,则,所以△ABC是等腰直角三角形.【考点】1.三角形形状;2.正弦定理;14.在△中,分别为角所对的边,若,则此三角形一定是()A.正三角形B.直角三角形C.等腰三角形D.等腰或直角三角形【答案】C【解析】,三角形为等腰三角形【考点】1.正弦定理解三角形;2.三角函数基本公式15.在中,、、分别是三内角A、B、C的对应的三边,已知(1)求角C的大小;(2)满足的是否存在?若存在,求角A的大小.【答案】(1);(2)不存在【解析】(1)由正弦定理将变形可得到关于角C的关系式,进而求得角C的大小;(2)结合角C的大小将变形求解A角,若A角存在则三角形存在试题解析:(1)由正弦定理,得因为由则(2)由(1)知,于是=这样的三角形不存在。
高中数学专题复习
《三角恒等变换两角和与差二倍角三角函数》单元过
关检测
经典荟萃,匠心巨制!独家原创,欢迎下载!
注意事项:
1.答题前填写好自己的姓名、班级、考号等信息
2.请将答案正确填写在答题卡上
第I 卷(选择题)
请点击修改第I 卷的文字说明 评卷人
得分 一、选择题
1.函数f (x )=2sin x cos x 是( )(汇编陕西文3)
(A)最小正周期为2π的奇函数
(B )最小正周期为2π的偶函数
(C)最小正周期为π的奇函数
(D )最小正周期为π的偶函数
2.设02x
<<,则“2
sin 1x x <”是“sin 1x x <”的( ) (A )充分而不必要条件 (B )必要而不充分条件
(C )充分必要条件 (D )既不充分也不必要条件(汇编浙江理4)。
高中数学专题复习
《三角恒等变换两角和与差二倍角三角函数》单
元过关检测
经典荟萃,匠心巨制!独家原创,欢迎下载!
注意事项:
1.答题前填写好自己的姓名、班级、考号等信息
2.请将答案正确填写在答题卡上
第I 卷(选择题)
请点击修改第I 卷的文字说明 评卷人
得分 一、选择题
1.004cos50tan 40-= ( ) A.2 B.232
+ C.3 D.221-(汇编年普通高等学校招生统一考试重庆数学(理)试题(含答案))
2.对任意的锐角α,β,下列不等关系中正确的是( )
A .sin(α+β)>sin α+sin β
B .sin(α+β)>cos α+cos β
C .cos (α+β)<sin α+sin β
D .cos (α+β)<cos α+cos β(汇编北京理)
3.在△OAB 中,O 为坐标原点,]2,
0(),1,(sin ),cos ,1(πθθθ∈B A ,则△OAB 的面积达到最大值时,=θ
( ) A .6π B .4π C .3π D .2π(汇编江西理)。
高中数学专题复习
《三角恒等变换两角和与差二倍角三角函数》单元过
关检测
经典荟萃,匠心巨制!独家原创,欢迎下载!
注意事项:
1.答题前填写好自己的姓名、班级、考号等信息
2.请将答案正确填写在答题卡上
第I 卷(选择题)
请点击修改第I 卷的文字说明 评卷人
得分 一、选择题
1.已知210cos 2sin ,=
+∈αααR ,则=α2tan A.34 B. 43 C.43- D.34- (汇编年普通高等学校招生统一考试浙江数学(理)试题(纯WORD 版))
2.sin163sin 223sin 253sin313+= ( )
A 12-
B 12
C 32-
D 32(汇编重庆理)
3.如题(15)图,图中的实线是由三段圆弧连接而成的一条封闭曲线C ,各段弧所在的圆经过同一点P (点P 不在C 上)且半径相等. 设第i 段弧所对的圆心角为。
高中三角函数专题练习题(及答案)一、填空题1.在ABC 中,角A 、B 、C 所对的边分别为a 、b 、c .D 、E 是线段AB 上满足条件1()2CD CB CE =+,1()2CE CA CD =+的点,若2CD CE c λ⋅=,则当角C 为钝角时,λ的取值范围是______________2.已知函数23tan ,,,2332()2,33x x f x x ππππππ⎧⎛⎤⎛⎫∈-⋃ ⎪⎪⎥⎝⎦⎝⎭⎪=⎨⎛⎤⎪+∈ ⎥⎪⎝⎦⎩若()f x 在区间D 上的最大值存在,记该最大值为{}K D ,则满足等式{[0,)}3{[,2]}K a K a a =⋅的实数a 的取值集合是___________.3.已知函数()[)[]243,0,3,92sin ,3,156x x y f x x x π⎧⎛⎫-∈⎪ ⎪⎪⎝⎭==⎨⎪∈⎪⎩若存在实数a 、b 、c 、d 满足()()()()f a f b f c f d ===(其中a b c d <<<),则()()a b cd +⋅的取值范围是______.4.在ABC 中,角A ,B ,C 所对的边长分别为a ,b ,c ,D 为边BC 上的一点,若6c =,b =sin BAD ∠=,cos 4BAC ∠=,则AD =__________. 5.已知四棱锥P ABCD -的顶点均在球O 的球面上,底面ABCD是正方形,AB =120APB ∠=︒,当AD AP ⊥时,球O 的表面积为______.6.通信卫星与经济、军事等密切关联,它在地球静止轨道上运行,地球静止轨道位于地球赤道所在平面,轨道高度为km h (轨道高度是指卫星到地球表面的距离).将地球看作是一个球(球心为O ,半径为km r ),地球上一点A 的纬度是指OA 与赤道平面所成角的度数,点A 处的水平面是指过点A 且与OA 垂直的平面,在点A 处放置一个仰角为θ的地面接收天线(仰角是天线对准卫星时,天线与水平面的夹角),若点A 的纬度为北纬30,则tan θ________.7.意大利著名画家、数学家、物理学家达芬奇在他创作《抱银貂的女子》时思考过这样一个问题:固定项链的两端,使其在重力的作用下自然下垂,那么项链所形成的曲线是什么?这就是著名的悬链线问题,连接重庆和湖南的世界第一悬索桥——矮寨大桥就采用了这种方式设计.经过计算,悬链线的函数方程为()e e cos 2x xh x -+=,并称其为双曲余弦函数.若()()cos sin cos cos sin cos h h m θθθθ+≥-对0,2πθ⎡⎤∀∈⎢⎥⎣⎦恒成立,则实数m 的取值范围为______.8.△ABC 中,角A ,B ,C 所对的三边分别为a ,b ,c ,c =2b ,若△ABC 的面积为1,则BC 的最小值是________ .9.已知函数()()sin 3cos 0f x x x ωωω=>,若函数()f x 的图象在区间[]0,2π上的最高点和最低点共有6个,下列说法正确的是___________. ①()f x 在[]0,2π上有且仅有5个零点; ②()f x 在[]0,2π上有且仅有3个极大值点; ③ω的取值范围是3137,1212⎡⎫⎪⎢⎣⎭;④()f x 在06,π⎡⎤⎢⎥⎣⎦上为单递增函数.10.已知1OB →=,,A C 是以O 为圆心,220BA BC →→⋅=,设平面向量OA →与OB →的夹角为θ(π04θ≤≤),则平面向量OA →在BC →方向上的投影的取值范围是_____.二、单选题11.设150a =,112ln sin cos 100100b ⎛⎫=+ ⎪⎝⎭,651ln 550c =,则a ,b ,c 的大小关系正确的是( ) A .a b c << B .a c b << C .b c a <<D .b a c <<12.已知ABC 中,角,,A B C 的对边分别为,,a b c .若2222224cos 4sin 33a B b A b c +=-,则cos A 的最小值为( )A 2B 7C 7D .3413.已知函数()21ln e 1xf x x -⎛⎫=+ ⎪+⎝⎭,a ,b ,c 分别为ABC 的内角A ,B ,C 所对的边,且222446,a b c ab +-=则下列不等式一定成立的是( ) A .()()sin cos f A f B ≤ B .f (cos A )≤f (cos B ) C .f (sin A )≥f (sin B )D .f (sin A )≥f (cos B )14.若函数sin 2y x =与()sin 2y x ϕ=+在0,4π⎛⎫⎪⎝⎭上的图象没有交点,其中()0,2ϕπ∈,则ϕ的取值范围是( )A .[),2ππB .,2ππ⎡⎤⎢⎥⎣⎦C .(),2ππD .,215.已知(){}|sin ,A y y n n Z ωϕ==+∈,若存在ϕ使得集合A 中恰有3个元素,则ω的取值不可能是( ) A .27π B .25π C .2π D .23π16.在ABC 中,60BAC ∠=,3BC =,且有2CD DB =,则线段AD 长的最大值为( )A B .2 C 1 D .17.已知函数()()3log 911x f x x+=-,下列说法正确的是( )A .()f x 既不是奇函数也不是偶函数B .()f x 的图象与sin y x =有无数个交点C .()f x 的图象与2y =只有一个交点D .()()21f f -<-18.已知函数()sin()0,02f x x πωϕωϕ⎛⎫=+><< ⎪⎝⎭,66f x f x ππ⎛⎫⎛⎫+=-- ⎪ ⎪⎝⎭⎝⎭,22f x f x ππ⎛⎫⎛⎫+=- ⎪ ⎪⎝⎭⎝⎭,下列四个结论: ①4πϕ=②93()2k k N ω=+∈ ③02f π⎛⎫-= ⎪⎝⎭④直线3x π=-是()f x 图象的一条对称轴其中所有正确结论的编号是( ) A .①②B .①③C .②④D .③④19.将方程2sin cos x x x =的所有正数解从小到大组成数列{}n x ,记()1cos n n n a x x +=-,则122021a a a ++⋅⋅⋅+=( )A .B .C .D .20.函数()sin()(0)6f x x πωω=+>在区间52[,]63ππ-上单调递增,且存在唯一05[0,]6x π∈,使得0()1f x =,则ω的取值范围为( ) A .11[,]52B .21[,]52C .14[,]55D .24[,]55三、解答题21.如图,四边形ABCD 是某市中心一边长为4百米的正方形地块的平面示意图. 现计划在该地块上划分四个完全相同的直角三角形(即Rt ,Rt ,Rt ABF BCG CDH 和Rt DAE ),且在这四个直角三角形区域内进行绿化,中间的小正方形修建成市民健身广场,为了方便市民到达健身广场,拟修建4条路,AE ,BF ,CG DH . 已知在直角三角形内进行绿化每1万平方米的费用为10a 元,中间小正方形修建广场每1万平方米的费用为13a 元,修路每1百米的费用为a 元,其中a 为正常数.设FAB θ∠=,0,4πθ⎛⎫∈ ⎪⎝⎭.(1)用θ表示该工程的总造价S ;(2)当cos θ为何值时,该工程的总造价最低? 22.已知()3,sin a x ω=,1,2cos 3b x πω⎛⎫⎛⎫=+ ⎪ ⎪⎝⎭⎝⎭,其中0>ω,()f x a b =⋅,且函数()f x 在12x π=处取得最大值.(1)求ω的最小值,并求出此时函数()f x 的解析式和最小正周期; (2)在(1)的条件下,先将()y f x =的图像上的所有点向右平移4π个单位,再把所得图像上所有点的横坐标伸长为原来的2倍(纵坐标不变),然后将所得图像上所有的点向下平移3y g x 的图像.若在区间5,33ππ⎡⎤⎢⎥⎣⎦上,方程()210g x a +-=有两个不相等的实数根,求实数a 的取值范围;(3)在(1)的条件下,已知点P 是函数()y h x =图像上的任意一点,点Q 为函数()y f x =图像上的一点,点3,6A π⎛ ⎝⎭,且满足12OP OQ OA =+,求()104h x +≥的解集. 23.已知()sin ,2cos a x x =,()2sin ,sin b x x =,()f x a b =⋅ (1)求()f x 的解析式,并求出()f x 的最大值;(2)若0,2x π⎡⎤∈⎢⎥⎣⎦,求()f x 的最小值和最大值,并指出()f x 取得最值时x 的值.24.已知函数()sin()0,0,||2f x A x A πωϕωϕ⎛⎫=+>>< ⎪⎝⎭的最大值是2,函数()f x 的图象的一条对称轴是3x π=,且与该对称轴相邻的一个对称中心是7,012π⎛⎫⎪⎝⎭. (1)求()f x 的解析式;(2)已知DBC △是锐角三角形,向量,,,2124233B B m f f n f f B ππππ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=+=++ ⎪ ⎪ ⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭,且3,sin 5m n C ⊥=,求cos D . 25.已知函数()2sin cos cos2x x x x f =+. (1)求()f x 的最小正周期及单调递减区间; (2)求()f x 在区间0,4π⎡⎤⎢⎥⎣⎦上的最大值和最小值.26.如图,长方体1111ABCD A B C D -中,2AB AD ==,14AA =,点P 为面11ADD A 的对角线1AD 上的动点(不包括端点).PM ⊥平面ABCD 交AD 于点M ,MN BD ⊥于点N .(1)设AP x =,将PN 长表示为x 的函数;(2)当PN 最小时,求异面直线PN 与11A C 所成角的大小.(结果用反三角函数值表示) 27.将函数()4sin cos 6g x x x π⎛⎫=+ ⎪⎝⎭的图象向左平移02πϕϕ⎛⎫<≤ ⎪⎝⎭个单位长度后得到()f x 的图象.(1)若()f x 为偶函数,求ϕ; (2)若()f x 在7,6ππ⎛⎫⎪⎝⎭上是单调函数,求ϕ的取值范围. 28.为丰富市民的文化生活,市政府计划在一块半径为200m ,圆心角为0120的扇形地上建造市民广场,规划设计如图:内接梯形ABCD 区域为运动休闲区,其中A ,B 分别在半径OP ,OQ 上,C ,D 在圆弧PQ 上,CD //AB ;上,CD //AB ;OAB ∆区域为文化展区,AB 长为3域,且CD 长不得超过200m.(1)试确定A ,B 的位置,使OAB ∆的周长最大?(2)当OAB ∆的周长最长时,设2DOC θ∠=,试将运动休闲区ABCD 的面积S 表示为θ的函数,并求出S 的最大值.29.设函数2()cos sin 2f x x a x a =-+++(a ∈R ). (1)求函数()f x 在R 上的最小值;(2)若不等式()0f x <在[0,]2π上恒成立,求a 的取值范围;(3)若方程()0f x =在(0,)π上有四个不相等的实数根,求a 的取值范围.30.已知函数())233sin cos 0f x x x x ωωωω=+>的最小正周期为π.将函数()y f x =的图象上各点的横坐标变为原来的4倍,纵坐标变为原来的2倍,得到函数()y g x =的图象.(1)求ω的值及函数()g x 的解析式; (2)求()g x 的单调递增区间及对称中心【参考答案】一、填空题1.12(,)369- 2.47,912ππ⎧⎫⎨⎬⎩⎭ 3.()135,2164.45.28π 6.2rr h-+ 7.12,1⎡⎤⎣⎦89.②③10.⎡⎢⎣⎦二、单选题 11.D 12.C 13.D 14.A 15.A 16.C 17.C 18.B 19.C 20.B 三、解答题21.(1)()16(13sin 6sin cos )S a θθθθ=+-,0,4πθ⎛⎫∈ ⎪⎝⎭;(2)当3cos 4θ=时,()16()S af θθ=取得最小值 【解析】(1)根据题意可知4sin BF θ=,4cos AF θ=,进而求得Rt ABFS 与EFGH S 正方形再求得总造价S 即可.(2)由(1)有()16(13sin 6sin cos )S a θθθθ=+-,再求导分析函数的单调性与最值即可.【详解】(1)在Rt ABF 中,FAB θ∠=,4AB =,所以4sin BF θ=,4cos AF θ=. 由于Rt ,Rt ,Rt ABF BCG CDH 和Rt DAE 是四个完全相同的直角三角形,所以4sin AE BF CG DH θ====,4(cos sin )EF FG GH HE θθ====-,所以Rt114cos 4sin 8sin cos 22ABFS AF BF θθθθ=⋅⋅=⨯⨯=, 2224(cos sin )16(12sin cos )EFGH S EF θθθθ==-=-正方形.所以()48sin cos 1016(12sin cos )1344sin S a a a θθθθθθ=⨯⨯+-⨯+⨯⨯16[20sin cos (12sin cos )13sin ]a θθθθθ=+-⨯+ 16(13sin 6sin cos )a θθθ=+-,0,4πθ⎛⎫∈ ⎪⎝⎭. (2)由(1)记()13sin 6sin cos f θθθθ=+-,0,4πθ⎛⎫∈ ⎪⎝⎭.则22232()cos 6(cos sin )12cos cos 612(cos )(cos )43f θθθθθθθθ'=--=-++=--+. 令()0f θ'=,因为0,4πθ⎛⎫∈ ⎪⎝⎭,所以3cos 4θ=或2cos 3θ=-(舍).记03cos 4θ=,所以当0(0,)θθ∈时,()0f θ'<,()f θ单调递减;当0(,)4πθθ∈时,()0f θ'>,()f θ单调递增. 所以当3cos 4θ=时,()f θ取得极小值,也是最小值, 又0a >,所以当3cos 4θ=时,()16()S af θθ=取得最小值. 【点睛】本题主要考查了三角函数在几何中的运用,同时也考查了求导分析函数最值的方法,属于难题.22.(1)ω的最小值为1,()sin 23f x x π⎛⎫=+ ⎪⎝⎭,T π=,(2)104a <≤(3)原不等式的解集为3,22428k k xx k Z ππππ⎧⎫+≤≤+∈⎨⎬⎩⎭【解析】 【分析】(1)先将()f x 化成正弦型,然后利用()f x 在12x π=处取得最大值求出ω,然后即可得到()f x 的解析式和周期(2)先根据图象的变换得到()sin 6x y g x π⎛⎫-= ⎝=⎪⎭,然后画出()g x 在区间5,33ππ⎡⎤⎢⎥⎣⎦上的图象,条件转化为()g x 的图象与直线12y a =-有两个交点即可(3)利用坐标的对应关系式,求出()h x 的函数的关系式,进一步利用三角不等式的应用求出结果. 【详解】 (1)因为()3,sin a x ω=,1,2cos 3b x πω⎛⎫⎛⎫=+ ⎪ ⎪⎝⎭⎝⎭所以()32sin cos 3f x a b x x πωω⎛⎫=⋅=++ ⎪⎝⎭212sin cos sin cos 2x x x x x x ωωωωωω⎛⎫== ⎪ ⎪⎝⎭11cos 21sin 2sin 22222x x x x ωωωω-=+=+sin 23x πω⎛⎫=+ ⎪⎝⎭因为()f x 在12x π=处取得最大值.所以22,1232k k Z πππωπ⨯+=+∈,即121,k k Z ω=+∈当0k =时ω的最小值为1此时3()sin 232f x x π⎛⎫=++ ⎪⎝⎭,T π=(2)将()y f x =的图像上的所有的点向右平移4π个单位得到的函数为33sin 2sin 243262y x x πππ⎛⎫⎛⎫⎛⎫=-++=-+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,再把所得图像上所有的点的横坐标伸长为原来的2倍(纵坐标不变)得到的函数为3sin 62y x π⎛⎫=-+ ⎪⎝⎭,然后将所得图像上所有的点向下平移32个单位,得到函数()sin 6x y g x π⎛⎫-= ⎝=⎪⎭()sin 6g x x π⎛⎫=- ⎪⎝⎭在区间5,33ππ⎡⎤⎢⎥⎣⎦上的图象为:方程()210g x a +-=有两个不相等的实数根等价于()g x 的图象 与直线12y a =-有两个交点 所以11212a ≤-<,解得104a <≤(3)设(),P x y ,()00,Q x y因为点3,6A π⎛ ⎝⎭,且满足12OP OQ OA =+ 所以00126132x x y y π⎧=+⎪⎪⎨⎪=⎪⎩002332x x y y π⎧=-⎪⎪⎨⎪=⎪⎩因为点()00,Q x y 为函数()y f x =图像上的一点 所以332sin 2233y x ππ⎛⎫⎛⎫=-+ ⎪ ⎪⎝⎭⎝⎭即1()sin 423y h x x π⎛⎫==- ⎪⎝⎭因为()104h x +≥,所以1sin 432x π⎛⎫-≥- ⎪⎝⎭所以7242,636k x k k Z πππππ-≤-≤+∈ 所以3,22428k k x k Z ππππ+≤≤+∈ 所以原不等式的解集为3,22428k k xx k Z ππππ⎧⎫+≤≤+∈⎨⎬⎩⎭【点睛】本题考查的知识要点:三角函数关系式的变换,正弦型函数的性质的应用,平面向量的数量积的应用,三角不等式的解法及应用,主要考查学生的运算能力和转换能力,属于中档题.23.(1)()f x 214x π⎛⎫=-+ ⎪⎝⎭1.(2)0x =时,最小值0.38x π=1. 【解析】 【分析】(1)利用数量积公式、倍角公式和辅助角公式,化简()f x ,再利用三角函数的有界性,即可得答案; (2)利用整体法求出32444x πππ-≤-≤,再利用三角函数线,即可得答案. 【详解】(1)()22sin 2sin cos f x x x x =+1cos2sin2x x =-+214x π⎛⎫=-+ ⎪⎝⎭∴sin 214x π⎛⎫-≤ ⎪⎝⎭,()f x ∴1.(2)由(1)得()214f x x π⎛⎫=-+ ⎪⎝⎭,∵0,2x π⎡⎤∈⎢⎥⎣⎦,32444x πππ∴-≤-≤.sin 2124x π⎛⎫≤-≤ ⎪⎝⎭, ∴当244x ππ-=-时,即0x =时,()f x 取最小值0.当242x ππ-=,即38x π=时,()f x 1. 【点睛】本题考查向量数量积、二倍角公式、辅助角公式、三角函数的性质,考查函数与方程思想、转化与化归思想,考查逻辑推理能力和运算求解能力,求解时注意整体法的应用.24.(1)()2sin 26f x x π⎛⎫=- ⎪⎝⎭;(2【解析】(1)根据函数的最值、周期、对称轴待定系数即可求解;(2)由(1)所求,可化简向量坐标,根据向量垂直得到角B ,再利用()cos cosD A B =-+求解. 【详解】(1)设()f x 的最小正周期为T , 依题意得71234T ππ-=,∴T π=,∴22πωπ==. ∵()f x 图象的一条对称轴是3x π=,∴2,32k k Z ππϕπ+=+∈, ∴,6k k Z πϕπ=-+∈.∵||2ϕπ<,∴6πϕ=-. 又∵()f x 的最大值是2,∴2A =,从而()2sin 26f x x π⎛⎫=- ⎪⎝⎭.(2)∵()(),2sin ,3,2cos ,2cos 2m n m B n B B ⊥==,∴4sin cos 22sin 22m n B B B B B ⋅=⋅+=+4sin 203B π⎛⎫=+= ⎪⎝⎭∴2,3B k k Z ππ+=∈,∴:,62kB k Z ππ=-+∈, 又∵B 是锐角,∴3B π=.∵3sin 5C =,∴4cos 5C =,∴cos cos()(cos cos sin sin )D B C B C B C =-+=--=.即cosD =. 【点睛】本题考查三角函数解析式的求解,涉及向量垂直的转换,余弦函数的和角公式.属综合基础题.25.(1)最小正周期π;单调递减区间是5,88k k ππππ⎡⎤++⎢⎥⎣⎦,k Z ∈(2)最大值和最小值和1. 【解析】(1)利用二倍角的正弦公式的逆用公式以及两角和的正弦公式的逆用公式化简得()24f x x π⎛⎫+ ⎪⎝⎭,再根据周期公式可得周期,利用正弦函数的递减区间可得()f x 的递减区间;(2)利用正弦函数的性质可求得结果. 【详解】(1)因为()sin 2cos 224x f x x x π⎛⎫=+=+ ⎪⎝⎭.所以()f x 的最小正周期22T ππ==. 由3222242k x k πππππ+≤+≤+,得588k x k ππππ+≤≤+,所以()f x 的单调递减区间是5,88k k ππππ⎡⎤++⎢⎥⎣⎦,k Z ∈. (2)因为0,4x π⎡⎤∈⎢⎥⎣⎦,所以32,444x πππ⎡⎤+∈⎢⎥⎣⎦.所以当242x ππ+=,即8x π=当244x ππ+=或34π,即0x =或4x π=时,函数取得最小值1.所以()f x 在区间0,4⎡⎤⎢⎥⎣⎦π和1.【点睛】本题考查了二倍角的正弦公式,考查了两角和的正弦公式,考查了正弦型函数的周期公式,考查了求三角函数的单调区间和最值,属于基础题.26.(1) PN ,(0,x ∈;(2) . 【解析】 【分析】(1)求出PM ,AM ,运用余弦定理,求得PN ;(2)求出PN 的最小值,由于//MN AC ,又11//A C AC ,PNM ∠为异面直线PN 与11A C 所成角的平面角,通过解直角三角形PMN ,即可得到. 【详解】(1)在APM ∆中,PM =AM =;其中0x <<在MND ∆中,22MN x ⎫=⎪⎪⎝⎭,在PMN ∆中,PN =(0,x ∈;(2)当(0,x 时,PN 最小,此时43PN =.因为在底面ABCD 中,MN BD ⊥,AC BD ⊥,所以//MN AC ,又11//A C AC ,PNM ∠为异面直线PN 与11A C 所成角的平面角,在PMN ∆中,PMN ∠为直角,tan PNM ∠=所以PNM ∠=异面直线PN 与11A C 所成角的大小 【点睛】本题主要考查了异面直线及其所成的角;函数解析式的求解及常用方法等.属于难题. 27.(1)6π=ϕ;(2),62ππϕ⎡⎤∈⎢⎥⎣⎦【解析】 【分析】(1)根据三角恒等变换对()4sin cos 6g x x x π⎛⎫=+ ⎪⎝⎭化简变形为()2sin 216g x x π⎛⎫=+- ⎪⎝⎭,然后可得到图象左移之后的函数()2sin 2216f x x ϕπ⎛⎫=++- ⎪⎝⎭,利用三角函数偶函数的性质即可求出ϕ;(2)先求出2222,22662x πππϕπϕπϕ⎛⎫++∈++++ ⎪⎝⎭,再根据ϕ的范围求出26πϕ+和22πϕ+的范围,从而根据单调性列出关于ϕ的不等式,解之即可求得结果. 【详解】(1)()()14sin sin 21cos 22g x x x x x x ⎫=-=--⎪⎪⎝⎭2sin 216x π⎛⎫=+- ⎪⎝⎭,∴()2sin 2216f x x ϕπ⎛⎫=++- ⎪⎝⎭.又()f x 为偶函数,则()262k k Z ππϕπ+=+∈,02πϕ<≤,∴6π=ϕ; (2)7,6x ππ⎛⎫∈ ⎪⎝⎭,∴2222,22662x πππϕπϕπϕ⎛⎫++∈++++⎪⎝⎭. 02πϕ<≤,∴72,666πππϕ⎛⎫+∈ ⎪⎝⎭,32,222πππϕ⎛⎫+∈ ⎪⎝⎭()f x在7,6ππ⎛⎫⎪⎝⎭是单调函数,∴2622ππϕπϕ⎧+≥⎪⎪⎨⎪<≤⎪⎩,∴,62ππϕ⎡⎤∈⎢⎥⎣⎦.【点睛】本题考查三角恒等变换、三角函数的图象变换及性质,以及基本的运算能力和逻辑推理能能力,综合性较强,属于有一定难度的中档题.28.(1)OA、OB都为50m;(2)8sin64sin cosSθθθθ=-+;0,6πθ⎛⎤∈ ⎥⎝⎦;最大值为2625(8m+.【解析】【分析】对于(1),设OA m=,OB n=,m,n(0,200)∈,在△OAB中,利用余弦定理可得22222cos3AB OA OB OA OBπ=+-⋅⋅,整理得222m n mn=++,结合基本不等式即可得出结论;对于(2),当△AOB的周长最大时,梯形ACBD为等腰梯形,过O作OF⊥CD交CD于F,交AB于E,则E、F分别为AB,CD的中点,利用已知可表示出相关线段;然后利用梯形的面积公式可知,8sin64sin cosSθθθθ=-+,0,6πθ⎛⎤∈ ⎥⎝⎦,令()8sin64sin cosfθθθθθ=-+0,6πθ⎛⎤∈ ⎥⎝⎦,,结合导数,确定函数的单调性,即可求出S的最大值.【详解】解:(1)设OA m=,OB n=,m,n(0,200)∈,在OAB∆中,22222cos3AB OA OB OA OBπ=+-⋅⋅,即222m n mn=++.所以22222()3()()()44m nm n mn m n m n+=+-+-=+.所以m n100+,当且仅当m n50==时,m n+取得最大值,此时OAB∆周长取得最大值.答:当OA、OB都为50m时,OAB∆的周长最大.(2)当AOB∆的周长最大时,梯形ABCD为等腰梯形.如上图所示,过O 作OF CD ⊥交CD 于F ,交AB 于E ,则E 、F 分别为AB 、CD 的中点, 所以DOE θ∠=.由CD 200,得0,6πθ⎛⎤∈ ⎥⎝⎦.在ODF ∆中,DF 200sin θ=,OF 200cos θ=. 又在AOE ∆中,OE OAcos253π==,故EF 200cos 25θ=-.所以1(503400sin )(200cos 25)2S θθ=-625(38sin )(8cos 1)θθ=-625(838sin 64sin cos 3)θθθθ=-+,0,6πθ⎛⎤∈ ⎥⎝⎦.令()838sin 64sin cos 3f θθθθθ=-+0,6πθ⎛⎤∈ ⎥⎝⎦,()838cos 64cos 216sin 64cos 26f πθθθθθθ'⎛⎫=--+=-++ ⎪⎝⎭,0,6πθ⎛⎫∈ ⎪⎝⎭.又16sin 6y πθ⎛⎫=-+ ⎪⎝⎭及cos 2y θ=在0,6πθ⎛⎤∈ ⎥⎝⎦上均为单调递减函数,故()f θ'在0,6πθ⎛⎤∈ ⎥⎝⎦上为单调递减函数.因1()1640623f π⎫'=-⨯>⎪⎪⎝⎭,故()0f θ'>在0,6πθ⎛⎤∈ ⎥⎝⎦上恒成立, 于是,()f θ在0,6πθ⎛⎤∈ ⎥⎝⎦上为单调递增函数.所以当6πθ=时,()f θ有最大值,此时S 有最大值为625(8153)+. 答:当6πθ=时,梯形ABCD 面积有最大值,且最大值为2625(8153)m +.【点睛】本题主要考查了余弦定理、基本不等式以及导数的应用,在(2)中得到()838sin 64sin cos 3f θθθθθ=-+()16sin 64cos 26f πθθθ'⎛⎫=-++ ⎪⎝⎭,结合函数在公共区间上,减函数+减函数等于减函数,从而确定()f θ'在0,6πθ⎛⎤∈ ⎥⎝⎦上为单调递减函数.属于难题.29.(1)2min2,2;()1,22;422,2.a af x a a a a >⎧⎪⎪=-++-≤≤⎨⎪+<-⎪⎩(2)(,1)a ∈-∞-(3)12a -<<-【解析】 【分析】(1)通过换元法将函数变形为二次函数,同时利用分类讨论的方法求解最大值; (2)恒成立需要保证max ()0f x <即可,对二次函数进行分析,根据取到最大值时的情况得到a 的范围;(3)通过条件将问题转化为二次函数在给定区间上有两个零点求a 的范围,这里将所有满足条件的不等式列出来,求解出a 的范围. 【详解】解:(1)令sin x t =,[1,1]t ∈-,则2()()1f x g t t at a ==+++,对称轴为2a t =-. ①12a -<-,即2a >,min ()(1)2f x g =-=. ②112a -≤-≤,即22a -≤≤,2min ()()124a a f x g a =-=-++.③12a->,即2a <-,min ()(1)22f x g a ==+. 综上可知,2min2,2;()1,22;422,2.a af x a a a a >⎧⎪⎪=-++-≤≤⎨⎪+<-⎪⎩ (2)由题意可知,max ()0f x <,2()()1f xg t t at a ==+++,[0,1]t ∈的图象是开口向上的抛物线,最大值一定在端点处取得,所以有(0)10,(1)220,g a g a =+<⎧⎨=+<⎩故(,1)a ∈-∞-. (3)令sin x t =,(0,)x π∈.由题意可知,当01t <<时,sin x t =有两个不等实数解,所以原题可转化为2()10g t t at a =+++=在(0,1)内有两个不等实数根.所以有201,24(1)0,12(0)10,(1)220,a a a a g a g a ⎧<-<⎪⎪⎪∆=-+>⇒-<<-⎨⎪=+>⎪=+>⎪⎩【点睛】(1)三角函数中,形如2()sin sin f x a x b x c =++或者2()cos cos f x a x b x c =++都可以采用换元法求解函数最值;(2)讨论二次函数的零点的分布,最好可以采用数形结合的方法解决问题,这样很大程度上减少了遗漏条件的可能.30.(1)1ω=,()2sin()23x g x π=+;(2)单调递增区间为54,433k k ππππ⎡⎤-+⎢⎥⎣⎦,k Z ∈,对称中心为2(2,0)()3k k ππ-∈Z . 【解析】 【分析】(1)整理()f x 可得:()sin(2)3f x x πω=+,利用其最小正周期为π即可求得:1ω=,即可求得:()sin(2)3f x x π=+,再利用函数图象平移规律可得:()2sin()23x g x π=+,问题得解. (2)令222232x k k πππππ-≤+≤+,k Z ∈,解不等式即可求得()g x 的单调递增区间;令23x k ππ+=,k Z ∈,解方程即可求得()g x 的对称中心的横坐标,问题得解. 【详解】解:(1)1()2sin 2sin(2)23f x x x x πωωω=+=+, 由22ππω=,得1ω=. 所以()sin(2)3f x x π=+.于是()y g x =图象对应的解析式为()2sin()23x g x π=+.(2)由222232x k k πππππ-≤+≤+,k Z ∈得 54433k x k ππππ-≤≤+,k Z ∈ 所以函数()g x 的单调递增区间为54,433k k ππππ⎡⎤-+⎢⎥⎣⎦,k Z ∈. 由23x k ππ+=,解得22()3x k k ππ=-∈Z . 所以()g x 的对称中心为2(2,0)()3k k ππ-∈Z . 【点睛】本题主要考查了二倍角公式、两角和的正弦公式应用及三角函数性质,考查方程思想及转化能力、计算能力,属于中档题.。
第三节三角恒等变换1.两角和与差的余弦、正弦、正切公式(1)公式C (α-β):cos(α-β)=01cos αcos β+sin αsin β.(2)公式C (α+β):cos(α+β)=02cos αcos β-sin αsin β.(3)公式S (α-β):sin(α-β)=03sin αcos β-cos αsin β.(4)公式S (α+β):sin(α+β)=04sin αcos β+cos αsin β.(5)公式T (α-β):tan(α-β)=05tan α-tan β1+tan αtan β.(6)公式T (α+β):tan(α+β)=06tan α+tan β1-tan αtan β.2.二倍角的正弦、余弦、正切公式(1)公式S 2α:sin2α=072sin αcos α.(2)公式C 2α:cos2α=08cos 2α-sin 2α=092cos 2α-1=101-2sin 2α.(3)公式T 2α:tan2α=112tan α1-tan 2α.3.辅助角公式a sin α+b cos α=a 2+b 2sin(α+φ),其中sin φ=b a 2+b 2,cos φ=aa 2+b 2.1.两角和与差正切公式的变形:tan α±tan β=tan(α±β)(1∓tan αtan β),tan αtan β=1-tan α+tan βtan(α+β)=tan α-tan βtan(α-β)-1.2.降幂公式:sin αcos α=12sin2α,cos 2α=1+cos2α2,sin 2α=1-cos2α2,tan 2α=1-cos2α1+cos2α.3.升幂公式:1-cos α=2sin 2α2,1+cos α=2cos 2α2,1±sin αsin α2±cos .4.其他常用变形sin2α=2sin αcos αsin 2α+cos 2α=2tan α1+tan 2α,cos2α=cos 2α-sin 2αsin 2α+cos 2α=1-tan 2α1+tan 2α,tan α2=sin α1+cos α=1-cos αsin α.5.半角公式(1)sin α2=±1-cos α2;(2)cos α2=±1+cos α2;(3)tan α2=±1-cos α1+cos α=sin α1+cos α=1-cos αsin α.注:此公式不用死记硬背,可由二倍角公式推导而来.1.概念辨析(正确的打“√”,错误的打“×”)(1)存在实数α,β,使等式sin(α+β)=sin α+sin β成立.()(2)当α是第一象限角时,sin α2=1-cos α2.()(3)存在实数α,使tan2α=2tan α.()答案(1)√(2)×(3)√2.小题热身(1)(多选)cos α-3sin α化简的结果可以是()A .12cos B .C .12sin D .答案BD解析cos α-3sin α=α-32sin αcos π3-sin α故选BD.(2)(人教A 必修第一册习题5.5T4改编)已知sin α=55,cos α=255,则tan α2=()A .2-5B .2+5C .5-2D .±(5-2)答案C 解析∵sin α=55,cos α=255,∴tan α2=sin α1+cos α=5-2.故选C.(3)(人教B 必修第三册习题8-2B T3改编)已知θsin θ=45,则sin θ2=________,cos θ2=________.答案-255-55解析∵θsin θ=45,∴cos θ=-35,θ2∈sin θ2=-1+352=-255,cos θ2=-1-352=-55.(4)(人教A 必修第一册复习参考题5T13改编)已知α为锐角,且(tan10°-3)sin α=-2cos40°,则α=________.答案80°解析因为(tan10°-3)sin α=-2cos40°,所以sin α=-2cos40°tan10°-3=-2cos40°cos10°sin10°-3cos10°==-2cos40°cos10°-2sin50°=cos10°=sin80°,又α是锐角,所以α=80°.第1课时两角和与差的正弦、余弦、正切公式及倍角公式考点探究——提素养考点一和、差、倍角公式的简单应用例1(1)(2024·海南海口模拟)若tan αtan β=2,则cos(α-β)cos(α+β)的值为()A .-3B .-13C .13D .3答案A解析由题意,得cos(α-β)cos(α+β)=cos αcos β+sin αsin βcos αcos β-sin αsin β=1+tan αtan β1-tan αtan β=1+21-2=-3.故选A.(2)(2024·九省联考)已知θtan2θ=-,则1+sin2θ2cos 2θ+sin2θ=()A .14B .34C .1D .32答案A解析由θtan2θ=-得2tan θ1-tan 2θ=-4(tan θ+1)1-tan θ,则-4(tan θ+1)2=2tan θ,则(2tan θ+1)(tan θ+2)=0,解得tan θ=-2或tan θ=-12,因为θ所以tan θ∈(-1,0),所以tan θ=-12,则1+sin2θ2cos 2θ+sin2θ=sin 2θ+cos 2θ+2sin θcos θ2cos 2θ+2sin θcos θ=tan 2θ+1+2tan θ2+2tan θ=14+1-12+(-1)=14.故选A.【通性通法】直接利用和、差、倍角公式化简求值的策略策略一记住公式的结构特征和符号变化规律.例如两角差的余弦公式可简记为:“同名相乘,符号反”策略二注意与同角三角函数基本关系、诱导公式的综合应用策略三注意配方法、因式分解、整体代换思想的应用【巩固迁移】1.(2024·安徽亳州模拟)已知sinα=35,α,若sin(α+β)cosβ=4,则tan(α+β)=()A.-167B.-78C.167D.23答案C解析因为sinα=35,α所以cosα=-1-sin2α=-45,tanα=sinαcosα=-34,因为sin(α+β) cosβ=sinαcosβ+cosαsinβcosβ=sinα+cosαtanβ=35-45tanβ=4,所以tanβ=-174,所以tan(α+β)=tanα+tanβ1-tanαtanβ=-34-1741=167.故选C.2.(2023·河北保定模拟)已知锐角θ满足2cos2θ=1+sin2θ,则tanθ=()A.13B.12C.2D.3答案A解析∵2cos2θ=1+sin2θ,∴2(cos2θ-sin2θ)=(sinθ+cosθ)2,即2(cosθ-sinθ)(sinθ+cosθ)=(sinθ+cosθ)2,又θ为锐角,∴sinθ+cosθ>0,∴2(cosθ-sinθ)=sinθ+cosθ,即cosθ=3sinθ,∴tanθ=13.故选A.考点二和、差、倍角公式的逆用与变形用例2(1)(2023·湖北武汉模拟)sin109°cos296°+cos71°sin64°=()A.12B.22C.32D.1答案B解析sin109°cos296°+cos71°sin64°=sin(180°-71°)cos(360°-64°)+cos71°sin64°=sin71°cos64°+cos71°sin64°=sin(71°+64°)=sin135°=22.故选B.(2)(2024·广西梧州模拟)1+tan7π121-tan7π12=()A .-33B .33C .-3D .3答案A解析因为1+tan7π121-tan 7π12=tan π4+tan7π121-tan π4tan7π12=tan 10π12=tan5π6=tan π6=-33.故选A.【通性通法】公式逆用与变形用的技巧(1)逆用公式应准确找出所给式子与公式的异同,创造条件逆用公式.(2)tan αtan β,tan α+tan β(或tan α-tan β),tan(α+β)(或tan(α-β))三者中可以知二求一,应注重公式的逆用和变形使用.提醒:(1)公式逆用时一定要注意公式成立的条件和角之间的关系.(2)注意可借助常数的拼凑法,将分子、分母转化为相同的代数式,从而达到约分的目的.【巩固迁移】3.(2024·福建永安三中模拟)cos(α-35°)cos(25°+α)+sin(α-35°)sin(25°+α)的值为()A .-12B .12C .-32D .32答案B解析由两角差的余弦公式,得cos(α-35°)·cos(25°+α)+sin(α-35°)sin(25°+α)=cos[(α-35°)-(25°+α)]=cos(-60°)=12.故选B.4.(2023·江苏常州二模)已知sin α-3cos α=1,则sin2________.答案12解析已知sin α-3cos α=1,则α-32cos1,所以=12,令β=α-π3,则α=β+π3,即sin β=12,所以22β2cos2β=1-2sin 2β=12.5.tan50°-tan20°-33tan50°tan20°=________.答案33解析tan50°-tan20°-33tan50°tan20°=tan(50°-20°)(1+tan50°tan20°)-33tan50°tan20°=tan30°(1+tan50°tan20°)-33tan50°tan20°=33+33tan50°tan20°-33tan50°tan20°=33.考点三角的变换例3(1)(2024·四川绵阳模拟)已知=23,则α()A .-59B .59C .-13D .13答案A解析απ+2αα2=-1-2sin-=-59.故选A.(2)已知α,βsin(α+β)=-35,=1213,则________.答案-5665解析因为α,β所以3π2<α+β<2π,π2<β-π4<3π4,因为sin(α+β)=-35,1213,所以cos(α+β)=45,513,所以cos α+βcos(α+βsin(α+β=45××1213=-5665.【通性通法】1.三角公式求值中变角的解题思路思路一当“已知角”有两个时,“所求角”一般表示为两个“已知角”的和或差的形式思路二当“已知角”有一个时,此时应着眼于“所求角”与“已知角”的和或差的关系,再应用诱导公式把“所求角”变成“已知角”2.常用的拆角、配角技巧2α=(α+β)+(α-β),α=(α+β)-β=(α-β)+β,β=α+β2-α-β2=(α+2β)-(α+β),α=α+β2+α-β2,α-β2=α-β=(α-γ)+(γ-β),15°=45°-30°,π4+α=π2-.【巩固迁移】6.(2023·山东烟台模拟)已知tan(α+β)=12,tan(α-β)=13,则tan(π-2α)=()A .1B .-1C .2D .-2答案B解析∵2α=(α+β)+(α-β),∴tan2α=tan(α+β)+tan(α-β)1-tan(α+β)tan(α-β)=12+131-12×13=1.又tan(π-2α)=-tan2α,∴tan(π-2α)=-1.故选B.7.已知0<x <π4,=513,则cos2x________.答案2413解析cos2x =cos 2x -sin 2x 22(cos x -sin x )=2(cos x +sin x )=由0<x <π4得0<π4-x <π4,∴=1213,所以原式=2×1213=2413.课时作业一、单项选择题1.sin70°sin10°+cos10°cos70°=()A .12B .-12C .32D .-32答案A解析sin70°sin10°+cos10°cos70°=cos(70°-10°)=cos60°=12.故选A.2.在△ABC 中,若cos A =45,cos B =-35,则cos C 的值为()A.725B.1825C.2425D.-2425答案C解析在△ABC中,由cos A=45,得sin A=1-cos2A=35,由cos B=-35,得sin B=1-cos2B=45,∴cos C=cos[π-(A+B)]=-cos(A+B)=-cos A cos B+sin A sin B=-45×+35×45=2425.故选C.3.(2023·广东茂名模拟)tan70°tan10°+1tan70°-tan10°=()A.-33B.33C.-3D.3答案B解析tan70°tan10°+1tan70°-tan10°=1tan70°-tan10°1+tan70°tan10°=1tan60°=33.故选B.4.已知α为第三象限角,且sin2α-2=2cos2α,则sin α()A.-710B.710C.-7210D.7210答案D解析sin2α-2=2cos2α⇒sin2α-2=2(1-2sin2α)⇒sinα=±255,因为α为第三象限角,所以sinα=-255,cosα=-1-sin 2α=-55,所以sin2α=2sinαcosα=45,cos2α=1-2sin2α=-35,所以α=22(sin2α-cos2α)=7210.故选D.5.(2023·保定模拟)已知=223,则sin2θ的值为()A.79B.-79C.29D.-29答案B解析由=223,得sin θcos π4-cos θsin π4=22(sin θ-cos θ)=223,即sin θ-cos θ=43,等式两边同时平方,得1-sin2θ=169,所以sin2θ=-79.6.若sin(2α-β)=16,sin(2α+β)=12,则sin2αcos β=()A .23B .13C .16D .112答案B解析由sin(2α-β)=16,sin(2α+β)=12,得sin2αcos β-cos2αsin β=16①,sin2αcos β+cos2αsin β=12②,由①+②,得2sin2αcos β=23,所以sin2αcos β=13.7.已知α,β=45,=513,则sin(α-β)的值为()A .1665B .3365C .5665D .6365答案A解析由题意可得α+π6∈β-5π6∈-π2,所以=-35,=-1213,所以sin(α-β)=-=-45×513+=1665.8.(2023·重庆南开中学质检)已知α2,则sin αcos α+32cos2α的值为()A .15B .25C .35D .45答案D解析由α且2,得sin αcos α+32cos2α=12sin2α+32cos2α=α=sincostan 1=2×222+1=45,所以sinαcos α+32cos2α的值为45.故选D.二、多项选择题9.(2023·云南昆明模拟)已知α,β,γsin α+sin γ=sin β,cos β+cos γ=cos α,则下列说法正确的是()A .cos(β-α)=12B .cos(β-α)=13C .β-α=-π3D .β-α=π3答案AD解析由题意,知sin γ=sin β-sin α,cos γ=cos α-cos β,将两式分别平方后相加,得1=(sin β-sin α)2+(cos α-cos β)2=2-2(sinβsin α+cos βcos α),∴cos(β-α)=12,故A 正确,B 错误;∵α,β,γsin γ=sin β-sin α>0,∴β>α,∴0<β-α<π2,∴β-α=π3故C 错误,D正确.故选AD.10.设θ的终边在第二象限,则1-sin θcos θ2-sin θ2的值可能为()A .1B .-1C .-2D .2答案AB解析∵θ的终边在第二象限,∴2k π+π2<θ<2k π+π,k ∈Z ,∴k π+π4<θ2<k π+π2k ∈Z ,∴1-sin θcos θ2-sin θ2=sin 2θ2+cos 2θ2-2sin θ2cos θ2cos θ2-sin θ2cos θ2-sin θ2|sin θ2-cos θ2|cos θ2-sinθ2,故当2k π+π4<θ2<2k π+π2,k ∈Z 时,sin θ2-cos θ2>0,1-sin θcos θ2-sin θ2=sin θ2-cos θ2cos θ2-sin θ2=-1;当2k π+5π4<θ2<2k π+3π2,k ∈Z 时,sin θ2-cos θ2<0,1-sin θcos θ2-sin θ2=cos θ2-sin θ2cos θ2-sin θ2=1.故选AB.11.(2023·海南海口模拟)已知α∈(π,2π),sin α=tan α2=tan β2,则()A .tan α=3B .cos α=12C .tan β=43D .cos β=17答案BD解析因为sin α=tan αcos α=tan α2,所以cos α=12,又α∈(π,2π),所以sin α=-32,tan α=-3,故A 错误,B 正确;因为tan β2=sin α=-32,所以tan β=2tanβ21-tan 2β2=-43,cos β=cos 2β2-sin 2β2sin 2β2+cos 2β2=1-tan 2β21+tan 2β2=17,故C 错误,D 正确.故选BD.三、填空题12.(1+tan20°)(1+tan21°)(1+tan24°)(1+tan25°)=________.答案4解析(1+tan20°)(1+tan25°)=1+tan20°+tan25°+tan20°tan25°=1+tan(20°+25°)(1-tan20°tan25°)+tan20°tan25°=2,同理可得(1+tan21°)(1+tan24°)=2,所以原式=4.13.(2023·青岛模拟)已知tan2θ=-22,π4<θ<π2,则2cos 2θ2-sin θ-12sin=________.答案-3+22解析由tan2θ=-22,即2tan θ1-tan 2θ=-22,解得tan θ=2或tan θ=-22.因为π4<θ<π2,所以tan θ=2且cos θ≠0,则2cos 2θ2-sin θ-12sin=cos θ-sin θcos θ+sin θ=1-tan θ1+tan θ=1-21+2=-3+2 2.14.(2023·邢台模拟)已知α,β均为锐角,35,=513,则sin(α+β)=________,cos(2α-β)=________.答案3365204325解析因为=-35,=513,所以α+π3为第二象限角,β-π3为第一象限角,所以=45,=1213,所以sin(α+β)==3365,cos(2α-β)=-cos(2α-β+π)=-cos2=-cos 2sin 2=-1213cos 2513sin 2-12132cos 1-1013sin =204325.15.已知αβtan α=cos2β1-sin2β,则()A .α+β=π2B .α-β=π4C .α+β=π4D .α+2β=π2答案B解析tan α=cos2β1-sin2β=cos 2β-sin 2β(cos β-sin β)2=cos β+sin βcos β-sin β=1+tan β1-tan β=∵αβ∈α=π4+β,即α-β=π4.故选B.16.魏晋南北朝时期,祖冲之利用割圆术以正24576边形,求出圆周率π约等于355113,和真正的值相比,其误差小于八亿分之一,这个记录在一千年后才被打破.若已知π的近似值还可以表示成4sin52°,则1-2cos 27°π16-π2的值为()A .-18B .-8C .8D .18答案A解析将π=4sin52°代入1-2cos 27°π16-π2,可得1-2cos 27°π16-π2=-cos14°4sin52°16-16sin 252°=-cos14°16sin52°cos52°=-cos14°8sin104°=-cos14°8sin(90°+14°)=-cos14°8cos14°=-18.17.(多选)(2023·长沙模拟)若sin α2=33,α∈(0,π),则()A .cos α=13B .sin α=23C .=6+236D .=23-66答案AC解析∵sin α2=33,α∈(0,π),∴α2∈cos α2=1-sin 2α2=63,∴cos α=1-2sin 2α2=1-=13,故A 正确;sin α=2sin α2cos α2=2×33×63=223,故B 错误;sin α2cosπ4+cos α2sin π4=33×22+63×22=6+236,故C 正确;sin α2cos π4-cos α2sin π4=33×22-63×22=6-236,故D 错误.故选AC.18.如图,在平面直角坐标系xOy 中,顶点在坐标原点,以x 轴非负半轴为始边的锐角α、钝角β的终边与单位圆O 分别交于点A ,B ,x 轴的非负半轴与单位圆O 交于点M ,已知S △OAM =55,点B 的纵坐标是210.(1)求cos(α-β)的值;(2)求2α-β的值.解(1)由题意,知OA =OM =1,因为S △OAM =12OA ·OM sin α=55,所以sin α=255,又α为锐角,所以cos α=55.因为点B 是钝角β的终边与单位圆O 的交点,且点B 的纵坐标是210,所以sin β=210,cos β=-7210,所以cos(α-β)=cos αcos β+sin αsin β=55×+255×210=-1010.(2)因为sin α=255,cos α=55,sin β=210,cos β=-7210,所以sin(α-β)=sin αcos β-cos αsin β=255×-55×210=-31010,又cos(α-β)=-1010,所以sin(2α-β)=sin[α+(α-β)]=sin αcos(α-β)+cos αsin(α-β)=-22,因为α为锐角,sin α=255>22,所以α所以2α又β所以2α-β-π2,所以2α-β=-π4.。
高中数学专题复习
《三角恒等变换两角和与差二倍角三角函数》单元过
关检测
经典荟萃,匠心巨制!独家原创,欢迎下载!
注意事项:
1.答题前填写好自己的姓名、班级、考号等信息
2.请将答案正确填写在答题卡上
第I 卷(选择题)
请点击修改第I 卷的文字说明 评卷人
得分 一、选择题
1.已知210cos 2sin ,=
+∈αααR ,则=α2tan A.34 B. 4
3 C.43- D.34- (汇编年普通高等学校招生统一考试浙江数学(理)试题(纯WORD 版))
2.如题(15)图,图中的实线是由三段圆弧连接而成的一条封闭曲
线C ,各段弧所在的圆经过同一点P (点P 不在C 上)且半径相等.
设第i 段弧所对的圆心角为(1,2,3)i i α=,则
23
23
1
1
cos cos sin sin 3333αααααα++-=____________ . (汇编重
庆文15)。
高中数学专题复习
《三角恒等变换两角和与差二倍角三角函数》单元过
关检测
经典荟萃,匠心巨制!独家原创,欢迎下载!
注意事项:
1.答题前填写好自己的姓名、班级、考号等信息
2.请将答案正确填写在答题卡上
第I卷(选择题)
请点击修改第I卷的文字说明
评卷人 得分
一、选择题
1.若,(0,)2,3cos()22,1sin()22,则cos()的值等于( )
(A)32 (B)12 (C)12 (D)32(汇编重庆文)
2.在△OAB中,O为坐标原点,]2,0(),1,(sin),cos,1(BA,则△OAB的面积达到
最大值时, ( )
A.6 B.4 C.3 D.2(汇编江西理)
3.sin163sin223sin253sin313 ( )